Linux 4.19.133
[linux/fpc-iii.git] / drivers / md / raid1.c
blobabcb4c3a76c184031cd549562f782b68f648915d
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
41 #include <trace/events/block.h>
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
47 #define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
49 (1L << MD_JOURNAL_CLEAN) | \
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
54 * Number of guaranteed r1bios in case of extreme VM load:
56 #define NR_RAID1_BIOS 256
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
68 #define IO_MADE_GOOD ((struct bio *)2)
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
74 * for writeback.
76 static int max_queued_requests = 1024;
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
84 #include "raid1-10.c"
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
92 return get_resync_pages(bio)->raid_bio;
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size, gfp_flags);
104 static void r1bio_pool_free(void *r1_bio, void *data)
106 kfree(r1_bio);
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
118 struct pool_info *pi = data;
119 struct r1bio *r1_bio;
120 struct bio *bio;
121 int need_pages;
122 int j;
123 struct resync_pages *rps;
125 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 if (!r1_bio)
127 return NULL;
129 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130 gfp_flags);
131 if (!rps)
132 goto out_free_r1bio;
135 * Allocate bios : 1 for reading, n-1 for writing
137 for (j = pi->raid_disks ; j-- ; ) {
138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 if (!bio)
140 goto out_free_bio;
141 r1_bio->bios[j] = bio;
144 * Allocate RESYNC_PAGES data pages and attach them to
145 * the first bio.
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 need_pages = pi->raid_disks;
151 else
152 need_pages = 1;
153 for (j = 0; j < pi->raid_disks; j++) {
154 struct resync_pages *rp = &rps[j];
156 bio = r1_bio->bios[j];
158 if (j < need_pages) {
159 if (resync_alloc_pages(rp, gfp_flags))
160 goto out_free_pages;
161 } else {
162 memcpy(rp, &rps[0], sizeof(*rp));
163 resync_get_all_pages(rp);
166 rp->raid_bio = r1_bio;
167 bio->bi_private = rp;
170 r1_bio->master_bio = NULL;
172 return r1_bio;
174 out_free_pages:
175 while (--j >= 0)
176 resync_free_pages(&rps[j]);
178 out_free_bio:
179 while (++j < pi->raid_disks)
180 bio_put(r1_bio->bios[j]);
181 kfree(rps);
183 out_free_r1bio:
184 r1bio_pool_free(r1_bio, data);
185 return NULL;
188 static void r1buf_pool_free(void *__r1_bio, void *data)
190 struct pool_info *pi = data;
191 int i;
192 struct r1bio *r1bio = __r1_bio;
193 struct resync_pages *rp = NULL;
195 for (i = pi->raid_disks; i--; ) {
196 rp = get_resync_pages(r1bio->bios[i]);
197 resync_free_pages(rp);
198 bio_put(r1bio->bios[i]);
201 /* resync pages array stored in the 1st bio's .bi_private */
202 kfree(rp);
204 r1bio_pool_free(r1bio, data);
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
209 int i;
211 for (i = 0; i < conf->raid_disks * 2; i++) {
212 struct bio **bio = r1_bio->bios + i;
213 if (!BIO_SPECIAL(*bio))
214 bio_put(*bio);
215 *bio = NULL;
219 static void free_r1bio(struct r1bio *r1_bio)
221 struct r1conf *conf = r1_bio->mddev->private;
223 put_all_bios(conf, r1_bio);
224 mempool_free(r1_bio, &conf->r1bio_pool);
227 static void put_buf(struct r1bio *r1_bio)
229 struct r1conf *conf = r1_bio->mddev->private;
230 sector_t sect = r1_bio->sector;
231 int i;
233 for (i = 0; i < conf->raid_disks * 2; i++) {
234 struct bio *bio = r1_bio->bios[i];
235 if (bio->bi_end_io)
236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
239 mempool_free(r1_bio, &conf->r1buf_pool);
241 lower_barrier(conf, sect);
244 static void reschedule_retry(struct r1bio *r1_bio)
246 unsigned long flags;
247 struct mddev *mddev = r1_bio->mddev;
248 struct r1conf *conf = mddev->private;
249 int idx;
251 idx = sector_to_idx(r1_bio->sector);
252 spin_lock_irqsave(&conf->device_lock, flags);
253 list_add(&r1_bio->retry_list, &conf->retry_list);
254 atomic_inc(&conf->nr_queued[idx]);
255 spin_unlock_irqrestore(&conf->device_lock, flags);
257 wake_up(&conf->wait_barrier);
258 md_wakeup_thread(mddev->thread);
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
266 static void call_bio_endio(struct r1bio *r1_bio)
268 struct bio *bio = r1_bio->master_bio;
269 struct r1conf *conf = r1_bio->mddev->private;
271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 bio->bi_status = BLK_STS_IOERR;
274 bio_endio(bio);
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
279 allow_barrier(conf, r1_bio->sector);
282 static void raid_end_bio_io(struct r1bio *r1_bio)
284 struct bio *bio = r1_bio->master_bio;
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 (unsigned long long) bio->bi_iter.bi_sector,
291 (unsigned long long) bio_end_sector(bio) - 1);
293 call_bio_endio(r1_bio);
295 free_r1bio(r1_bio);
299 * Update disk head position estimator based on IRQ completion info.
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
303 struct r1conf *conf = r1_bio->mddev->private;
305 conf->mirrors[disk].head_position =
306 r1_bio->sector + (r1_bio->sectors);
310 * Find the disk number which triggered given bio
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
314 int mirror;
315 struct r1conf *conf = r1_bio->mddev->private;
316 int raid_disks = conf->raid_disks;
318 for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 if (r1_bio->bios[mirror] == bio)
320 break;
322 BUG_ON(mirror == raid_disks * 2);
323 update_head_pos(mirror, r1_bio);
325 return mirror;
328 static void raid1_end_read_request(struct bio *bio)
330 int uptodate = !bio->bi_status;
331 struct r1bio *r1_bio = bio->bi_private;
332 struct r1conf *conf = r1_bio->mddev->private;
333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(r1_bio->read_disk, r1_bio);
340 if (uptodate)
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
342 else if (test_bit(FailFast, &rdev->flags) &&
343 test_bit(R1BIO_FailFast, &r1_bio->state))
344 /* This was a fail-fast read so we definitely
345 * want to retry */
347 else {
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
352 unsigned long flags;
353 spin_lock_irqsave(&conf->device_lock, flags);
354 if (r1_bio->mddev->degraded == conf->raid_disks ||
355 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 test_bit(In_sync, &rdev->flags)))
357 uptodate = 1;
358 spin_unlock_irqrestore(&conf->device_lock, flags);
361 if (uptodate) {
362 raid_end_bio_io(r1_bio);
363 rdev_dec_pending(rdev, conf->mddev);
364 } else {
366 * oops, read error:
368 char b[BDEVNAME_SIZE];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 mdname(conf->mddev),
371 bdevname(rdev->bdev, b),
372 (unsigned long long)r1_bio->sector);
373 set_bit(R1BIO_ReadError, &r1_bio->state);
374 reschedule_retry(r1_bio);
375 /* don't drop the reference on read_disk yet */
379 static void close_write(struct r1bio *r1_bio)
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 bio_free_pages(r1_bio->behind_master_bio);
384 bio_put(r1_bio->behind_master_bio);
385 r1_bio->behind_master_bio = NULL;
387 /* clear the bitmap if all writes complete successfully */
388 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 r1_bio->sectors,
390 !test_bit(R1BIO_Degraded, &r1_bio->state),
391 test_bit(R1BIO_BehindIO, &r1_bio->state));
392 md_write_end(r1_bio->mddev);
395 static void r1_bio_write_done(struct r1bio *r1_bio)
397 if (!atomic_dec_and_test(&r1_bio->remaining))
398 return;
400 if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 reschedule_retry(r1_bio);
402 else {
403 close_write(r1_bio);
404 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 reschedule_retry(r1_bio);
406 else
407 raid_end_bio_io(r1_bio);
411 static void raid1_end_write_request(struct bio *bio)
413 struct r1bio *r1_bio = bio->bi_private;
414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 struct r1conf *conf = r1_bio->mddev->private;
416 struct bio *to_put = NULL;
417 int mirror = find_bio_disk(r1_bio, bio);
418 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 bool discard_error;
421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
424 * 'one mirror IO has finished' event handler:
426 if (bio->bi_status && !discard_error) {
427 set_bit(WriteErrorSeen, &rdev->flags);
428 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 set_bit(MD_RECOVERY_NEEDED, &
430 conf->mddev->recovery);
432 if (test_bit(FailFast, &rdev->flags) &&
433 (bio->bi_opf & MD_FAILFAST) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly, &rdev->flags)) {
436 md_error(r1_bio->mddev, rdev);
440 * When the device is faulty, it is not necessary to
441 * handle write error.
442 * For failfast, this is the only remaining device,
443 * We need to retry the write without FailFast.
445 if (!test_bit(Faulty, &rdev->flags))
446 set_bit(R1BIO_WriteError, &r1_bio->state);
447 else {
448 /* Finished with this branch */
449 r1_bio->bios[mirror] = NULL;
450 to_put = bio;
452 } else {
454 * Set R1BIO_Uptodate in our master bio, so that we
455 * will return a good error code for to the higher
456 * levels even if IO on some other mirrored buffer
457 * fails.
459 * The 'master' represents the composite IO operation
460 * to user-side. So if something waits for IO, then it
461 * will wait for the 'master' bio.
463 sector_t first_bad;
464 int bad_sectors;
466 r1_bio->bios[mirror] = NULL;
467 to_put = bio;
469 * Do not set R1BIO_Uptodate if the current device is
470 * rebuilding or Faulty. This is because we cannot use
471 * such device for properly reading the data back (we could
472 * potentially use it, if the current write would have felt
473 * before rdev->recovery_offset, but for simplicity we don't
474 * check this here.
476 if (test_bit(In_sync, &rdev->flags) &&
477 !test_bit(Faulty, &rdev->flags))
478 set_bit(R1BIO_Uptodate, &r1_bio->state);
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
482 &first_bad, &bad_sectors) && !discard_error) {
483 r1_bio->bios[mirror] = IO_MADE_GOOD;
484 set_bit(R1BIO_MadeGood, &r1_bio->state);
488 if (behind) {
489 if (test_bit(WriteMostly, &rdev->flags))
490 atomic_dec(&r1_bio->behind_remaining);
493 * In behind mode, we ACK the master bio once the I/O
494 * has safely reached all non-writemostly
495 * disks. Setting the Returned bit ensures that this
496 * gets done only once -- we don't ever want to return
497 * -EIO here, instead we'll wait
499 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
500 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
501 /* Maybe we can return now */
502 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
503 struct bio *mbio = r1_bio->master_bio;
504 pr_debug("raid1: behind end write sectors"
505 " %llu-%llu\n",
506 (unsigned long long) mbio->bi_iter.bi_sector,
507 (unsigned long long) bio_end_sector(mbio) - 1);
508 call_bio_endio(r1_bio);
512 if (r1_bio->bios[mirror] == NULL)
513 rdev_dec_pending(rdev, conf->mddev);
516 * Let's see if all mirrored write operations have finished
517 * already.
519 r1_bio_write_done(r1_bio);
521 if (to_put)
522 bio_put(to_put);
525 static sector_t align_to_barrier_unit_end(sector_t start_sector,
526 sector_t sectors)
528 sector_t len;
530 WARN_ON(sectors == 0);
532 * len is the number of sectors from start_sector to end of the
533 * barrier unit which start_sector belongs to.
535 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
536 start_sector;
538 if (len > sectors)
539 len = sectors;
541 return len;
545 * This routine returns the disk from which the requested read should
546 * be done. There is a per-array 'next expected sequential IO' sector
547 * number - if this matches on the next IO then we use the last disk.
548 * There is also a per-disk 'last know head position' sector that is
549 * maintained from IRQ contexts, both the normal and the resync IO
550 * completion handlers update this position correctly. If there is no
551 * perfect sequential match then we pick the disk whose head is closest.
553 * If there are 2 mirrors in the same 2 devices, performance degrades
554 * because position is mirror, not device based.
556 * The rdev for the device selected will have nr_pending incremented.
