2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
30 #define DM_MSG_PREFIX "core"
33 * Cookies are numeric values sent with CHANGE and REMOVE
34 * uevents while resuming, removing or renaming the device.
36 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
37 #define DM_COOKIE_LENGTH 24
39 static const char *_name
= DM_NAME
;
41 static unsigned int major
= 0;
42 static unsigned int _major
= 0;
44 static DEFINE_IDR(_minor_idr
);
46 static DEFINE_SPINLOCK(_minor_lock
);
48 static void do_deferred_remove(struct work_struct
*w
);
50 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
52 static struct workqueue_struct
*deferred_remove_workqueue
;
54 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
55 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
57 void dm_issue_global_event(void)
59 atomic_inc(&dm_global_event_nr
);
60 wake_up(&dm_global_eventq
);
64 * One of these is allocated (on-stack) per original bio.
71 unsigned sector_count
;
75 * One of these is allocated per clone bio.
77 #define DM_TIO_MAGIC 7282014
82 unsigned target_bio_nr
;
89 * One of these is allocated per original bio.
90 * It contains the first clone used for that original.
92 #define DM_IO_MAGIC 5191977
95 struct mapped_device
*md
;
99 unsigned long start_time
;
100 spinlock_t endio_lock
;
101 struct dm_stats_aux stats_aux
;
102 /* last member of dm_target_io is 'struct bio' */
103 struct dm_target_io tio
;
106 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
108 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
109 if (!tio
->inside_dm_io
)
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
111 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
113 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
115 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
117 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
118 if (io
->magic
== DM_IO_MAGIC
)
119 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
120 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
121 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
123 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
125 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
127 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
129 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
131 #define MINOR_ALLOCED ((void *)-1)
134 * Bits for the md->flags field.
136 #define DMF_BLOCK_IO_FOR_SUSPEND 0
137 #define DMF_SUSPENDED 1
139 #define DMF_FREEING 3
140 #define DMF_DELETING 4
141 #define DMF_NOFLUSH_SUSPENDING 5
142 #define DMF_DEFERRED_REMOVE 6
143 #define DMF_SUSPENDED_INTERNALLY 7
145 #define DM_NUMA_NODE NUMA_NO_NODE
146 static int dm_numa_node
= DM_NUMA_NODE
;
149 * For mempools pre-allocation at the table loading time.
151 struct dm_md_mempools
{
153 struct bio_set io_bs
;
156 struct table_device
{
157 struct list_head list
;
159 struct dm_dev dm_dev
;
162 static struct kmem_cache
*_rq_tio_cache
;
163 static struct kmem_cache
*_rq_cache
;
166 * Bio-based DM's mempools' reserved IOs set by the user.
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
171 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
173 int param
= READ_ONCE(*module_param
);
174 int modified_param
= 0;
175 bool modified
= true;
178 modified_param
= min
;
179 else if (param
> max
)
180 modified_param
= max
;
185 (void)cmpxchg(module_param
, param
, modified_param
);
186 param
= modified_param
;
192 unsigned __dm_get_module_param(unsigned *module_param
,
193 unsigned def
, unsigned max
)
195 unsigned param
= READ_ONCE(*module_param
);
196 unsigned modified_param
= 0;
199 modified_param
= def
;
200 else if (param
> max
)
201 modified_param
= max
;
203 if (modified_param
) {
204 (void)cmpxchg(module_param
, param
, modified_param
);
205 param
= modified_param
;
211 unsigned dm_get_reserved_bio_based_ios(void)
213 return __dm_get_module_param(&reserved_bio_based_ios
,
214 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
218 static unsigned dm_get_numa_node(void)
220 return __dm_get_module_param_int(&dm_numa_node
,
221 DM_NUMA_NODE
, num_online_nodes() - 1);
224 static int __init
local_init(void)
228 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
232 _rq_cache
= kmem_cache_create("dm_old_clone_request", sizeof(struct request
),
233 __alignof__(struct request
), 0, NULL
);
235 goto out_free_rq_tio_cache
;
237 r
= dm_uevent_init();
239 goto out_free_rq_cache
;
241 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
242 if (!deferred_remove_workqueue
) {
244 goto out_uevent_exit
;
248 r
= register_blkdev(_major
, _name
);
250 goto out_free_workqueue
;
258 destroy_workqueue(deferred_remove_workqueue
);
262 kmem_cache_destroy(_rq_cache
);
263 out_free_rq_tio_cache
:
264 kmem_cache_destroy(_rq_tio_cache
);
269 static void local_exit(void)
271 flush_scheduled_work();
272 destroy_workqueue(deferred_remove_workqueue
);
274 kmem_cache_destroy(_rq_cache
);
275 kmem_cache_destroy(_rq_tio_cache
);
276 unregister_blkdev(_major
, _name
);
281 DMINFO("cleaned up");
284 static int (*_inits
[])(void) __initdata
= {
295 static void (*_exits
[])(void) = {
306 static int __init
dm_init(void)
308 const int count
= ARRAY_SIZE(_inits
);
312 for (i
= 0; i
< count
; i
++) {
327 static void __exit
dm_exit(void)
329 int i
= ARRAY_SIZE(_exits
);
335 * Should be empty by this point.
337 idr_destroy(&_minor_idr
);
341 * Block device functions
343 int dm_deleting_md(struct mapped_device
*md
)
345 return test_bit(DMF_DELETING
, &md
->flags
);
348 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
350 struct mapped_device
*md
;
352 spin_lock(&_minor_lock
);
354 md
= bdev
->bd_disk
->private_data
;
358 if (test_bit(DMF_FREEING
, &md
->flags
) ||
359 dm_deleting_md(md
)) {
365 atomic_inc(&md
->open_count
);
367 spin_unlock(&_minor_lock
);
369 return md
? 0 : -ENXIO
;
372 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
374 struct mapped_device
*md
;
376 spin_lock(&_minor_lock
);
378 md
= disk
->private_data
;
382 if (atomic_dec_and_test(&md
->open_count
) &&
383 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
384 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
388 spin_unlock(&_minor_lock
);
391 int dm_open_count(struct mapped_device
*md
)
393 return atomic_read(&md
->open_count
);
397 * Guarantees nothing is using the device before it's deleted.
399 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
403 spin_lock(&_minor_lock
);
405 if (dm_open_count(md
)) {
408 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
409 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
412 set_bit(DMF_DELETING
, &md
->flags
);
414 spin_unlock(&_minor_lock
);
419 int dm_cancel_deferred_remove(struct mapped_device
*md
)
423 spin_lock(&_minor_lock
);
425 if (test_bit(DMF_DELETING
, &md
->flags
))
428 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
430 spin_unlock(&_minor_lock
);
435 static void do_deferred_remove(struct work_struct
*w
)
437 dm_deferred_remove();
440 sector_t
dm_get_size(struct mapped_device
*md
)
442 return get_capacity(md
->disk
);
445 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
450 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
455 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
457 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
459 return dm_get_geometry(md
, geo
);
462 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
463 struct block_device
**bdev
)
464 __acquires(md
->io_barrier
)
466 struct dm_target
*tgt
;
467 struct dm_table
*map
;
472 map
= dm_get_live_table(md
, srcu_idx
);
473 if (!map
|| !dm_table_get_size(map
))
476 /* We only support devices that have a single target */
477 if (dm_table_get_num_targets(map
) != 1)
480 tgt
= dm_table_get_target(map
, 0);
481 if (!tgt
->type
->prepare_ioctl
)
484 if (dm_suspended_md(md
))
487 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
488 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
489 dm_put_live_table(md
, *srcu_idx
);
497 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
498 __releases(md
->io_barrier
)
500 dm_put_live_table(md
, srcu_idx
);
503 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
504 unsigned int cmd
, unsigned long arg
)
506 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
509 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
515 * Target determined this ioctl is being issued against a
516 * subset of the parent bdev; require extra privileges.
