2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207 PM_OUT_OF_METADATA_SPACE
,
208 PM_READ_ONLY
, /* metadata may not be changed */
210 PM_FAIL
, /* all I/O fails */
213 struct pool_features
{
216 bool zero_new_blocks
:1;
217 bool discard_enabled
:1;
218 bool discard_passdown
:1;
219 bool error_if_no_space
:1;
223 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
224 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
225 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
227 #define CELL_SORT_ARRAY_SIZE 8192
230 struct list_head list
;
231 struct dm_target
*ti
; /* Only set if a pool target is bound */
233 struct mapped_device
*pool_md
;
234 struct block_device
*md_dev
;
235 struct dm_pool_metadata
*pmd
;
237 dm_block_t low_water_blocks
;
238 uint32_t sectors_per_block
;
239 int sectors_per_block_shift
;
241 struct pool_features pf
;
242 bool low_water_triggered
:1; /* A dm event has been sent */
244 bool out_of_data_space
:1;
246 struct dm_bio_prison
*prison
;
247 struct dm_kcopyd_client
*copier
;
249 struct work_struct worker
;
250 struct workqueue_struct
*wq
;
251 struct throttle throttle
;
252 struct delayed_work waker
;
253 struct delayed_work no_space_timeout
;
255 unsigned long last_commit_jiffies
;
259 struct bio_list deferred_flush_bios
;
260 struct bio_list deferred_flush_completions
;
261 struct list_head prepared_mappings
;
262 struct list_head prepared_discards
;
263 struct list_head prepared_discards_pt2
;
264 struct list_head active_thins
;
266 struct dm_deferred_set
*shared_read_ds
;
267 struct dm_deferred_set
*all_io_ds
;
269 struct dm_thin_new_mapping
*next_mapping
;
271 process_bio_fn process_bio
;
272 process_bio_fn process_discard
;
274 process_cell_fn process_cell
;
275 process_cell_fn process_discard_cell
;
277 process_mapping_fn process_prepared_mapping
;
278 process_mapping_fn process_prepared_discard
;
279 process_mapping_fn process_prepared_discard_pt2
;
281 struct dm_bio_prison_cell
**cell_sort_array
;
283 mempool_t mapping_pool
;
286 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
288 static enum pool_mode
get_pool_mode(struct pool
*pool
)
290 return pool
->pf
.mode
;
293 static void notify_of_pool_mode_change(struct pool
*pool
)
295 const char *descs
[] = {
302 const char *extra_desc
= NULL
;
303 enum pool_mode mode
= get_pool_mode(pool
);
305 if (mode
== PM_OUT_OF_DATA_SPACE
) {
306 if (!pool
->pf
.error_if_no_space
)
307 extra_desc
= " (queue IO)";
309 extra_desc
= " (error IO)";
312 dm_table_event(pool
->ti
->table
);
313 DMINFO("%s: switching pool to %s%s mode",
314 dm_device_name(pool
->pool_md
),
315 descs
[(int)mode
], extra_desc
? : "");
319 * Target context for a pool.
322 struct dm_target
*ti
;
324 struct dm_dev
*data_dev
;
325 struct dm_dev
*metadata_dev
;
326 struct dm_target_callbacks callbacks
;
328 dm_block_t low_water_blocks
;
329 struct pool_features requested_pf
; /* Features requested during table load */
330 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
334 * Target context for a thin.
337 struct list_head list
;
338 struct dm_dev
*pool_dev
;
339 struct dm_dev
*origin_dev
;
340 sector_t origin_size
;
344 struct dm_thin_device
*td
;
345 struct mapped_device
*thin_md
;
349 struct list_head deferred_cells
;
350 struct bio_list deferred_bio_list
;
351 struct bio_list retry_on_resume_list
;
352 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
355 * Ensures the thin is not destroyed until the worker has finished
356 * iterating the active_thins list.
359 struct completion can_destroy
;
362 /*----------------------------------------------------------------*/
364 static bool block_size_is_power_of_two(struct pool
*pool
)
366 return pool
->sectors_per_block_shift
>= 0;
369 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
371 return block_size_is_power_of_two(pool
) ?
372 (b
<< pool
->sectors_per_block_shift
) :
373 (b
* pool
->sectors_per_block
);
376 /*----------------------------------------------------------------*/
380 struct blk_plug plug
;
381 struct bio
*parent_bio
;
385 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
390 blk_start_plug(&op
->plug
);
391 op
->parent_bio
= parent
;
395 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
397 struct thin_c
*tc
= op
->tc
;
398 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
399 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
401 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
402 GFP_NOWAIT
, 0, &op
->bio
);
405 static void end_discard(struct discard_op
*op
, int r
)
409 * Even if one of the calls to issue_discard failed, we
410 * need to wait for the chain to complete.
412 bio_chain(op
->bio
, op
->parent_bio
);
413 bio_set_op_attrs(op
->bio
, REQ_OP_DISCARD
, 0);
417 blk_finish_plug(&op
->plug
);
420 * Even if r is set, there could be sub discards in flight that we
423 if (r
&& !op
->parent_bio
->bi_status
)
424 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
425 bio_endio(op
->parent_bio
);
428 /*----------------------------------------------------------------*/
431 * wake_worker() is used when new work is queued and when pool_resume is
432 * ready to continue deferred IO processing.
434 static void wake_worker(struct pool
*pool
)
436 queue_work(pool
->wq
, &pool
->worker
);
439 /*----------------------------------------------------------------*/
441 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
442 struct dm_bio_prison_cell
**cell_result
)
445 struct dm_bio_prison_cell
*cell_prealloc
;
448 * Allocate a cell from the prison's mempool.
449 * This might block but it can't fail.
451 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
453 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
456 * We reused an old cell; we can get rid of
459 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
464 static void cell_release(struct pool
*pool
,
465 struct dm_bio_prison_cell
*cell
,
466 struct bio_list
*bios
)
468 dm_cell_release(pool
->prison
, cell
, bios
);
469 dm_bio_prison_free_cell(pool
->prison
, cell
);
472 static void cell_visit_release(struct pool
*pool
,
473 void (*fn
)(void *, struct dm_bio_prison_cell
*),
475 struct dm_bio_prison_cell
*cell
)
477 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
478 dm_bio_prison_free_cell(pool
->prison
, cell
);
481 static void cell_release_no_holder(struct pool
*pool
,
482 struct dm_bio_prison_cell
*cell
,
483 struct bio_list
*bios
)
485 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
486 dm_bio_prison_free_cell(pool
->prison
, cell
);
489 static void cell_error_with_code(struct pool
*pool
,
490 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
492 dm_cell_error(pool
->prison
, cell
, error_code
);
493 dm_bio_prison_free_cell(pool
->prison
, cell
);
496 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
498 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
501 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
503 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
506 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
508 cell_error_with_code(pool
, cell
, 0);
511 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
513 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
516 /*----------------------------------------------------------------*/
519 * A global list of pools that uses a struct mapped_device as a key.
521 static struct dm_thin_pool_table
{
523 struct list_head pools
;
524 } dm_thin_pool_table
;
526 static void pool_table_init(void)
528 mutex_init(&dm_thin_pool_table
.mutex
);
529 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
532 static void pool_table_exit(void)
534 mutex_destroy(&dm_thin_pool_table
.mutex
);
537 static void __pool_table_insert(struct pool
*pool
)
539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
540 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
543 static void __pool_table_remove(struct pool
*pool
)
545 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
546 list_del(&pool
->list
);
549 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
551 struct pool
*pool
= NULL
, *tmp
;
553 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
555 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
556 if (tmp
->pool_md
== md
) {
565 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
567 struct pool
*pool
= NULL
, *tmp
;
569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
571 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
572 if (tmp
->md_dev
== md_dev
) {
581 /*----------------------------------------------------------------*/
583 struct dm_thin_endio_hook
{
585 struct dm_deferred_entry
*shared_read_entry
;
586 struct dm_deferred_entry
*all_io_entry
;
587 struct dm_thin_new_mapping
*overwrite_mapping
;
588 struct rb_node rb_node
;
589 struct dm_bio_prison_cell
*cell
;
592 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
594 bio_list_merge(bios
, master
);
595 bio_list_init(master
);
598 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
602 while ((bio
= bio_list_pop(bios
))) {
603 bio
->bi_status
= error
;
608 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
611 struct bio_list bios
;
614 bio_list_init(&bios
);
616 spin_lock_irqsave(&tc
->lock
, flags
);
617 __merge_bio_list(&bios
, master
);
618 spin_unlock_irqrestore(&tc
->lock
, flags
);
620 error_bio_list(&bios
, error
);
623 static void requeue_deferred_cells(struct thin_c
*tc
)
625 struct pool
*pool
= tc
->pool
;
627 struct list_head cells
;
628 struct dm_bio_prison_cell
*cell
, *tmp
;
630 INIT_LIST_HEAD(&cells
);
632 spin_lock_irqsave(&tc
->lock
, flags
);
633 list_splice_init(&tc
->deferred_cells
, &cells
);
634 spin_unlock_irqrestore(&tc
->lock
, flags
);
636 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
637 cell_requeue(pool
, cell
);
640 static void requeue_io(struct thin_c
*tc
)
642 struct bio_list bios
;
645 bio_list_init(&bios
);
647 spin_lock_irqsave(&tc
->lock
, flags
);
648 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
649 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
650 spin_unlock_irqrestore(&tc
->lock
, flags
);
652 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
653 requeue_deferred_cells(tc
);
656 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
661 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
662 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
666 static void error_retry_list(struct pool
*pool
)
668 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
678 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
680 struct pool
*pool
= tc
->pool
;
681 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
683 if (block_size_is_power_of_two(pool
))
684 block_nr
>>= pool
->sectors_per_block_shift
;
686 (void) sector_div(block_nr
, pool
->sectors_per_block
);
692 * Returns the _complete_ blocks that this bio covers.
694 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
695 dm_block_t
*begin
, dm_block_t
*end
)
697 struct pool
*pool
= tc
->pool
;
698 sector_t b
= bio
->bi_iter
.bi_sector
;
699 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
701 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
703 if (block_size_is_power_of_two(pool
)) {
704 b
>>= pool
->sectors_per_block_shift
;
705 e
>>= pool
->sectors_per_block_shift
;
707 (void) sector_div(b
, pool
->sectors_per_block
);
708 (void) sector_div(e
, pool
->sectors_per_block
);
712 /* Can happen if the bio is within a single block. */
719 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
721 struct pool
*pool
= tc
->pool
;
722 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
724 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
725 if (block_size_is_power_of_two(pool
))
726 bio
->bi_iter
.bi_sector
=
727 (block
<< pool
->sectors_per_block_shift
) |
728 (bi_sector
& (pool
->sectors_per_block
- 1));
730 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
731 sector_div(bi_sector
, pool
->sectors_per_block
);
734 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
736 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
739 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
741 return op_is_flush(bio
->bi_opf
) &&
742 dm_thin_changed_this_transaction(tc
->td
);
745 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
747 struct dm_thin_endio_hook
*h
;
749 if (bio_op(bio
) == REQ_OP_DISCARD
)
752 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
753 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
756 static void issue(struct thin_c
*tc
, struct bio
*bio
)
758 struct pool
*pool
= tc
->pool
;
761 if (!bio_triggers_commit(tc
, bio
)) {
762 generic_make_request(bio
);
767 * Complete bio with an error if earlier I/O caused changes to
768 * the metadata that can't be committed e.g, due to I/O errors
769 * on the metadata device.