558 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
560 const sector_t this_sector = r1_bio->sector;
561 int sectors;
562 int best_good_sectors;
563 int best_disk, best_dist_disk, best_pending_disk;
564 int has_nonrot_disk;
565 int disk;
566 sector_t best_dist;
567 unsigned int min_pending;
568 struct md_rdev *rdev;
569 int choose_first;
570 int choose_next_idle;
572 rcu_read_lock();
574 * Check if we can balance. We can balance on the whole
575 * device if no resync is going on, or below the resync window.
576 * We take the first readable disk when above the resync window.
578 retry:
579 sectors = r1_bio->sectors;
580 best_disk = -1;
581 best_dist_disk = -1;
582 best_dist = MaxSector;
583 best_pending_disk = -1;
584 min_pending = UINT_MAX;
585 best_good_sectors = 0;
586 has_nonrot_disk = 0;
587 choose_next_idle = 0;
588 clear_bit(R1BIO_FailFast, &r1_bio->state);
590 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
591 (mddev_is_clustered(conf->mddev) &&
592 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
593 this_sector + sectors)))
594 choose_first = 1;
595 else
596 choose_first = 0;
598 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
599 sector_t dist;
600 sector_t first_bad;
601 int bad_sectors;
602 unsigned int pending;
603 bool nonrot;
605 rdev = rcu_dereference(conf->mirrors[disk].rdev);
606 if (r1_bio->bios[disk] == IO_BLOCKED
607 || rdev == NULL
608 || test_bit(Faulty, &rdev->flags))
609 continue;
610 if (!test_bit(In_sync, &rdev->flags) &&
611 rdev->recovery_offset < this_sector + sectors)
612 continue;
613 if (test_bit(WriteMostly, &rdev->flags)) {
614 /* Don't balance among write-mostly, just
615 * use the first as a last resort */
616 if (best_dist_disk < 0) {
617 if (is_badblock(rdev, this_sector, sectors,
618 &first_bad, &bad_sectors)) {
619 if (first_bad <= this_sector)
620 /* Cannot use this */
621 continue;
622 best_good_sectors = first_bad - this_sector;
623 } else
624 best_good_sectors = sectors;
625 best_dist_disk = disk;
626 best_pending_disk = disk;
628 continue;
630 /* This is a reasonable device to use. It might
631 * even be best.
633 if (is_badblock(rdev, this_sector, sectors,
634 &first_bad, &bad_sectors)) {
635 if (best_dist < MaxSector)
636 /* already have a better device */
637 continue;
638 if (first_bad <= this_sector) {
639 /* cannot read here. If this is the 'primary'
640 * device, then we must not read beyond
641 * bad_sectors from another device..
643 bad_sectors -= (this_sector - first_bad);
644 if (choose_first && sectors > bad_sectors)
645 sectors = bad_sectors;
646 if (best_good_sectors > sectors)
647 best_good_sectors = sectors;
649 } else {
650 sector_t good_sectors = first_bad - this_sector;
651 if (good_sectors > best_good_sectors) {
652 best_good_sectors = good_sectors;
653 best_disk = disk;
655 if (choose_first)
656 break;
658 continue;
659 } else {
660 if ((sectors > best_good_sectors) && (best_disk >= 0))
661 best_disk = -1;
662 best_good_sectors = sectors;
665 if (best_disk >= 0)
666 /* At least two disks to choose from so failfast is OK */
667 set_bit(R1BIO_FailFast, &r1_bio->state);
669 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
670 has_nonrot_disk |= nonrot;
671 pending = atomic_read(&rdev->nr_pending);
672 dist = abs(this_sector - conf->mirrors[disk].head_position);
673 if (choose_first) {
674 best_disk = disk;
675 break;
677 /* Don't change to another disk for sequential reads */
678 if (conf->mirrors[disk].next_seq_sect == this_sector
679 || dist == 0) {
680 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
681 struct raid1_info *mirror = &conf->mirrors[disk];
683 best_disk = disk;
685 * If buffered sequential IO size exceeds optimal
686 * iosize, check if there is idle disk. If yes, choose
687 * the idle disk. read_balance could already choose an
688 * idle disk before noticing it's a sequential IO in
689 * this disk. This doesn't matter because this disk
690 * will idle, next time it will be utilized after the
691 * first disk has IO size exceeds optimal iosize. In
692 * this way, iosize of the first disk will be optimal
693 * iosize at least. iosize of the second disk might be
694 * small, but not a big deal since when the second disk
695 * starts IO, the first disk is likely still busy.
697 if (nonrot && opt_iosize > 0 &&
698 mirror->seq_start != MaxSector &&
699 mirror->next_seq_sect > opt_iosize &&
700 mirror->next_seq_sect - opt_iosize >=
701 mirror->seq_start) {
702 choose_next_idle = 1;
703 continue;
705 break;
708 if (choose_next_idle)
709 continue;
711 if (min_pending > pending) {
712 min_pending = pending;
713 best_pending_disk = disk;
716 if (dist < best_dist) {
717 best_dist = dist;
718 best_dist_disk = disk;
723 * If all disks are rotational, choose the closest disk. If any disk is
724 * non-rotational, choose the disk with less pending request even the
725 * disk is rotational, which might/might not be optimal for raids with
726 * mixed ratation/non-rotational disks depending on workload.
728 if (best_disk == -1) {
729 if (has_nonrot_disk || min_pending == 0)
730 best_disk = best_pending_disk;
731 else
732 best_disk = best_dist_disk;
735 if (best_disk >= 0) {
736 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
737 if (!rdev)
738 goto retry;
739 atomic_inc(&rdev->nr_pending);
740 sectors = best_good_sectors;
742 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
743 conf->mirrors[best_disk].seq_start = this_sector;
745 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
747 rcu_read_unlock();
748 *max_sectors = sectors;
750 return best_disk;
753 static int raid1_congested(struct mddev *mddev, int bits)
755 struct r1conf *conf = mddev->private;
756 int i, ret = 0;
758 if ((bits & (1 << WB_async_congested)) &&
759 conf->pending_count >= max_queued_requests)
760 return 1;
762 rcu_read_lock();
763 for (i = 0; i < conf->raid_disks * 2; i++) {
764 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
765 if (rdev && !test_bit(Faulty, &rdev->flags)) {
766 struct request_queue *q = bdev_get_queue(rdev->bdev);
768 BUG_ON(!q);
770 /* Note the '|| 1' - when read_balance prefers
771 * non-congested targets, it can be removed
773 if ((bits & (1 << WB_async_congested)) || 1)
774 ret |= bdi_congested(q->backing_dev_info, bits);
775 else
776 ret &= bdi_congested(q->backing_dev_info, bits);
779 rcu_read_unlock();
780 return ret;
783 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
785 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
786 md_bitmap_unplug(conf->mddev->bitmap);
787 wake_up(&conf->wait_barrier);
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
791 struct md_rdev *rdev = (void *)bio->bi_disk;
792 bio->bi_next = NULL;
793 bio_set_dev(bio, rdev->bdev);
794 if (test_bit(Faulty, &rdev->flags)) {
795 bio_io_error(bio);
796 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
797 !blk_queue_discard(bio->bi_disk->queue)))
798 /* Just ignore it */
799 bio_endio(bio);
800 else
801 generic_make_request(bio);
802 bio = next;
806 static void flush_pending_writes(struct r1conf *conf)
808 /* Any writes that have been queued but are awaiting
809 * bitmap updates get flushed here.
811 spin_lock_irq(&conf->device_lock);
813 if (conf->pending_bio_list.head) {
814 struct blk_plug plug;
815 struct bio *bio;
817 bio = bio_list_get(&conf->pending_bio_list);
818 conf->pending_count = 0;
819 spin_unlock_irq(&conf->device_lock);
822 * As this is called in a wait_event() loop (see freeze_array),
823 * current->state might be TASK_UNINTERRUPTIBLE which will
824 * cause a warning when we prepare to wait again. As it is
825 * rare that this path is taken, it is perfectly safe to force
826 * us to go around the wait_event() loop again, so the warning
827 * is a false-positive. Silence the warning by resetting
828 * thread state
830 __set_current_state(TASK_RUNNING);
831 blk_start_plug(&plug);
832 flush_bio_list(conf, bio);
833 blk_finish_plug(&plug);
834 } else
835 spin_unlock_irq(&conf->device_lock);
838 /* Barriers....
839 * Sometimes we need to suspend IO while we do something else,
840 * either some resync/recovery, or reconfigure the array.
841 * To do this we raise a 'barrier'.
842 * The 'barrier' is a counter that can be raised multiple times
843 * to count how many activities are happening which preclude
844 * normal IO.
845 * We can only raise the barrier if there is no pending IO.
846 * i.e. if nr_pending == 0.
847 * We choose only to raise the barrier if no-one is waiting for the
848 * barrier to go down. This means that as soon as an IO request
849 * is ready, no other operations which require a barrier will start
850 * until the IO request has had a chance.
852 * So: regular IO calls 'wait_barrier'. When that returns there
853 * is no backgroup IO happening, It must arrange to call
854 * allow_barrier when it has finished its IO.
855 * backgroup IO calls must call raise_barrier. Once that returns
856 * there is no normal IO happeing. It must arrange to call
857 * lower_barrier when the particular background IO completes.
859 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
861 int idx = sector_to_idx(sector_nr);
863 spin_lock_irq(&conf->resync_lock);
865 /* Wait until no block IO is waiting */
866 wait_event_lock_irq(conf->wait_barrier,
867 !atomic_read(&conf->nr_waiting[idx]),
868 conf->resync_lock);
870 /* block any new IO from starting */
871 atomic_inc(&conf->barrier[idx]);
873 * In raise_barrier() we firstly increase conf->barrier[idx] then
874 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
875 * increase conf->nr_pending[idx] then check conf->barrier[idx].
876 * A memory barrier here to make sure conf->nr_pending[idx] won't
877 * be fetched before conf->barrier[idx] is increased. Otherwise
878 * there will be a race between raise_barrier() and _wait_barrier().
880 smp_mb__after_atomic();
882 /* For these conditions we must wait:
883 * A: while the array is in frozen state
884 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
885 * existing in corresponding I/O barrier bucket.
886 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
887 * max resync count which allowed on current I/O barrier bucket.
889 wait_event_lock_irq(conf->wait_barrier,
890 (!conf->array_frozen &&
891 !atomic_read(&conf->nr_pending[idx]) &&
892 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
893 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
894 conf->resync_lock);
896 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
897 atomic_dec(&conf->barrier[idx]);
898 spin_unlock_irq(&conf->resync_lock);
899 wake_up(&conf->wait_barrier);
900 return -EINTR;
903 atomic_inc(&conf->nr_sync_pending);
904 spin_unlock_irq(&conf->resync_lock);
906 return 0;
909 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
911 int idx = sector_to_idx(sector_nr);
913 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
915 atomic_dec(&conf->barrier[idx]);
916 atomic_dec(&conf->nr_sync_pending);
917 wake_up(&conf->wait_barrier);
920 static void _wait_barrier(struct r1conf *conf, int idx)
923 * We need to increase conf->nr_pending[idx] very early here,
924 * then raise_barrier() can be blocked when it waits for
925 * conf->nr_pending[idx] to be 0. Then we can avoid holding
926 * conf->resync_lock when there is no barrier raised in same
927 * barrier unit bucket. Also if the array is frozen, I/O
928 * should be blocked until array is unfrozen.
930 atomic_inc(&conf->nr_pending[idx]);
932 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
933 * check conf->barrier[idx]. In raise_barrier() we firstly increase
934 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
935 * barrier is necessary here to make sure conf->barrier[idx] won't be
936 * fetched before conf->nr_pending[idx] is increased. Otherwise there
937 * will be a race between _wait_barrier() and raise_barrier().
939 smp_mb__after_atomic();
942 * Don't worry about checking two atomic_t variables at same time
943 * here. If during we check conf->barrier[idx], the array is
944 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
945 * 0, it is safe to return and make the I/O continue. Because the
946 * array is frozen, all I/O returned here will eventually complete
947 * or be queued, no race will happen. See code comment in
948 * frozen_array().
950 if (!READ_ONCE(conf->array_frozen) &&
951 !atomic_read(&conf->barrier[idx]))
952 return;
955 * After holding conf->resync_lock, conf->nr_pending[idx]
956 * should be decreased before waiting for barrier to drop.