518 if (!capable(CAP_SYS_RAWIO
)) {
520 "%s: sending ioctl %x to DM device without required privilege.",
527 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
529 dm_unprepare_ioctl(md
, srcu_idx
);
533 static void start_io_acct(struct dm_io
*io
);
535 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
538 struct dm_target_io
*tio
;
541 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
545 tio
= container_of(clone
, struct dm_target_io
, clone
);
546 tio
->inside_dm_io
= true;
549 io
= container_of(tio
, struct dm_io
, tio
);
550 io
->magic
= DM_IO_MAGIC
;
552 atomic_set(&io
->io_count
, 1);
555 spin_lock_init(&io
->endio_lock
);
562 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
564 bio_put(&io
->tio
.clone
);
567 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
568 unsigned target_bio_nr
, gfp_t gfp_mask
)
570 struct dm_target_io
*tio
;
572 if (!ci
->io
->tio
.io
) {
573 /* the dm_target_io embedded in ci->io is available */
576 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
580 tio
= container_of(clone
, struct dm_target_io
, clone
);
581 tio
->inside_dm_io
= false;
584 tio
->magic
= DM_TIO_MAGIC
;
587 tio
->target_bio_nr
= target_bio_nr
;
592 static void free_tio(struct dm_target_io
*tio
)
594 if (tio
->inside_dm_io
)
596 bio_put(&tio
->clone
);
599 int md_in_flight(struct mapped_device
*md
)
601 return atomic_read(&md
->pending
[READ
]) +
602 atomic_read(&md
->pending
[WRITE
]);
605 static void start_io_acct(struct dm_io
*io
)
607 struct mapped_device
*md
= io
->md
;
608 struct bio
*bio
= io
->orig_bio
;
609 int rw
= bio_data_dir(bio
);
611 io
->start_time
= jiffies
;
613 generic_start_io_acct(md
->queue
, bio_op(bio
), bio_sectors(bio
),
614 &dm_disk(md
)->part0
);
616 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
617 atomic_inc_return(&md
->pending
[rw
]));
619 if (unlikely(dm_stats_used(&md
->stats
)))
620 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
621 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
622 false, 0, &io
->stats_aux
);
625 static void end_io_acct(struct dm_io
*io
)
627 struct mapped_device
*md
= io
->md
;
628 struct bio
*bio
= io
->orig_bio
;
629 unsigned long duration
= jiffies
- io
->start_time
;
631 int rw
= bio_data_dir(bio
);
633 generic_end_io_acct(md
->queue
, bio_op(bio
), &dm_disk(md
)->part0
,
636 if (unlikely(dm_stats_used(&md
->stats
)))
637 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
638 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
639 true, duration
, &io
->stats_aux
);
642 * After this is decremented the bio must not be touched if it is
645 pending
= atomic_dec_return(&md
->pending
[rw
]);
646 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
647 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
649 /* nudge anyone waiting on suspend queue */
655 * Add the bio to the list of deferred io.
657 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
661 spin_lock_irqsave(&md
->deferred_lock
, flags
);
662 bio_list_add(&md
->deferred
, bio
);
663 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
664 queue_work(md
->wq
, &md
->work
);
668 * Everyone (including functions in this file), should use this
669 * function to access the md->map field, and make sure they call
670 * dm_put_live_table() when finished.
672 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
674 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
676 return srcu_dereference(md
->map
, &md
->io_barrier
);
679 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
681 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
684 void dm_sync_table(struct mapped_device
*md
)
686 synchronize_srcu(&md
->io_barrier
);
687 synchronize_rcu_expedited();
691 * A fast alternative to dm_get_live_table/dm_put_live_table.
692 * The caller must not block between these two functions.
694 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
697 return rcu_dereference(md
->map
);
700 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
705 static char *_dm_claim_ptr
= "I belong to device-mapper";
708 * Open a table device so we can use it as a map destination.
710 static int open_table_device(struct table_device
*td
, dev_t dev
,
711 struct mapped_device
*md
)
713 struct block_device
*bdev
;
717 BUG_ON(td
->dm_dev
.bdev
);
719 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
721 return PTR_ERR(bdev
);
723 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
725 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
729 td
->dm_dev
.bdev
= bdev
;
730 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
735 * Close a table device that we've been using.
737 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
739 if (!td
->dm_dev
.bdev
)
742 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
743 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
744 put_dax(td
->dm_dev
.dax_dev
);
745 td
->dm_dev
.bdev
= NULL
;
746 td
->dm_dev
.dax_dev
= NULL
;
749 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
751 struct table_device
*td
;
753 list_for_each_entry(td
, l
, list
)
754 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
760 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
761 struct dm_dev
**result
) {
763 struct table_device
*td
;
765 mutex_lock(&md
->table_devices_lock
);
766 td
= find_table_device(&md
->table_devices
, dev
, mode
);
768 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
770 mutex_unlock(&md
->table_devices_lock
);
774 td
->dm_dev
.mode
= mode
;
775 td
->dm_dev
.bdev
= NULL
;
777 if ((r
= open_table_device(td
, dev
, md
))) {
778 mutex_unlock(&md
->table_devices_lock
);
783 format_dev_t(td
->dm_dev
.name
, dev
);
785 refcount_set(&td
->count
, 1);
786 list_add(&td
->list
, &md
->table_devices
);
788 refcount_inc(&td
->count
);
790 mutex_unlock(&md
->table_devices_lock
);
792 *result
= &td
->dm_dev
;
795 EXPORT_SYMBOL_GPL(dm_get_table_device
);
797 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
799 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
801 mutex_lock(&md
->table_devices_lock
);
802 if (refcount_dec_and_test(&td
->count
)) {
803 close_table_device(td
, md
);
807 mutex_unlock(&md
->table_devices_lock
);
809 EXPORT_SYMBOL(dm_put_table_device
);
811 static void free_table_devices(struct list_head
*devices
)
813 struct list_head
*tmp
, *next
;
815 list_for_each_safe(tmp
, next
, devices
) {
816 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
818 DMWARN("dm_destroy: %s still exists with %d references",
819 td
->dm_dev
.name
, refcount_read(&td
->count
));
825 * Get the geometry associated with a dm device
827 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
835 * Set the geometry of a device.
837 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
839 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
841 if (geo
->start
> sz
) {
842 DMWARN("Start sector is beyond the geometry limits.");
851 static int __noflush_suspending(struct mapped_device
*md
)
853 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
857 * Decrements the number of outstanding ios that a bio has been
858 * cloned into, completing the original io if necc.
860 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
863 blk_status_t io_error
;
865 struct mapped_device
*md
= io
->md
;
867 /* Push-back supersedes any I/O errors */
868 if (unlikely(error
)) {
869 spin_lock_irqsave(&io
->endio_lock
, flags
);
870 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
872 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
875 if (atomic_dec_and_test(&io
->io_count
)) {
876 if (io
->status
== BLK_STS_DM_REQUEUE
) {
878 * Target requested pushing back the I/O.
880 spin_lock_irqsave(&md
->deferred_lock
, flags
);
881 if (__noflush_suspending(md
))
882 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
883 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
885 /* noflush suspend was interrupted. */
886 io
->status
= BLK_STS_IOERR
;
887 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
890 io_error
= io
->status
;
895 if (io_error
== BLK_STS_DM_REQUEUE
)
898 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
900 * Preflush done for flush with data, reissue
901 * without REQ_PREFLUSH.