771 if (dm_thin_aborted_changes(tc
->td
)) {
777 * Batch together any bios that trigger commits and then issue a
778 * single commit for them in process_deferred_bios().
780 spin_lock_irqsave(&pool
->lock
, flags
);
781 bio_list_add(&pool
->deferred_flush_bios
, bio
);
782 spin_unlock_irqrestore(&pool
->lock
, flags
);
785 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
787 remap_to_origin(tc
, bio
);
791 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
794 remap(tc
, bio
, block
);
798 /*----------------------------------------------------------------*/
801 * Bio endio functions.
803 struct dm_thin_new_mapping
{
804 struct list_head list
;
810 * Track quiescing, copying and zeroing preparation actions. When this
811 * counter hits zero the block is prepared and can be inserted into the
814 atomic_t prepare_actions
;
818 dm_block_t virt_begin
, virt_end
;
819 dm_block_t data_block
;
820 struct dm_bio_prison_cell
*cell
;
823 * If the bio covers the whole area of a block then we can avoid
824 * zeroing or copying. Instead this bio is hooked. The bio will
825 * still be in the cell, so care has to be taken to avoid issuing
829 bio_end_io_t
*saved_bi_end_io
;
832 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
834 struct pool
*pool
= m
->tc
->pool
;
836 if (atomic_dec_and_test(&m
->prepare_actions
)) {
837 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
842 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
845 struct pool
*pool
= m
->tc
->pool
;
847 spin_lock_irqsave(&pool
->lock
, flags
);
848 __complete_mapping_preparation(m
);
849 spin_unlock_irqrestore(&pool
->lock
, flags
);
852 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
854 struct dm_thin_new_mapping
*m
= context
;
856 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
857 complete_mapping_preparation(m
);
860 static void overwrite_endio(struct bio
*bio
)
862 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
863 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
865 bio
->bi_end_io
= m
->saved_bi_end_io
;
867 m
->status
= bio
->bi_status
;
868 complete_mapping_preparation(m
);
871 /*----------------------------------------------------------------*/
878 * Prepared mapping jobs.
882 * This sends the bios in the cell, except the original holder, back
883 * to the deferred_bios list.
885 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
887 struct pool
*pool
= tc
->pool
;
890 spin_lock_irqsave(&tc
->lock
, flags
);
891 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
892 spin_unlock_irqrestore(&tc
->lock
, flags
);
897 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
901 struct bio_list defer_bios
;
902 struct bio_list issue_bios
;
905 static void __inc_remap_and_issue_cell(void *context
,
906 struct dm_bio_prison_cell
*cell
)
908 struct remap_info
*info
= context
;
911 while ((bio
= bio_list_pop(&cell
->bios
))) {
912 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
913 bio_list_add(&info
->defer_bios
, bio
);
915 inc_all_io_entry(info
->tc
->pool
, bio
);
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
922 bio_list_add(&info
->issue_bios
, bio
);
927 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
928 struct dm_bio_prison_cell
*cell
,
932 struct remap_info info
;
935 bio_list_init(&info
.defer_bios
);
936 bio_list_init(&info
.issue_bios
);
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
943 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
946 while ((bio
= bio_list_pop(&info
.defer_bios
)))
947 thin_defer_bio(tc
, bio
);
949 while ((bio
= bio_list_pop(&info
.issue_bios
)))
950 remap_and_issue(info
.tc
, bio
, block
);
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
955 cell_error(m
->tc
->pool
, m
->cell
);
957 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
960 static void complete_overwrite_bio(struct thin_c
*tc
, struct bio
*bio
)
962 struct pool
*pool
= tc
->pool
;
966 * If the bio has the REQ_FUA flag set we must commit the metadata
967 * before signaling its completion.
969 if (!bio_triggers_commit(tc
, bio
)) {
975 * Complete bio with an error if earlier I/O caused changes to the
976 * metadata that can't be committed, e.g, due to I/O errors on the
979 if (dm_thin_aborted_changes(tc
->td
)) {
985 * Batch together any bios that trigger commits and then issue a
986 * single commit for them in process_deferred_bios().
988 spin_lock_irqsave(&pool
->lock
, flags
);
989 bio_list_add(&pool
->deferred_flush_completions
, bio
);
990 spin_unlock_irqrestore(&pool
->lock
, flags
);
993 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
995 struct thin_c
*tc
= m
->tc
;
996 struct pool
*pool
= tc
->pool
;
997 struct bio
*bio
= m
->bio
;
1001 cell_error(pool
, m
->cell
);
1006 * Commit the prepared block into the mapping btree.
1007 * Any I/O for this block arriving after this point will get
1008 * remapped to it directly.
1010 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
1012 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
1013 cell_error(pool
, m
->cell
);
1018 * Release any bios held while the block was being provisioned.
1019 * If we are processing a write bio that completely covers the block,
1020 * we already processed it so can ignore it now when processing
1021 * the bios in the cell.
1024 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1025 complete_overwrite_bio(tc
, bio
);
1027 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
1028 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
1029 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1034 mempool_free(m
, &pool
->mapping_pool
);
1037 /*----------------------------------------------------------------*/
1039 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
1041 struct thin_c
*tc
= m
->tc
;
1043 cell_defer_no_holder(tc
, m
->cell
);
1044 mempool_free(m
, &tc
->pool
->mapping_pool
);
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
1049 bio_io_error(m
->bio
);
1050 free_discard_mapping(m
);
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
1056 free_discard_mapping(m
);
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
1062 struct thin_c
*tc
= m
->tc
;
1064 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1066 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1067 bio_io_error(m
->bio
);
1071 cell_defer_no_holder(tc
, m
->cell
);
1072 mempool_free(m
, &tc
->pool
->mapping_pool
);
1075 /*----------------------------------------------------------------*/
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1078 struct bio
*discard_parent
)
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1086 struct thin_c
*tc
= m
->tc
;
1087 struct pool
*pool
= tc
->pool
;
1088 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1089 struct discard_op op
;
1091 begin_discard(&op
, tc
, discard_parent
);
1093 /* find start of unmapped run */
1094 for (; b
< end
; b
++) {
1095 r
= dm_pool_block_is_shared(pool
->pmd
, b
, &shared
);
1106 /* find end of run */
1107 for (e
= b
+ 1; e
!= end
; e
++) {
1108 r
= dm_pool_block_is_shared(pool
->pmd
, e
, &shared
);
1116 r
= issue_discard(&op
, b
, e
);
1123 end_discard(&op
, r
);
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1128 unsigned long flags
;
1129 struct pool
*pool
= m
->tc
->pool
;
1131 spin_lock_irqsave(&pool
->lock
, flags
);
1132 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1133 spin_unlock_irqrestore(&pool
->lock
, flags
);
1137 static void passdown_endio(struct bio
*bio
)
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1143 queue_passdown_pt2(bio
->bi_private
);
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1150 struct thin_c
*tc
= m
->tc
;
1151 struct pool
*pool
= tc
->pool
;
1152 struct bio
*discard_parent
;
1153 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1160 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1162 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1163 bio_io_error(m
->bio
);
1164 cell_defer_no_holder(tc
, m
->cell
);
1165 mempool_free(m
, &pool
->mapping_pool
);
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1173 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1175 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1176 bio_io_error(m
->bio
);
1177 cell_defer_no_holder(tc
, m
->cell
);
1178 mempool_free(m
, &pool
->mapping_pool
);
1182 discard_parent
= bio_alloc(GFP_NOIO
, 1);
1183 if (!discard_parent
) {
1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 dm_device_name(tc
->pool
->pool_md
));
1186 queue_passdown_pt2(m
);
1189 discard_parent
->bi_end_io
= passdown_endio
;
1190 discard_parent
->bi_private
= m
;
1192 if (m
->maybe_shared
)
1193 passdown_double_checking_shared_status(m
, discard_parent
);
1195 struct discard_op op
;
1197 begin_discard(&op
, tc
, discard_parent
);
1198 r
= issue_discard(&op
, m
->data_block
, data_end
);
1199 end_discard(&op
, r
);
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1207 struct thin_c
*tc
= m
->tc
;
1208 struct pool
*pool
= tc
->pool
;
1211 * The passdown has completed, so now we can decrement all those
1214 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1215 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1217 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1218 bio_io_error(m
->bio
);
1222 cell_defer_no_holder(tc
, m
->cell
);
1223 mempool_free(m
, &pool
->mapping_pool
);
1226 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1227 process_mapping_fn
*fn
)
1229 unsigned long flags
;
1230 struct list_head maps
;
1231 struct dm_thin_new_mapping
*m
, *tmp
;
1233 INIT_LIST_HEAD(&maps
);
1234 spin_lock_irqsave(&pool
->lock
, flags
);
1235 list_splice_init(head
, &maps
);
1236 spin_unlock_irqrestore(&pool
->lock
, flags
);
1238 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1243 * Deferred bio jobs.
1245 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1247 return bio
->bi_iter
.bi_size
==
1248 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1251 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1253 return (bio_data_dir(bio
) == WRITE
) &&
1254 io_overlaps_block(pool
, bio
);
1257 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1260 *save
= bio
->bi_end_io
;
1261 bio
->bi_end_io
= fn
;
1264 static int ensure_next_mapping(struct pool
*pool
)
1266 if (pool
->next_mapping
)
1269 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1271 return pool
->next_mapping
? 0 : -ENOMEM
;
1274 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1276 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1278 BUG_ON(!pool
->next_mapping
);
1280 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1281 INIT_LIST_HEAD(&m
->list
);
1284 pool
->next_mapping
= NULL
;
1289 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1290 sector_t begin
, sector_t end
)
1292 struct dm_io_region to
;
1294 to
.bdev
= tc
->pool_dev
->bdev
;
1296 to
.count
= end
- begin
;
1298 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1301 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1302 dm_block_t data_begin
,
1303 struct dm_thin_new_mapping
*m
)
1305 struct pool
*pool
= tc
->pool
;
1306 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1308 h
->overwrite_mapping
= m
;
1310 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1311 inc_all_io_entry(pool
, bio
);
1312 remap_and_issue(tc
, bio
, data_begin
);
1316 * A partial copy also needs to zero the uncopied region.
1318 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1319 struct dm_dev
*origin
, dm_block_t data_origin
,
1320 dm_block_t data_dest
,
1321 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1324 struct pool
*pool
= tc
->pool
;
1325 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1328 m
->virt_begin
= virt_block
;
1329 m
->virt_end
= virt_block
+ 1u;
1330 m
->data_block
= data_dest
;
1334 * quiesce action + copy action + an extra reference held for the
1335 * duration of this function (we may need to inc later for a
1338 atomic_set(&m
->prepare_actions
, 3);
1340 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1341 complete_mapping_preparation(m
); /* already quiesced */
1344 * IO to pool_dev remaps to the pool target's data_dev.