957 * Otherwise, we may encounter a race condition because
958 * raise_barrer() might be waiting for conf->nr_pending[idx]
959 * to be 0 at same time.
961 spin_lock_irq(&conf->resync_lock);
962 atomic_inc(&conf->nr_waiting[idx]);
963 atomic_dec(&conf->nr_pending[idx]);
965 * In case freeze_array() is waiting for
966 * get_unqueued_pending() == extra
968 wake_up(&conf->wait_barrier);
969 /* Wait for the barrier in same barrier unit bucket to drop. */
970 wait_event_lock_irq(conf->wait_barrier,
971 !conf->array_frozen &&
972 !atomic_read(&conf->barrier[idx]),
973 conf->resync_lock);
974 atomic_inc(&conf->nr_pending[idx]);
975 atomic_dec(&conf->nr_waiting[idx]);
976 spin_unlock_irq(&conf->resync_lock);
979 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
981 int idx = sector_to_idx(sector_nr);
984 * Very similar to _wait_barrier(). The difference is, for read
985 * I/O we don't need wait for sync I/O, but if the whole array
986 * is frozen, the read I/O still has to wait until the array is
987 * unfrozen. Since there is no ordering requirement with
988 * conf->barrier[idx] here, memory barrier is unnecessary as well.
990 atomic_inc(&conf->nr_pending[idx]);
992 if (!READ_ONCE(conf->array_frozen))
993 return;
995 spin_lock_irq(&conf->resync_lock);
996 atomic_inc(&conf->nr_waiting[idx]);
997 atomic_dec(&conf->nr_pending[idx]);
999 * In case freeze_array() is waiting for
1000 * get_unqueued_pending() == extra
1002 wake_up(&conf->wait_barrier);
1003 /* Wait for array to be unfrozen */
1004 wait_event_lock_irq(conf->wait_barrier,
1005 !conf->array_frozen,
1006 conf->resync_lock);
1007 atomic_inc(&conf->nr_pending[idx]);
1008 atomic_dec(&conf->nr_waiting[idx]);
1009 spin_unlock_irq(&conf->resync_lock);
1012 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1014 int idx = sector_to_idx(sector_nr);
1016 _wait_barrier(conf, idx);
1019 static void _allow_barrier(struct r1conf *conf, int idx)
1021 atomic_dec(&conf->nr_pending[idx]);
1022 wake_up(&conf->wait_barrier);
1025 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1027 int idx = sector_to_idx(sector_nr);
1029 _allow_barrier(conf, idx);
1032 /* conf->resync_lock should be held */
1033 static int get_unqueued_pending(struct r1conf *conf)
1035 int idx, ret;
1037 ret = atomic_read(&conf->nr_sync_pending);
1038 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1039 ret += atomic_read(&conf->nr_pending[idx]) -
1040 atomic_read(&conf->nr_queued[idx]);
1042 return ret;
1045 static void freeze_array(struct r1conf *conf, int extra)
1047 /* Stop sync I/O and normal I/O and wait for everything to
1048 * go quiet.
1049 * This is called in two situations:
1050 * 1) management command handlers (reshape, remove disk, quiesce).
1051 * 2) one normal I/O request failed.
1053 * After array_frozen is set to 1, new sync IO will be blocked at
1054 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1055 * or wait_read_barrier(). The flying I/Os will either complete or be
1056 * queued. When everything goes quite, there are only queued I/Os left.
1058 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1059 * barrier bucket index which this I/O request hits. When all sync and
1060 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1061 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1062 * in handle_read_error(), we may call freeze_array() before trying to
1063 * fix the read error. In this case, the error read I/O is not queued,
1064 * so get_unqueued_pending() == 1.
1066 * Therefore before this function returns, we need to wait until
1067 * get_unqueued_pendings(conf) gets equal to extra. For
1068 * normal I/O context, extra is 1, in rested situations extra is 0.
1070 spin_lock_irq(&conf->resync_lock);
1071 conf->array_frozen = 1;
1072 raid1_log(conf->mddev, "wait freeze");
1073 wait_event_lock_irq_cmd(
1074 conf->wait_barrier,
1075 get_unqueued_pending(conf) == extra,
1076 conf->resync_lock,
1077 flush_pending_writes(conf));
1078 spin_unlock_irq(&conf->resync_lock);
1080 static void unfreeze_array(struct r1conf *conf)
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf->resync_lock);
1084 conf->array_frozen = 0;
1085 spin_unlock_irq(&conf->resync_lock);
1086 wake_up(&conf->wait_barrier);
1089 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1090 struct bio *bio)
1092 int size = bio->bi_iter.bi_size;
1093 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094 int i = 0;
1095 struct bio *behind_bio = NULL;
1097 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1098 if (!behind_bio)
1099 return;
1101 /* discard op, we don't support writezero/writesame yet */
1102 if (!bio_has_data(bio)) {
1103 behind_bio->bi_iter.bi_size = size;
1104 goto skip_copy;
1107 behind_bio->bi_write_hint = bio->bi_write_hint;
1109 while (i < vcnt && size) {
1110 struct page *page;
1111 int len = min_t(int, PAGE_SIZE, size);
1113 page = alloc_page(GFP_NOIO);
1114 if (unlikely(!page))
1115 goto free_pages;
1117 bio_add_page(behind_bio, page, len, 0);
1119 size -= len;
1120 i++;
1123 bio_copy_data(behind_bio, bio);
1124 skip_copy:
1125 r1_bio->behind_master_bio = behind_bio;
1126 set_bit(R1BIO_BehindIO, &r1_bio->state);
1128 return;
1130 free_pages:
1131 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1132 bio->bi_iter.bi_size);
1133 bio_free_pages(behind_bio);
1134 bio_put(behind_bio);
1137 struct raid1_plug_cb {
1138 struct blk_plug_cb cb;
1139 struct bio_list pending;
1140 int pending_cnt;
1143 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1145 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1146 cb);
1147 struct mddev *mddev = plug->cb.data;
1148 struct r1conf *conf = mddev->private;
1149 struct bio *bio;
1151 if (from_schedule || current->bio_list) {
1152 spin_lock_irq(&conf->device_lock);
1153 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1154 conf->pending_count += plug->pending_cnt;
1155 spin_unlock_irq(&conf->device_lock);
1156 wake_up(&conf->wait_barrier);
1157 md_wakeup_thread(mddev->thread);
1158 kfree(plug);
1159 return;
1162 /* we aren't scheduling, so we can do the write-out directly. */
1163 bio = bio_list_get(&plug->pending);
1164 flush_bio_list(conf, bio);
1165 kfree(plug);
1168 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1170 r1_bio->master_bio = bio;
1171 r1_bio->sectors = bio_sectors(bio);
1172 r1_bio->state = 0;
1173 r1_bio->mddev = mddev;
1174 r1_bio->sector = bio->bi_iter.bi_sector;
1177 static inline struct r1bio *
1178 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1180 struct r1conf *conf = mddev->private;
1181 struct r1bio *r1_bio;
1183 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1184 /* Ensure no bio records IO_BLOCKED */
1185 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1186 init_r1bio(r1_bio, mddev, bio);
1187 return r1_bio;
1190 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1191 int max_read_sectors, struct r1bio *r1_bio)
1193 struct r1conf *conf = mddev->private;
1194 struct raid1_info *mirror;
1195 struct bio *read_bio;
1196 struct bitmap *bitmap = mddev->bitmap;
1197 const int op = bio_op(bio);
1198 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199 int max_sectors;
1200 int rdisk;
1201 bool print_msg = !!r1_bio;
1202 char b[BDEVNAME_SIZE];
1205 * If r1_bio is set, we are blocking the raid1d thread
1206 * so there is a tiny risk of deadlock. So ask for
1207 * emergency memory if needed.
1209 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1211 if (print_msg) {
1212 /* Need to get the block device name carefully */
1213 struct md_rdev *rdev;
1214 rcu_read_lock();
1215 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1216 if (rdev)
1217 bdevname(rdev->bdev, b);
1218 else
1219 strcpy(b, "???");
1220 rcu_read_unlock();
1224 * Still need barrier for READ in case that whole
1225 * array is frozen.
1227 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1229 if (!r1_bio)
1230 r1_bio = alloc_r1bio(mddev, bio);
1231 else
1232 init_r1bio(r1_bio, mddev, bio);
1233 r1_bio->sectors = max_read_sectors;
1236 * make_request() can abort the operation when read-ahead is being
1237 * used and no empty request is available.
1239 rdisk = read_balance(conf, r1_bio, &max_sectors);
1241 if (rdisk < 0) {
1242 /* couldn't find anywhere to read from */
1243 if (print_msg) {
1244 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1245 mdname(mddev),
1247 (unsigned long long)r1_bio->sector);
1249 raid_end_bio_io(r1_bio);
1250 return;
1252 mirror = conf->mirrors + rdisk;
1254 if (print_msg)
1255 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1256 mdname(mddev),
1257 (unsigned long long)r1_bio->sector,
1258 bdevname(mirror->rdev->bdev, b));
1260 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1261 bitmap) {
1263 * Reading from a write-mostly device must take care not to
1264 * over-take any writes that are 'behind'
1266 raid1_log(mddev, "wait behind writes");
1267 wait_event(bitmap->behind_wait,
1268 atomic_read(&bitmap->behind_writes) == 0);
1271 if (max_sectors < bio_sectors(bio)) {
1272 struct bio *split = bio_split(bio, max_sectors,
1273 gfp, &conf->bio_split);
1274 bio_chain(split, bio);
1275 generic_make_request(bio);
1276 bio = split;
1277 r1_bio->master_bio = bio;
1278 r1_bio->sectors = max_sectors;
1281 r1_bio->read_disk = rdisk;
1283 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1285 r1_bio->bios[rdisk] = read_bio;
1287 read_bio->bi_iter.bi_sector = r1_bio->sector +
1288 mirror->rdev->data_offset;
1289 bio_set_dev(read_bio, mirror->rdev->bdev);
1290 read_bio->bi_end_io = raid1_end_read_request;
1291 bio_set_op_attrs(read_bio, op, do_sync);
1292 if (test_bit(FailFast, &mirror->rdev->flags) &&
1293 test_bit(R1BIO_FailFast, &r1_bio->state))
1294 read_bio->bi_opf |= MD_FAILFAST;
1295 read_bio->bi_private = r1_bio;
1297 if (mddev->gendisk)
1298 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1299 disk_devt(mddev->gendisk), r1_bio->sector);
1301 generic_make_request(read_bio);
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305 int max_write_sectors)
1307 struct r1conf *conf = mddev->private;
1308 struct r1bio *r1_bio;
1309 int i, disks;
1310 struct bitmap *bitmap = mddev->bitmap;
1311 unsigned long flags;
1312 struct md_rdev *blocked_rdev;
1313 struct blk_plug_cb *cb;
1314 struct raid1_plug_cb *plug = NULL;
1315 int first_clone;
1316 int max_sectors;
1318 if (mddev_is_clustered(mddev) &&
1319 md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1322 DEFINE_WAIT(w);
1323 for (;;) {
1324 prepare_to_wait(&conf->wait_barrier,
1325 &w, TASK_IDLE);
1326 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector,
1328 bio_end_sector(bio)))
1329 break;
1330 schedule();
1332 finish_wait(&conf->wait_barrier, &w);
1336 * Register the new request and wait if the reconstruction
1337 * thread has put up a bar for new requests.
1338 * Continue immediately if no resync is active currently.
1340 wait_barrier(conf, bio->bi_iter.bi_sector);
1342 r1_bio = alloc_r1bio(mddev, bio);
1343 r1_bio->sectors = max_write_sectors;
1345 if (conf->pending_count >= max_queued_requests) {
1346 md_wakeup_thread(mddev->thread);
1347 raid1_log(mddev, "wait queued");
1348 wait_event(conf->wait_barrier,
1349 conf->pending_count < max_queued_requests);
1351 /* first select target devices under rcu_lock and
1352 * inc refcount on their rdev. Record them by setting
1353 * bios[x] to bio
1354 * If there are known/acknowledged bad blocks on any device on
1355 * which we have seen a write error, we want to avoid writing those
1356 * blocks.
1357 * This potentially requires several writes to write around
1358 * the bad blocks. Each set of writes gets it's own r1bio
1359 * with a set of bios attached.