903 bio
->bi_opf
&= ~REQ_PREFLUSH
;
906 /* done with normal IO or empty flush */
908 bio
->bi_status
= io_error
;
914 void disable_discard(struct mapped_device
*md
)
916 struct queue_limits
*limits
= dm_get_queue_limits(md
);
918 /* device doesn't really support DISCARD, disable it */
919 limits
->max_discard_sectors
= 0;
920 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
923 void disable_write_same(struct mapped_device
*md
)
925 struct queue_limits
*limits
= dm_get_queue_limits(md
);
927 /* device doesn't really support WRITE SAME, disable it */
928 limits
->max_write_same_sectors
= 0;
931 void disable_write_zeroes(struct mapped_device
*md
)
933 struct queue_limits
*limits
= dm_get_queue_limits(md
);
935 /* device doesn't really support WRITE ZEROES, disable it */
936 limits
->max_write_zeroes_sectors
= 0;
939 static void clone_endio(struct bio
*bio
)
941 blk_status_t error
= bio
->bi_status
;
942 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
943 struct dm_io
*io
= tio
->io
;
944 struct mapped_device
*md
= tio
->io
->md
;
945 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
947 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
948 if (bio_op(bio
) == REQ_OP_DISCARD
&&
949 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
951 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
952 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
953 disable_write_same(md
);
954 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
955 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
956 disable_write_zeroes(md
);
960 int r
= endio(tio
->ti
, bio
, &error
);
962 case DM_ENDIO_REQUEUE
:
963 error
= BLK_STS_DM_REQUEUE
;
967 case DM_ENDIO_INCOMPLETE
:
968 /* The target will handle the io */
971 DMWARN("unimplemented target endio return value: %d", r
);
977 dec_pending(io
, error
);
981 * Return maximum size of I/O possible at the supplied sector up to the current
984 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
986 sector_t target_offset
= dm_target_offset(ti
, sector
);
988 return ti
->len
- target_offset
;
991 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
993 sector_t len
= max_io_len_target_boundary(sector
, ti
);
994 sector_t offset
, max_len
;
997 * Does the target need to split even further?
999 if (ti
->max_io_len
) {
1000 offset
= dm_target_offset(ti
, sector
);
1001 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1002 max_len
= sector_div(offset
, ti
->max_io_len
);
1004 max_len
= offset
& (ti
->max_io_len
- 1);
1005 max_len
= ti
->max_io_len
- max_len
;
1014 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1016 if (len
> UINT_MAX
) {
1017 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1018 (unsigned long long)len
, UINT_MAX
);
1019 ti
->error
= "Maximum size of target IO is too large";
1023 ti
->max_io_len
= (uint32_t) len
;
1027 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1029 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1030 sector_t sector
, int *srcu_idx
)
1031 __acquires(md
->io_barrier
)
1033 struct dm_table
*map
;
1034 struct dm_target
*ti
;
1036 map
= dm_get_live_table(md
, srcu_idx
);
1040 ti
= dm_table_find_target(map
, sector
);
1041 if (!dm_target_is_valid(ti
))
1047 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1048 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1050 struct mapped_device
*md
= dax_get_private(dax_dev
);
1051 sector_t sector
= pgoff
* PAGE_SECTORS
;
1052 struct dm_target
*ti
;
1053 long len
, ret
= -EIO
;
1056 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1060 if (!ti
->type
->direct_access
)
1062 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1065 nr_pages
= min(len
, nr_pages
);
1066 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1069 dm_put_live_table(md
, srcu_idx
);
1074 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1075 void *addr
, size_t bytes
, struct iov_iter
*i
)
1077 struct mapped_device
*md
= dax_get_private(dax_dev
);
1078 sector_t sector
= pgoff
* PAGE_SECTORS
;
1079 struct dm_target
*ti
;
1083 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1087 if (!ti
->type
->dax_copy_from_iter
) {
1088 ret
= copy_from_iter(addr
, bytes
, i
);
1091 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1093 dm_put_live_table(md
, srcu_idx
);
1098 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1099 void *addr
, size_t bytes
, struct iov_iter
*i
)
1101 struct mapped_device
*md
= dax_get_private(dax_dev
);
1102 sector_t sector
= pgoff
* PAGE_SECTORS
;
1103 struct dm_target
*ti
;
1107 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1111 if (!ti
->type
->dax_copy_to_iter
) {
1112 ret
= copy_to_iter(addr
, bytes
, i
);
1115 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1117 dm_put_live_table(md
, srcu_idx
);
1123 * A target may call dm_accept_partial_bio only from the map routine. It is
1124 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1133 * +--------------------+---------------+-------+
1135 * <-------------- *tio->len_ptr --------------->
1136 * <------- bi_size ------->
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 * (it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 * (it may be empty if region 1 is non-empty, although there is no reason
1144 * The target requires that region 3 is to be sent in the next bio.
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1150 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1152 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1153 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1154 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1155 BUG_ON(bi_size
> *tio
->len_ptr
);
1156 BUG_ON(n_sectors
> bi_size
);
1157 *tio
->len_ptr
-= bi_size
- n_sectors
;
1158 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1160 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1163 * The zone descriptors obtained with a zone report indicate zone positions
1164 * within the target backing device, regardless of that device is a partition
1165 * and regardless of the target mapping start sector on the device or partition.
1166 * The zone descriptors start sector and write pointer position must be adjusted
1167 * to match their relative position within the dm device.
1168 * A target may call dm_remap_zone_report() after completion of a
1169 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained from the
1172 void dm_remap_zone_report(struct dm_target
*ti
, struct bio
*bio
, sector_t start
)
1174 #ifdef CONFIG_BLK_DEV_ZONED
1175 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1176 struct bio
*report_bio
= tio
->io
->orig_bio
;
1177 struct blk_zone_report_hdr
*hdr
= NULL
;
1178 struct blk_zone
*zone
;
1179 unsigned int nr_rep
= 0;
1181 sector_t part_offset
;
1182 struct bio_vec bvec
;
1183 struct bvec_iter iter
;
1190 * bio sector was incremented by the request size on completion. Taking
1191 * into account the original request sector, the target start offset on
1192 * the backing device and the target mapping offset (ti->begin), the
1193 * start sector of the backing device. The partition offset is always 0
1194 * if the target uses a whole device.
1196 part_offset
= bio
->bi_iter
.bi_sector
+ ti
->begin
- (start
+ bio_end_sector(report_bio
));
1199 * Remap the start sector of the reported zones. For sequential zones,
1200 * also remap the write pointer position.
1202 bio_for_each_segment(bvec
, report_bio
, iter
) {
1203 addr
= kmap_atomic(bvec
.bv_page
);
1205 /* Remember the report header in the first page */
1208 ofst
= sizeof(struct blk_zone_report_hdr
);
1212 /* Set zones start sector */
1213 while (hdr
->nr_zones
&& ofst
< bvec
.bv_len
) {
1215 zone
->start
-= part_offset
;
1216 if (zone
->start
>= start
+ ti
->len
) {
1220 zone
->start
= zone
->start
+ ti
->begin
- start
;
1221 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
1222 if (zone
->cond
== BLK_ZONE_COND_FULL
)
1223 zone
->wp
= zone
->start
+ zone
->len
;
1224 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
1225 zone
->wp
= zone
->start
;
1227 zone
->wp
= zone
->wp
+ ti
->begin
- start
- part_offset
;
1229 ofst
+= sizeof(struct blk_zone
);
1235 kunmap_atomic(addr
);
1242 hdr
->nr_zones
= nr_rep
;
1246 bio_advance(report_bio
, report_bio
->bi_iter
.bi_size
);
1248 #else /* !CONFIG_BLK_DEV_ZONED */
1249 bio
->bi_status
= BLK_STS_NOTSUPP
;
1252 EXPORT_SYMBOL_GPL(dm_remap_zone_report
);
1254 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1258 struct bio
*clone
= &tio
->clone
;
1259 struct dm_io
*io
= tio
->io
;
1260 struct mapped_device
*md
= io
->md
;
1261 struct dm_target
*ti
= tio
->ti
;
1262 blk_qc_t ret
= BLK_QC_T_NONE
;
1264 clone
->bi_end_io
= clone_endio
;
1267 * Map the clone. If r == 0 we don't need to do
1268 * anything, the target has assumed ownership of
1271 atomic_inc(&io
->io_count
);
1272 sector
= clone
->bi_iter
.bi_sector
;
1274 r
= ti
->type
->map(ti
, clone
);
1276 case DM_MAPIO_SUBMITTED
:
1278 case DM_MAPIO_REMAPPED
:
1279 /* the bio has been remapped so dispatch it */
1280 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1281 bio_dev(io
->orig_bio
), sector
);
1282 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1283 ret
= direct_make_request(clone
);
1285 ret
= generic_make_request(clone
);
1289 dec_pending(io
, BLK_STS_IOERR
);
1291 case DM_MAPIO_REQUEUE
:
1293 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1296 DMWARN("unimplemented target map return value: %d", r
);
1303 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1305 bio
->bi_iter
.bi_sector
= sector
;
1306 bio
->bi_iter
.bi_size
= to_bytes(len
);
1310 * Creates a bio that consists of range of complete bvecs.