1346 * If the whole block of data is being overwritten, we can issue the
1347 * bio immediately. Otherwise we use kcopyd to clone the data first.
1349 if (io_overwrites_block(pool
, bio
))
1350 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1352 struct dm_io_region from
, to
;
1354 from
.bdev
= origin
->bdev
;
1355 from
.sector
= data_origin
* pool
->sectors_per_block
;
1358 to
.bdev
= tc
->pool_dev
->bdev
;
1359 to
.sector
= data_dest
* pool
->sectors_per_block
;
1362 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1363 0, copy_complete
, m
);
1366 * Do we need to zero a tail region?
1368 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1369 atomic_inc(&m
->prepare_actions
);
1371 data_dest
* pool
->sectors_per_block
+ len
,
1372 (data_dest
+ 1) * pool
->sectors_per_block
);
1376 complete_mapping_preparation(m
); /* drop our ref */
1379 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1380 dm_block_t data_origin
, dm_block_t data_dest
,
1381 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1383 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1384 data_origin
, data_dest
, cell
, bio
,
1385 tc
->pool
->sectors_per_block
);
1388 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1389 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1392 struct pool
*pool
= tc
->pool
;
1393 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1395 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1397 m
->virt_begin
= virt_block
;
1398 m
->virt_end
= virt_block
+ 1u;
1399 m
->data_block
= data_block
;
1403 * If the whole block of data is being overwritten or we are not
1404 * zeroing pre-existing data, we can issue the bio immediately.
1405 * Otherwise we use kcopyd to zero the data first.
1407 if (pool
->pf
.zero_new_blocks
) {
1408 if (io_overwrites_block(pool
, bio
))
1409 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1411 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1412 (data_block
+ 1) * pool
->sectors_per_block
);
1414 process_prepared_mapping(m
);
1417 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1418 dm_block_t data_dest
,
1419 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1421 struct pool
*pool
= tc
->pool
;
1422 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1423 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1425 if (virt_block_end
<= tc
->origin_size
)
1426 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1427 virt_block
, data_dest
, cell
, bio
,
1428 pool
->sectors_per_block
);
1430 else if (virt_block_begin
< tc
->origin_size
)
1431 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1432 virt_block
, data_dest
, cell
, bio
,
1433 tc
->origin_size
- virt_block_begin
);
1436 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1439 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1441 static void requeue_bios(struct pool
*pool
);
1443 static bool is_read_only_pool_mode(enum pool_mode mode
)
1445 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1448 static bool is_read_only(struct pool
*pool
)
1450 return is_read_only_pool_mode(get_pool_mode(pool
));
1453 static void check_for_metadata_space(struct pool
*pool
)
1456 const char *ooms_reason
= NULL
;
1459 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1461 ooms_reason
= "Could not get free metadata blocks";
1463 ooms_reason
= "No free metadata blocks";
1465 if (ooms_reason
&& !is_read_only(pool
)) {
1466 DMERR("%s", ooms_reason
);
1467 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1471 static void check_for_data_space(struct pool
*pool
)
1476 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1479 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1484 set_pool_mode(pool
, PM_WRITE
);
1490 * A non-zero return indicates read_only or fail_io mode.
1491 * Many callers don't care about the return value.
1493 static int commit(struct pool
*pool
)
1497 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1500 r
= dm_pool_commit_metadata(pool
->pmd
);
1502 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1504 check_for_metadata_space(pool
);
1505 check_for_data_space(pool
);
1511 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1513 unsigned long flags
;
1515 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1516 DMWARN("%s: reached low water mark for data device: sending event.",
1517 dm_device_name(pool
->pool_md
));
1518 spin_lock_irqsave(&pool
->lock
, flags
);
1519 pool
->low_water_triggered
= true;
1520 spin_unlock_irqrestore(&pool
->lock
, flags
);
1521 dm_table_event(pool
->ti
->table
);
1525 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1528 dm_block_t free_blocks
;
1529 struct pool
*pool
= tc
->pool
;
1531 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1534 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1536 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1540 check_low_water_mark(pool
, free_blocks
);
1544 * Try to commit to see if that will free up some
1551 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1553 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1558 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1563 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1566 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1568 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1572 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1574 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1579 /* Let's commit before we use up the metadata reserve. */
1589 * If we have run out of space, queue bios until the device is
1590 * resumed, presumably after having been reloaded with more space.
1592 static void retry_on_resume(struct bio
*bio
)
1594 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1595 struct thin_c
*tc
= h
->tc
;
1596 unsigned long flags
;
1598 spin_lock_irqsave(&tc
->lock
, flags
);
1599 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1600 spin_unlock_irqrestore(&tc
->lock
, flags
);
1603 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1605 enum pool_mode m
= get_pool_mode(pool
);
1609 /* Shouldn't get here */
1610 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611 return BLK_STS_IOERR
;
1613 case PM_OUT_OF_DATA_SPACE
:
1614 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1616 case PM_OUT_OF_METADATA_SPACE
:
1619 return BLK_STS_IOERR
;
1621 /* Shouldn't get here */
1622 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623 return BLK_STS_IOERR
;
1627 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1629 blk_status_t error
= should_error_unserviceable_bio(pool
);
1632 bio
->bi_status
= error
;
1635 retry_on_resume(bio
);
1638 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1641 struct bio_list bios
;
1644 error
= should_error_unserviceable_bio(pool
);
1646 cell_error_with_code(pool
, cell
, error
);
1650 bio_list_init(&bios
);
1651 cell_release(pool
, cell
, &bios
);
1653 while ((bio
= bio_list_pop(&bios
)))
1654 retry_on_resume(bio
);
1657 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1658 struct dm_bio_prison_cell
*virt_cell
)
1660 struct pool
*pool
= tc
->pool
;
1661 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1664 * We don't need to lock the data blocks, since there's no
1665 * passdown. We only lock data blocks for allocation and breaking sharing.
1668 m
->virt_begin
= virt_cell
->key
.block_begin
;
1669 m
->virt_end
= virt_cell
->key
.block_end
;
1670 m
->cell
= virt_cell
;
1671 m
->bio
= virt_cell
->holder
;
1673 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1674 pool
->process_prepared_discard(m
);
1677 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1680 struct pool
*pool
= tc
->pool
;
1684 struct dm_cell_key data_key
;
1685 struct dm_bio_prison_cell
*data_cell
;
1686 struct dm_thin_new_mapping
*m
;
1687 dm_block_t virt_begin
, virt_end
, data_begin
;
1689 while (begin
!= end
) {
1690 r
= ensure_next_mapping(pool
);
1692 /* we did our best */
1695 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1696 &data_begin
, &maybe_shared
);
1699 * Silently fail, letting any mappings we've
1704 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1705 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1706 /* contention, we'll give up with this range */
1712 * IO may still be going to the destination block. We must
1713 * quiesce before we can do the removal.
1715 m
= get_next_mapping(pool
);
1717 m
->maybe_shared
= maybe_shared
;
1718 m
->virt_begin
= virt_begin
;
1719 m
->virt_end
= virt_end
;
1720 m
->data_block
= data_begin
;
1721 m
->cell
= data_cell
;
1725 * The parent bio must not complete before sub discard bios are
1726 * chained to it (see end_discard's bio_chain)!
1728 * This per-mapping bi_remaining increment is paired with
1729 * the implicit decrement that occurs via bio_endio() in
1732 bio_inc_remaining(bio
);
1733 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1734 pool
->process_prepared_discard(m
);
1740 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1742 struct bio
*bio
= virt_cell
->holder
;
1743 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1746 * The virt_cell will only get freed once the origin bio completes.
1747 * This means it will remain locked while all the individual
1748 * passdown bios are in flight.
1750 h
->cell
= virt_cell
;
1751 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1754 * We complete the bio now, knowing that the bi_remaining field
1755 * will prevent completion until the sub range discards have
1761 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1763 dm_block_t begin
, end
;
1764 struct dm_cell_key virt_key
;
1765 struct dm_bio_prison_cell
*virt_cell
;
1767 get_bio_block_range(tc
, bio
, &begin
, &end
);
1770 * The discard covers less than a block.
1776 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1777 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1779 * Potential starvation issue: We're relying on the
1780 * fs/application being well behaved, and not trying to
1781 * send IO to a region at the same time as discarding it.
1782 * If they do this persistently then it's possible this
1783 * cell will never be granted.
1787 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1790 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1791 struct dm_cell_key
*key
,
1792 struct dm_thin_lookup_result
*lookup_result
,
1793 struct dm_bio_prison_cell
*cell
)
1796 dm_block_t data_block
;
1797 struct pool
*pool
= tc
->pool
;
1799 r
= alloc_data_block(tc
, &data_block
);
1802 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1803 data_block
, cell
, bio
);
1807 retry_bios_on_resume(pool
, cell
);
1811 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1813 cell_error(pool
, cell
);
1818 static void __remap_and_issue_shared_cell(void *context
,
1819 struct dm_bio_prison_cell
*cell
)
1821 struct remap_info
*info
= context
;
1824 while ((bio
= bio_list_pop(&cell
->bios
))) {
1825 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1826 bio_op(bio
) == REQ_OP_DISCARD
)
1827 bio_list_add(&info
->defer_bios
, bio
);
1829 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1831 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1832 inc_all_io_entry(info
->tc
->pool
, bio
);
1833 bio_list_add(&info
->issue_bios
, bio
);
1838 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1839 struct dm_bio_prison_cell
*cell
,
1843 struct remap_info info
;
1846 bio_list_init(&info
.defer_bios
);
1847 bio_list_init(&info
.issue_bios
);
1849 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1852 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1853 thin_defer_bio(tc
, bio
);
1855 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1856 remap_and_issue(tc
, bio
, block
);
1859 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1861 struct dm_thin_lookup_result
*lookup_result
,
1862 struct dm_bio_prison_cell
*virt_cell
)
1864 struct dm_bio_prison_cell
*data_cell
;
1865 struct pool
*pool
= tc
->pool
;
1866 struct dm_cell_key key
;
1869 * If cell is already occupied, then sharing is already in the process
1870 * of being broken so we have nothing further to do here.
1872 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1873 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1874 cell_defer_no_holder(tc
, virt_cell
);
1878 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1879 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1880 cell_defer_no_holder(tc
, virt_cell
);
1882 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1884 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1885 inc_all_io_entry(pool
, bio
);
1886 remap_and_issue(tc
, bio
, lookup_result
->block
);
1888 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1889 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1893 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1894 struct dm_bio_prison_cell
*cell
)
1897 dm_block_t data_block
;
1898 struct pool
*pool
= tc
->pool
;
1901 * Remap empty bios (flushes) immediately, without provisioning.
1903 if (!bio
->bi_iter
.bi_size
) {
1904 inc_all_io_entry(pool
, bio
);
1905 cell_defer_no_holder(tc
, cell
);
1907 remap_and_issue(tc
, bio
, 0);
1912 * Fill read bios with zeroes and complete them immediately.