1362 disks = conf->raid_disks * 2;
1363 retry_write:
1364 blocked_rdev = NULL;
1365 rcu_read_lock();
1366 max_sectors = r1_bio->sectors;
1367 for (i = 0; i < disks; i++) {
1368 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1369 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370 atomic_inc(&rdev->nr_pending);
1371 blocked_rdev = rdev;
1372 break;
1374 r1_bio->bios[i] = NULL;
1375 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1376 if (i < conf->raid_disks)
1377 set_bit(R1BIO_Degraded, &r1_bio->state);
1378 continue;
1381 atomic_inc(&rdev->nr_pending);
1382 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1383 sector_t first_bad;
1384 int bad_sectors;
1385 int is_bad;
1387 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1388 &first_bad, &bad_sectors);
1389 if (is_bad < 0) {
1390 /* mustn't write here until the bad block is
1391 * acknowledged*/
1392 set_bit(BlockedBadBlocks, &rdev->flags);
1393 blocked_rdev = rdev;
1394 break;
1396 if (is_bad && first_bad <= r1_bio->sector) {
1397 /* Cannot write here at all */
1398 bad_sectors -= (r1_bio->sector - first_bad);
1399 if (bad_sectors < max_sectors)
1400 /* mustn't write more than bad_sectors
1401 * to other devices yet
1403 max_sectors = bad_sectors;
1404 rdev_dec_pending(rdev, mddev);
1405 /* We don't set R1BIO_Degraded as that
1406 * only applies if the disk is
1407 * missing, so it might be re-added,
1408 * and we want to know to recover this
1409 * chunk.
1410 * In this case the device is here,
1411 * and the fact that this chunk is not
1412 * in-sync is recorded in the bad
1413 * block log
1415 continue;
1417 if (is_bad) {
1418 int good_sectors = first_bad - r1_bio->sector;
1419 if (good_sectors < max_sectors)
1420 max_sectors = good_sectors;
1423 r1_bio->bios[i] = bio;
1425 rcu_read_unlock();
1427 if (unlikely(blocked_rdev)) {
1428 /* Wait for this device to become unblocked */
1429 int j;
1431 for (j = 0; j < i; j++)
1432 if (r1_bio->bios[j])
1433 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1434 r1_bio->state = 0;
1435 allow_barrier(conf, bio->bi_iter.bi_sector);
1436 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1437 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1438 wait_barrier(conf, bio->bi_iter.bi_sector);
1439 goto retry_write;
1442 if (max_sectors < bio_sectors(bio)) {
1443 struct bio *split = bio_split(bio, max_sectors,
1444 GFP_NOIO, &conf->bio_split);
1445 bio_chain(split, bio);
1446 generic_make_request(bio);
1447 bio = split;
1448 r1_bio->master_bio = bio;
1449 r1_bio->sectors = max_sectors;
1452 atomic_set(&r1_bio->remaining, 1);
1453 atomic_set(&r1_bio->behind_remaining, 0);
1455 first_clone = 1;
1457 for (i = 0; i < disks; i++) {
1458 struct bio *mbio = NULL;
1459 if (!r1_bio->bios[i])
1460 continue;
1463 if (first_clone) {
1464 /* do behind I/O ?
1465 * Not if there are too many, or cannot
1466 * allocate memory, or a reader on WriteMostly
1467 * is waiting for behind writes to flush */
1468 if (bitmap &&
1469 (atomic_read(&bitmap->behind_writes)
1470 < mddev->bitmap_info.max_write_behind) &&
1471 !waitqueue_active(&bitmap->behind_wait)) {
1472 alloc_behind_master_bio(r1_bio, bio);
1475 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1476 test_bit(R1BIO_BehindIO, &r1_bio->state));
1477 first_clone = 0;
1480 if (r1_bio->behind_master_bio)
1481 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482 GFP_NOIO, &mddev->bio_set);
1483 else
1484 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1486 if (r1_bio->behind_master_bio) {
1487 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488 atomic_inc(&r1_bio->behind_remaining);
1491 r1_bio->bios[i] = mbio;
1493 mbio->bi_iter.bi_sector = (r1_bio->sector +
1494 conf->mirrors[i].rdev->data_offset);
1495 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496 mbio->bi_end_io = raid1_end_write_request;
1497 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500 conf->raid_disks - mddev->degraded > 1)
1501 mbio->bi_opf |= MD_FAILFAST;
1502 mbio->bi_private = r1_bio;
1504 atomic_inc(&r1_bio->remaining);
1506 if (mddev->gendisk)
1507 trace_block_bio_remap(mbio->bi_disk->queue,
1508 mbio, disk_devt(mddev->gendisk),
1509 r1_bio->sector);
1510 /* flush_pending_writes() needs access to the rdev so...*/
1511 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1513 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514 if (cb)
1515 plug = container_of(cb, struct raid1_plug_cb, cb);
1516 else
1517 plug = NULL;
1518 if (plug) {
1519 bio_list_add(&plug->pending, mbio);
1520 plug->pending_cnt++;
1521 } else {
1522 spin_lock_irqsave(&conf->device_lock, flags);
1523 bio_list_add(&conf->pending_bio_list, mbio);
1524 conf->pending_count++;
1525 spin_unlock_irqrestore(&conf->device_lock, flags);
1526 md_wakeup_thread(mddev->thread);
1530 r1_bio_write_done(r1_bio);
1532 /* In case raid1d snuck in to freeze_array */
1533 wake_up(&conf->wait_barrier);
1536 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1538 sector_t sectors;
1540 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1541 && md_flush_request(mddev, bio))
1542 return true;
1545 * There is a limit to the maximum size, but
1546 * the read/write handler might find a lower limit
1547 * due to bad blocks. To avoid multiple splits,
1548 * we pass the maximum number of sectors down
1549 * and let the lower level perform the split.
1551 sectors = align_to_barrier_unit_end(
1552 bio->bi_iter.bi_sector, bio_sectors(bio));
1554 if (bio_data_dir(bio) == READ)
1555 raid1_read_request(mddev, bio, sectors, NULL);
1556 else {
1557 if (!md_write_start(mddev,bio))
1558 return false;
1559 raid1_write_request(mddev, bio, sectors);
1561 return true;
1564 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1566 struct r1conf *conf = mddev->private;
1567 int i;
1569 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1570 conf->raid_disks - mddev->degraded);
1571 rcu_read_lock();
1572 for (i = 0; i < conf->raid_disks; i++) {
1573 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1574 seq_printf(seq, "%s",
1575 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577 rcu_read_unlock();
1578 seq_printf(seq, "]");
1581 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1583 char b[BDEVNAME_SIZE];
1584 struct r1conf *conf = mddev->private;
1585 unsigned long flags;
1588 * If it is not operational, then we have already marked it as dead
1589 * else if it is the last working disks, ignore the error, let the
1590 * next level up know.
1591 * else mark the drive as failed
1593 spin_lock_irqsave(&conf->device_lock, flags);
1594 if (test_bit(In_sync, &rdev->flags)
1595 && (conf->raid_disks - mddev->degraded) == 1) {
1597 * Don't fail the drive, act as though we were just a
1598 * normal single drive.
1599 * However don't try a recovery from this drive as
1600 * it is very likely to fail.
1602 conf->recovery_disabled = mddev->recovery_disabled;
1603 spin_unlock_irqrestore(&conf->device_lock, flags);
1604 return;
1606 set_bit(Blocked, &rdev->flags);
1607 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1608 mddev->degraded++;
1609 set_bit(Faulty, &rdev->flags);
1610 } else
1611 set_bit(Faulty, &rdev->flags);
1612 spin_unlock_irqrestore(&conf->device_lock, flags);
1614 * if recovery is running, make sure it aborts.
1616 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1617 set_mask_bits(&mddev->sb_flags, 0,
1618 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1619 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1620 "md/raid1:%s: Operation continuing on %d devices.\n",
1621 mdname(mddev), bdevname(rdev->bdev, b),
1622 mdname(mddev), conf->raid_disks - mddev->degraded);
1625 static void print_conf(struct r1conf *conf)
1627 int i;
1629 pr_debug("RAID1 conf printout:\n");
1630 if (!conf) {
1631 pr_debug("(!conf)\n");
1632 return;
1634 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1635 conf->raid_disks);
1637 rcu_read_lock();
1638 for (i = 0; i < conf->raid_disks; i++) {
1639 char b[BDEVNAME_SIZE];
1640 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1641 if (rdev)
1642 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1643 i, !test_bit(In_sync, &rdev->flags),
1644 !test_bit(Faulty, &rdev->flags),
1645 bdevname(rdev->bdev,b));
1647 rcu_read_unlock();
1650 static void close_sync(struct r1conf *conf)
1652 int idx;
1654 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1655 _wait_barrier(conf, idx);
1656 _allow_barrier(conf, idx);
1659 mempool_exit(&conf->r1buf_pool);
1662 static int raid1_spare_active(struct mddev *mddev)
1664 int i;
1665 struct r1conf *conf = mddev->private;
1666 int count = 0;
1667 unsigned long flags;
1670 * Find all failed disks within the RAID1 configuration
1671 * and mark them readable.
1672 * Called under mddev lock, so rcu protection not needed.
1673 * device_lock used to avoid races with raid1_end_read_request
1674 * which expects 'In_sync' flags and ->degraded to be consistent.
1676 spin_lock_irqsave(&conf->device_lock, flags);
1677 for (i = 0; i < conf->raid_disks; i++) {
1678 struct md_rdev *rdev = conf->mirrors[i].rdev;
1679 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1680 if (repl
1681 && !test_bit(Candidate, &repl->flags)
1682 && repl->recovery_offset == MaxSector
1683 && !test_bit(Faulty, &repl->flags)
1684 && !test_and_set_bit(In_sync, &repl->flags)) {
1685 /* replacement has just become active */
1686 if (!rdev ||
1687 !test_and_clear_bit(In_sync, &rdev->flags))
1688 count++;
1689 if (rdev) {
1690 /* Replaced device not technically
1691 * faulty, but we need to be sure
1692 * it gets removed and never re-added
1694 set_bit(Faulty, &rdev->flags);
1695 sysfs_notify_dirent_safe(
1696 rdev->sysfs_state);
1699 if (rdev
1700 && rdev->recovery_offset == MaxSector
1701 && !test_bit(Faulty, &rdev->flags)
1702 && !test_and_set_bit(In_sync, &rdev->flags)) {
1703 count++;
1704 sysfs_notify_dirent_safe(rdev->sysfs_state);
1707 mddev->degraded -= count;
1708 spin_unlock_irqrestore(&conf->device_lock, flags);
1710 print_conf(conf);
1711 return count;
1714 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1716 struct r1conf *conf = mddev->private;
1717 int err = -EEXIST;
1718 int mirror = 0;
1719 struct raid1_info *p;
1720 int first = 0;
1721 int last = conf->raid_disks - 1;
1723 if (mddev->recovery_disabled == conf->recovery_disabled)
1724 return -EBUSY;
1726 if (md_integrity_add_rdev(rdev, mddev))
1727 return -ENXIO;
1729 if (rdev->raid_disk >= 0)
1730 first = last = rdev->raid_disk;
1733 * find the disk ... but prefer rdev->saved_raid_disk
1734 * if possible.