1312 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1313 sector_t sector
, unsigned len
)
1315 struct bio
*clone
= &tio
->clone
;
1317 __bio_clone_fast(clone
, bio
);
1319 if (unlikely(bio_integrity(bio
) != NULL
)) {
1322 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1323 !dm_target_passes_integrity(tio
->ti
->type
))) {
1324 DMWARN("%s: the target %s doesn't support integrity data.",
1325 dm_device_name(tio
->io
->md
),
1326 tio
->ti
->type
->name
);
1330 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1335 if (bio_op(bio
) != REQ_OP_ZONE_REPORT
)
1336 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1337 clone
->bi_iter
.bi_size
= to_bytes(len
);
1339 if (unlikely(bio_integrity(bio
) != NULL
))
1340 bio_integrity_trim(clone
);
1345 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1346 struct dm_target
*ti
, unsigned num_bios
)
1348 struct dm_target_io
*tio
;
1354 if (num_bios
== 1) {
1355 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1356 bio_list_add(blist
, &tio
->clone
);
1360 for (try = 0; try < 2; try++) {
1365 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1366 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1367 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1371 bio_list_add(blist
, &tio
->clone
);
1374 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1375 if (bio_nr
== num_bios
)
1378 while ((bio
= bio_list_pop(blist
))) {
1379 tio
= container_of(bio
, struct dm_target_io
, clone
);
1385 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1386 struct dm_target_io
*tio
, unsigned *len
)
1388 struct bio
*clone
= &tio
->clone
;
1392 __bio_clone_fast(clone
, ci
->bio
);
1394 bio_setup_sector(clone
, ci
->sector
, *len
);
1396 return __map_bio(tio
);
1399 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1400 unsigned num_bios
, unsigned *len
)
1402 struct bio_list blist
= BIO_EMPTY_LIST
;
1404 struct dm_target_io
*tio
;
1406 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1408 while ((bio
= bio_list_pop(&blist
))) {
1409 tio
= container_of(bio
, struct dm_target_io
, clone
);
1410 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1414 static int __send_empty_flush(struct clone_info
*ci
)
1416 unsigned target_nr
= 0;
1417 struct dm_target
*ti
;
1419 BUG_ON(bio_has_data(ci
->bio
));
1420 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1421 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1426 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1427 sector_t sector
, unsigned *len
)
1429 struct bio
*bio
= ci
->bio
;
1430 struct dm_target_io
*tio
;
1433 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1435 r
= clone_bio(tio
, bio
, sector
, *len
);
1440 (void) __map_bio(tio
);
1445 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1447 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1449 return ti
->num_discard_bios
;
1452 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1454 return ti
->num_secure_erase_bios
;
1457 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1459 return ti
->num_write_same_bios
;
1462 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1464 return ti
->num_write_zeroes_bios
;
1467 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1469 static bool is_split_required_for_discard(struct dm_target
*ti
)
1471 return ti
->split_discard_bios
;
1474 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1475 get_num_bios_fn get_num_bios
,
1476 is_split_required_fn is_split_required
)
1482 * Even though the device advertised support for this type of
1483 * request, that does not mean every target supports it, and
1484 * reconfiguration might also have changed that since the
1485 * check was performed.
1487 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1491 if (is_split_required
&& !is_split_required(ti
))
1492 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1494 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1496 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1499 ci
->sector_count
-= len
;
1504 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1506 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios
,
1507 is_split_required_for_discard
);
1510 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1512 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios
, NULL
);
1515 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1517 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios
, NULL
);
1520 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1522 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios
, NULL
);
1525 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1528 struct bio
*bio
= ci
->bio
;
1530 if (bio_op(bio
) == REQ_OP_DISCARD
)
1531 *result
= __send_discard(ci
, ti
);
1532 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1533 *result
= __send_secure_erase(ci
, ti
);
1534 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1535 *result
= __send_write_same(ci
, ti
);
1536 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1537 *result
= __send_write_zeroes(ci
, ti
);
1545 * Select the correct strategy for processing a non-flush bio.
1547 static int __split_and_process_non_flush(struct clone_info
*ci
)
1549 struct bio
*bio
= ci
->bio
;
1550 struct dm_target
*ti
;
1554 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1555 if (!dm_target_is_valid(ti
))
1558 if (unlikely(__process_abnormal_io(ci
, ti
, &r
)))
1561 if (bio_op(bio
) == REQ_OP_ZONE_REPORT
)
1562 len
= ci
->sector_count
;
1564 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
),
1567 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1572 ci
->sector_count
-= len
;
1577 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1578 struct dm_table
*map
, struct bio
*bio
)
1581 ci
->io
= alloc_io(md
, bio
);
1582 ci
->sector
= bio
->bi_iter
.bi_sector
;
1586 * Entry point to split a bio into clones and submit them to the targets.
1588 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1589 struct dm_table
*map
, struct bio
*bio
)
1591 struct clone_info ci
;
1592 blk_qc_t ret
= BLK_QC_T_NONE
;
1595 if (unlikely(!map
)) {
1600 blk_queue_split(md
->queue
, &bio
);
1602 init_clone_info(&ci
, md
, map
, bio
);
1604 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1605 ci
.bio
= &ci
.io
->md
->flush_bio
;
1606 ci
.sector_count
= 0;
1607 error
= __send_empty_flush(&ci
);
1608 /* dec_pending submits any data associated with flush */
1609 } else if (bio_op(bio
) == REQ_OP_ZONE_RESET
) {
1611 ci
.sector_count
= 0;
1612 error
= __split_and_process_non_flush(&ci
);
1615 ci
.sector_count
= bio_sectors(bio
);
1616 while (ci
.sector_count
&& !error
) {
1617 error
= __split_and_process_non_flush(&ci
);
1618 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1620 * Remainder must be passed to generic_make_request()
1621 * so that it gets handled *after* bios already submitted
1622 * have been completely processed.
1623 * We take a clone of the original to store in
1624 * ci.io->orig_bio to be used by end_io_acct() and
1625 * for dec_pending to use for completion handling.
1626 * As this path is not used for REQ_OP_ZONE_REPORT,
1627 * the usage of io->orig_bio in dm_remap_zone_report()
1628 * won't be affected by this reassignment.
1630 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1631 GFP_NOIO
, &md
->queue
->bio_split
);
1632 ci
.io
->orig_bio
= b
;
1634 ret
= generic_make_request(bio
);
1640 /* drop the extra reference count */
1641 dec_pending(ci
.io
, errno_to_blk_status(error
));
1646 * Optimized variant of __split_and_process_bio that leverages the
1647 * fact that targets that use it do _not_ have a need to split bios.