1914 if (bio_data_dir(bio
) == READ
) {
1916 cell_defer_no_holder(tc
, cell
);
1921 r
= alloc_data_block(tc
, &data_block
);
1925 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1927 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1931 retry_bios_on_resume(pool
, cell
);
1935 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1937 cell_error(pool
, cell
);
1942 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1945 struct pool
*pool
= tc
->pool
;
1946 struct bio
*bio
= cell
->holder
;
1947 dm_block_t block
= get_bio_block(tc
, bio
);
1948 struct dm_thin_lookup_result lookup_result
;
1950 if (tc
->requeue_mode
) {
1951 cell_requeue(pool
, cell
);
1955 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1958 if (lookup_result
.shared
)
1959 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1961 inc_all_io_entry(pool
, bio
);
1962 remap_and_issue(tc
, bio
, lookup_result
.block
);
1963 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1968 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1969 inc_all_io_entry(pool
, bio
);
1970 cell_defer_no_holder(tc
, cell
);
1972 if (bio_end_sector(bio
) <= tc
->origin_size
)
1973 remap_to_origin_and_issue(tc
, bio
);
1975 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1977 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1978 remap_to_origin_and_issue(tc
, bio
);
1985 provision_block(tc
, bio
, block
, cell
);
1989 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1991 cell_defer_no_holder(tc
, cell
);
1997 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1999 struct pool
*pool
= tc
->pool
;
2000 dm_block_t block
= get_bio_block(tc
, bio
);
2001 struct dm_bio_prison_cell
*cell
;
2002 struct dm_cell_key key
;
2005 * If cell is already occupied, then the block is already
2006 * being provisioned so we have nothing further to do here.
2008 build_virtual_key(tc
->td
, block
, &key
);
2009 if (bio_detain(pool
, &key
, bio
, &cell
))
2012 process_cell(tc
, cell
);
2015 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
2016 struct dm_bio_prison_cell
*cell
)
2019 int rw
= bio_data_dir(bio
);
2020 dm_block_t block
= get_bio_block(tc
, bio
);
2021 struct dm_thin_lookup_result lookup_result
;
2023 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
2026 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
2027 handle_unserviceable_bio(tc
->pool
, bio
);
2029 cell_defer_no_holder(tc
, cell
);
2031 inc_all_io_entry(tc
->pool
, bio
);
2032 remap_and_issue(tc
, bio
, lookup_result
.block
);
2034 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
2040 cell_defer_no_holder(tc
, cell
);
2042 handle_unserviceable_bio(tc
->pool
, bio
);
2046 if (tc
->origin_dev
) {
2047 inc_all_io_entry(tc
->pool
, bio
);
2048 remap_to_origin_and_issue(tc
, bio
);
2057 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2060 cell_defer_no_holder(tc
, cell
);
2066 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2068 __process_bio_read_only(tc
, bio
, NULL
);
2071 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2073 __process_bio_read_only(tc
, cell
->holder
, cell
);
2076 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2081 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2086 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2088 cell_success(tc
->pool
, cell
);
2091 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2093 cell_error(tc
->pool
, cell
);
2097 * FIXME: should we also commit due to size of transaction, measured in
2100 static int need_commit_due_to_time(struct pool
*pool
)
2102 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2103 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2109 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2111 struct rb_node
**rbp
, *parent
;
2112 struct dm_thin_endio_hook
*pbd
;
2113 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2115 rbp
= &tc
->sort_bio_list
.rb_node
;
2119 pbd
= thin_pbd(parent
);
2121 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2122 rbp
= &(*rbp
)->rb_left
;
2124 rbp
= &(*rbp
)->rb_right
;
2127 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2128 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2129 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2132 static void __extract_sorted_bios(struct thin_c
*tc
)
2134 struct rb_node
*node
;
2135 struct dm_thin_endio_hook
*pbd
;
2138 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2139 pbd
= thin_pbd(node
);
2140 bio
= thin_bio(pbd
);
2142 bio_list_add(&tc
->deferred_bio_list
, bio
);
2143 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2146 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2149 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2152 struct bio_list bios
;
2154 bio_list_init(&bios
);
2155 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2156 bio_list_init(&tc
->deferred_bio_list
);
2158 /* Sort deferred_bio_list using rb-tree */
2159 while ((bio
= bio_list_pop(&bios
)))
2160 __thin_bio_rb_add(tc
, bio
);
2163 * Transfer the sorted bios in sort_bio_list back to
2164 * deferred_bio_list to allow lockless submission of
2167 __extract_sorted_bios(tc
);
2170 static void process_thin_deferred_bios(struct thin_c
*tc
)
2172 struct pool
*pool
= tc
->pool
;
2173 unsigned long flags
;
2175 struct bio_list bios
;
2176 struct blk_plug plug
;
2179 if (tc
->requeue_mode
) {
2180 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2181 BLK_STS_DM_REQUEUE
);
2185 bio_list_init(&bios
);
2187 spin_lock_irqsave(&tc
->lock
, flags
);
2189 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2190 spin_unlock_irqrestore(&tc
->lock
, flags
);
2194 __sort_thin_deferred_bios(tc
);
2196 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2197 bio_list_init(&tc
->deferred_bio_list
);
2199 spin_unlock_irqrestore(&tc
->lock
, flags
);
2201 blk_start_plug(&plug
);
2202 while ((bio
= bio_list_pop(&bios
))) {
2204 * If we've got no free new_mapping structs, and processing
2205 * this bio might require one, we pause until there are some
2206 * prepared mappings to process.
2208 if (ensure_next_mapping(pool
)) {
2209 spin_lock_irqsave(&tc
->lock
, flags
);
2210 bio_list_add(&tc
->deferred_bio_list
, bio
);
2211 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2212 spin_unlock_irqrestore(&tc
->lock
, flags
);
2216 if (bio_op(bio
) == REQ_OP_DISCARD
)
2217 pool
->process_discard(tc
, bio
);
2219 pool
->process_bio(tc
, bio
);
2221 if ((count
++ & 127) == 0) {
2222 throttle_work_update(&pool
->throttle
);
2223 dm_pool_issue_prefetches(pool
->pmd
);
2226 blk_finish_plug(&plug
);
2229 static int cmp_cells(const void *lhs
, const void *rhs
)
2231 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2232 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2234 BUG_ON(!lhs_cell
->holder
);
2235 BUG_ON(!rhs_cell
->holder
);
2237 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2240 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2246 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2249 struct dm_bio_prison_cell
*cell
, *tmp
;
2251 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2252 if (count
>= CELL_SORT_ARRAY_SIZE
)
2255 pool
->cell_sort_array
[count
++] = cell
;
2256 list_del(&cell
->user_list
);
2259 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2264 static void process_thin_deferred_cells(struct thin_c
*tc
)
2266 struct pool
*pool
= tc
->pool
;
2267 unsigned long flags
;
2268 struct list_head cells
;
2269 struct dm_bio_prison_cell
*cell
;
2270 unsigned i
, j
, count
;
2272 INIT_LIST_HEAD(&cells
);
2274 spin_lock_irqsave(&tc
->lock
, flags
);
2275 list_splice_init(&tc
->deferred_cells
, &cells
);
2276 spin_unlock_irqrestore(&tc
->lock
, flags
);
2278 if (list_empty(&cells
))
2282 count
= sort_cells(tc
->pool
, &cells
);
2284 for (i
= 0; i
< count
; i
++) {
2285 cell
= pool
->cell_sort_array
[i
];
2286 BUG_ON(!cell
->holder
);
2289 * If we've got no free new_mapping structs, and processing
2290 * this bio might require one, we pause until there are some
2291 * prepared mappings to process.
2293 if (ensure_next_mapping(pool
)) {
2294 for (j
= i
; j
< count
; j
++)
2295 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2297 spin_lock_irqsave(&tc
->lock
, flags
);
2298 list_splice(&cells
, &tc
->deferred_cells
);
2299 spin_unlock_irqrestore(&tc
->lock
, flags
);
2303 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2304 pool
->process_discard_cell(tc
, cell
);
2306 pool
->process_cell(tc
, cell
);
2308 } while (!list_empty(&cells
));
2311 static void thin_get(struct thin_c
*tc
);
2312 static void thin_put(struct thin_c
*tc
);
2315 * We can't hold rcu_read_lock() around code that can block. So we
2316 * find a thin with the rcu lock held; bump a refcount; then drop
2319 static struct thin_c
*get_first_thin(struct pool
*pool
)
2321 struct thin_c
*tc
= NULL
;
2324 if (!list_empty(&pool
->active_thins
)) {
2325 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2333 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2335 struct thin_c
*old_tc
= tc
;
2338 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2350 static void process_deferred_bios(struct pool
*pool
)
2352 unsigned long flags
;
2354 struct bio_list bios
, bio_completions
;
2357 tc
= get_first_thin(pool
);
2359 process_thin_deferred_cells(tc
);
2360 process_thin_deferred_bios(tc
);
2361 tc
= get_next_thin(pool
, tc
);
2365 * If there are any deferred flush bios, we must commit the metadata
2366 * before issuing them or signaling their completion.
2368 bio_list_init(&bios
);
2369 bio_list_init(&bio_completions
);
2371 spin_lock_irqsave(&pool
->lock
, flags
);
2372 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2373 bio_list_init(&pool
->deferred_flush_bios
);
2375 bio_list_merge(&bio_completions
, &pool
->deferred_flush_completions
);
2376 bio_list_init(&pool
->deferred_flush_completions
);
2377 spin_unlock_irqrestore(&pool
->lock
, flags
);
2379 if (bio_list_empty(&bios
) && bio_list_empty(&bio_completions
) &&
2380 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2384 bio_list_merge(&bios
, &bio_completions
);
2386 while ((bio
= bio_list_pop(&bios
)))
2390 pool
->last_commit_jiffies
= jiffies
;
2392 while ((bio
= bio_list_pop(&bio_completions
)))
2395 while ((bio
= bio_list_pop(&bios
)))
2396 generic_make_request(bio
);
2399 static void do_worker(struct work_struct
*ws
)
2401 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2403 throttle_work_start(&pool
->throttle
);
2404 dm_pool_issue_prefetches(pool
->pmd
);
2405 throttle_work_update(&pool
->throttle
);
2406 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2407 throttle_work_update(&pool
->throttle
);
2408 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2409 throttle_work_update(&pool
->throttle
);
2410 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2411 throttle_work_update(&pool
->throttle
);
2412 process_deferred_bios(pool
);
2413 throttle_work_complete(&pool
->throttle
);
2417 * We want to commit periodically so that not too much
2418 * unwritten data builds up.
