2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
41 #include <trace/events/block.h>
45 #include "md-bitmap.h"
47 #define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
49 (1L << MD_JOURNAL_CLEAN) | \
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
54 * Number of guaranteed r1bios in case of extreme VM load:
56 #define NR_RAID1_BIOS 256
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
68 #define IO_MADE_GOOD ((struct bio *)2)
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
76 static int max_queued_requests
= 1024;
78 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
79 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
90 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
92 return get_resync_pages(bio
)->raid_bio
;
95 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
98 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size
, gfp_flags
);
104 static void r1bio_pool_free(void *r1_bio
, void *data
)
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
118 struct pool_info
*pi
= data
;
119 struct r1bio
*r1_bio
;
123 struct resync_pages
*rps
;
125 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
129 rps
= kmalloc_array(pi
->raid_disks
, sizeof(struct resync_pages
),
135 * Allocate bios : 1 for reading, n-1 for writing
137 for (j
= pi
->raid_disks
; j
-- ; ) {
138 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
141 r1_bio
->bios
[j
] = bio
;
144 * Allocate RESYNC_PAGES data pages and attach them to
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
149 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
150 need_pages
= pi
->raid_disks
;
153 for (j
= 0; j
< pi
->raid_disks
; j
++) {
154 struct resync_pages
*rp
= &rps
[j
];
156 bio
= r1_bio
->bios
[j
];
158 if (j
< need_pages
) {
159 if (resync_alloc_pages(rp
, gfp_flags
))
162 memcpy(rp
, &rps
[0], sizeof(*rp
));
163 resync_get_all_pages(rp
);
166 rp
->raid_bio
= r1_bio
;
167 bio
->bi_private
= rp
;
170 r1_bio
->master_bio
= NULL
;
176 resync_free_pages(&rps
[j
]);
179 while (++j
< pi
->raid_disks
)
180 bio_put(r1_bio
->bios
[j
]);
184 r1bio_pool_free(r1_bio
, data
);
188 static void r1buf_pool_free(void *__r1_bio
, void *data
)
190 struct pool_info
*pi
= data
;
192 struct r1bio
*r1bio
= __r1_bio
;
193 struct resync_pages
*rp
= NULL
;
195 for (i
= pi
->raid_disks
; i
--; ) {
196 rp
= get_resync_pages(r1bio
->bios
[i
]);
197 resync_free_pages(rp
);
198 bio_put(r1bio
->bios
[i
]);
201 /* resync pages array stored in the 1st bio's .bi_private */
204 r1bio_pool_free(r1bio
, data
);
207 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
211 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
212 struct bio
**bio
= r1_bio
->bios
+ i
;
213 if (!BIO_SPECIAL(*bio
))
219 static void free_r1bio(struct r1bio
*r1_bio
)
221 struct r1conf
*conf
= r1_bio
->mddev
->private;
223 put_all_bios(conf
, r1_bio
);
224 mempool_free(r1_bio
, &conf
->r1bio_pool
);
227 static void put_buf(struct r1bio
*r1_bio
)
229 struct r1conf
*conf
= r1_bio
->mddev
->private;
230 sector_t sect
= r1_bio
->sector
;
233 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
234 struct bio
*bio
= r1_bio
->bios
[i
];
236 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
239 mempool_free(r1_bio
, &conf
->r1buf_pool
);
241 lower_barrier(conf
, sect
);
244 static void reschedule_retry(struct r1bio
*r1_bio
)
247 struct mddev
*mddev
= r1_bio
->mddev
;
248 struct r1conf
*conf
= mddev
->private;
251 idx
= sector_to_idx(r1_bio
->sector
);
252 spin_lock_irqsave(&conf
->device_lock
, flags
);
253 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
254 atomic_inc(&conf
->nr_queued
[idx
]);
255 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
257 wake_up(&conf
->wait_barrier
);
258 md_wakeup_thread(mddev
->thread
);
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
266 static void call_bio_endio(struct r1bio
*r1_bio
)
268 struct bio
*bio
= r1_bio
->master_bio
;
269 struct r1conf
*conf
= r1_bio
->mddev
->private;
271 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
272 bio
->bi_status
= BLK_STS_IOERR
;
276 * Wake up any possible resync thread that waits for the device
279 allow_barrier(conf
, r1_bio
->sector
);
282 static void raid_end_bio_io(struct r1bio
*r1_bio
)
284 struct bio
*bio
= r1_bio
->master_bio
;
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
290 (unsigned long long) bio
->bi_iter
.bi_sector
,
291 (unsigned long long) bio_end_sector(bio
) - 1);
293 call_bio_endio(r1_bio
);
299 * Update disk head position estimator based on IRQ completion info.