1649 static blk_qc_t
__process_bio(struct mapped_device
*md
,
1650 struct dm_table
*map
, struct bio
*bio
)
1652 struct clone_info ci
;
1653 blk_qc_t ret
= BLK_QC_T_NONE
;
1656 if (unlikely(!map
)) {
1661 init_clone_info(&ci
, md
, map
, bio
);
1663 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1664 ci
.bio
= &ci
.io
->md
->flush_bio
;
1665 ci
.sector_count
= 0;
1666 error
= __send_empty_flush(&ci
);
1667 /* dec_pending submits any data associated with flush */
1669 struct dm_target
*ti
= md
->immutable_target
;
1670 struct dm_target_io
*tio
;
1673 * Defend against IO still getting in during teardown
1674 * - as was seen for a time with nvme-fcloop
1676 if (unlikely(WARN_ON_ONCE(!ti
|| !dm_target_is_valid(ti
)))) {
1682 ci
.sector_count
= bio_sectors(bio
);
1683 if (unlikely(__process_abnormal_io(&ci
, ti
, &error
)))
1686 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1687 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1690 /* drop the extra reference count */
1691 dec_pending(ci
.io
, errno_to_blk_status(error
));
1695 typedef blk_qc_t (process_bio_fn
)(struct mapped_device
*, struct dm_table
*, struct bio
*);
1697 static blk_qc_t
__dm_make_request(struct request_queue
*q
, struct bio
*bio
,
1698 process_bio_fn process_bio
)
1700 struct mapped_device
*md
= q
->queuedata
;
1701 blk_qc_t ret
= BLK_QC_T_NONE
;
1703 struct dm_table
*map
;
1705 map
= dm_get_live_table(md
, &srcu_idx
);
1707 /* if we're suspended, we have to queue this io for later */
1708 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1709 dm_put_live_table(md
, srcu_idx
);
1711 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1718 ret
= process_bio(md
, map
, bio
);
1720 dm_put_live_table(md
, srcu_idx
);
1725 * The request function that remaps the bio to one target and
1726 * splits off any remainder.
1728 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1730 return __dm_make_request(q
, bio
, __split_and_process_bio
);
1733 static blk_qc_t
dm_make_request_nvme(struct request_queue
*q
, struct bio
*bio
)
1735 return __dm_make_request(q
, bio
, __process_bio
);
1738 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1741 struct mapped_device
*md
= congested_data
;
1742 struct dm_table
*map
;
1744 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1745 if (dm_request_based(md
)) {
1747 * With request-based DM we only need to check the
1748 * top-level queue for congestion.
1750 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1752 map
= dm_get_live_table_fast(md
);
1754 r
= dm_table_any_congested(map
, bdi_bits
);
1755 dm_put_live_table_fast(md
);
1762 /*-----------------------------------------------------------------
1763 * An IDR is used to keep track of allocated minor numbers.
1764 *---------------------------------------------------------------*/
1765 static void free_minor(int minor
)
1767 spin_lock(&_minor_lock
);
1768 idr_remove(&_minor_idr
, minor
);
1769 spin_unlock(&_minor_lock
);
1773 * See if the device with a specific minor # is free.
1775 static int specific_minor(int minor
)
1779 if (minor
>= (1 << MINORBITS
))
1782 idr_preload(GFP_KERNEL
);
1783 spin_lock(&_minor_lock
);
1785 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1787 spin_unlock(&_minor_lock
);
1790 return r
== -ENOSPC
? -EBUSY
: r
;
1794 static int next_free_minor(int *minor
)
1798 idr_preload(GFP_KERNEL
);
1799 spin_lock(&_minor_lock
);
1801 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1803 spin_unlock(&_minor_lock
);
1811 static const struct block_device_operations dm_blk_dops
;
1812 static const struct dax_operations dm_dax_ops
;
1814 static void dm_wq_work(struct work_struct
*work
);
1816 static void dm_init_normal_md_queue(struct mapped_device
*md
)
1818 md
->use_blk_mq
= false;
1821 * Initialize aspects of queue that aren't relevant for blk-mq
1823 md
->queue
->backing_dev_info
->congested_data
= md
;
1824 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1827 static void cleanup_mapped_device(struct mapped_device
*md
)
1830 destroy_workqueue(md
->wq
);
1831 if (md
->kworker_task
)
1832 kthread_stop(md
->kworker_task
);
1833 bioset_exit(&md
->bs
);
1834 bioset_exit(&md
->io_bs
);
1837 kill_dax(md
->dax_dev
);
1838 put_dax(md
->dax_dev
);
1843 spin_lock(&_minor_lock
);
1844 md
->disk
->private_data
= NULL
;
1845 spin_unlock(&_minor_lock
);
1846 del_gendisk(md
->disk
);
1851 blk_cleanup_queue(md
->queue
);
1853 cleanup_srcu_struct(&md
->io_barrier
);
1860 mutex_destroy(&md
->suspend_lock
);
1861 mutex_destroy(&md
->type_lock
);
1862 mutex_destroy(&md
->table_devices_lock
);
1864 dm_mq_cleanup_mapped_device(md
);
1868 * Allocate and initialise a blank device with a given minor.
1870 static struct mapped_device
*alloc_dev(int minor
)
1872 int r
, numa_node_id
= dm_get_numa_node();
1873 struct dax_device
*dax_dev
= NULL
;
1874 struct mapped_device
*md
;
1877 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1879 DMWARN("unable to allocate device, out of memory.");
1883 if (!try_module_get(THIS_MODULE
))
1884 goto bad_module_get
;
1886 /* get a minor number for the dev */
1887 if (minor
== DM_ANY_MINOR
)
1888 r
= next_free_minor(&minor
);
1890 r
= specific_minor(minor
);
1894 r
= init_srcu_struct(&md
->io_barrier
);
1896 goto bad_io_barrier
;
1898 md
->numa_node_id
= numa_node_id
;
1899 md
->use_blk_mq
= dm_use_blk_mq_default();
1900 md
->init_tio_pdu
= false;
1901 md
->type
= DM_TYPE_NONE
;
1902 mutex_init(&md
->suspend_lock
);
1903 mutex_init(&md
->type_lock
);
1904 mutex_init(&md
->table_devices_lock
);
1905 spin_lock_init(&md
->deferred_lock
);
1906 atomic_set(&md
->holders
, 1);
1907 atomic_set(&md
->open_count
, 0);
1908 atomic_set(&md
->event_nr
, 0);
1909 atomic_set(&md
->uevent_seq
, 0);
1910 INIT_LIST_HEAD(&md
->uevent_list
);
1911 INIT_LIST_HEAD(&md
->table_devices
);
1912 spin_lock_init(&md
->uevent_lock
);
1914 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
, NULL
);
1917 md
->queue
->queuedata
= md
;
1919 * default to bio-based required ->make_request_fn until DM
1920 * table is loaded and md->type established. If request-based
1921 * table is loaded: blk-mq will override accordingly.
1923 blk_queue_make_request(md
->queue
, dm_make_request
);
1925 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1929 atomic_set(&md
->pending
[0], 0);
1930 atomic_set(&md
->pending
[1], 0);
1931 init_waitqueue_head(&md
->wait
);
1932 INIT_WORK(&md
->work
, dm_wq_work
);
1933 init_waitqueue_head(&md
->eventq
);
1934 init_completion(&md
->kobj_holder
.completion
);
1935 md
->kworker_task
= NULL
;
1937 md
->disk
->major
= _major
;
1938 md
->disk
->first_minor
= minor
;
1939 md
->disk
->fops
= &dm_blk_dops
;
1940 md
->disk
->queue
= md
->queue
;
1941 md
->disk
->private_data
= md
;
1942 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1944 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1945 dax_dev
= alloc_dax(md
, md
->disk
->disk_name
, &dm_dax_ops
);
1949 md
->dax_dev
= dax_dev
;
1951 add_disk_no_queue_reg(md
->disk
);
1952 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1954 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1958 md
->bdev
= bdget_disk(md
->disk
, 0);
1962 bio_init(&md
->flush_bio
, NULL
, 0);
1963 bio_set_dev(&md
->flush_bio
, md
->bdev
);
1964 md
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1966 dm_stats_init(&md
->stats
);
1968 /* Populate the mapping, nobody knows we exist yet */
1969 spin_lock(&_minor_lock
);
1970 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1971 spin_unlock(&_minor_lock
);
1973 BUG_ON(old_md
!= MINOR_ALLOCED
);
1978 cleanup_mapped_device(md
);
1982 module_put(THIS_MODULE
);
1988 static void unlock_fs(struct mapped_device
*md
);
1990 static void free_dev(struct mapped_device
*md
)
1992 int minor
= MINOR(disk_devt(md
->disk
));
1996 cleanup_mapped_device(md
);
1998 free_table_devices(&md
->table_devices
);
1999 dm_stats_cleanup(&md
->stats
);
2002 module_put(THIS_MODULE
);
2006 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2008 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2011 if (dm_table_bio_based(t
)) {
2013 * The md may already have mempools that need changing.