2420 static void do_waker(struct work_struct
*ws
)
2422 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2424 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2428 * We're holding onto IO to allow userland time to react. After the
2429 * timeout either the pool will have been resized (and thus back in
2430 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 static void do_no_space_timeout(struct work_struct
*ws
)
2434 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2437 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2438 pool
->pf
.error_if_no_space
= true;
2439 notify_of_pool_mode_change(pool
);
2440 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2444 /*----------------------------------------------------------------*/
2447 struct work_struct worker
;
2448 struct completion complete
;
2451 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2453 return container_of(ws
, struct pool_work
, worker
);
2456 static void pool_work_complete(struct pool_work
*pw
)
2458 complete(&pw
->complete
);
2461 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2462 void (*fn
)(struct work_struct
*))
2464 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2465 init_completion(&pw
->complete
);
2466 queue_work(pool
->wq
, &pw
->worker
);
2467 wait_for_completion(&pw
->complete
);
2470 /*----------------------------------------------------------------*/
2472 struct noflush_work
{
2473 struct pool_work pw
;
2477 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2479 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2482 static void do_noflush_start(struct work_struct
*ws
)
2484 struct noflush_work
*w
= to_noflush(ws
);
2485 w
->tc
->requeue_mode
= true;
2487 pool_work_complete(&w
->pw
);
2490 static void do_noflush_stop(struct work_struct
*ws
)
2492 struct noflush_work
*w
= to_noflush(ws
);
2493 w
->tc
->requeue_mode
= false;
2494 pool_work_complete(&w
->pw
);
2497 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2499 struct noflush_work w
;
2502 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2505 /*----------------------------------------------------------------*/
2507 static bool passdown_enabled(struct pool_c
*pt
)
2509 return pt
->adjusted_pf
.discard_passdown
;
2512 static void set_discard_callbacks(struct pool
*pool
)
2514 struct pool_c
*pt
= pool
->ti
->private;
2516 if (passdown_enabled(pt
)) {
2517 pool
->process_discard_cell
= process_discard_cell_passdown
;
2518 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2519 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2521 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2522 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2526 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2528 struct pool_c
*pt
= pool
->ti
->private;
2529 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2530 enum pool_mode old_mode
= get_pool_mode(pool
);
2531 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2534 * Never allow the pool to transition to PM_WRITE mode if user
2535 * intervention is required to verify metadata and data consistency.
2537 if (new_mode
== PM_WRITE
&& needs_check
) {
2538 DMERR("%s: unable to switch pool to write mode until repaired.",
2539 dm_device_name(pool
->pool_md
));
2540 if (old_mode
!= new_mode
)
2541 new_mode
= old_mode
;
2543 new_mode
= PM_READ_ONLY
;
2546 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2547 * not going to recover without a thin_repair. So we never let the
2548 * pool move out of the old mode.
2550 if (old_mode
== PM_FAIL
)
2551 new_mode
= old_mode
;
2555 dm_pool_metadata_read_only(pool
->pmd
);
2556 pool
->process_bio
= process_bio_fail
;
2557 pool
->process_discard
= process_bio_fail
;
2558 pool
->process_cell
= process_cell_fail
;
2559 pool
->process_discard_cell
= process_cell_fail
;
2560 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2561 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2563 error_retry_list(pool
);
2566 case PM_OUT_OF_METADATA_SPACE
:
2568 dm_pool_metadata_read_only(pool
->pmd
);
2569 pool
->process_bio
= process_bio_read_only
;
2570 pool
->process_discard
= process_bio_success
;
2571 pool
->process_cell
= process_cell_read_only
;
2572 pool
->process_discard_cell
= process_cell_success
;
2573 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2574 pool
->process_prepared_discard
= process_prepared_discard_success
;
2576 error_retry_list(pool
);
2579 case PM_OUT_OF_DATA_SPACE
:
2581 * Ideally we'd never hit this state; the low water mark
2582 * would trigger userland to extend the pool before we
2583 * completely run out of data space. However, many small
2584 * IOs to unprovisioned space can consume data space at an
2585 * alarming rate. Adjust your low water mark if you're
2586 * frequently seeing this mode.
2588 pool
->out_of_data_space
= true;
2589 pool
->process_bio
= process_bio_read_only
;
2590 pool
->process_discard
= process_discard_bio
;
2591 pool
->process_cell
= process_cell_read_only
;
2592 pool
->process_prepared_mapping
= process_prepared_mapping
;
2593 set_discard_callbacks(pool
);
2595 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2596 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2600 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2601 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2602 pool
->out_of_data_space
= false;
2603 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2604 dm_pool_metadata_read_write(pool
->pmd
);
2605 pool
->process_bio
= process_bio
;
2606 pool
->process_discard
= process_discard_bio
;
2607 pool
->process_cell
= process_cell
;
2608 pool
->process_prepared_mapping
= process_prepared_mapping
;
2609 set_discard_callbacks(pool
);
2613 pool
->pf
.mode
= new_mode
;
2615 * The pool mode may have changed, sync it so bind_control_target()
2616 * doesn't cause an unexpected mode transition on resume.
2618 pt
->adjusted_pf
.mode
= new_mode
;
2620 if (old_mode
!= new_mode
)
2621 notify_of_pool_mode_change(pool
);
2624 static void abort_transaction(struct pool
*pool
)
2626 const char *dev_name
= dm_device_name(pool
->pool_md
);
2628 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2629 if (dm_pool_abort_metadata(pool
->pmd
)) {
2630 DMERR("%s: failed to abort metadata transaction", dev_name
);
2631 set_pool_mode(pool
, PM_FAIL
);
2634 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2635 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2636 set_pool_mode(pool
, PM_FAIL
);
2640 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2642 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643 dm_device_name(pool
->pool_md
), op
, r
);
2645 abort_transaction(pool
);
2646 set_pool_mode(pool
, PM_READ_ONLY
);
2649 /*----------------------------------------------------------------*/
2652 * Mapping functions.
2656 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2660 unsigned long flags
;
2661 struct pool
*pool
= tc
->pool
;
2663 spin_lock_irqsave(&tc
->lock
, flags
);
2664 bio_list_add(&tc
->deferred_bio_list
, bio
);
2665 spin_unlock_irqrestore(&tc
->lock
, flags
);
2670 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2672 struct pool
*pool
= tc
->pool
;
2674 throttle_lock(&pool
->throttle
);
2675 thin_defer_bio(tc
, bio
);
2676 throttle_unlock(&pool
->throttle
);
2679 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2681 unsigned long flags
;
2682 struct pool
*pool
= tc
->pool
;
2684 throttle_lock(&pool
->throttle
);
2685 spin_lock_irqsave(&tc
->lock
, flags
);
2686 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2687 spin_unlock_irqrestore(&tc
->lock
, flags
);
2688 throttle_unlock(&pool
->throttle
);
2693 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2695 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2698 h
->shared_read_entry
= NULL
;
2699 h
->all_io_entry
= NULL
;
2700 h
->overwrite_mapping
= NULL
;
2705 * Non-blocking function called from the thin target's map function.
2707 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2710 struct thin_c
*tc
= ti
->private;
2711 dm_block_t block
= get_bio_block(tc
, bio
);
2712 struct dm_thin_device
*td
= tc
->td
;
2713 struct dm_thin_lookup_result result
;
2714 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2715 struct dm_cell_key key
;
2717 thin_hook_bio(tc
, bio
);
2719 if (tc
->requeue_mode
) {
2720 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2722 return DM_MAPIO_SUBMITTED
;
2725 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2727 return DM_MAPIO_SUBMITTED
;
2730 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2731 thin_defer_bio_with_throttle(tc
, bio
);
2732 return DM_MAPIO_SUBMITTED
;
2736 * We must hold the virtual cell before doing the lookup, otherwise
2737 * there's a race with discard.
2739 build_virtual_key(tc
->td
, block
, &key
);
2740 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2741 return DM_MAPIO_SUBMITTED
;
2743 r
= dm_thin_find_block(td
, block
, 0, &result
);
2746 * Note that we defer readahead too.
2750 if (unlikely(result
.shared
)) {
2752 * We have a race condition here between the
2753 * result.shared value returned by the lookup and
2754 * snapshot creation, which may cause new
2757 * To avoid this always quiesce the origin before
2758 * taking the snap. You want to do this anyway to
2759 * ensure a consistent application view
2762 * More distant ancestors are irrelevant. The
2763 * shared flag will be set in their case.
2765 thin_defer_cell(tc
, virt_cell
);
2766 return DM_MAPIO_SUBMITTED
;
2769 build_data_key(tc
->td
, result
.block
, &key
);
2770 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2771 cell_defer_no_holder(tc
, virt_cell
);
2772 return DM_MAPIO_SUBMITTED
;
2775 inc_all_io_entry(tc
->pool
, bio
);
2776 cell_defer_no_holder(tc
, data_cell
);
2777 cell_defer_no_holder(tc
, virt_cell
);
2779 remap(tc
, bio
, result
.block
);
2780 return DM_MAPIO_REMAPPED
;
2784 thin_defer_cell(tc
, virt_cell
);
2785 return DM_MAPIO_SUBMITTED
;
2789 * Must always call bio_io_error on failure.
2790 * dm_thin_find_block can fail with -EINVAL if the
2791 * pool is switched to fail-io mode.
2794 cell_defer_no_holder(tc
, virt_cell
);
2795 return DM_MAPIO_SUBMITTED
;
2799 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2801 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2802 struct request_queue
*q
;
2804 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2807 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2808 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2811 static void requeue_bios(struct pool
*pool
)
2813 unsigned long flags
;
2817 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2818 spin_lock_irqsave(&tc
->lock
, flags
);
2819 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2820 bio_list_init(&tc
->retry_on_resume_list
);
2821 spin_unlock_irqrestore(&tc
->lock
, flags
);
2826 /*----------------------------------------------------------------
2827 * Binding of control targets to a pool object
2828 *--------------------------------------------------------------*/
2829 static bool data_dev_supports_discard(struct pool_c
*pt
)
2831 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2833 return q
&& blk_queue_discard(q
);
2836 static bool is_factor(sector_t block_size
, uint32_t n
)
2838 return !sector_div(block_size
, n
);
2842 * If discard_passdown was enabled verify that the data device
2843 * supports discards. Disable discard_passdown if not.
2845 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2847 struct pool
*pool
= pt
->pool
;
2848 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2849 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2850 const char *reason
= NULL
;
2851 char buf
[BDEVNAME_SIZE
];
2853 if (!pt
->adjusted_pf
.discard_passdown
)
2856 if (!data_dev_supports_discard(pt
))
2857 reason
= "discard unsupported";
2859 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2860 reason
= "max discard sectors smaller than a block";
2863 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2864 pt
->adjusted_pf
.discard_passdown
= false;
2868 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2870 struct pool_c
*pt
= ti
->private;
2873 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2875 enum pool_mode old_mode
= get_pool_mode(pool
);
2876 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2879 * Don't change the pool's mode until set_pool_mode() below.
2880 * Otherwise the pool's process_* function pointers may
2881 * not match the desired pool mode.