301 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
303 struct r1conf
*conf
= r1_bio
->mddev
->private;
305 conf
->mirrors
[disk
].head_position
=
306 r1_bio
->sector
+ (r1_bio
->sectors
);
310 * Find the disk number which triggered given bio
312 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
315 struct r1conf
*conf
= r1_bio
->mddev
->private;
316 int raid_disks
= conf
->raid_disks
;
318 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
319 if (r1_bio
->bios
[mirror
] == bio
)
322 BUG_ON(mirror
== raid_disks
* 2);
323 update_head_pos(mirror
, r1_bio
);
328 static void raid1_end_read_request(struct bio
*bio
)
330 int uptodate
= !bio
->bi_status
;
331 struct r1bio
*r1_bio
= bio
->bi_private
;
332 struct r1conf
*conf
= r1_bio
->mddev
->private;
333 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(r1_bio
->read_disk
, r1_bio
);
341 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
342 else if (test_bit(FailFast
, &rdev
->flags
) &&
343 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
344 /* This was a fail-fast read so we definitely
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
353 spin_lock_irqsave(&conf
->device_lock
, flags
);
354 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
355 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
356 test_bit(In_sync
, &rdev
->flags
)))
358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
362 raid_end_bio_io(r1_bio
);
363 rdev_dec_pending(rdev
, conf
->mddev
);
368 char b
[BDEVNAME_SIZE
];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 bdevname(rdev
->bdev
, b
),
372 (unsigned long long)r1_bio
->sector
);
373 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
374 reschedule_retry(r1_bio
);
375 /* don't drop the reference on read_disk yet */
379 static void close_write(struct r1bio
*r1_bio
)
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
383 bio_free_pages(r1_bio
->behind_master_bio
);
384 bio_put(r1_bio
->behind_master_bio
);
385 r1_bio
->behind_master_bio
= NULL
;
387 /* clear the bitmap if all writes complete successfully */
388 md_bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
390 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
391 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
392 md_write_end(r1_bio
->mddev
);
395 static void r1_bio_write_done(struct r1bio
*r1_bio
)
397 if (!atomic_dec_and_test(&r1_bio
->remaining
))
400 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
401 reschedule_retry(r1_bio
);
404 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
405 reschedule_retry(r1_bio
);
407 raid_end_bio_io(r1_bio
);
411 static void raid1_end_write_request(struct bio
*bio
)
413 struct r1bio
*r1_bio
= bio
->bi_private
;
414 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
415 struct r1conf
*conf
= r1_bio
->mddev
->private;
416 struct bio
*to_put
= NULL
;
417 int mirror
= find_bio_disk(r1_bio
, bio
);
418 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
421 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
424 * 'one mirror IO has finished' event handler:
426 if (bio
->bi_status
&& !discard_error
) {
427 set_bit(WriteErrorSeen
, &rdev
->flags
);
428 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
429 set_bit(MD_RECOVERY_NEEDED
, &
430 conf
->mddev
->recovery
);
432 if (test_bit(FailFast
, &rdev
->flags
) &&
433 (bio
->bi_opf
& MD_FAILFAST
) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly
, &rdev
->flags
)) {
436 md_error(r1_bio
->mddev
, rdev
);
440 * When the device is faulty, it is not necessary to
441 * handle write error.
442 * For failfast, this is the only remaining device,
443 * We need to retry the write without FailFast.
445 if (!test_bit(Faulty
, &rdev
->flags
))
446 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
448 /* Finished with this branch */
449 r1_bio
->bios
[mirror
] = NULL
;
454 * Set R1BIO_Uptodate in our master bio, so that we
455 * will return a good error code for to the higher
456 * levels even if IO on some other mirrored buffer
459 * The 'master' represents the composite IO operation
460 * to user-side. So if something waits for IO, then it
461 * will wait for the 'master' bio.
466 r1_bio
->bios
[mirror
] = NULL
;
469 * Do not set R1BIO_Uptodate if the current device is
470 * rebuilding or Faulty. This is because we cannot use
471 * such device for properly reading the data back (we could
472 * potentially use it, if the current write would have felt
473 * before rdev->recovery_offset, but for simplicity we don't
476 if (test_bit(In_sync
, &rdev
->flags
) &&
477 !test_bit(Faulty
, &rdev
->flags
))
478 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
482 &first_bad
, &bad_sectors
) && !discard_error
) {
483 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
484 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
489 if (test_bit(WriteMostly
, &rdev
->flags
))
490 atomic_dec(&r1_bio
->behind_remaining
);
493 * In behind mode, we ACK the master bio once the I/O
494 * has safely reached all non-writemostly
495 * disks. Setting the Returned bit ensures that this
496 * gets done only once -- we don't ever want to return
497 * -EIO here, instead we'll wait
499 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
500 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
501 /* Maybe we can return now */
502 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
503 struct bio
*mbio
= r1_bio
->master_bio
;
504 pr_debug("raid1: behind end write sectors"
506 (unsigned long long) mbio
->bi_iter
.bi_sector
,
507 (unsigned long long) bio_end_sector(mbio
) - 1);
508 call_bio_endio(r1_bio
);
512 if (r1_bio
->bios
[mirror
] == NULL
)
513 rdev_dec_pending(rdev
, conf
->mddev
);
516 * Let's see if all mirrored write operations have finished
519 r1_bio_write_done(r1_bio
);
525 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
530 WARN_ON(sectors
== 0);
532 * len is the number of sectors from start_sector to end of the
533 * barrier unit which start_sector belongs to.
535 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
545 * This routine returns the disk from which the requested read should
546 * be done. There is a per-array 'next expected sequential IO' sector
547 * number - if this matches on the next IO then we use the last disk.
548 * There is also a per-disk 'last know head position' sector that is
549 * maintained from IRQ contexts, both the normal and the resync IO
550 * completion handlers update this position correctly. If there is no
551 * perfect sequential match then we pick the disk whose head is closest.
553 * If there are 2 mirrors in the same 2 devices, performance degrades
554 * because position is mirror, not device based.
556 * The rdev for the device selected will have nr_pending incremented.
558 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
560 const sector_t this_sector
= r1_bio
->sector
;
562 int best_good_sectors
;
563 int best_disk
, best_dist_disk
, best_pending_disk
;
567 unsigned int min_pending
;
568 struct md_rdev
*rdev
;
570 int choose_next_idle
;
574 * Check if we can balance. We can balance on the whole
575 * device if no resync is going on, or below the resync window.
576 * We take the first readable disk when above the resync window.
579 sectors
= r1_bio
->sectors
;
582 best_dist
= MaxSector
;
583 best_pending_disk
= -1;
584 min_pending
= UINT_MAX
;
585 best_good_sectors
= 0;
587 choose_next_idle
= 0;
588 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
590 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
591 (mddev_is_clustered(conf
->mddev
) &&
592 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
593 this_sector
+ sectors
)))
598 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
602 unsigned int pending
;
605 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
606 if (r1_bio
->bios
[disk
] == IO_BLOCKED
608 || test_bit(Faulty
, &rdev
->flags
))
610 if (!test_bit(In_sync
, &rdev
->flags
) &&
611 rdev
->recovery_offset
< this_sector
+ sectors
)
613 if (test_bit(WriteMostly
, &rdev
->flags
)) {
614 /* Don't balance among write-mostly, just
615 * use the first as a last resort */
616 if (best_dist_disk
< 0) {
617 if (is_badblock(rdev
, this_sector
, sectors
,
618 &first_bad
, &bad_sectors
)) {
619 if (first_bad
<= this_sector
)
620 /* Cannot use this */
622 best_good_sectors
= first_bad
- this_sector
;
624 best_good_sectors
= sectors
;
625 best_dist_disk
= disk
;
626 best_pending_disk
= disk
;
630 /* This is a reasonable device to use. It might
633 if (is_badblock(rdev
, this_sector
, sectors
,
634 &first_bad
, &bad_sectors
)) {
635 if (best_dist
< MaxSector
)
636 /* already have a better device */
638 if (first_bad
<= this_sector
) {
639 /* cannot read here. If this is the 'primary'
640 * device, then we must not read beyond
641 * bad_sectors from another device..