2014 * If so, reload bioset because front_pad may have changed
2015 * because a different table was loaded.
2017 bioset_exit(&md
->bs
);
2018 bioset_exit(&md
->io_bs
);
2020 } else if (bioset_initialized(&md
->bs
)) {
2022 * There's no need to reload with request-based dm
2023 * because the size of front_pad doesn't change.
2024 * Note for future: If you are to reload bioset,
2025 * prep-ed requests in the queue may refer
2026 * to bio from the old bioset, so you must walk
2027 * through the queue to unprep.
2033 bioset_initialized(&md
->bs
) ||
2034 bioset_initialized(&md
->io_bs
));
2036 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2039 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2041 bioset_exit(&md
->bs
);
2043 /* mempool bind completed, no longer need any mempools in the table */
2044 dm_table_free_md_mempools(t
);
2049 * Bind a table to the device.
2051 static void event_callback(void *context
)
2053 unsigned long flags
;
2055 struct mapped_device
*md
= (struct mapped_device
*) context
;
2057 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2058 list_splice_init(&md
->uevent_list
, &uevents
);
2059 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2061 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2063 atomic_inc(&md
->event_nr
);
2064 wake_up(&md
->eventq
);
2065 dm_issue_global_event();
2069 * Protected by md->suspend_lock obtained by dm_swap_table().
2071 static void __set_size(struct mapped_device
*md
, sector_t size
)
2073 lockdep_assert_held(&md
->suspend_lock
);
2075 set_capacity(md
->disk
, size
);
2077 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2081 * Returns old map, which caller must destroy.
2083 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2084 struct queue_limits
*limits
)
2086 struct dm_table
*old_map
;
2087 struct request_queue
*q
= md
->queue
;
2088 bool request_based
= dm_table_request_based(t
);
2092 lockdep_assert_held(&md
->suspend_lock
);
2094 size
= dm_table_get_size(t
);
2097 * Wipe any geometry if the size of the table changed.
2099 if (size
!= dm_get_size(md
))
2100 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2102 __set_size(md
, size
);
2104 dm_table_event_callback(t
, event_callback
, md
);
2107 * The queue hasn't been stopped yet, if the old table type wasn't
2108 * for request-based during suspension. So stop it to prevent
2109 * I/O mapping before resume.
2110 * This must be done before setting the queue restrictions,
2111 * because request-based dm may be run just after the setting.
2116 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2118 * Leverage the fact that request-based DM targets and
2119 * NVMe bio based targets are immutable singletons
2120 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2121 * and __process_bio.
2123 md
->immutable_target
= dm_table_get_immutable_target(t
);
2126 ret
= __bind_mempools(md
, t
);
2128 old_map
= ERR_PTR(ret
);
2132 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2133 rcu_assign_pointer(md
->map
, (void *)t
);
2134 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2136 dm_table_set_restrictions(t
, q
, limits
);
2145 * Returns unbound table for the caller to free.
2147 static struct dm_table
*__unbind(struct mapped_device
*md
)
2149 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2154 dm_table_event_callback(map
, NULL
, NULL
);
2155 RCU_INIT_POINTER(md
->map
, NULL
);
2162 * Constructor for a new device.
2164 int dm_create(int minor
, struct mapped_device
**result
)
2167 struct mapped_device
*md
;
2169 md
= alloc_dev(minor
);
2173 r
= dm_sysfs_init(md
);
2184 * Functions to manage md->type.
2185 * All are required to hold md->type_lock.
2187 void dm_lock_md_type(struct mapped_device
*md
)
2189 mutex_lock(&md
->type_lock
);
2192 void dm_unlock_md_type(struct mapped_device
*md
)
2194 mutex_unlock(&md
->type_lock
);
2197 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2199 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2203 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2208 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2210 return md
->immutable_target_type
;
2214 * The queue_limits are only valid as long as you have a reference
2217 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2219 BUG_ON(!atomic_read(&md
->holders
));
2220 return &md
->queue
->limits
;
2222 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2225 * Setup the DM device's queue based on md's type
2227 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2230 struct queue_limits limits
;
2231 enum dm_queue_mode type
= dm_get_md_type(md
);
2234 case DM_TYPE_REQUEST_BASED
:
2235 dm_init_normal_md_queue(md
);
2236 r
= dm_old_init_request_queue(md
, t
);
2238 DMERR("Cannot initialize queue for request-based mapped device");
2242 case DM_TYPE_MQ_REQUEST_BASED
:
2243 r
= dm_mq_init_request_queue(md
, t
);
2245 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2249 case DM_TYPE_BIO_BASED
:
2250 case DM_TYPE_DAX_BIO_BASED
:
2251 dm_init_normal_md_queue(md
);
2253 case DM_TYPE_NVME_BIO_BASED
:
2254 dm_init_normal_md_queue(md
);
2255 blk_queue_make_request(md
->queue
, dm_make_request_nvme
);
2262 r
= dm_calculate_queue_limits(t
, &limits
);
2264 DMERR("Cannot calculate initial queue limits");
2267 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2268 blk_register_queue(md
->disk
);
2273 struct mapped_device
*dm_get_md(dev_t dev
)
2275 struct mapped_device
*md
;
2276 unsigned minor
= MINOR(dev
);
2278 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2281 spin_lock(&_minor_lock
);
2283 md
= idr_find(&_minor_idr
, minor
);
2284 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2285 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2291 spin_unlock(&_minor_lock
);
2295 EXPORT_SYMBOL_GPL(dm_get_md
);
2297 void *dm_get_mdptr(struct mapped_device
*md
)
2299 return md
->interface_ptr
;
2302 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2304 md
->interface_ptr
= ptr
;
2307 void dm_get(struct mapped_device
*md
)
2309 atomic_inc(&md
->holders
);
2310 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2313 int dm_hold(struct mapped_device
*md
)
2315 spin_lock(&_minor_lock
);
2316 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2317 spin_unlock(&_minor_lock
);
2321 spin_unlock(&_minor_lock
);
2324 EXPORT_SYMBOL_GPL(dm_hold
);
2326 const char *dm_device_name(struct mapped_device
*md
)
2330 EXPORT_SYMBOL_GPL(dm_device_name
);
2332 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2334 struct dm_table
*map
;
2339 spin_lock(&_minor_lock
);
2340 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2341 set_bit(DMF_FREEING
, &md
->flags
);
2342 spin_unlock(&_minor_lock
);
2344 blk_set_queue_dying(md
->queue
);
2346 if (dm_request_based(md
) && md
->kworker_task
)
2347 kthread_flush_worker(&md
->kworker
);
2350 * Take suspend_lock so that presuspend and postsuspend methods
2351 * do not race with internal suspend.
2353 mutex_lock(&md
->suspend_lock
);
2354 map
= dm_get_live_table(md
, &srcu_idx
);
2355 if (!dm_suspended_md(md
)) {
2356 dm_table_presuspend_targets(map
);
2357 set_bit(DMF_SUSPENDED
, &md
->flags
);
2358 dm_table_postsuspend_targets(map
);
2360 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2361 dm_put_live_table(md
, srcu_idx
);
2362 mutex_unlock(&md
->suspend_lock
);
2365 * Rare, but there may be I/O requests still going to complete,
2366 * for example. Wait for all references to disappear.