2883 pt
->adjusted_pf
.mode
= old_mode
;
2886 pool
->pf
= pt
->adjusted_pf
;
2887 pool
->low_water_blocks
= pt
->low_water_blocks
;
2889 set_pool_mode(pool
, new_mode
);
2894 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2900 /*----------------------------------------------------------------
2902 *--------------------------------------------------------------*/
2903 /* Initialize pool features. */
2904 static void pool_features_init(struct pool_features
*pf
)
2906 pf
->mode
= PM_WRITE
;
2907 pf
->zero_new_blocks
= true;
2908 pf
->discard_enabled
= true;
2909 pf
->discard_passdown
= true;
2910 pf
->error_if_no_space
= false;
2913 static void __pool_destroy(struct pool
*pool
)
2915 __pool_table_remove(pool
);
2917 vfree(pool
->cell_sort_array
);
2918 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2919 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2921 dm_bio_prison_destroy(pool
->prison
);
2922 dm_kcopyd_client_destroy(pool
->copier
);
2925 destroy_workqueue(pool
->wq
);
2927 if (pool
->next_mapping
)
2928 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2929 mempool_exit(&pool
->mapping_pool
);
2930 dm_deferred_set_destroy(pool
->shared_read_ds
);
2931 dm_deferred_set_destroy(pool
->all_io_ds
);
2935 static struct kmem_cache
*_new_mapping_cache
;
2937 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2938 struct block_device
*metadata_dev
,
2939 unsigned long block_size
,
2940 int read_only
, char **error
)
2945 struct dm_pool_metadata
*pmd
;
2946 bool format_device
= read_only
? false : true;
2948 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2950 *error
= "Error creating metadata object";
2951 return (struct pool
*)pmd
;
2954 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2956 *error
= "Error allocating memory for pool";
2957 err_p
= ERR_PTR(-ENOMEM
);
2962 pool
->sectors_per_block
= block_size
;
2963 if (block_size
& (block_size
- 1))
2964 pool
->sectors_per_block_shift
= -1;
2966 pool
->sectors_per_block_shift
= __ffs(block_size
);
2967 pool
->low_water_blocks
= 0;
2968 pool_features_init(&pool
->pf
);
2969 pool
->prison
= dm_bio_prison_create();
2970 if (!pool
->prison
) {
2971 *error
= "Error creating pool's bio prison";
2972 err_p
= ERR_PTR(-ENOMEM
);
2976 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2977 if (IS_ERR(pool
->copier
)) {
2978 r
= PTR_ERR(pool
->copier
);
2979 *error
= "Error creating pool's kcopyd client";
2981 goto bad_kcopyd_client
;
2985 * Create singlethreaded workqueue that will service all devices
2986 * that use this metadata.
2988 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2990 *error
= "Error creating pool's workqueue";
2991 err_p
= ERR_PTR(-ENOMEM
);
2995 throttle_init(&pool
->throttle
);
2996 INIT_WORK(&pool
->worker
, do_worker
);
2997 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2998 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2999 spin_lock_init(&pool
->lock
);
3000 bio_list_init(&pool
->deferred_flush_bios
);
3001 bio_list_init(&pool
->deferred_flush_completions
);
3002 INIT_LIST_HEAD(&pool
->prepared_mappings
);
3003 INIT_LIST_HEAD(&pool
->prepared_discards
);
3004 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
3005 INIT_LIST_HEAD(&pool
->active_thins
);
3006 pool
->low_water_triggered
= false;
3007 pool
->suspended
= true;
3008 pool
->out_of_data_space
= false;
3010 pool
->shared_read_ds
= dm_deferred_set_create();
3011 if (!pool
->shared_read_ds
) {
3012 *error
= "Error creating pool's shared read deferred set";
3013 err_p
= ERR_PTR(-ENOMEM
);
3014 goto bad_shared_read_ds
;
3017 pool
->all_io_ds
= dm_deferred_set_create();
3018 if (!pool
->all_io_ds
) {
3019 *error
= "Error creating pool's all io deferred set";
3020 err_p
= ERR_PTR(-ENOMEM
);
3024 pool
->next_mapping
= NULL
;
3025 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
3026 _new_mapping_cache
);
3028 *error
= "Error creating pool's mapping mempool";
3030 goto bad_mapping_pool
;
3033 pool
->cell_sort_array
=
3034 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
3035 sizeof(*pool
->cell_sort_array
)));
3036 if (!pool
->cell_sort_array
) {
3037 *error
= "Error allocating cell sort array";
3038 err_p
= ERR_PTR(-ENOMEM
);
3039 goto bad_sort_array
;
3042 pool
->ref_count
= 1;
3043 pool
->last_commit_jiffies
= jiffies
;
3044 pool
->pool_md
= pool_md
;
3045 pool
->md_dev
= metadata_dev
;
3046 __pool_table_insert(pool
);
3051 mempool_exit(&pool
->mapping_pool
);
3053 dm_deferred_set_destroy(pool
->all_io_ds
);
3055 dm_deferred_set_destroy(pool
->shared_read_ds
);
3057 destroy_workqueue(pool
->wq
);
3059 dm_kcopyd_client_destroy(pool
->copier
);
3061 dm_bio_prison_destroy(pool
->prison
);
3065 if (dm_pool_metadata_close(pmd
))
3066 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3071 static void __pool_inc(struct pool
*pool
)
3073 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3077 static void __pool_dec(struct pool
*pool
)
3079 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3080 BUG_ON(!pool
->ref_count
);
3081 if (!--pool
->ref_count
)
3082 __pool_destroy(pool
);
3085 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3086 struct block_device
*metadata_dev
,
3087 unsigned long block_size
, int read_only
,
3088 char **error
, int *created
)
3090 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3093 if (pool
->pool_md
!= pool_md
) {
3094 *error
= "metadata device already in use by a pool";
3095 return ERR_PTR(-EBUSY
);
3100 pool
= __pool_table_lookup(pool_md
);
3102 if (pool
->md_dev
!= metadata_dev
) {
3103 *error
= "different pool cannot replace a pool";
3104 return ERR_PTR(-EINVAL
);
3109 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
3117 /*----------------------------------------------------------------
3118 * Pool target methods
3119 *--------------------------------------------------------------*/
3120 static void pool_dtr(struct dm_target
*ti
)
3122 struct pool_c
*pt
= ti
->private;
3124 mutex_lock(&dm_thin_pool_table
.mutex
);
3126 unbind_control_target(pt
->pool
, ti
);
3127 __pool_dec(pt
->pool
);
3128 dm_put_device(ti
, pt
->metadata_dev
);
3129 dm_put_device(ti
, pt
->data_dev
);
3132 mutex_unlock(&dm_thin_pool_table
.mutex
);
3135 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3136 struct dm_target
*ti
)
3140 const char *arg_name
;
3142 static const struct dm_arg _args
[] = {
3143 {0, 4, "Invalid number of pool feature arguments"},
3147 * No feature arguments supplied.
3152 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3156 while (argc
&& !r
) {
3157 arg_name
= dm_shift_arg(as
);
3160 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3161 pf
->zero_new_blocks
= false;
3163 else if (!strcasecmp(arg_name
, "ignore_discard"))
3164 pf
->discard_enabled
= false;
3166 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3167 pf
->discard_passdown
= false;
3169 else if (!strcasecmp(arg_name
, "read_only"))
3170 pf
->mode
= PM_READ_ONLY
;
3172 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3173 pf
->error_if_no_space
= true;
3176 ti
->error
= "Unrecognised pool feature requested";
3185 static void metadata_low_callback(void *context
)
3187 struct pool
*pool
= context
;
3189 DMWARN("%s: reached low water mark for metadata device: sending event.",
3190 dm_device_name(pool
->pool_md
));
3192 dm_table_event(pool
->ti
->table
);
3195 static sector_t
get_dev_size(struct block_device
*bdev
)
3197 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3200 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3202 sector_t metadata_dev_size
= get_dev_size(bdev
);
3203 char buffer
[BDEVNAME_SIZE
];
3205 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3206 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3207 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3210 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3212 sector_t metadata_dev_size
= get_dev_size(bdev
);
3214 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3215 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3217 return metadata_dev_size
;
3220 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3222 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3224 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3226 return metadata_dev_size
;
3230 * When a metadata threshold is crossed a dm event is triggered, and
3231 * userland should respond by growing the metadata device. We could let
3232 * userland set the threshold, like we do with the data threshold, but I'm
3233 * not sure they know enough to do this well.
3235 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3238 * 4M is ample for all ops with the possible exception of thin
3239 * device deletion which is harmless if it fails (just retry the
3240 * delete after you've grown the device).
3242 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3243 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3247 * thin-pool <metadata dev> <data dev>
3248 * <data block size (sectors)>
3249 * <low water mark (blocks)>
3250 * [<#feature args> [<arg>]*]
3252 * Optional feature arguments are:
3253 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3254 * ignore_discard: disable discard
3255 * no_discard_passdown: don't pass discards down to the data device
3256 * read_only: Don't allow any changes to be made to the pool metadata.
3257 * error_if_no_space: error IOs, instead of queueing, if no space.
3259 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3261 int r
, pool_created
= 0;
3264 struct pool_features pf
;
3265 struct dm_arg_set as
;
3266 struct dm_dev
*data_dev
;
3267 unsigned long block_size
;
3268 dm_block_t low_water_blocks
;
3269 struct dm_dev
*metadata_dev
;
3270 fmode_t metadata_mode
;
3273 * FIXME Remove validation from scope of lock.
3275 mutex_lock(&dm_thin_pool_table
.mutex
);
3278 ti
->error
= "Invalid argument count";
3286 /* make sure metadata and data are different devices */
3287 if (!strcmp(argv
[0], argv
[1])) {
3288 ti
->error
= "Error setting metadata or data device";
3294 * Set default pool features.
3296 pool_features_init(&pf
);
3298 dm_consume_args(&as
, 4);
3299 r
= parse_pool_features(&as
, &pf
, ti
);
3303 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3304 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3306 ti
->error
= "Error opening metadata block device";
3309 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3311 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3313 ti
->error
= "Error getting data device";
3317 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3318 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3319 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3320 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3321 ti
->error
= "Invalid block size";
3326 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3327 ti
->error
= "Invalid low water mark";
3332 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3338 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3339 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3346 * 'pool_created' reflects whether this is the first table load.
3347 * Top level discard support is not allowed to be changed after
3348 * initial load. This would require a pool reload to trigger thin
3351 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3352 ti
->error
= "Discard support cannot be disabled once enabled";
3354 goto out_flags_changed
;
3359 pt
->metadata_dev
= metadata_dev
;
3360 pt
->data_dev
= data_dev
;
3361 pt
->low_water_blocks
= low_water_blocks
;
3362 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3363 ti
->num_flush_bios
= 1;
3366 * Only need to enable discards if the pool should pass
3367 * them down to the data device. The thin device's discard
3368 * processing will cause mappings to be removed from the btree.
3370 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3371 ti
->num_discard_bios
= 1;
3374 * Setting 'discards_supported' circumvents the normal
3375 * stacking of discard limits (this keeps the pool and
3376 * thin devices' discard limits consistent).
3378 ti
->discards_supported
= true;
3382 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3383 calc_metadata_threshold(pt
),
3384 metadata_low_callback
,
3387 goto out_flags_changed
;
3389 pt
->callbacks
.congested_fn
= pool_is_congested
;
3390 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3392 mutex_unlock(&dm_thin_pool_table
.mutex
);
3401 dm_put_device(ti
, data_dev
);
3403 dm_put_device(ti
, metadata_dev
);
3405 mutex_unlock(&dm_thin_pool_table
.mutex
);
3410 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3413 struct pool_c
*pt
= ti
->private;
3414 struct pool
*pool
= pt
->pool
;
3415 unsigned long flags
;
3418 * As this is a singleton target, ti->begin is always zero.