643 bad_sectors
-= (this_sector
- first_bad
);
644 if (choose_first
&& sectors
> bad_sectors
)
645 sectors
= bad_sectors
;
646 if (best_good_sectors
> sectors
)
647 best_good_sectors
= sectors
;
650 sector_t good_sectors
= first_bad
- this_sector
;
651 if (good_sectors
> best_good_sectors
) {
652 best_good_sectors
= good_sectors
;
660 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
662 best_good_sectors
= sectors
;
666 /* At least two disks to choose from so failfast is OK */
667 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
669 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
670 has_nonrot_disk
|= nonrot
;
671 pending
= atomic_read(&rdev
->nr_pending
);
672 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
677 /* Don't change to another disk for sequential reads */
678 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
680 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
681 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
685 * If buffered sequential IO size exceeds optimal
686 * iosize, check if there is idle disk. If yes, choose
687 * the idle disk. read_balance could already choose an
688 * idle disk before noticing it's a sequential IO in
689 * this disk. This doesn't matter because this disk
690 * will idle, next time it will be utilized after the
691 * first disk has IO size exceeds optimal iosize. In
692 * this way, iosize of the first disk will be optimal
693 * iosize at least. iosize of the second disk might be
694 * small, but not a big deal since when the second disk
695 * starts IO, the first disk is likely still busy.
697 if (nonrot
&& opt_iosize
> 0 &&
698 mirror
->seq_start
!= MaxSector
&&
699 mirror
->next_seq_sect
> opt_iosize
&&
700 mirror
->next_seq_sect
- opt_iosize
>=
702 choose_next_idle
= 1;
708 if (choose_next_idle
)
711 if (min_pending
> pending
) {
712 min_pending
= pending
;
713 best_pending_disk
= disk
;
716 if (dist
< best_dist
) {
718 best_dist_disk
= disk
;
723 * If all disks are rotational, choose the closest disk. If any disk is
724 * non-rotational, choose the disk with less pending request even the
725 * disk is rotational, which might/might not be optimal for raids with
726 * mixed ratation/non-rotational disks depending on workload.
728 if (best_disk
== -1) {
729 if (has_nonrot_disk
|| min_pending
== 0)
730 best_disk
= best_pending_disk
;
732 best_disk
= best_dist_disk
;
735 if (best_disk
>= 0) {
736 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
739 atomic_inc(&rdev
->nr_pending
);
740 sectors
= best_good_sectors
;
742 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
743 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
745 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
748 *max_sectors
= sectors
;
753 static int raid1_congested(struct mddev
*mddev
, int bits
)
755 struct r1conf
*conf
= mddev
->private;
758 if ((bits
& (1 << WB_async_congested
)) &&
759 conf
->pending_count
>= max_queued_requests
)
763 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
764 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
765 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
766 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
770 /* Note the '|| 1' - when read_balance prefers
771 * non-congested targets, it can be removed
773 if ((bits
& (1 << WB_async_congested
)) || 1)
774 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
776 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
783 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
785 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
786 md_bitmap_unplug(conf
->mddev
->bitmap
);
787 wake_up(&conf
->wait_barrier
);
789 while (bio
) { /* submit pending writes */
790 struct bio
*next
= bio
->bi_next
;
791 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
793 bio_set_dev(bio
, rdev
->bdev
);
794 if (test_bit(Faulty
, &rdev
->flags
)) {
796 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
797 !blk_queue_discard(bio
->bi_disk
->queue
)))
801 generic_make_request(bio
);
806 static void flush_pending_writes(struct r1conf
*conf
)
808 /* Any writes that have been queued but are awaiting
809 * bitmap updates get flushed here.
811 spin_lock_irq(&conf
->device_lock
);
813 if (conf
->pending_bio_list
.head
) {
814 struct blk_plug plug
;
817 bio
= bio_list_get(&conf
->pending_bio_list
);
818 conf
->pending_count
= 0;
819 spin_unlock_irq(&conf
->device_lock
);
822 * As this is called in a wait_event() loop (see freeze_array),
823 * current->state might be TASK_UNINTERRUPTIBLE which will
824 * cause a warning when we prepare to wait again. As it is
825 * rare that this path is taken, it is perfectly safe to force
826 * us to go around the wait_event() loop again, so the warning
827 * is a false-positive. Silence the warning by resetting
830 __set_current_state(TASK_RUNNING
);
831 blk_start_plug(&plug
);
832 flush_bio_list(conf
, bio
);
833 blk_finish_plug(&plug
);
835 spin_unlock_irq(&conf
->device_lock
);
839 * Sometimes we need to suspend IO while we do something else,
840 * either some resync/recovery, or reconfigure the array.
841 * To do this we raise a 'barrier'.
842 * The 'barrier' is a counter that can be raised multiple times
843 * to count how many activities are happening which preclude
845 * We can only raise the barrier if there is no pending IO.
846 * i.e. if nr_pending == 0.
847 * We choose only to raise the barrier if no-one is waiting for the
848 * barrier to go down. This means that as soon as an IO request
849 * is ready, no other operations which require a barrier will start
850 * until the IO request has had a chance.
852 * So: regular IO calls 'wait_barrier'. When that returns there
853 * is no backgroup IO happening, It must arrange to call
854 * allow_barrier when it has finished its IO.