1736 if (rdev->saved_raid_disk >= 0 &&
1737 rdev->saved_raid_disk >= first &&
1738 rdev->saved_raid_disk < conf->raid_disks &&
1739 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1740 first = last = rdev->saved_raid_disk;
1742 for (mirror = first; mirror <= last; mirror++) {
1743 p = conf->mirrors+mirror;
1744 if (!p->rdev) {
1746 if (mddev->gendisk)
1747 disk_stack_limits(mddev->gendisk, rdev->bdev,
1748 rdev->data_offset << 9);
1750 p->head_position = 0;
1751 rdev->raid_disk = mirror;
1752 err = 0;
1753 /* As all devices are equivalent, we don't need a full recovery
1754 * if this was recently any drive of the array
1756 if (rdev->saved_raid_disk < 0)
1757 conf->fullsync = 1;
1758 rcu_assign_pointer(p->rdev, rdev);
1759 break;
1761 if (test_bit(WantReplacement, &p->rdev->flags) &&
1762 p[conf->raid_disks].rdev == NULL) {
1763 /* Add this device as a replacement */
1764 clear_bit(In_sync, &rdev->flags);
1765 set_bit(Replacement, &rdev->flags);
1766 rdev->raid_disk = mirror;
1767 err = 0;
1768 conf->fullsync = 1;
1769 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1770 break;
1773 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1774 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1775 print_conf(conf);
1776 return err;
1779 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 struct r1conf *conf = mddev->private;
1782 int err = 0;
1783 int number = rdev->raid_disk;
1784 struct raid1_info *p = conf->mirrors + number;
1786 if (rdev != p->rdev)
1787 p = conf->mirrors + conf->raid_disks + number;
1789 print_conf(conf);
1790 if (rdev == p->rdev) {
1791 if (test_bit(In_sync, &rdev->flags) ||
1792 atomic_read(&rdev->nr_pending)) {
1793 err = -EBUSY;
1794 goto abort;
1796 /* Only remove non-faulty devices if recovery
1797 * is not possible.
1799 if (!test_bit(Faulty, &rdev->flags) &&
1800 mddev->recovery_disabled != conf->recovery_disabled &&
1801 mddev->degraded < conf->raid_disks) {
1802 err = -EBUSY;
1803 goto abort;
1805 p->rdev = NULL;
1806 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1807 synchronize_rcu();
1808 if (atomic_read(&rdev->nr_pending)) {
1809 /* lost the race, try later */
1810 err = -EBUSY;
1811 p->rdev = rdev;
1812 goto abort;
1815 if (conf->mirrors[conf->raid_disks + number].rdev) {
1816 /* We just removed a device that is being replaced.
1817 * Move down the replacement. We drain all IO before
1818 * doing this to avoid confusion.
1820 struct md_rdev *repl =
1821 conf->mirrors[conf->raid_disks + number].rdev;
1822 freeze_array(conf, 0);
1823 if (atomic_read(&repl->nr_pending)) {
1824 /* It means that some queued IO of retry_list
1825 * hold repl. Thus, we cannot set replacement
1826 * as NULL, avoiding rdev NULL pointer
1827 * dereference in sync_request_write and
1828 * handle_write_finished.
1830 err = -EBUSY;
1831 unfreeze_array(conf);
1832 goto abort;
1834 clear_bit(Replacement, &repl->flags);
1835 p->rdev = repl;
1836 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1837 unfreeze_array(conf);
1840 clear_bit(WantReplacement, &rdev->flags);
1841 err = md_integrity_register(mddev);
1843 abort:
1845 print_conf(conf);
1846 return err;
1849 static void end_sync_read(struct bio *bio)
1851 struct r1bio *r1_bio = get_resync_r1bio(bio);
1853 update_head_pos(r1_bio->read_disk, r1_bio);
1856 * we have read a block, now it needs to be re-written,
1857 * or re-read if the read failed.
1858 * We don't do much here, just schedule handling by raid1d
1860 if (!bio->bi_status)
1861 set_bit(R1BIO_Uptodate, &r1_bio->state);
1863 if (atomic_dec_and_test(&r1_bio->remaining))
1864 reschedule_retry(r1_bio);
1867 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1869 sector_t sync_blocks = 0;
1870 sector_t s = r1_bio->sector;
1871 long sectors_to_go = r1_bio->sectors;
1873 /* make sure these bits don't get cleared. */
1874 do {
1875 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1876 s += sync_blocks;
1877 sectors_to_go -= sync_blocks;
1878 } while (sectors_to_go > 0);
1881 static void end_sync_write(struct bio *bio)
1883 int uptodate = !bio->bi_status;
1884 struct r1bio *r1_bio = get_resync_r1bio(bio);
1885 struct mddev *mddev = r1_bio->mddev;
1886 struct r1conf *conf = mddev->private;
1887 sector_t first_bad;
1888 int bad_sectors;
1889 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1891 if (!uptodate) {
1892 abort_sync_write(mddev, r1_bio);
1893 set_bit(WriteErrorSeen, &rdev->flags);
1894 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895 set_bit(MD_RECOVERY_NEEDED, &
1896 mddev->recovery);
1897 set_bit(R1BIO_WriteError, &r1_bio->state);
1898 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1899 &first_bad, &bad_sectors) &&
1900 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1901 r1_bio->sector,
1902 r1_bio->sectors,
1903 &first_bad, &bad_sectors)
1905 set_bit(R1BIO_MadeGood, &r1_bio->state);
1907 if (atomic_dec_and_test(&r1_bio->remaining)) {
1908 int s = r1_bio->sectors;
1909 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1910 test_bit(R1BIO_WriteError, &r1_bio->state))
1911 reschedule_retry(r1_bio);
1912 else {
1913 put_buf(r1_bio);
1914 md_done_sync(mddev, s, uptodate);
1919 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1920 int sectors, struct page *page, int rw)
1922 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1923 /* success */
1924 return 1;
1925 if (rw == WRITE) {
1926 set_bit(WriteErrorSeen, &rdev->flags);
1927 if (!test_and_set_bit(WantReplacement,
1928 &rdev->flags))
1929 set_bit(MD_RECOVERY_NEEDED, &
1930 rdev->mddev->recovery);
1932 /* need to record an error - either for the block or the device */
1933 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1934 md_error(rdev->mddev, rdev);
1935 return 0;
1938 static int fix_sync_read_error(struct r1bio *r1_bio)
1940 /* Try some synchronous reads of other devices to get
1941 * good data, much like with normal read errors. Only
1942 * read into the pages we already have so we don't
1943 * need to re-issue the read request.
1944 * We don't need to freeze the array, because being in an
1945 * active sync request, there is no normal IO, and
1946 * no overlapping syncs.
1947 * We don't need to check is_badblock() again as we
1948 * made sure that anything with a bad block in range
1949 * will have bi_end_io clear.
1951 struct mddev *mddev = r1_bio->mddev;
1952 struct r1conf *conf = mddev->private;
1953 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1954 struct page **pages = get_resync_pages(bio)->pages;
1955 sector_t sect = r1_bio->sector;
1956 int sectors = r1_bio->sectors;
1957 int idx = 0;
1958 struct md_rdev *rdev;
1960 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1961 if (test_bit(FailFast, &rdev->flags)) {
1962 /* Don't try recovering from here - just fail it
1963 * ... unless it is the last working device of course */
1964 md_error(mddev, rdev);
1965 if (test_bit(Faulty, &rdev->flags))
1966 /* Don't try to read from here, but make sure
1967 * put_buf does it's thing
1969 bio->bi_end_io = end_sync_write;
1972 while(sectors) {
1973 int s = sectors;
1974 int d = r1_bio->read_disk;
1975 int success = 0;
1976 int start;
1978 if (s > (PAGE_SIZE>>9))
1979 s = PAGE_SIZE >> 9;
1980 do {
1981 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1982 /* No rcu protection needed here devices
1983 * can only be removed when no resync is
1984 * active, and resync is currently active
1986 rdev = conf->mirrors[d].rdev;
1987 if (sync_page_io(rdev, sect, s<<9,
1988 pages[idx],
1989 REQ_OP_READ, 0, false)) {
1990 success = 1;
1991 break;
1994 d++;
1995 if (d == conf->raid_disks * 2)
1996 d = 0;
1997 } while (!success && d != r1_bio->read_disk);
1999 if (!success) {
2000 char b[BDEVNAME_SIZE];
2001 int abort = 0;
2002 /* Cannot read from anywhere, this block is lost.
2003 * Record a bad block on each device. If that doesn't
2004 * work just disable and interrupt the recovery.
2005 * Don't fail devices as that won't really help.
2007 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008 mdname(mddev), bio_devname(bio, b),
2009 (unsigned long long)r1_bio->sector);
2010 for (d = 0; d < conf->raid_disks * 2; d++) {
2011 rdev = conf->mirrors[d].rdev;
2012 if (!rdev || test_bit(Faulty, &rdev->flags))
2013 continue;
2014 if (!rdev_set_badblocks(rdev, sect, s, 0))
2015 abort = 1;
2017 if (abort) {
2018 conf->recovery_disabled =
2019 mddev->recovery_disabled;
2020 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2021 md_done_sync(mddev, r1_bio->sectors, 0);
2022 put_buf(r1_bio);
2023 return 0;
2025 /* Try next page */
2026 sectors -= s;
2027 sect += s;
2028 idx++;
2029 continue;
2032 start = d;
2033 /* write it back and re-read */
2034 while (d != r1_bio->read_disk) {
2035 if (d == 0)
2036 d = conf->raid_disks * 2;
2037 d--;
2038 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039 continue;
2040 rdev = conf->mirrors[d].rdev;
2041 if (r1_sync_page_io(rdev, sect, s,
2042 pages[idx],
2043 WRITE) == 0) {
2044 r1_bio->bios[d]->bi_end_io = NULL;
2045 rdev_dec_pending(rdev, mddev);
2048 d = start;
2049 while (d != r1_bio->read_disk) {
2050 if (d == 0)
2051 d = conf->raid_disks * 2;
2052 d--;
2053 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2054 continue;
2055 rdev = conf->mirrors[d].rdev;
2056 if (r1_sync_page_io(rdev, sect, s,
2057 pages[idx],
2058 READ) != 0)
2059 atomic_add(s, &rdev->corrected_errors);
2061 sectors -= s;
2062 sect += s;
2063 idx ++;
2065 set_bit(R1BIO_Uptodate, &r1_bio->state);
2066 bio->bi_status = 0;
2067 return 1;
2070 static void process_checks(struct r1bio *r1_bio)
2072 /* We have read all readable devices. If we haven't
2073 * got the block, then there is no hope left.
2074 * If we have, then we want to do a comparison
2075 * and skip the write if everything is the same.
2076 * If any blocks failed to read, then we need to
2077 * attempt an over-write
2079 struct mddev *mddev = r1_bio->mddev;
2080 struct r1conf *conf = mddev->private;
2081 int primary;
2082 int i;
2083 int vcnt;
2085 /* Fix variable parts of all bios */
2086 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2087 for (i = 0; i < conf->raid_disks * 2; i++) {
2088 blk_status_t status;
2089 struct bio *b = r1_bio->bios[i];
2090 struct resync_pages *rp = get_resync_pages(b);
2091 if (b->bi_end_io != end_sync_read)
2092 continue;
2093 /* fixup the bio for reuse, but preserve errno */
2094 status = b->bi_status;
2095 bio_reset(b);
2096 b->bi_status = status;
2097 b->bi_iter.bi_sector = r1_bio->sector +
2098 conf->mirrors[i].rdev->data_offset;
2099 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2100 b->bi_end_io = end_sync_read;
2101 rp->raid_bio = r1_bio;
2102 b->bi_private = rp;
2104 /* initialize bvec table again */
2105 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2107 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2108 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2109 !r1_bio->bios[primary]->bi_status) {
2110 r1_bio->bios[primary]->bi_end_io = NULL;
2111 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2112 break;
2114 r1_bio->read_disk = primary;
2115 for (i = 0; i < conf->raid_disks * 2; i++) {
2116 int j;
2117 struct bio *pbio = r1_bio->bios[primary];
2118 struct bio *sbio = r1_bio->bios[i];
2119 blk_status_t status = sbio->bi_status;
2120 struct page **ppages = get_resync_pages(pbio)->pages;
2121 struct page **spages = get_resync_pages(sbio)->pages;
2122 struct bio_vec *bi;
2123 int page_len[RESYNC_PAGES] = { 0 };
2125 if (sbio->bi_end_io != end_sync_read)
2126 continue;
2127 /* Now we can 'fixup' the error value */
2128 sbio->bi_status = 0;
2130 bio_for_each_segment_all(bi, sbio, j)
2131 page_len[j] = bi->bv_len;
2133 if (!status) {
2134 for (j = vcnt; j-- ; ) {
2135 if (memcmp(page_address(ppages[j]),
2136 page_address(spages[j]),
2137 page_len[j]))
2138 break;
2140 } else
2141 j = 0;
2142 if (j >= 0)
2143 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2144 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2145 && !status)) {
2146 /* No need to write to this device. */
2147 sbio->bi_end_io = NULL;
2148 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2149 continue;
2152 bio_copy_data(sbio, pbio);
2156 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2158 struct r1conf *conf = mddev->private;
2159 int i;
2160 int disks = conf->raid_disks * 2;
2161 struct bio *wbio;
2163 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2164 /* ouch - failed to read all of that. */
2165 if (!fix_sync_read_error(r1_bio))
2166 return;
2168 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2169 process_checks(r1_bio);
2172 * schedule writes
2174 atomic_set(&r1_bio->remaining, 1);
2175 for (i = 0; i < disks ; i++) {
2176 wbio = r1_bio->bios[i];
2177 if (wbio->bi_end_io == NULL ||
2178 (wbio->bi_end_io == end_sync_read &&
2179 (i == r1_bio->read_disk ||
2180 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2181 continue;
2182 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2183 abort_sync_write(mddev, r1_bio);
2184 continue;
2187 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2188 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2189 wbio->bi_opf |= MD_FAILFAST;
2191 wbio->bi_end_io = end_sync_write;
2192 atomic_inc(&r1_bio->remaining);
2193 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2195 generic_make_request(wbio);
2198 if (atomic_dec_and_test(&r1_bio->remaining)) {
2199 /* if we're here, all write(s) have completed, so clean up */
2200 int s = r1_bio->sectors;
2201 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2202 test_bit(R1BIO_WriteError, &r1_bio->state))
2203 reschedule_retry(r1_bio);
2204 else {
2205 put_buf(r1_bio);
2206 md_done_sync(mddev, s, 1);
2212 * This is a kernel thread which:
2214 * 1. Retries failed read operations on working mirrors.