3420 spin_lock_irqsave(&pool
->lock
, flags
);
3421 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3422 r
= DM_MAPIO_REMAPPED
;
3423 spin_unlock_irqrestore(&pool
->lock
, flags
);
3428 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3431 struct pool_c
*pt
= ti
->private;
3432 struct pool
*pool
= pt
->pool
;
3433 sector_t data_size
= ti
->len
;
3434 dm_block_t sb_data_size
;
3436 *need_commit
= false;
3438 (void) sector_div(data_size
, pool
->sectors_per_block
);
3440 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3442 DMERR("%s: failed to retrieve data device size",
3443 dm_device_name(pool
->pool_md
));
3447 if (data_size
< sb_data_size
) {
3448 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3449 dm_device_name(pool
->pool_md
),
3450 (unsigned long long)data_size
, sb_data_size
);
3453 } else if (data_size
> sb_data_size
) {
3454 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3455 DMERR("%s: unable to grow the data device until repaired.",
3456 dm_device_name(pool
->pool_md
));
3461 DMINFO("%s: growing the data device from %llu to %llu blocks",
3462 dm_device_name(pool
->pool_md
),
3463 sb_data_size
, (unsigned long long)data_size
);
3464 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3466 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3470 *need_commit
= true;
3476 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3479 struct pool_c
*pt
= ti
->private;
3480 struct pool
*pool
= pt
->pool
;
3481 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3483 *need_commit
= false;
3485 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3487 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3489 DMERR("%s: failed to retrieve metadata device size",
3490 dm_device_name(pool
->pool_md
));
3494 if (metadata_dev_size
< sb_metadata_dev_size
) {
3495 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3496 dm_device_name(pool
->pool_md
),
3497 metadata_dev_size
, sb_metadata_dev_size
);
3500 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3501 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3502 DMERR("%s: unable to grow the metadata device until repaired.",
3503 dm_device_name(pool
->pool_md
));
3507 warn_if_metadata_device_too_big(pool
->md_dev
);
3508 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3509 dm_device_name(pool
->pool_md
),
3510 sb_metadata_dev_size
, metadata_dev_size
);
3512 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3513 set_pool_mode(pool
, PM_WRITE
);
3515 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3517 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3521 *need_commit
= true;
3528 * Retrieves the number of blocks of the data device from
3529 * the superblock and compares it to the actual device size,
3530 * thus resizing the data device in case it has grown.
3532 * This both copes with opening preallocated data devices in the ctr
3533 * being followed by a resume
3535 * calling the resume method individually after userspace has
3536 * grown the data device in reaction to a table event.
3538 static int pool_preresume(struct dm_target
*ti
)
3541 bool need_commit1
, need_commit2
;
3542 struct pool_c
*pt
= ti
->private;
3543 struct pool
*pool
= pt
->pool
;
3546 * Take control of the pool object.
3548 r
= bind_control_target(pool
, ti
);
3552 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3556 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3560 if (need_commit1
|| need_commit2
)
3561 (void) commit(pool
);
3566 static void pool_suspend_active_thins(struct pool
*pool
)
3570 /* Suspend all active thin devices */
3571 tc
= get_first_thin(pool
);
3573 dm_internal_suspend_noflush(tc
->thin_md
);
3574 tc
= get_next_thin(pool
, tc
);
3578 static void pool_resume_active_thins(struct pool
*pool
)
3582 /* Resume all active thin devices */
3583 tc
= get_first_thin(pool
);
3585 dm_internal_resume(tc
->thin_md
);
3586 tc
= get_next_thin(pool
, tc
);
3590 static void pool_resume(struct dm_target
*ti
)
3592 struct pool_c
*pt
= ti
->private;
3593 struct pool
*pool
= pt
->pool
;
3594 unsigned long flags
;
3597 * Must requeue active_thins' bios and then resume
3598 * active_thins _before_ clearing 'suspend' flag.
3601 pool_resume_active_thins(pool
);
3603 spin_lock_irqsave(&pool
->lock
, flags
);
3604 pool
->low_water_triggered
= false;
3605 pool
->suspended
= false;
3606 spin_unlock_irqrestore(&pool
->lock
, flags
);
3608 do_waker(&pool
->waker
.work
);
3611 static void pool_presuspend(struct dm_target
*ti
)
3613 struct pool_c
*pt
= ti
->private;
3614 struct pool
*pool
= pt
->pool
;
3615 unsigned long flags
;
3617 spin_lock_irqsave(&pool
->lock
, flags
);
3618 pool
->suspended
= true;
3619 spin_unlock_irqrestore(&pool
->lock
, flags
);
3621 pool_suspend_active_thins(pool
);
3624 static void pool_presuspend_undo(struct dm_target
*ti
)
3626 struct pool_c
*pt
= ti
->private;
3627 struct pool
*pool
= pt
->pool
;
3628 unsigned long flags
;
3630 pool_resume_active_thins(pool
);
3632 spin_lock_irqsave(&pool
->lock
, flags
);
3633 pool
->suspended
= false;
3634 spin_unlock_irqrestore(&pool
->lock
, flags
);
3637 static void pool_postsuspend(struct dm_target
*ti
)
3639 struct pool_c
*pt
= ti
->private;
3640 struct pool
*pool
= pt
->pool
;
3642 cancel_delayed_work_sync(&pool
->waker
);
3643 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3644 flush_workqueue(pool
->wq
);
3645 (void) commit(pool
);
3648 static int check_arg_count(unsigned argc
, unsigned args_required
)
3650 if (argc
!= args_required
) {
3651 DMWARN("Message received with %u arguments instead of %u.",
3652 argc
, args_required
);
3659 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3661 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3662 *dev_id
<= MAX_DEV_ID
)
3666 DMWARN("Message received with invalid device id: %s", arg
);
3671 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3676 r
= check_arg_count(argc
, 2);
3680 r
= read_dev_id(argv
[1], &dev_id
, 1);
3684 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3686 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3694 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3697 dm_thin_id origin_dev_id
;
3700 r
= check_arg_count(argc
, 3);
3704 r
= read_dev_id(argv
[1], &dev_id
, 1);
3708 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3712 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3714 DMWARN("Creation of new snapshot %s of device %s failed.",
3722 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3727 r
= check_arg_count(argc
, 2);
3731 r
= read_dev_id(argv
[1], &dev_id
, 1);
3735 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3737 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3742 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3744 dm_thin_id old_id
, new_id
;
3747 r
= check_arg_count(argc
, 3);
3751 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3752 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3756 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3757 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3761 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3763 DMWARN("Failed to change transaction id from %s to %s.",
3771 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3775 r
= check_arg_count(argc
, 1);
3779 (void) commit(pool
);
3781 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3783 DMWARN("reserve_metadata_snap message failed.");
3788 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3792 r
= check_arg_count(argc
, 1);
3796 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3798 DMWARN("release_metadata_snap message failed.");
3804 * Messages supported:
3805 * create_thin <dev_id>
3806 * create_snap <dev_id> <origin_id>
3808 * set_transaction_id <current_trans_id> <new_trans_id>
3809 * reserve_metadata_snap
3810 * release_metadata_snap
3812 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3813 char *result
, unsigned maxlen
)
3816 struct pool_c
*pt
= ti
->private;
3817 struct pool
*pool
= pt
->pool
;
3819 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3820 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821 dm_device_name(pool
->pool_md
));
3825 if (!strcasecmp(argv
[0], "create_thin"))
3826 r
= process_create_thin_mesg(argc
, argv
, pool
);
3828 else if (!strcasecmp(argv
[0], "create_snap"))
3829 r
= process_create_snap_mesg(argc
, argv
, pool
);
3831 else if (!strcasecmp(argv
[0], "delete"))
3832 r
= process_delete_mesg(argc
, argv
, pool
);
3834 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3835 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3837 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3838 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3840 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3841 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3844 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3847 (void) commit(pool
);
3852 static void emit_flags(struct pool_features
*pf
, char *result
,
3853 unsigned sz
, unsigned maxlen
)
3855 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3856 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3857 pf
->error_if_no_space
;
3858 DMEMIT("%u ", count
);
3860 if (!pf
->zero_new_blocks
)
3861 DMEMIT("skip_block_zeroing ");
3863 if (!pf
->discard_enabled
)
3864 DMEMIT("ignore_discard ");
3866 if (!pf
->discard_passdown
)
3867 DMEMIT("no_discard_passdown ");
3869 if (pf
->mode
== PM_READ_ONLY
)
3870 DMEMIT("read_only ");
3872 if (pf
->error_if_no_space
)
3873 DMEMIT("error_if_no_space ");
3878 * <transaction id> <used metadata sectors>/<total metadata sectors>
3879 * <used data sectors>/<total data sectors> <held metadata root>
3880 * <pool mode> <discard config> <no space config> <needs_check>
3882 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3883 unsigned status_flags
, char *result
, unsigned maxlen
)
3887 uint64_t transaction_id
;
3888 dm_block_t nr_free_blocks_data
;
3889 dm_block_t nr_free_blocks_metadata
;
3890 dm_block_t nr_blocks_data
;
3891 dm_block_t nr_blocks_metadata
;
3892 dm_block_t held_root
;
3893 enum pool_mode mode
;
3894 char buf
[BDEVNAME_SIZE
];
3895 char buf2
[BDEVNAME_SIZE
];
3896 struct pool_c
*pt
= ti
->private;
3897 struct pool
*pool
= pt
->pool
;
3900 case STATUSTYPE_INFO
:
3901 if (get_pool_mode(pool
) == PM_FAIL
) {
3906 /* Commit to ensure statistics aren't out-of-date */
3907 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3908 (void) commit(pool
);
3910 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3912 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913 dm_device_name(pool
->pool_md
), r
);
3917 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3919 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920 dm_device_name(pool
->pool_md
), r
);
3924 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3926 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927 dm_device_name(pool
->pool_md
), r
);
3931 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3933 DMERR("%s: dm_pool_get_free_block_count returned %d",
3934 dm_device_name(pool
->pool_md
), r
);
3938 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3940 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941 dm_device_name(pool
->pool_md
), r
);
3945 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3947 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948 dm_device_name(pool
->pool_md
), r
);
3952 DMEMIT("%llu %llu/%llu %llu/%llu ",
3953 (unsigned long long)transaction_id
,
3954 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3955 (unsigned long long)nr_blocks_metadata
,
3956 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3957 (unsigned long long)nr_blocks_data
);
3960 DMEMIT("%llu ", held_root
);
3964 mode
= get_pool_mode(pool
);
3965 if (mode
== PM_OUT_OF_DATA_SPACE
)
3966 DMEMIT("out_of_data_space ");
3967 else if (is_read_only_pool_mode(mode
))
3972 if (!pool
->pf
.discard_enabled
)
3973 DMEMIT("ignore_discard ");
3974 else if (pool
->pf
.discard_passdown
)
3975 DMEMIT("discard_passdown ");
3977 DMEMIT("no_discard_passdown ");
3979 if (pool
->pf
.error_if_no_space
)
3980 DMEMIT("error_if_no_space ");
3982 DMEMIT("queue_if_no_space ");
3984 if (dm_pool_metadata_needs_check(pool
->pmd
))
3985 DMEMIT("needs_check ");
3989 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
3993 case STATUSTYPE_TABLE
:
3994 DMEMIT("%s %s %lu %llu ",
3995 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3996 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3997 (unsigned long)pool
->sectors_per_block
,
3998 (unsigned long long)pt
->low_water_blocks
);
3999 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
4008 static int pool_iterate_devices(struct dm_target
*ti
,
4009 iterate_devices_callout_fn fn
, void *data
)
4011 struct pool_c
*pt
= ti
->private;
4013 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
4016 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4018 struct pool_c
*pt
= ti
->private;
4019 struct pool
*pool
= pt
->pool
;
4020 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
4023 * If max_sectors is smaller than pool->sectors_per_block adjust it
4024 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4025 * This is especially beneficial when the pool's data device is a RAID
4026 * device that has a full stripe width that matches pool->sectors_per_block
4027 * -- because even though partial RAID stripe-sized IOs will be issued to a
4028 * single RAID stripe; when aggregated they will end on a full RAID stripe
4029 * boundary.. which avoids additional partial RAID stripe writes cascading
4031 if (limits
->max_sectors
< pool
->sectors_per_block
) {
4032 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
4033 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
4034 limits
->max_sectors
--;
4035 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
4040 * If the system-determined stacked limits are compatible with the
4041 * pool's blocksize (io_opt is a factor) do not override them.