855 * backgroup IO calls must call raise_barrier. Once that returns
856 * there is no normal IO happeing. It must arrange to call
857 * lower_barrier when the particular background IO completes.
859 static sector_t
raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
861 int idx
= sector_to_idx(sector_nr
);
863 spin_lock_irq(&conf
->resync_lock
);
865 /* Wait until no block IO is waiting */
866 wait_event_lock_irq(conf
->wait_barrier
,
867 !atomic_read(&conf
->nr_waiting
[idx
]),
870 /* block any new IO from starting */
871 atomic_inc(&conf
->barrier
[idx
]);
873 * In raise_barrier() we firstly increase conf->barrier[idx] then
874 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
875 * increase conf->nr_pending[idx] then check conf->barrier[idx].
876 * A memory barrier here to make sure conf->nr_pending[idx] won't
877 * be fetched before conf->barrier[idx] is increased. Otherwise
878 * there will be a race between raise_barrier() and _wait_barrier().
880 smp_mb__after_atomic();
882 /* For these conditions we must wait:
883 * A: while the array is in frozen state
884 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
885 * existing in corresponding I/O barrier bucket.
886 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
887 * max resync count which allowed on current I/O barrier bucket.
889 wait_event_lock_irq(conf
->wait_barrier
,
890 (!conf
->array_frozen
&&
891 !atomic_read(&conf
->nr_pending
[idx
]) &&
892 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
) ||
893 test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
),
896 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
897 atomic_dec(&conf
->barrier
[idx
]);
898 spin_unlock_irq(&conf
->resync_lock
);
899 wake_up(&conf
->wait_barrier
);
903 atomic_inc(&conf
->nr_sync_pending
);
904 spin_unlock_irq(&conf
->resync_lock
);
909 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
911 int idx
= sector_to_idx(sector_nr
);
913 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
915 atomic_dec(&conf
->barrier
[idx
]);
916 atomic_dec(&conf
->nr_sync_pending
);
917 wake_up(&conf
->wait_barrier
);
920 static void _wait_barrier(struct r1conf
*conf
, int idx
)
923 * We need to increase conf->nr_pending[idx] very early here,
924 * then raise_barrier() can be blocked when it waits for
925 * conf->nr_pending[idx] to be 0. Then we can avoid holding
926 * conf->resync_lock when there is no barrier raised in same
927 * barrier unit bucket. Also if the array is frozen, I/O
928 * should be blocked until array is unfrozen.
930 atomic_inc(&conf
->nr_pending
[idx
]);
932 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
933 * check conf->barrier[idx]. In raise_barrier() we firstly increase
934 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
935 * barrier is necessary here to make sure conf->barrier[idx] won't be
936 * fetched before conf->nr_pending[idx] is increased. Otherwise there
937 * will be a race between _wait_barrier() and raise_barrier().
939 smp_mb__after_atomic();
942 * Don't worry about checking two atomic_t variables at same time
943 * here. If during we check conf->barrier[idx], the array is
944 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
945 * 0, it is safe to return and make the I/O continue. Because the
946 * array is frozen, all I/O returned here will eventually complete
947 * or be queued, no race will happen. See code comment in
950 if (!READ_ONCE(conf
->array_frozen
) &&
951 !atomic_read(&conf
->barrier
[idx
]))
955 * After holding conf->resync_lock, conf->nr_pending[idx]
956 * should be decreased before waiting for barrier to drop.
957 * Otherwise, we may encounter a race condition because
958 * raise_barrer() might be waiting for conf->nr_pending[idx]
959 * to be 0 at same time.
961 spin_lock_irq(&conf
->resync_lock
);
962 atomic_inc(&conf
->nr_waiting
[idx
]);
963 atomic_dec(&conf
->nr_pending
[idx
]);
965 * In case freeze_array() is waiting for
966 * get_unqueued_pending() == extra
968 wake_up(&conf
->wait_barrier
);
969 /* Wait for the barrier in same barrier unit bucket to drop. */
970 wait_event_lock_irq(conf
->wait_barrier
,
971 !conf
->array_frozen
&&
972 !atomic_read(&conf
->barrier
[idx
]),
974 atomic_inc(&conf
->nr_pending
[idx
]);
975 atomic_dec(&conf
->nr_waiting
[idx
]);
976 spin_unlock_irq(&conf
->resync_lock
);
979 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
981 int idx
= sector_to_idx(sector_nr
);
984 * Very similar to _wait_barrier(). The difference is, for read
985 * I/O we don't need wait for sync I/O, but if the whole array
986 * is frozen, the read I/O still has to wait until the array is
987 * unfrozen. Since there is no ordering requirement with
988 * conf->barrier[idx] here, memory barrier is unnecessary as well.
990 atomic_inc(&conf
->nr_pending
[idx
]);
992 if (!READ_ONCE(conf
->array_frozen
))
995 spin_lock_irq(&conf
->resync_lock
);
996 atomic_inc(&conf
->nr_waiting
[idx
]);
997 atomic_dec(&conf
->nr_pending
[idx
]);
999 * In case freeze_array() is waiting for
1000 * get_unqueued_pending() == extra
1002 wake_up(&conf
->wait_barrier
);
1003 /* Wait for array to be unfrozen */
1004 wait_event_lock_irq(conf
->wait_barrier
,
1005 !conf
->array_frozen
,
1007 atomic_inc(&conf
->nr_pending
[idx
]);
1008 atomic_dec(&conf
->nr_waiting
[idx
]);
1009 spin_unlock_irq(&conf
->resync_lock
);
1012 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1014 int idx
= sector_to_idx(sector_nr
);
1016 _wait_barrier(conf
, idx
);
1019 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1021 atomic_dec(&conf
->nr_pending
[idx
]);
1022 wake_up(&conf
->wait_barrier
);
1025 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1027 int idx
= sector_to_idx(sector_nr
);
1029 _allow_barrier(conf
, idx
);
1032 /* conf->resync_lock should be held */
1033 static int get_unqueued_pending(struct r1conf
*conf
)
1037 ret
= atomic_read(&conf
->nr_sync_pending
);
1038 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1039 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1040 atomic_read(&conf
->nr_queued
[idx
]);
1045 static void freeze_array(struct r1conf
*conf
, int extra
)
1047 /* Stop sync I/O and normal I/O and wait for everything to
1049 * This is called in two situations:
1050 * 1) management command handlers (reshape, remove disk, quiesce).