2215 * 2. Updates the raid superblock when problems encounter.
2216 * 3. Performs writes following reads for array synchronising.
2219 static void fix_read_error(struct r1conf *conf, int read_disk,
2220 sector_t sect, int sectors)
2222 struct mddev *mddev = conf->mddev;
2223 while(sectors) {
2224 int s = sectors;
2225 int d = read_disk;
2226 int success = 0;
2227 int start;
2228 struct md_rdev *rdev;
2230 if (s > (PAGE_SIZE>>9))
2231 s = PAGE_SIZE >> 9;
2233 do {
2234 sector_t first_bad;
2235 int bad_sectors;
2237 rcu_read_lock();
2238 rdev = rcu_dereference(conf->mirrors[d].rdev);
2239 if (rdev &&
2240 (test_bit(In_sync, &rdev->flags) ||
2241 (!test_bit(Faulty, &rdev->flags) &&
2242 rdev->recovery_offset >= sect + s)) &&
2243 is_badblock(rdev, sect, s,
2244 &first_bad, &bad_sectors) == 0) {
2245 atomic_inc(&rdev->nr_pending);
2246 rcu_read_unlock();
2247 if (sync_page_io(rdev, sect, s<<9,
2248 conf->tmppage, REQ_OP_READ, 0, false))
2249 success = 1;
2250 rdev_dec_pending(rdev, mddev);
2251 if (success)
2252 break;
2253 } else
2254 rcu_read_unlock();
2255 d++;
2256 if (d == conf->raid_disks * 2)
2257 d = 0;
2258 } while (!success && d != read_disk);
2260 if (!success) {
2261 /* Cannot read from anywhere - mark it bad */
2262 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2263 if (!rdev_set_badblocks(rdev, sect, s, 0))
2264 md_error(mddev, rdev);
2265 break;
2267 /* write it back and re-read */
2268 start = d;
2269 while (d != read_disk) {
2270 if (d==0)
2271 d = conf->raid_disks * 2;
2272 d--;
2273 rcu_read_lock();
2274 rdev = rcu_dereference(conf->mirrors[d].rdev);
2275 if (rdev &&
2276 !test_bit(Faulty, &rdev->flags)) {
2277 atomic_inc(&rdev->nr_pending);
2278 rcu_read_unlock();
2279 r1_sync_page_io(rdev, sect, s,
2280 conf->tmppage, WRITE);
2281 rdev_dec_pending(rdev, mddev);
2282 } else
2283 rcu_read_unlock();
2285 d = start;
2286 while (d != read_disk) {
2287 char b[BDEVNAME_SIZE];
2288 if (d==0)
2289 d = conf->raid_disks * 2;
2290 d--;
2291 rcu_read_lock();
2292 rdev = rcu_dereference(conf->mirrors[d].rdev);
2293 if (rdev &&
2294 !test_bit(Faulty, &rdev->flags)) {
2295 atomic_inc(&rdev->nr_pending);
2296 rcu_read_unlock();
2297 if (r1_sync_page_io(rdev, sect, s,
2298 conf->tmppage, READ)) {
2299 atomic_add(s, &rdev->corrected_errors);
2300 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2301 mdname(mddev), s,
2302 (unsigned long long)(sect +
2303 rdev->data_offset),
2304 bdevname(rdev->bdev, b));
2306 rdev_dec_pending(rdev, mddev);
2307 } else
2308 rcu_read_unlock();
2310 sectors -= s;
2311 sect += s;
2315 static int narrow_write_error(struct r1bio *r1_bio, int i)
2317 struct mddev *mddev = r1_bio->mddev;
2318 struct r1conf *conf = mddev->private;
2319 struct md_rdev *rdev = conf->mirrors[i].rdev;
2321 /* bio has the data to be written to device 'i' where
2322 * we just recently had a write error.
2323 * We repeatedly clone the bio and trim down to one block,
2324 * then try the write. Where the write fails we record
2325 * a bad block.
2326 * It is conceivable that the bio doesn't exactly align with
2327 * blocks. We must handle this somehow.
2329 * We currently own a reference on the rdev.
2332 int block_sectors;
2333 sector_t sector;
2334 int sectors;
2335 int sect_to_write = r1_bio->sectors;
2336 int ok = 1;
2338 if (rdev->badblocks.shift < 0)
2339 return 0;
2341 block_sectors = roundup(1 << rdev->badblocks.shift,
2342 bdev_logical_block_size(rdev->bdev) >> 9);
2343 sector = r1_bio->sector;
2344 sectors = ((sector + block_sectors)
2345 & ~(sector_t)(block_sectors - 1))
2346 - sector;
2348 while (sect_to_write) {
2349 struct bio *wbio;
2350 if (sectors > sect_to_write)
2351 sectors = sect_to_write;
2352 /* Write at 'sector' for 'sectors'*/
2354 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2355 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2356 GFP_NOIO,
2357 &mddev->bio_set);
2358 } else {
2359 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2360 &mddev->bio_set);
2363 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2364 wbio->bi_iter.bi_sector = r1_bio->sector;
2365 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2367 bio_trim(wbio, sector - r1_bio->sector, sectors);
2368 wbio->bi_iter.bi_sector += rdev->data_offset;
2369 bio_set_dev(wbio, rdev->bdev);
2371 if (submit_bio_wait(wbio) < 0)
2372 /* failure! */
2373 ok = rdev_set_badblocks(rdev, sector,
2374 sectors, 0)
2375 && ok;
2377 bio_put(wbio);
2378 sect_to_write -= sectors;
2379 sector += sectors;
2380 sectors = block_sectors;
2382 return ok;
2385 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2387 int m;
2388 int s = r1_bio->sectors;
2389 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2390 struct md_rdev *rdev = conf->mirrors[m].rdev;
2391 struct bio *bio = r1_bio->bios[m];
2392 if (bio->bi_end_io == NULL)
2393 continue;
2394 if (!bio->bi_status &&
2395 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2396 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2398 if (bio->bi_status &&
2399 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2400 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2401 md_error(conf->mddev, rdev);
2404 put_buf(r1_bio);
2405 md_done_sync(conf->mddev, s, 1);
2408 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410 int m, idx;
2411 bool fail = false;
2413 for (m = 0; m < conf->raid_disks * 2 ; m++)
2414 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2415 struct md_rdev *rdev = conf->mirrors[m].rdev;
2416 rdev_clear_badblocks(rdev,
2417 r1_bio->sector,
2418 r1_bio->sectors, 0);
2419 rdev_dec_pending(rdev, conf->mddev);
2420 } else if (r1_bio->bios[m] != NULL) {
2421 /* This drive got a write error. We need to
2422 * narrow down and record precise write
2423 * errors.
2425 fail = true;
2426 if (!narrow_write_error(r1_bio, m)) {
2427 md_error(conf->mddev,
2428 conf->mirrors[m].rdev);
2429 /* an I/O failed, we can't clear the bitmap */
2430 set_bit(R1BIO_Degraded, &r1_bio->state);
2432 rdev_dec_pending(conf->mirrors[m].rdev,
2433 conf->mddev);
2435 if (fail) {
2436 spin_lock_irq(&conf->device_lock);
2437 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2438 idx = sector_to_idx(r1_bio->sector);
2439 atomic_inc(&conf->nr_queued[idx]);
2440 spin_unlock_irq(&conf->device_lock);
2442 * In case freeze_array() is waiting for condition
2443 * get_unqueued_pending() == extra to be true.
2445 wake_up(&conf->wait_barrier);
2446 md_wakeup_thread(conf->mddev->thread);
2447 } else {
2448 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2449 close_write(r1_bio);
2450 raid_end_bio_io(r1_bio);
2454 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2456 struct mddev *mddev = conf->mddev;
2457 struct bio *bio;
2458 struct md_rdev *rdev;
2460 clear_bit(R1BIO_ReadError, &r1_bio->state);
2461 /* we got a read error. Maybe the drive is bad. Maybe just
2462 * the block and we can fix it.
2463 * We freeze all other IO, and try reading the block from
2464 * other devices. When we find one, we re-write
2465 * and check it that fixes the read error.
2466 * This is all done synchronously while the array is
2467 * frozen
2470 bio = r1_bio->bios[r1_bio->read_disk];
2471 bio_put(bio);
2472 r1_bio->bios[r1_bio->read_disk] = NULL;
2474 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2475 if (mddev->ro == 0
2476 && !test_bit(FailFast, &rdev->flags)) {
2477 freeze_array(conf, 1);
2478 fix_read_error(conf, r1_bio->read_disk,
2479 r1_bio->sector, r1_bio->sectors);
2480 unfreeze_array(conf);
2481 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2482 md_error(mddev, rdev);
2483 } else {
2484 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2487 rdev_dec_pending(rdev, conf->mddev);
2488 allow_barrier(conf, r1_bio->sector);
2489 bio = r1_bio->master_bio;
2491 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2492 r1_bio->state = 0;
2493 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2496 static void raid1d(struct md_thread *thread)
2498 struct mddev *mddev = thread->mddev;
2499 struct r1bio *r1_bio;
2500 unsigned long flags;
2501 struct r1conf *conf = mddev->private;
2502 struct list_head *head = &conf->retry_list;
2503 struct blk_plug plug;
2504 int idx;
2506 md_check_recovery(mddev);
2508 if (!list_empty_careful(&conf->bio_end_io_list) &&
2509 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2510 LIST_HEAD(tmp);
2511 spin_lock_irqsave(&conf->device_lock, flags);
2512 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2513 list_splice_init(&conf->bio_end_io_list, &tmp);
2514 spin_unlock_irqrestore(&conf->device_lock, flags);
2515 while (!list_empty(&tmp)) {
2516 r1_bio = list_first_entry(&tmp, struct r1bio,
2517 retry_list);
2518 list_del(&r1_bio->retry_list);
2519 idx = sector_to_idx(r1_bio->sector);
2520 atomic_dec(&conf->nr_queued[idx]);
2521 if (mddev->degraded)
2522 set_bit(R1BIO_Degraded, &r1_bio->state);
2523 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2524 close_write(r1_bio);
2525 raid_end_bio_io(r1_bio);
2529 blk_start_plug(&plug);
2530 for (;;) {
2532 flush_pending_writes(conf);
2534 spin_lock_irqsave(&conf->device_lock, flags);
2535 if (list_empty(head)) {
2536 spin_unlock_irqrestore(&conf->device_lock, flags);
2537 break;
2539 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2540 list_del(head->prev);
2541 idx = sector_to_idx(r1_bio->sector);
2542 atomic_dec(&conf->nr_queued[idx]);
2543 spin_unlock_irqrestore(&conf->device_lock, flags);
2545 mddev = r1_bio->mddev;
2546 conf = mddev->private;
2547 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2548 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2549 test_bit(R1BIO_WriteError, &r1_bio->state))
2550 handle_sync_write_finished(conf, r1_bio);
2551 else
2552 sync_request_write(mddev, r1_bio);
2553 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2554 test_bit(R1BIO_WriteError, &r1_bio->state))
2555 handle_write_finished(conf, r1_bio);
2556 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2557 handle_read_error(conf, r1_bio);
2558 else
2559 WARN_ON_ONCE(1);
2561 cond_resched();
2562 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2563 md_check_recovery(mddev);
2565 blk_finish_plug(&plug);
2568 static int init_resync(struct r1conf *conf)
2570 int buffs;
2572 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2573 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2575 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2576 r1buf_pool_free, conf->poolinfo);
2579 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2581 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2582 struct resync_pages *rps;
2583 struct bio *bio;
2584 int i;
2586 for (i = conf->poolinfo->raid_disks; i--; ) {
2587 bio = r1bio->bios[i];
2588 rps = bio->bi_private;
2589 bio_reset(bio);
2590 bio->bi_private = rps;
2592 r1bio->master_bio = NULL;
2593 return r1bio;
2597 * perform a "sync" on one "block"
2599 * We need to make sure that no normal I/O request - particularly write
2600 * requests - conflict with active sync requests.