2367 * No one should increment the reference count of the mapped_device,
2368 * after the mapped_device state becomes DMF_FREEING.
2371 while (atomic_read(&md
->holders
))
2373 else if (atomic_read(&md
->holders
))
2374 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2375 dm_device_name(md
), atomic_read(&md
->holders
));
2378 dm_table_destroy(__unbind(md
));
2382 void dm_destroy(struct mapped_device
*md
)
2384 __dm_destroy(md
, true);
2387 void dm_destroy_immediate(struct mapped_device
*md
)
2389 __dm_destroy(md
, false);
2392 void dm_put(struct mapped_device
*md
)
2394 atomic_dec(&md
->holders
);
2396 EXPORT_SYMBOL_GPL(dm_put
);
2398 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2404 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2406 if (!md_in_flight(md
))
2409 if (signal_pending_state(task_state
, current
)) {
2416 finish_wait(&md
->wait
, &wait
);
2422 * Process the deferred bios
2424 static void dm_wq_work(struct work_struct
*work
)
2426 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2430 struct dm_table
*map
;
2432 map
= dm_get_live_table(md
, &srcu_idx
);
2434 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2435 spin_lock_irq(&md
->deferred_lock
);
2436 c
= bio_list_pop(&md
->deferred
);
2437 spin_unlock_irq(&md
->deferred_lock
);
2442 if (dm_request_based(md
))
2443 generic_make_request(c
);
2445 __split_and_process_bio(md
, map
, c
);
2448 dm_put_live_table(md
, srcu_idx
);
2451 static void dm_queue_flush(struct mapped_device
*md
)
2453 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2454 smp_mb__after_atomic();
2455 queue_work(md
->wq
, &md
->work
);
2459 * Swap in a new table, returning the old one for the caller to destroy.
2461 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2463 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2464 struct queue_limits limits
;
2467 mutex_lock(&md
->suspend_lock
);
2469 /* device must be suspended */
2470 if (!dm_suspended_md(md
))
2474 * If the new table has no data devices, retain the existing limits.
2475 * This helps multipath with queue_if_no_path if all paths disappear,
2476 * then new I/O is queued based on these limits, and then some paths
2479 if (dm_table_has_no_data_devices(table
)) {
2480 live_map
= dm_get_live_table_fast(md
);
2482 limits
= md
->queue
->limits
;
2483 dm_put_live_table_fast(md
);
2487 r
= dm_calculate_queue_limits(table
, &limits
);
2494 map
= __bind(md
, table
, &limits
);
2495 dm_issue_global_event();
2498 mutex_unlock(&md
->suspend_lock
);
2503 * Functions to lock and unlock any filesystem running on the
2506 static int lock_fs(struct mapped_device
*md
)
2510 WARN_ON(md
->frozen_sb
);
2512 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2513 if (IS_ERR(md
->frozen_sb
)) {
2514 r
= PTR_ERR(md
->frozen_sb
);
2515 md
->frozen_sb
= NULL
;
2519 set_bit(DMF_FROZEN
, &md
->flags
);
2524 static void unlock_fs(struct mapped_device
*md
)
2526 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2529 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2530 md
->frozen_sb
= NULL
;
2531 clear_bit(DMF_FROZEN
, &md
->flags
);
2535 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2536 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2537 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2539 * If __dm_suspend returns 0, the device is completely quiescent
2540 * now. There is no request-processing activity. All new requests
2541 * are being added to md->deferred list.
2543 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2544 unsigned suspend_flags
, long task_state
,
2545 int dmf_suspended_flag
)
2547 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2548 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2551 lockdep_assert_held(&md
->suspend_lock
);
2554 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2555 * This flag is cleared before dm_suspend returns.
2558 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2560 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2563 * This gets reverted if there's an error later and the targets
2564 * provide the .presuspend_undo hook.
2566 dm_table_presuspend_targets(map
);
2569 * Flush I/O to the device.
2570 * Any I/O submitted after lock_fs() may not be flushed.
2571 * noflush takes precedence over do_lockfs.
2572 * (lock_fs() flushes I/Os and waits for them to complete.)
2574 if (!noflush
&& do_lockfs
) {
2577 dm_table_presuspend_undo_targets(map
);
2583 * Here we must make sure that no processes are submitting requests
2584 * to target drivers i.e. no one may be executing
2585 * __split_and_process_bio. This is called from dm_request and
2588 * To get all processes out of __split_and_process_bio in dm_request,
2589 * we take the write lock. To prevent any process from reentering
2590 * __split_and_process_bio from dm_request and quiesce the thread
2591 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2592 * flush_workqueue(md->wq).
2594 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2596 synchronize_srcu(&md
->io_barrier
);
2599 * Stop md->queue before flushing md->wq in case request-based
2600 * dm defers requests to md->wq from md->queue.
2602 if (dm_request_based(md
)) {
2603 dm_stop_queue(md
->queue
);
2604 if (md
->kworker_task
)
2605 kthread_flush_worker(&md
->kworker
);
2608 flush_workqueue(md
->wq
);
2611 * At this point no more requests are entering target request routines.
2612 * We call dm_wait_for_completion to wait for all existing requests
2615 r
= dm_wait_for_completion(md
, task_state
);
2617 set_bit(dmf_suspended_flag
, &md
->flags
);
2620 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2622 synchronize_srcu(&md
->io_barrier
);
2624 /* were we interrupted ? */
2628 if (dm_request_based(md
))
2629 dm_start_queue(md
->queue
);
2632 dm_table_presuspend_undo_targets(map
);
2633 /* pushback list is already flushed, so skip flush */
2640 * We need to be able to change a mapping table under a mounted
2641 * filesystem. For example we might want to move some data in
2642 * the background. Before the table can be swapped with
2643 * dm_bind_table, dm_suspend must be called to flush any in
2644 * flight bios and ensure that any further io gets deferred.
2647 * Suspend mechanism in request-based dm.
2649 * 1. Flush all I/Os by lock_fs() if needed.
2650 * 2. Stop dispatching any I/O by stopping the request_queue.
2651 * 3. Wait for all in-flight I/Os to be completed or requeued.
2653 * To abort suspend, start the request_queue.
2655 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2657 struct dm_table
*map
= NULL
;
2661 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2663 if (dm_suspended_md(md
)) {
2668 if (dm_suspended_internally_md(md
)) {
2669 /* already internally suspended, wait for internal resume */
2670 mutex_unlock(&md
->suspend_lock
);
2671 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2677 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2679 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2683 dm_table_postsuspend_targets(map
);
2686 mutex_unlock(&md
->suspend_lock
);
2690 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2693 int r
= dm_table_resume_targets(map
);
2701 * Flushing deferred I/Os must be done after targets are resumed
2702 * so that mapping of targets can work correctly.
2703 * Request-based dm is queueing the deferred I/Os in its request_queue.
2705 if (dm_request_based(md
))
2706 dm_start_queue(md
->queue
);
2713 int dm_resume(struct mapped_device
*md
)
2716 struct dm_table
*map
= NULL
;
2720 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2722 if (!dm_suspended_md(md
))
2725 if (dm_suspended_internally_md(md
)) {
2726 /* already internally suspended, wait for internal resume */
2727 mutex_unlock(&md
->suspend_lock
);
2728 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2734 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2735 if (!map
|| !dm_table_get_size(map
))
2738 r
= __dm_resume(md
, map
);
2742 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2744 mutex_unlock(&md
->suspend_lock
);
2750 * Internal suspend/resume works like userspace-driven suspend. It waits
2751 * until all bios finish and prevents issuing new bios to the target drivers.
2752 * It may be used only from the kernel.