1051 * 2) one normal I/O request failed.
1053 * After array_frozen is set to 1, new sync IO will be blocked at
1054 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1055 * or wait_read_barrier(). The flying I/Os will either complete or be
1056 * queued. When everything goes quite, there are only queued I/Os left.
1058 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1059 * barrier bucket index which this I/O request hits. When all sync and
1060 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1061 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1062 * in handle_read_error(), we may call freeze_array() before trying to
1063 * fix the read error. In this case, the error read I/O is not queued,
1064 * so get_unqueued_pending() == 1.
1066 * Therefore before this function returns, we need to wait until
1067 * get_unqueued_pendings(conf) gets equal to extra. For
1068 * normal I/O context, extra is 1, in rested situations extra is 0.
1070 spin_lock_irq(&conf
->resync_lock
);
1071 conf
->array_frozen
= 1;
1072 raid1_log(conf
->mddev
, "wait freeze");
1073 wait_event_lock_irq_cmd(
1075 get_unqueued_pending(conf
) == extra
,
1077 flush_pending_writes(conf
));
1078 spin_unlock_irq(&conf
->resync_lock
);
1080 static void unfreeze_array(struct r1conf
*conf
)
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf
->resync_lock
);
1084 conf
->array_frozen
= 0;
1085 spin_unlock_irq(&conf
->resync_lock
);
1086 wake_up(&conf
->wait_barrier
);
1089 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1092 int size
= bio
->bi_iter
.bi_size
;
1093 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1095 struct bio
*behind_bio
= NULL
;
1097 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1101 /* discard op, we don't support writezero/writesame yet */
1102 if (!bio_has_data(bio
)) {
1103 behind_bio
->bi_iter
.bi_size
= size
;
1107 behind_bio
->bi_write_hint
= bio
->bi_write_hint
;
1109 while (i
< vcnt
&& size
) {
1111 int len
= min_t(int, PAGE_SIZE
, size
);
1113 page
= alloc_page(GFP_NOIO
);
1114 if (unlikely(!page
))
1117 bio_add_page(behind_bio
, page
, len
, 0);
1123 bio_copy_data(behind_bio
, bio
);
1125 r1_bio
->behind_master_bio
= behind_bio
;
1126 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1131 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1132 bio
->bi_iter
.bi_size
);
1133 bio_free_pages(behind_bio
);
1134 bio_put(behind_bio
);
1137 struct raid1_plug_cb
{
1138 struct blk_plug_cb cb
;
1139 struct bio_list pending
;
1143 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1145 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1147 struct mddev
*mddev
= plug
->cb
.data
;
1148 struct r1conf
*conf
= mddev
->private;
1151 if (from_schedule
|| current
->bio_list
) {
1152 spin_lock_irq(&conf
->device_lock
);
1153 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1154 conf
->pending_count
+= plug
->pending_cnt
;
1155 spin_unlock_irq(&conf
->device_lock
);
1156 wake_up(&conf
->wait_barrier
);
1157 md_wakeup_thread(mddev
->thread
);
1162 /* we aren't scheduling, so we can do the write-out directly. */
1163 bio
= bio_list_get(&plug
->pending
);
1164 flush_bio_list(conf
, bio
);
1168 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1170 r1_bio
->master_bio
= bio
;
1171 r1_bio
->sectors
= bio_sectors(bio
);
1173 r1_bio
->mddev
= mddev
;
1174 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1177 static inline struct r1bio
*
1178 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1180 struct r1conf
*conf
= mddev
->private;
1181 struct r1bio
*r1_bio
;
1183 r1_bio
= mempool_alloc(&conf
->r1bio_pool
, GFP_NOIO
);
1184 /* Ensure no bio records IO_BLOCKED */
1185 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1186 init_r1bio(r1_bio
, mddev
, bio
);
1190 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1191 int max_read_sectors
, struct r1bio
*r1_bio
)
1193 struct r1conf
*conf
= mddev
->private;
1194 struct raid1_info
*mirror
;
1195 struct bio
*read_bio
;
1196 struct bitmap
*bitmap
= mddev
->bitmap
;
1197 const int op
= bio_op(bio
);
1198 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1201 bool print_msg
= !!r1_bio
;
1202 char b
[BDEVNAME_SIZE
];
1205 * If r1_bio is set, we are blocking the raid1d thread
1206 * so there is a tiny risk of deadlock. So ask for
1207 * emergency memory if needed.
1209 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1212 /* Need to get the block device name carefully */
1213 struct md_rdev
*rdev
;
1215 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1217 bdevname(rdev
->bdev
, b
);
1224 * Still need barrier for READ in case that whole
1227 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1230 r1_bio
= alloc_r1bio(mddev
, bio
);
1232 init_r1bio(r1_bio
, mddev
, bio
);
1233 r1_bio
->sectors
= max_read_sectors
;
1236 * make_request() can abort the operation when read-ahead is being
1237 * used and no empty request is available.