2602 * This is achieved by tracking pending requests and a 'barrier' concept
2603 * that can be installed to exclude normal IO requests.
2606 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2607 int *skipped)
2609 struct r1conf *conf = mddev->private;
2610 struct r1bio *r1_bio;
2611 struct bio *bio;
2612 sector_t max_sector, nr_sectors;
2613 int disk = -1;
2614 int i;
2615 int wonly = -1;
2616 int write_targets = 0, read_targets = 0;
2617 sector_t sync_blocks;
2618 int still_degraded = 0;
2619 int good_sectors = RESYNC_SECTORS;
2620 int min_bad = 0; /* number of sectors that are bad in all devices */
2621 int idx = sector_to_idx(sector_nr);
2622 int page_idx = 0;
2624 if (!mempool_initialized(&conf->r1buf_pool))
2625 if (init_resync(conf))
2626 return 0;
2628 max_sector = mddev->dev_sectors;
2629 if (sector_nr >= max_sector) {
2630 /* If we aborted, we need to abort the
2631 * sync on the 'current' bitmap chunk (there will
2632 * only be one in raid1 resync.
2633 * We can find the current addess in mddev->curr_resync
2635 if (mddev->curr_resync < max_sector) /* aborted */
2636 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2637 &sync_blocks, 1);
2638 else /* completed sync */
2639 conf->fullsync = 0;
2641 md_bitmap_close_sync(mddev->bitmap);
2642 close_sync(conf);
2644 if (mddev_is_clustered(mddev)) {
2645 conf->cluster_sync_low = 0;
2646 conf->cluster_sync_high = 0;
2648 return 0;
2651 if (mddev->bitmap == NULL &&
2652 mddev->recovery_cp == MaxSector &&
2653 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2654 conf->fullsync == 0) {
2655 *skipped = 1;
2656 return max_sector - sector_nr;
2658 /* before building a request, check if we can skip these blocks..
2659 * This call the bitmap_start_sync doesn't actually record anything
2661 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2662 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2663 /* We can skip this block, and probably several more */
2664 *skipped = 1;
2665 return sync_blocks;
2669 * If there is non-resync activity waiting for a turn, then let it
2670 * though before starting on this new sync request.
2672 if (atomic_read(&conf->nr_waiting[idx]))
2673 schedule_timeout_uninterruptible(1);
2675 /* we are incrementing sector_nr below. To be safe, we check against
2676 * sector_nr + two times RESYNC_SECTORS
2679 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2680 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2683 if (raise_barrier(conf, sector_nr))
2684 return 0;
2686 r1_bio = raid1_alloc_init_r1buf(conf);
2688 rcu_read_lock();
2690 * If we get a correctably read error during resync or recovery,
2691 * we might want to read from a different device. So we
2692 * flag all drives that could conceivably be read from for READ,
2693 * and any others (which will be non-In_sync devices) for WRITE.
2694 * If a read fails, we try reading from something else for which READ
2695 * is OK.
2698 r1_bio->mddev = mddev;
2699 r1_bio->sector = sector_nr;
2700 r1_bio->state = 0;
2701 set_bit(R1BIO_IsSync, &r1_bio->state);
2702 /* make sure good_sectors won't go across barrier unit boundary */
2703 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2705 for (i = 0; i < conf->raid_disks * 2; i++) {
2706 struct md_rdev *rdev;
2707 bio = r1_bio->bios[i];
2709 rdev = rcu_dereference(conf->mirrors[i].rdev);
2710 if (rdev == NULL ||
2711 test_bit(Faulty, &rdev->flags)) {
2712 if (i < conf->raid_disks)
2713 still_degraded = 1;
2714 } else if (!test_bit(In_sync, &rdev->flags)) {
2715 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2716 bio->bi_end_io = end_sync_write;
2717 write_targets ++;
2718 } else {
2719 /* may need to read from here */
2720 sector_t first_bad = MaxSector;
2721 int bad_sectors;
2723 if (is_badblock(rdev, sector_nr, good_sectors,
2724 &first_bad, &bad_sectors)) {
2725 if (first_bad > sector_nr)
2726 good_sectors = first_bad - sector_nr;
2727 else {
2728 bad_sectors -= (sector_nr - first_bad);
2729 if (min_bad == 0 ||
2730 min_bad > bad_sectors)
2731 min_bad = bad_sectors;
2734 if (sector_nr < first_bad) {
2735 if (test_bit(WriteMostly, &rdev->flags)) {
2736 if (wonly < 0)
2737 wonly = i;
2738 } else {
2739 if (disk < 0)
2740 disk = i;
2742 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2743 bio->bi_end_io = end_sync_read;
2744 read_targets++;
2745 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2746 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2747 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2749 * The device is suitable for reading (InSync),
2750 * but has bad block(s) here. Let's try to correct them,
2751 * if we are doing resync or repair. Otherwise, leave
2752 * this device alone for this sync request.
2754 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2755 bio->bi_end_io = end_sync_write;
2756 write_targets++;
2759 if (rdev && bio->bi_end_io) {
2760 atomic_inc(&rdev->nr_pending);
2761 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2762 bio_set_dev(bio, rdev->bdev);
2763 if (test_bit(FailFast, &rdev->flags))
2764 bio->bi_opf |= MD_FAILFAST;
2767 rcu_read_unlock();
2768 if (disk < 0)
2769 disk = wonly;
2770 r1_bio->read_disk = disk;
2772 if (read_targets == 0 && min_bad > 0) {
2773 /* These sectors are bad on all InSync devices, so we
2774 * need to mark them bad on all write targets
2776 int ok = 1;
2777 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2778 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2779 struct md_rdev *rdev = conf->mirrors[i].rdev;
2780 ok = rdev_set_badblocks(rdev, sector_nr,
2781 min_bad, 0
2782 ) && ok;
2784 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2785 *skipped = 1;
2786 put_buf(r1_bio);
2788 if (!ok) {
2789 /* Cannot record the badblocks, so need to
2790 * abort the resync.
2791 * If there are multiple read targets, could just
2792 * fail the really bad ones ???
2794 conf->recovery_disabled = mddev->recovery_disabled;
2795 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2796 return 0;
2797 } else
2798 return min_bad;
2801 if (min_bad > 0 && min_bad < good_sectors) {
2802 /* only resync enough to reach the next bad->good
2803 * transition */
2804 good_sectors = min_bad;
2807 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2808 /* extra read targets are also write targets */
2809 write_targets += read_targets-1;
2811 if (write_targets == 0 || read_targets == 0) {
2812 /* There is nowhere to write, so all non-sync
2813 * drives must be failed - so we are finished
2815 sector_t rv;
2816 if (min_bad > 0)
2817 max_sector = sector_nr + min_bad;
2818 rv = max_sector - sector_nr;
2819 *skipped = 1;
2820 put_buf(r1_bio);
2821 return rv;
2824 if (max_sector > mddev->resync_max)
2825 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2826 if (max_sector > sector_nr + good_sectors)
2827 max_sector = sector_nr + good_sectors;
2828 nr_sectors = 0;
2829 sync_blocks = 0;
2830 do {
2831 struct page *page;
2832 int len = PAGE_SIZE;
2833 if (sector_nr + (len>>9) > max_sector)
2834 len = (max_sector - sector_nr) << 9;
2835 if (len == 0)
2836 break;
2837 if (sync_blocks == 0) {
2838 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2839 &sync_blocks, still_degraded) &&
2840 !conf->fullsync &&
2841 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2842 break;
2843 if ((len >> 9) > sync_blocks)
2844 len = sync_blocks<<9;
2847 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2848 struct resync_pages *rp;
2850 bio = r1_bio->bios[i];
2851 rp = get_resync_pages(bio);
2852 if (bio->bi_end_io) {
2853 page = resync_fetch_page(rp, page_idx);
2856 * won't fail because the vec table is big
2857 * enough to hold all these pages
2859 bio_add_page(bio, page, len, 0);
2862 nr_sectors += len>>9;
2863 sector_nr += len>>9;
2864 sync_blocks -= (len>>9);
2865 } while (++page_idx < RESYNC_PAGES);
2867 r1_bio->sectors = nr_sectors;
2869 if (mddev_is_clustered(mddev) &&
2870 conf->cluster_sync_high < sector_nr + nr_sectors) {
2871 conf->cluster_sync_low = mddev->curr_resync_completed;
2872 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2873 /* Send resync message */
2874 md_cluster_ops->resync_info_update(mddev,
2875 conf->cluster_sync_low,
2876 conf->cluster_sync_high);
2879 /* For a user-requested sync, we read all readable devices and do a
2880 * compare
2882 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2883 atomic_set(&r1_bio->remaining, read_targets);
2884 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2885 bio = r1_bio->bios[i];
2886 if (bio->bi_end_io == end_sync_read) {
2887 read_targets--;
2888 md_sync_acct_bio(bio, nr_sectors);
2889 if (read_targets == 1)
2890 bio->bi_opf &= ~MD_FAILFAST;
2891 generic_make_request(bio);
2894 } else {
2895 atomic_set(&r1_bio->remaining, 1);
2896 bio = r1_bio->bios[r1_bio->read_disk];
2897 md_sync_acct_bio(bio, nr_sectors);
2898 if (read_targets == 1)
2899 bio->bi_opf &= ~MD_FAILFAST;
2900 generic_make_request(bio);
2903 return nr_sectors;
2906 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2908 if (sectors)
2909 return sectors;
2911 return mddev->dev_sectors;
2914 static struct r1conf *setup_conf(struct mddev *mddev)
2916 struct r1conf *conf;
2917 int i;
2918 struct raid1_info *disk;
2919 struct md_rdev *rdev;
2920 int err = -ENOMEM;
2922 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2923 if (!conf)
2924 goto abort;
2926 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2927 sizeof(atomic_t), GFP_KERNEL);
2928 if (!conf->nr_pending)
2929 goto abort;
2931 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2932 sizeof(atomic_t), GFP_KERNEL);
2933 if (!conf->nr_waiting)
2934 goto abort;
2936 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2937 sizeof(atomic_t), GFP_KERNEL);
2938 if (!conf->nr_queued)
2939 goto abort;
2941 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2942 sizeof(atomic_t), GFP_KERNEL);
2943 if (!conf->barrier)
2944 goto abort;
2946 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2947 mddev->raid_disks, 2),
2948 GFP_KERNEL);
2949 if (!conf->mirrors)
2950 goto abort;
2952 conf->tmppage = alloc_page(GFP_KERNEL);
2953 if (!conf->tmppage)
2954 goto abort;
2956 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2957 if (!conf->poolinfo)
2958 goto abort;
2959 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2960 err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2961 r1bio_pool_free, conf->poolinfo);
2962 if (err)
2963 goto abort;
2965 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2966 if (err)
2967 goto abort;
2969 conf->poolinfo->mddev = mddev;
2971 err = -EINVAL;
2972 spin_lock_init(&conf->device_lock);
2973 rdev_for_each(rdev, mddev) {
2974 int disk_idx = rdev->raid_disk;
2975 if (disk_idx >= mddev->raid_disks
2976 || disk_idx < 0)
2977 continue;
2978 if (test_bit(Replacement, &rdev->flags))