2755 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2757 struct dm_table
*map
= NULL
;
2759 lockdep_assert_held(&md
->suspend_lock
);
2761 if (md
->internal_suspend_count
++)
2762 return; /* nested internal suspend */
2764 if (dm_suspended_md(md
)) {
2765 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2766 return; /* nest suspend */
2769 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2772 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2773 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2774 * would require changing .presuspend to return an error -- avoid this
2775 * until there is a need for more elaborate variants of internal suspend.
2777 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2778 DMF_SUSPENDED_INTERNALLY
);
2780 dm_table_postsuspend_targets(map
);
2783 static void __dm_internal_resume(struct mapped_device
*md
)
2785 BUG_ON(!md
->internal_suspend_count
);
2787 if (--md
->internal_suspend_count
)
2788 return; /* resume from nested internal suspend */
2790 if (dm_suspended_md(md
))
2791 goto done
; /* resume from nested suspend */
2794 * NOTE: existing callers don't need to call dm_table_resume_targets
2795 * (which may fail -- so best to avoid it for now by passing NULL map)
2797 (void) __dm_resume(md
, NULL
);
2800 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2801 smp_mb__after_atomic();
2802 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2805 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2807 mutex_lock(&md
->suspend_lock
);
2808 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2809 mutex_unlock(&md
->suspend_lock
);
2811 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2813 void dm_internal_resume(struct mapped_device
*md
)
2815 mutex_lock(&md
->suspend_lock
);
2816 __dm_internal_resume(md
);
2817 mutex_unlock(&md
->suspend_lock
);
2819 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2822 * Fast variants of internal suspend/resume hold md->suspend_lock,
2823 * which prevents interaction with userspace-driven suspend.
2826 void dm_internal_suspend_fast(struct mapped_device
*md
)
2828 mutex_lock(&md
->suspend_lock
);
2829 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2832 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2833 synchronize_srcu(&md
->io_barrier
);
2834 flush_workqueue(md
->wq
);
2835 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2837 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2839 void dm_internal_resume_fast(struct mapped_device
*md
)
2841 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2847 mutex_unlock(&md
->suspend_lock
);
2849 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2851 /*-----------------------------------------------------------------
2852 * Event notification.
2853 *---------------------------------------------------------------*/
2854 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2859 char udev_cookie
[DM_COOKIE_LENGTH
];
2860 char *envp
[] = { udev_cookie
, NULL
};
2862 noio_flag
= memalloc_noio_save();
2865 r
= kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2867 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2868 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2869 r
= kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2873 memalloc_noio_restore(noio_flag
);
2878 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2880 return atomic_add_return(1, &md
->uevent_seq
);
2883 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2885 return atomic_read(&md
->event_nr
);
2888 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2890 return wait_event_interruptible(md
->eventq
,
2891 (event_nr
!= atomic_read(&md
->event_nr
)));
2894 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2896 unsigned long flags
;
2898 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2899 list_add(elist
, &md
->uevent_list
);
2900 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2904 * The gendisk is only valid as long as you have a reference
2907 struct gendisk
*dm_disk(struct mapped_device
*md
)
2911 EXPORT_SYMBOL_GPL(dm_disk
);
2913 struct kobject
*dm_kobject(struct mapped_device
*md
)
2915 return &md
->kobj_holder
.kobj
;
2918 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2920 struct mapped_device
*md
;
2922 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2924 spin_lock(&_minor_lock
);
2925 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2931 spin_unlock(&_minor_lock
);
2936 int dm_suspended_md(struct mapped_device
*md
)
2938 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2941 int dm_suspended_internally_md(struct mapped_device
*md
)
2943 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2946 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2948 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2951 int dm_suspended(struct dm_target
*ti
)
2953 return dm_suspended_md(dm_table_get_md(ti
->table
));
2955 EXPORT_SYMBOL_GPL(dm_suspended
);
2957 int dm_noflush_suspending(struct dm_target
*ti
)
2959 return __noflush_suspending(dm_table_get_md(ti
->table
));
2961 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2963 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2964 unsigned integrity
, unsigned per_io_data_size
,
2965 unsigned min_pool_size
)
2967 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2968 unsigned int pool_size
= 0;
2969 unsigned int front_pad
, io_front_pad
;
2976 case DM_TYPE_BIO_BASED
:
2977 case DM_TYPE_DAX_BIO_BASED
:
2978 case DM_TYPE_NVME_BIO_BASED
:
2979 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2980 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2981 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
2982 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
2985 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
2988 case DM_TYPE_REQUEST_BASED
:
2989 case DM_TYPE_MQ_REQUEST_BASED
:
2990 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
2991 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2992 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2998 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
3002 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
3008 dm_free_md_mempools(pools
);
3013 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3018 bioset_exit(&pools
->bs
);
3019 bioset_exit(&pools
->io_bs
);
3031 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3034 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3035 struct dm_table
*table
;
3036 struct dm_target
*ti
;
3037 int ret
= -ENOTTY
, srcu_idx
;
3039 table
= dm_get_live_table(md
, &srcu_idx
);
3040 if (!table
|| !dm_table_get_size(table
))
3043 /* We only support devices that have a single target */
3044 if (dm_table_get_num_targets(table
) != 1)
3046 ti
= dm_table_get_target(table
, 0);
3049 if (!ti
->type
->iterate_devices
)
3052 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3054 dm_put_live_table(md
, srcu_idx
);
3059 * For register / unregister we need to manually call out to every path.
3061 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3062 sector_t start
, sector_t len
, void *data
)
3064 struct dm_pr
*pr
= data
;
3065 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3067 if (!ops
|| !ops
->pr_register
)
3069 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3072 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3083 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3084 if (ret
&& new_key
) {
3085 /* unregister all paths if we failed to register any path */
3086 pr
.old_key
= new_key
;
3089 pr
.fail_early
= false;
3090 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3096 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3099 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3100 const struct pr_ops
*ops
;
3103 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3107 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3108 if (ops
&& ops
->pr_reserve
)
3109 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3113 dm_unprepare_ioctl(md
, srcu_idx
);
3117 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3119 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3120 const struct pr_ops
*ops
;
3123 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3127 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3128 if (ops
&& ops
->pr_release
)
3129 r
= ops
->pr_release(bdev
, key
, type
);
3133 dm_unprepare_ioctl(md
, srcu_idx
);
3137 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3138 enum pr_type type
, bool abort
)
3140 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3141 const struct pr_ops
*ops
;
3144 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3148 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3149 if (ops
&& ops
->pr_preempt
)
3150 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3154 dm_unprepare_ioctl(md
, srcu_idx
);
3158 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3160 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3161 const struct pr_ops
*ops
;
3164 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3168 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3169 if (ops
&& ops
->pr_clear
)
3170 r
= ops
->pr_clear(bdev
, key
);
3174 dm_unprepare_ioctl(md
, srcu_idx
);
3178 static const struct pr_ops dm_pr_ops
= {
3179 .pr_register
= dm_pr_register
,
3180 .pr_reserve
= dm_pr_reserve
,
3181 .pr_release
= dm_pr_release
,
3182 .pr_preempt
= dm_pr_preempt
,
3183 .pr_clear
= dm_pr_clear
,
3186 static const struct block_device_operations dm_blk_dops
= {
3187 .open
= dm_blk_open
,
3188 .release
= dm_blk_close
,
3189 .ioctl
= dm_blk_ioctl
,
3190 .getgeo
= dm_blk_getgeo
,
3191 .pr_ops
= &dm_pr_ops
,
3192 .owner
= THIS_MODULE
3195 static const struct dax_operations dm_dax_ops
= {
3196 .direct_access
= dm_dax_direct_access
,
3197 .copy_from_iter
= dm_dax_copy_from_iter
,
3198 .copy_to_iter
= dm_dax_copy_to_iter
,
3204 module_init(dm_init
);
3205 module_exit(dm_exit
);
3207 module_param(major
, uint
, 0);
3208 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3210 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3211 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3213 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3214 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3216 MODULE_DESCRIPTION(DM_NAME
" driver");
3217 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3218 MODULE_LICENSE("GPL");