1239 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1242 /* couldn't find anywhere to read from */
1244 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1247 (unsigned long long)r1_bio
->sector
);
1249 raid_end_bio_io(r1_bio
);
1252 mirror
= conf
->mirrors
+ rdisk
;
1255 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1257 (unsigned long long)r1_bio
->sector
,
1258 bdevname(mirror
->rdev
->bdev
, b
));
1260 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1263 * Reading from a write-mostly device must take care not to
1264 * over-take any writes that are 'behind'
1266 raid1_log(mddev
, "wait behind writes");
1267 wait_event(bitmap
->behind_wait
,
1268 atomic_read(&bitmap
->behind_writes
) == 0);
1271 if (max_sectors
< bio_sectors(bio
)) {
1272 struct bio
*split
= bio_split(bio
, max_sectors
,
1273 gfp
, &conf
->bio_split
);
1274 bio_chain(split
, bio
);
1275 generic_make_request(bio
);
1277 r1_bio
->master_bio
= bio
;
1278 r1_bio
->sectors
= max_sectors
;
1281 r1_bio
->read_disk
= rdisk
;
1283 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1285 r1_bio
->bios
[rdisk
] = read_bio
;
1287 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1288 mirror
->rdev
->data_offset
;
1289 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1290 read_bio
->bi_end_io
= raid1_end_read_request
;
1291 bio_set_op_attrs(read_bio
, op
, do_sync
);
1292 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1293 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1294 read_bio
->bi_opf
|= MD_FAILFAST
;
1295 read_bio
->bi_private
= r1_bio
;
1298 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1299 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1301 generic_make_request(read_bio
);
1304 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1305 int max_write_sectors
)
1307 struct r1conf
*conf
= mddev
->private;
1308 struct r1bio
*r1_bio
;
1310 struct bitmap
*bitmap
= mddev
->bitmap
;
1311 unsigned long flags
;
1312 struct md_rdev
*blocked_rdev
;
1313 struct blk_plug_cb
*cb
;
1314 struct raid1_plug_cb
*plug
= NULL
;
1318 if (mddev_is_clustered(mddev
) &&
1319 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1320 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))) {
1324 prepare_to_wait(&conf
->wait_barrier
,
1326 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1327 bio
->bi_iter
.bi_sector
,
1328 bio_end_sector(bio
)))
1332 finish_wait(&conf
->wait_barrier
, &w
);
1336 * Register the new request and wait if the reconstruction
1337 * thread has put up a bar for new requests.
1338 * Continue immediately if no resync is active currently.
1340 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1342 r1_bio
= alloc_r1bio(mddev
, bio
);
1343 r1_bio
->sectors
= max_write_sectors
;
1345 if (conf
->pending_count
>= max_queued_requests
) {
1346 md_wakeup_thread(mddev
->thread
);
1347 raid1_log(mddev
, "wait queued");
1348 wait_event(conf
->wait_barrier
,
1349 conf
->pending_count
< max_queued_requests
);
1351 /* first select target devices under rcu_lock and
1352 * inc refcount on their rdev. Record them by setting
1354 * If there are known/acknowledged bad blocks on any device on
1355 * which we have seen a write error, we want to avoid writing those
1357 * This potentially requires several writes to write around
1358 * the bad blocks. Each set of writes gets it's own r1bio
1359 * with a set of bios attached.
1362 disks
= conf
->raid_disks
* 2;
1364 blocked_rdev
= NULL
;
1366 max_sectors
= r1_bio
->sectors
;
1367 for (i
= 0; i
< disks
; i
++) {
1368 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1369 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1370 atomic_inc(&rdev
->nr_pending
);
1371 blocked_rdev
= rdev
;
1374 r1_bio
->bios
[i
] = NULL
;
1375 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1376 if (i
< conf
->raid_disks
)
1377 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1381 atomic_inc(&rdev
->nr_pending
);
1382 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1387 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1388 &first_bad
, &bad_sectors
);
1390 /* mustn't write here until the bad block is
1392 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1393 blocked_rdev
= rdev
;
1396 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1397 /* Cannot write here at all */
1398 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1399 if (bad_sectors
< max_sectors
)
1400 /* mustn't write more than bad_sectors
1401 * to other devices yet
1403 max_sectors
= bad_sectors
;
1404 rdev_dec_pending(rdev
, mddev
);
1405 /* We don't set R1BIO_Degraded as that
1406 * only applies if the disk is
1407 * missing, so it might be re-added,
1408 * and we want to know to recover this
1410 * In this case the device is here,
1411 * and the fact that this chunk is not
1412 * in-sync is recorded in the bad
1418 int good_sectors
= first_bad
- r1_bio
->sector
;
1419 if (good_sectors
< max_sectors
)
1420 max_sectors
= good_sectors
;
1423 r1_bio
->bios
[i
] = bio
;
1427 if (unlikely(blocked_rdev
)) {
1428 /* Wait for this device to become unblocked */
1431 for (j
= 0; j
< i
; j
++)
1432 if (r1_bio
->bios
[j
])
1433 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1435 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1436 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1437 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1438 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1442 if (max_sectors
< bio_sectors(bio
)) {
1443 struct bio
*split
= bio_split(bio
, max_sectors
,
1444 GFP_NOIO
, &conf
->bio_split
);
1445 bio_chain(split
, bio
);
1446 generic_make_request(bio
);
1448 r1_bio
->master_bio
= bio
;
1449 r1_bio
->sectors
= max_sectors
;
1452 atomic_set(&r1_bio
->remaining
, 1);
1453 atomic_set(&r1_bio
->behind_remaining
, 0);
1457 for (i
= 0; i
< disks
; i
++) {
1458 struct bio
*mbio
= NULL
;
1459 if (!r1_bio
->bios
[i
])
1465 * Not if there are too many, or cannot
1466 * allocate memory, or a reader on WriteMostly
1467 * is waiting for behind writes to flush */
1469 (atomic_read(&bitmap
->behind_writes
)
1470 < mddev
->bitmap_info
.max_write_behind
) &&
1471 !waitqueue_active(&bitmap
->behind_wait
)) {
1472 alloc_behind_master_bio(r1_bio
, bio
);
1475 md_bitmap_startwrite(bitmap
, r1_bio
->sector
, r1_bio
->sectors
,
1476 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
1480 if (r1_bio
->behind_master_bio
)
1481 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1482 GFP_NOIO
, &mddev
->bio_set
);
1484 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1486 if (r1_bio
->behind_master_bio
) {
1487 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1488 atomic_inc(&r1_bio
->behind_remaining
);
1491 r1_bio
->bios
[i
] = mbio
;
1493 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1494 conf
->mirrors
[i
].rdev
->data_offset
);
1495 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1496 mbio
->bi_end_io
= raid1_end_write_request
;
1497 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1498 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1499 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1500 conf
->raid_disks
- mddev
->degraded
> 1)
1501 mbio
->bi_opf
|= MD_FAILFAST
;
1502 mbio
->bi_private
= r1_bio
;
1504 atomic_inc(&r1_bio
->remaining
);
1507 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1508 mbio
, disk_devt(mddev
->gendisk
),
1510 /* flush_pending_writes() needs access to the rdev so...*/
1511 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1513 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1515 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1519 bio_list_add(&plug
->pending
, mbio
);
1520 plug
->pending_cnt
++;
1522 spin_lock_irqsave(&conf
->device_lock
, flags
);
1523 bio_list_add(&conf
->pending_bio_list
, mbio
);
1524 conf
->pending_count
++;
1525 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1526 md_wakeup_thread(mddev
->thread
);
1530 r1_bio_write_done(r1_bio
);
1532 /* In case raid1d snuck in to freeze_array */
1533 wake_up(&conf
->wait_barrier
);
1536 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1540 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)
1541 && md_flush_request(mddev
, bio
))
1545 * There is a limit to the maximum size, but
1546 * the read/write handler might find a lower limit
1547 * due to bad blocks. To avoid multiple splits,
1548 * we pass the maximum number of sectors down
1549 * and let the lower level perform the split.