2979 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2980 else
2981 disk = conf->mirrors + disk_idx;
2983 if (disk->rdev)
2984 goto abort;
2985 disk->rdev = rdev;
2986 disk->head_position = 0;
2987 disk->seq_start = MaxSector;
2989 conf->raid_disks = mddev->raid_disks;
2990 conf->mddev = mddev;
2991 INIT_LIST_HEAD(&conf->retry_list);
2992 INIT_LIST_HEAD(&conf->bio_end_io_list);
2994 spin_lock_init(&conf->resync_lock);
2995 init_waitqueue_head(&conf->wait_barrier);
2997 bio_list_init(&conf->pending_bio_list);
2998 conf->pending_count = 0;
2999 conf->recovery_disabled = mddev->recovery_disabled - 1;
3001 err = -EIO;
3002 for (i = 0; i < conf->raid_disks * 2; i++) {
3004 disk = conf->mirrors + i;
3006 if (i < conf->raid_disks &&
3007 disk[conf->raid_disks].rdev) {
3008 /* This slot has a replacement. */
3009 if (!disk->rdev) {
3010 /* No original, just make the replacement
3011 * a recovering spare
3013 disk->rdev =
3014 disk[conf->raid_disks].rdev;
3015 disk[conf->raid_disks].rdev = NULL;
3016 } else if (!test_bit(In_sync, &disk->rdev->flags))
3017 /* Original is not in_sync - bad */
3018 goto abort;
3021 if (!disk->rdev ||
3022 !test_bit(In_sync, &disk->rdev->flags)) {
3023 disk->head_position = 0;
3024 if (disk->rdev &&
3025 (disk->rdev->saved_raid_disk < 0))
3026 conf->fullsync = 1;
3030 err = -ENOMEM;
3031 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3032 if (!conf->thread)
3033 goto abort;
3035 return conf;
3037 abort:
3038 if (conf) {
3039 mempool_exit(&conf->r1bio_pool);
3040 kfree(conf->mirrors);
3041 safe_put_page(conf->tmppage);
3042 kfree(conf->poolinfo);
3043 kfree(conf->nr_pending);
3044 kfree(conf->nr_waiting);
3045 kfree(conf->nr_queued);
3046 kfree(conf->barrier);
3047 bioset_exit(&conf->bio_split);
3048 kfree(conf);
3050 return ERR_PTR(err);
3053 static void raid1_free(struct mddev *mddev, void *priv);
3054 static int raid1_run(struct mddev *mddev)
3056 struct r1conf *conf;
3057 int i;
3058 struct md_rdev *rdev;
3059 int ret;
3060 bool discard_supported = false;
3062 if (mddev->level != 1) {
3063 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3064 mdname(mddev), mddev->level);
3065 return -EIO;
3067 if (mddev->reshape_position != MaxSector) {
3068 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3069 mdname(mddev));
3070 return -EIO;
3072 if (mddev_init_writes_pending(mddev) < 0)
3073 return -ENOMEM;
3075 * copy the already verified devices into our private RAID1
3076 * bookkeeping area. [whatever we allocate in run(),
3077 * should be freed in raid1_free()]
3079 if (mddev->private == NULL)
3080 conf = setup_conf(mddev);
3081 else
3082 conf = mddev->private;
3084 if (IS_ERR(conf))
3085 return PTR_ERR(conf);
3087 if (mddev->queue) {
3088 blk_queue_max_write_same_sectors(mddev->queue, 0);
3089 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3092 rdev_for_each(rdev, mddev) {
3093 if (!mddev->gendisk)
3094 continue;
3095 disk_stack_limits(mddev->gendisk, rdev->bdev,
3096 rdev->data_offset << 9);
3097 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3098 discard_supported = true;
3101 mddev->degraded = 0;
3102 for (i=0; i < conf->raid_disks; i++)
3103 if (conf->mirrors[i].rdev == NULL ||
3104 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3105 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3106 mddev->degraded++;
3108 * RAID1 needs at least one disk in active
3110 if (conf->raid_disks - mddev->degraded < 1) {
3111 ret = -EINVAL;
3112 goto abort;
3115 if (conf->raid_disks - mddev->degraded == 1)
3116 mddev->recovery_cp = MaxSector;
3118 if (mddev->recovery_cp != MaxSector)
3119 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3120 mdname(mddev));
3121 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3122 mdname(mddev), mddev->raid_disks - mddev->degraded,
3123 mddev->raid_disks);
3126 * Ok, everything is just fine now
3128 mddev->thread = conf->thread;
3129 conf->thread = NULL;
3130 mddev->private = conf;
3131 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3133 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3135 if (mddev->queue) {
3136 if (discard_supported)
3137 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3138 mddev->queue);
3139 else
3140 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3141 mddev->queue);
3144 ret = md_integrity_register(mddev);
3145 if (ret) {
3146 md_unregister_thread(&mddev->thread);
3147 goto abort;
3149 return 0;
3151 abort:
3152 raid1_free(mddev, conf);
3153 return ret;
3156 static void raid1_free(struct mddev *mddev, void *priv)
3158 struct r1conf *conf = priv;
3160 mempool_exit(&conf->r1bio_pool);
3161 kfree(conf->mirrors);
3162 safe_put_page(conf->tmppage);
3163 kfree(conf->poolinfo);
3164 kfree(conf->nr_pending);
3165 kfree(conf->nr_waiting);
3166 kfree(conf->nr_queued);
3167 kfree(conf->barrier);
3168 bioset_exit(&conf->bio_split);
3169 kfree(conf);
3172 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3174 /* no resync is happening, and there is enough space
3175 * on all devices, so we can resize.
3176 * We need to make sure resync covers any new space.
3177 * If the array is shrinking we should possibly wait until
3178 * any io in the removed space completes, but it hardly seems
3179 * worth it.
3181 sector_t newsize = raid1_size(mddev, sectors, 0);
3182 if (mddev->external_size &&
3183 mddev->array_sectors > newsize)
3184 return -EINVAL;
3185 if (mddev->bitmap) {
3186 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3187 if (ret)
3188 return ret;
3190 md_set_array_sectors(mddev, newsize);
3191 if (sectors > mddev->dev_sectors &&
3192 mddev->recovery_cp > mddev->dev_sectors) {
3193 mddev->recovery_cp = mddev->dev_sectors;
3194 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3196 mddev->dev_sectors = sectors;
3197 mddev->resync_max_sectors = sectors;
3198 return 0;
3201 static int raid1_reshape(struct mddev *mddev)
3203 /* We need to:
3204 * 1/ resize the r1bio_pool
3205 * 2/ resize conf->mirrors
3207 * We allocate a new r1bio_pool if we can.
3208 * Then raise a device barrier and wait until all IO stops.
3209 * Then resize conf->mirrors and swap in the new r1bio pool.
3211 * At the same time, we "pack" the devices so that all the missing
3212 * devices have the higher raid_disk numbers.
3214 mempool_t newpool, oldpool;
3215 struct pool_info *newpoolinfo;
3216 struct raid1_info *newmirrors;
3217 struct r1conf *conf = mddev->private;
3218 int cnt, raid_disks;
3219 unsigned long flags;
3220 int d, d2;
3221 int ret;
3223 memset(&newpool, 0, sizeof(newpool));
3224 memset(&oldpool, 0, sizeof(oldpool));
3226 /* Cannot change chunk_size, layout, or level */
3227 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3228 mddev->layout != mddev->new_layout ||
3229 mddev->level != mddev->new_level) {
3230 mddev->new_chunk_sectors = mddev->chunk_sectors;
3231 mddev->new_layout = mddev->layout;
3232 mddev->new_level = mddev->level;
3233 return -EINVAL;
3236 if (!mddev_is_clustered(mddev))
3237 md_allow_write(mddev);
3239 raid_disks = mddev->raid_disks + mddev->delta_disks;
3241 if (raid_disks < conf->raid_disks) {
3242 cnt=0;
3243 for (d= 0; d < conf->raid_disks; d++)
3244 if (conf->mirrors[d].rdev)
3245 cnt++;
3246 if (cnt > raid_disks)
3247 return -EBUSY;
3250 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3251 if (!newpoolinfo)
3252 return -ENOMEM;
3253 newpoolinfo->mddev = mddev;
3254 newpoolinfo->raid_disks = raid_disks * 2;
3256 ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3257 r1bio_pool_free, newpoolinfo);
3258 if (ret) {
3259 kfree(newpoolinfo);
3260 return ret;
3262 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3263 raid_disks, 2),
3264 GFP_KERNEL);
3265 if (!newmirrors) {
3266 kfree(newpoolinfo);
3267 mempool_exit(&newpool);
3268 return -ENOMEM;
3271 freeze_array(conf, 0);
3273 /* ok, everything is stopped */
3274 oldpool = conf->r1bio_pool;
3275 conf->r1bio_pool = newpool;
3277 for (d = d2 = 0; d < conf->raid_disks; d++) {
3278 struct md_rdev *rdev = conf->mirrors[d].rdev;
3279 if (rdev && rdev->raid_disk != d2) {
3280 sysfs_unlink_rdev(mddev, rdev);
3281 rdev->raid_disk = d2;
3282 sysfs_unlink_rdev(mddev, rdev);
3283 if (sysfs_link_rdev(mddev, rdev))
3284 pr_warn("md/raid1:%s: cannot register rd%d\n",
3285 mdname(mddev), rdev->raid_disk);
3287 if (rdev)
3288 newmirrors[d2++].rdev = rdev;
3290 kfree(conf->mirrors);
3291 conf->mirrors = newmirrors;
3292 kfree(conf->poolinfo);
3293 conf->poolinfo = newpoolinfo;
3295 spin_lock_irqsave(&conf->device_lock, flags);
3296 mddev->degraded += (raid_disks - conf->raid_disks);
3297 spin_unlock_irqrestore(&conf->device_lock, flags);
3298 conf->raid_disks = mddev->raid_disks = raid_disks;
3299 mddev->delta_disks = 0;
3301 unfreeze_array(conf);
3303 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3304 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3305 md_wakeup_thread(mddev->thread);
3307 mempool_exit(&oldpool);
3308 return 0;
3311 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3313 struct r1conf *conf = mddev->private;
3315 if (quiesce)
3316 freeze_array(conf, 0);
3317 else
3318 unfreeze_array(conf);
3321 static void *raid1_takeover(struct mddev *mddev)
3323 /* raid1 can take over:
3324 * raid5 with 2 devices, any layout or chunk size
3326 if (mddev->level == 5 && mddev->raid_disks == 2) {
3327 struct r1conf *conf;
3328 mddev->new_level = 1;
3329 mddev->new_layout = 0;
3330 mddev->new_chunk_sectors = 0;
3331 conf = setup_conf(mddev);
3332 if (!IS_ERR(conf)) {
3333 /* Array must appear to be quiesced */
3334 conf->array_frozen = 1;
3335 mddev_clear_unsupported_flags(mddev,
3336 UNSUPPORTED_MDDEV_FLAGS);
3338 return conf;
3340 return ERR_PTR(-EINVAL);
3343 static struct md_personality raid1_personality =
3345 .name = "raid1",
3346 .level = 1,
3347 .owner = THIS_MODULE,
3348 .make_request = raid1_make_request,
3349 .run = raid1_run,
3350 .free = raid1_free,
3351 .status = raid1_status,
3352 .error_handler = raid1_error,
3353 .hot_add_disk = raid1_add_disk,
3354 .hot_remove_disk= raid1_remove_disk,
3355 .spare_active = raid1_spare_active,
3356 .sync_request = raid1_sync_request,
3357 .resize = raid1_resize,
3358 .size = raid1_size,
3359 .check_reshape = raid1_reshape,
3360 .quiesce = raid1_quiesce,
3361 .takeover = raid1_takeover,
3362 .congested = raid1_congested,
3365 static int __init raid_init(void)
3367 return register_md_personality(&raid1_personality);
3370 static void raid_exit(void)
3372 unregister_md_personality(&raid1_personality);
3375 module_init(raid_init);
3376 module_exit(raid_exit);
3377 MODULE_LICENSE("GPL");
3378 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3379 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3380 MODULE_ALIAS("md-raid1");
3381 MODULE_ALIAS("md-level-1");
3383 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);