4043 if (io_opt_sectors
< pool
->sectors_per_block
||
4044 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
4045 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
4046 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
4048 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4049 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
4053 * pt->adjusted_pf is a staging area for the actual features to use.
4054 * They get transferred to the live pool in bind_control_target()
4055 * called from pool_preresume().
4057 if (!pt
->adjusted_pf
.discard_enabled
) {
4059 * Must explicitly disallow stacking discard limits otherwise the
4060 * block layer will stack them if pool's data device has support.
4061 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4062 * user to see that, so make sure to set all discard limits to 0.
4064 limits
->discard_granularity
= 0;
4068 disable_passdown_if_not_supported(pt
);
4071 * The pool uses the same discard limits as the underlying data
4072 * device. DM core has already set this up.
4076 static struct target_type pool_target
= {
4077 .name
= "thin-pool",
4078 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4079 DM_TARGET_IMMUTABLE
,
4080 .version
= {1, 20, 0},
4081 .module
= THIS_MODULE
,
4085 .presuspend
= pool_presuspend
,
4086 .presuspend_undo
= pool_presuspend_undo
,
4087 .postsuspend
= pool_postsuspend
,
4088 .preresume
= pool_preresume
,
4089 .resume
= pool_resume
,
4090 .message
= pool_message
,
4091 .status
= pool_status
,
4092 .iterate_devices
= pool_iterate_devices
,
4093 .io_hints
= pool_io_hints
,
4096 /*----------------------------------------------------------------
4097 * Thin target methods
4098 *--------------------------------------------------------------*/
4099 static void thin_get(struct thin_c
*tc
)
4101 atomic_inc(&tc
->refcount
);
4104 static void thin_put(struct thin_c
*tc
)
4106 if (atomic_dec_and_test(&tc
->refcount
))
4107 complete(&tc
->can_destroy
);
4110 static void thin_dtr(struct dm_target
*ti
)
4112 struct thin_c
*tc
= ti
->private;
4113 unsigned long flags
;
4115 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4116 list_del_rcu(&tc
->list
);
4117 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4121 wait_for_completion(&tc
->can_destroy
);
4123 mutex_lock(&dm_thin_pool_table
.mutex
);
4125 __pool_dec(tc
->pool
);
4126 dm_pool_close_thin_device(tc
->td
);
4127 dm_put_device(ti
, tc
->pool_dev
);
4129 dm_put_device(ti
, tc
->origin_dev
);
4132 mutex_unlock(&dm_thin_pool_table
.mutex
);
4136 * Thin target parameters:
4138 * <pool_dev> <dev_id> [origin_dev]
4140 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4141 * dev_id: the internal device identifier
4142 * origin_dev: a device external to the pool that should act as the origin
4144 * If the pool device has discards disabled, they get disabled for the thin
4147 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
4151 struct dm_dev
*pool_dev
, *origin_dev
;
4152 struct mapped_device
*pool_md
;
4153 unsigned long flags
;
4155 mutex_lock(&dm_thin_pool_table
.mutex
);
4157 if (argc
!= 2 && argc
!= 3) {
4158 ti
->error
= "Invalid argument count";
4163 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4165 ti
->error
= "Out of memory";
4169 tc
->thin_md
= dm_table_get_md(ti
->table
);
4170 spin_lock_init(&tc
->lock
);
4171 INIT_LIST_HEAD(&tc
->deferred_cells
);
4172 bio_list_init(&tc
->deferred_bio_list
);
4173 bio_list_init(&tc
->retry_on_resume_list
);
4174 tc
->sort_bio_list
= RB_ROOT
;
4177 if (!strcmp(argv
[0], argv
[2])) {
4178 ti
->error
= "Error setting origin device";
4180 goto bad_origin_dev
;
4183 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4185 ti
->error
= "Error opening origin device";
4186 goto bad_origin_dev
;
4188 tc
->origin_dev
= origin_dev
;
4191 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4193 ti
->error
= "Error opening pool device";
4196 tc
->pool_dev
= pool_dev
;
4198 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4199 ti
->error
= "Invalid device id";
4204 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4206 ti
->error
= "Couldn't get pool mapped device";
4211 tc
->pool
= __pool_table_lookup(pool_md
);
4213 ti
->error
= "Couldn't find pool object";
4215 goto bad_pool_lookup
;
4217 __pool_inc(tc
->pool
);
4219 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4220 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4225 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4227 ti
->error
= "Couldn't open thin internal device";
4231 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4235 ti
->num_flush_bios
= 1;
4236 ti
->flush_supported
= true;
4237 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4239 /* In case the pool supports discards, pass them on. */
4240 if (tc
->pool
->pf
.discard_enabled
) {
4241 ti
->discards_supported
= true;
4242 ti
->num_discard_bios
= 1;
4243 ti
->split_discard_bios
= false;
4246 mutex_unlock(&dm_thin_pool_table
.mutex
);
4248 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4249 if (tc
->pool
->suspended
) {
4250 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4251 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4252 ti
->error
= "Unable to activate thin device while pool is suspended";
4256 atomic_set(&tc
->refcount
, 1);
4257 init_completion(&tc
->can_destroy
);
4258 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4259 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4261 * This synchronize_rcu() call is needed here otherwise we risk a
4262 * wake_worker() call finding no bios to process (because the newly
4263 * added tc isn't yet visible). So this reduces latency since we
4264 * aren't then dependent on the periodic commit to wake_worker().
4273 dm_pool_close_thin_device(tc
->td
);
4275 __pool_dec(tc
->pool
);
4279 dm_put_device(ti
, tc
->pool_dev
);
4282 dm_put_device(ti
, tc
->origin_dev
);
4286 mutex_unlock(&dm_thin_pool_table
.mutex
);
4291 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4293 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4295 return thin_bio_map(ti
, bio
);
4298 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4301 unsigned long flags
;
4302 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4303 struct list_head work
;
4304 struct dm_thin_new_mapping
*m
, *tmp
;
4305 struct pool
*pool
= h
->tc
->pool
;
4307 if (h
->shared_read_entry
) {
4308 INIT_LIST_HEAD(&work
);
4309 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4311 spin_lock_irqsave(&pool
->lock
, flags
);
4312 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4314 __complete_mapping_preparation(m
);
4316 spin_unlock_irqrestore(&pool
->lock
, flags
);
4319 if (h
->all_io_entry
) {
4320 INIT_LIST_HEAD(&work
);
4321 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4322 if (!list_empty(&work
)) {
4323 spin_lock_irqsave(&pool
->lock
, flags
);
4324 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4325 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4326 spin_unlock_irqrestore(&pool
->lock
, flags
);
4332 cell_defer_no_holder(h
->tc
, h
->cell
);
4334 return DM_ENDIO_DONE
;
4337 static void thin_presuspend(struct dm_target
*ti
)
4339 struct thin_c
*tc
= ti
->private;
4341 if (dm_noflush_suspending(ti
))
4342 noflush_work(tc
, do_noflush_start
);
4345 static void thin_postsuspend(struct dm_target
*ti
)
4347 struct thin_c
*tc
= ti
->private;
4350 * The dm_noflush_suspending flag has been cleared by now, so
4351 * unfortunately we must always run this.
4353 noflush_work(tc
, do_noflush_stop
);
4356 static int thin_preresume(struct dm_target
*ti
)
4358 struct thin_c
*tc
= ti
->private;
4361 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4367 * <nr mapped sectors> <highest mapped sector>
4369 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4370 unsigned status_flags
, char *result
, unsigned maxlen
)
4374 dm_block_t mapped
, highest
;
4375 char buf
[BDEVNAME_SIZE
];
4376 struct thin_c
*tc
= ti
->private;
4378 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4387 case STATUSTYPE_INFO
:
4388 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4390 DMERR("dm_thin_get_mapped_count returned %d", r
);
4394 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4396 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4400 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4402 DMEMIT("%llu", ((highest
+ 1) *
4403 tc
->pool
->sectors_per_block
) - 1);
4408 case STATUSTYPE_TABLE
:
4410 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4411 (unsigned long) tc
->dev_id
);
4413 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4424 static int thin_iterate_devices(struct dm_target
*ti
,
4425 iterate_devices_callout_fn fn
, void *data
)
4428 struct thin_c
*tc
= ti
->private;
4429 struct pool
*pool
= tc
->pool
;
4432 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4433 * we follow a more convoluted path through to the pool's target.
4436 return 0; /* nothing is bound */
4438 blocks
= pool
->ti
->len
;
4439 (void) sector_div(blocks
, pool
->sectors_per_block
);
4441 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4446 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4448 struct thin_c
*tc
= ti
->private;
4449 struct pool
*pool
= tc
->pool
;
4451 if (!pool
->pf
.discard_enabled
)
4454 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4455 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4458 static struct target_type thin_target
= {
4460 .version
= {1, 20, 0},
4461 .module
= THIS_MODULE
,
4465 .end_io
= thin_endio
,
4466 .preresume
= thin_preresume
,
4467 .presuspend
= thin_presuspend
,
4468 .postsuspend
= thin_postsuspend
,
4469 .status
= thin_status
,
4470 .iterate_devices
= thin_iterate_devices
,
4471 .io_hints
= thin_io_hints
,
4474 /*----------------------------------------------------------------*/
4476 static int __init
dm_thin_init(void)
4482 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4483 if (!_new_mapping_cache
)
4486 r
= dm_register_target(&thin_target
);
4488 goto bad_new_mapping_cache
;
4490 r
= dm_register_target(&pool_target
);
4492 goto bad_thin_target
;
4497 dm_unregister_target(&thin_target
);
4498 bad_new_mapping_cache
:
4499 kmem_cache_destroy(_new_mapping_cache
);
4504 static void dm_thin_exit(void)
4506 dm_unregister_target(&thin_target
);
4507 dm_unregister_target(&pool_target
);
4509 kmem_cache_destroy(_new_mapping_cache
);
4514 module_init(dm_thin_init
);
4515 module_exit(dm_thin_exit
);
4517 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4518 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4520 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4521 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4522 MODULE_LICENSE("GPL");