1551 sectors
= align_to_barrier_unit_end(
1552 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1554 if (bio_data_dir(bio
) == READ
)
1555 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1557 if (!md_write_start(mddev
,bio
))
1559 raid1_write_request(mddev
, bio
, sectors
);
1564 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1566 struct r1conf
*conf
= mddev
->private;
1569 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1570 conf
->raid_disks
- mddev
->degraded
);
1572 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1573 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1574 seq_printf(seq
, "%s",
1575 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1578 seq_printf(seq
, "]");
1581 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1583 char b
[BDEVNAME_SIZE
];
1584 struct r1conf
*conf
= mddev
->private;
1585 unsigned long flags
;
1588 * If it is not operational, then we have already marked it as dead
1589 * else if it is the last working disks, ignore the error, let the
1590 * next level up know.
1591 * else mark the drive as failed
1593 spin_lock_irqsave(&conf
->device_lock
, flags
);
1594 if (test_bit(In_sync
, &rdev
->flags
)
1595 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1597 * Don't fail the drive, act as though we were just a
1598 * normal single drive.
1599 * However don't try a recovery from this drive as
1600 * it is very likely to fail.
1602 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1603 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1606 set_bit(Blocked
, &rdev
->flags
);
1607 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1609 set_bit(Faulty
, &rdev
->flags
);
1611 set_bit(Faulty
, &rdev
->flags
);
1612 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1614 * if recovery is running, make sure it aborts.
1616 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1617 set_mask_bits(&mddev
->sb_flags
, 0,
1618 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1619 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1620 "md/raid1:%s: Operation continuing on %d devices.\n",
1621 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1622 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1625 static void print_conf(struct r1conf
*conf
)
1629 pr_debug("RAID1 conf printout:\n");
1631 pr_debug("(!conf)\n");
1634 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1638 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1639 char b
[BDEVNAME_SIZE
];
1640 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1642 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1643 i
, !test_bit(In_sync
, &rdev
->flags
),
1644 !test_bit(Faulty
, &rdev
->flags
),
1645 bdevname(rdev
->bdev
,b
));
1650 static void close_sync(struct r1conf
*conf
)
1654 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1655 _wait_barrier(conf
, idx
);
1656 _allow_barrier(conf
, idx
);
1659 mempool_exit(&conf
->r1buf_pool
);
1662 static int raid1_spare_active(struct mddev
*mddev
)
1665 struct r1conf
*conf
= mddev
->private;
1667 unsigned long flags
;
1670 * Find all failed disks within the RAID1 configuration
1671 * and mark them readable.
1672 * Called under mddev lock, so rcu protection not needed.
1673 * device_lock used to avoid races with raid1_end_read_request
1674 * which expects 'In_sync' flags and ->degraded to be consistent.
1676 spin_lock_irqsave(&conf
->device_lock
, flags
);
1677 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1678 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1679 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1681 && !test_bit(Candidate
, &repl
->flags
)
1682 && repl
->recovery_offset
== MaxSector
1683 && !test_bit(Faulty
, &repl
->flags
)
1684 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1685 /* replacement has just become active */
1687 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1690 /* Replaced device not technically
1691 * faulty, but we need to be sure
1692 * it gets removed and never re-added
1694 set_bit(Faulty
, &rdev
->flags
);
1695 sysfs_notify_dirent_safe(
1700 && rdev
->recovery_offset
== MaxSector
1701 && !test_bit(Faulty
, &rdev
->flags
)
1702 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1704 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1707 mddev
->degraded
-= count
;
1708 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1714 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1716 struct r1conf
*conf
= mddev
->private;
1719 struct raid1_info
*p
;
1721 int last
= conf
->raid_disks
- 1;
1723 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1726 if (md_integrity_add_rdev(rdev
, mddev
))
1729 if (rdev
->raid_disk
>= 0)
1730 first
= last
= rdev
->raid_disk
;
1733 * find the disk ... but prefer rdev->saved_raid_disk
1736 if (rdev
->saved_raid_disk
>= 0 &&
1737 rdev
->saved_raid_disk
>= first
&&
1738 rdev
->saved_raid_disk
< conf
->raid_disks
&&
1739 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1740 first
= last
= rdev
->saved_raid_disk
;
1742 for (mirror
= first
; mirror
<= last
; mirror
++) {
1743 p
= conf
->mirrors
+mirror
;
1747 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1748 rdev
->data_offset
<< 9);
1750 p
->head_position
= 0;
1751 rdev
->raid_disk
= mirror
;
1753 /* As all devices are equivalent, we don't need a full recovery
1754 * if this was recently any drive of the array
1756 if (rdev
->saved_raid_disk
< 0)
1758 rcu_assign_pointer(p
->rdev
, rdev
);
1761 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1762 p
[conf
->raid_disks
].rdev
== NULL
) {
1763 /* Add this device as a replacement */
1764 clear_bit(In_sync
, &rdev
->flags
);
1765 set_bit(Replacement
, &rdev
->flags
);
1766 rdev
->raid_disk
= mirror
;
1769 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1773 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1774 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1779 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1781 struct r1conf
*conf
= mddev
->private;
1783 int number
= rdev
->raid_disk
;
1784 struct raid1_info
*p
= conf
->mirrors
+ number
;
1786 if (rdev
!= p
->rdev
)
1787 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1790 if (rdev
== p
->rdev
) {
1791 if (test_bit(In_sync
, &rdev
->flags
) ||
1792 atomic_read(&rdev
->nr_pending
)) {
1796 /* Only remove non-faulty devices if recovery
1799 if (!test_bit(Faulty
, &rdev
->flags
) &&
1800 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1801 mddev
->degraded
< conf
->raid_disks
) {
1806 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1808 if (atomic_read(&rdev
->nr_pending
)) {
1809 /* lost the race, try later */
1815 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1816 /* We just removed a device that is being replaced.
1817 * Move down the replacement. We drain all IO before
1818 * doing this to avoid confusion.
1820 struct md_rdev
*repl
=
1821 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1822 freeze_array(conf
, 0);
1823 if (atomic_read(&repl
->nr_pending
)) {
1824 /* It means that some queued IO of retry_list
1825 * hold repl. Thus, we cannot set replacement
1826 * as NULL, avoiding rdev NULL pointer
1827 * dereference in sync_request_write and
1828 * handle_write_finished.
1831 unfreeze_array(conf
);
1834 clear_bit(Replacement
, &repl
->flags
);
1836 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1837 unfreeze_array(conf
);
1840 clear_bit(WantReplacement
, &rdev
->flags
);
1841 err
= md_integrity_register(mddev
);
1849 static void end_sync_read(struct bio
*bio
)
1851 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1853 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1856 * we have read a block, now it needs to be re-written,
1857 * or re-read if the read failed.
1858 * We don't do much here, just schedule handling by raid1d
1860 if (!bio
->bi_status
)
1861 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1863 if (atomic_dec_and_test(&r1_bio
->remaining
))
1864 reschedule_retry(r1_bio
);
1867 static void abort_sync_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1869 sector_t sync_blocks
= 0;
1870 sector_t s
= r1_bio
->sector
;
1871 long sectors_to_go
= r1_bio
->sectors
;
1873 /* make sure these bits don't get cleared. */
1875 md_bitmap_end_sync(mddev
->bitmap
, s
, &sync_blocks
, 1);
1877 sectors_to_go
-= sync_blocks
;
1878 } while (sectors_to_go
> 0);
1881 static void end_sync_write(struct bio
*bio
)
1883 int uptodate
= !bio
->bi_status
;
1884 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1885 struct mddev
*mddev
= r1_bio
->mddev
;
1886 struct r1conf
*conf
= mddev
->private;
1889 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1892 abort_sync_write(mddev
, r1_bio
);
1893 set_bit(WriteErrorSeen
, &rdev
->flags
);
1894 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1895 set_bit(MD_RECOVERY_NEEDED
, &
1897 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1898 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1899 &first_bad
, &bad_sectors
) &&
1900 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1903 &first_bad
, &bad_sectors
)
1905 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1907 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1908 int s
= r1_bio
->sectors
;
1909 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1910 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1911 reschedule_retry(r1_bio
);
1914 md_done_sync(mddev
, s
, uptodate
);
1919 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1920 int sectors
, struct page
*page
, int rw
)
1922 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1926 set_bit(WriteErrorSeen
, &rdev
->flags
);
1927 if (!test_and_set_bit(WantReplacement
,
1929 set_bit(MD_RECOVERY_NEEDED
, &
1930 rdev
->mddev
->recovery
);
1932 /* need to record an error - either for the block or the device */
1933 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1934 md_error(rdev
->mddev
, rdev
);
1938 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1940 /* Try some synchronous reads of other devices to get
1941 * good data, much like with normal read errors. Only
1942 * read into the pages we already have so we don't
1943 * need to re-issue the read request.
1944 * We don't need to freeze the array, because being in an
1945 * active sync request, there is no normal IO, and
1946 * no overlapping syncs.
1947 * We don't need to check is_badblock() again as we
1948 * made sure that anything with a bad block in range
1949 * will have bi_end_io clear.
1951 struct mddev
*mddev
= r1_bio
->mddev
;
1952 struct r1conf
*conf
= mddev
->private;
1953 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1954 struct page
**pages
= get_resync_pages(bio
)->pages
;
1955 sector_t sect
= r1_bio
->sector
;
1956 int sectors
= r1_bio
->sectors
;
1958 struct md_rdev
*rdev
;
1960 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1961 if (test_bit(FailFast
, &rdev
->flags
)) {
1962 /* Don't try recovering from here - just fail it
1963 * ... unless it is the last working device of course */
1964 md_error(mddev
, rdev
);
1965 if (test_bit(Faulty
, &rdev
->flags
))
1966 /* Don't try to read from here, but make sure
1967 * put_buf does it's thing
1969 bio
->bi_end_io
= end_sync_write
;
1974 int d
= r1_bio
->read_disk
;
1978 if (s
> (PAGE_SIZE
>>9))
1981 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1982 /* No rcu protection needed here devices
1983 * can only be removed when no resync is
1984 * active, and resync is currently active
1986 rdev
= conf
->mirrors
[d
].rdev
;
1987 if (sync_page_io(rdev
, sect
, s
<<9,
1989 REQ_OP_READ
, 0, false)) {
1995 if (d
== conf
->raid_disks
* 2)
1997 } while (!success
&& d
!= r1_bio
->read_disk
);
2000 char b
[BDEVNAME_SIZE
];
2002 /* Cannot read from anywhere, this block is lost.
2003 * Record a bad block on each device. If that doesn't
2004 * work just disable and interrupt the recovery.
2005 * Don't fail devices as that won't really help.
2007 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008 mdname(mddev
), bio_devname(bio
, b
),
2009 (unsigned long long)r1_bio
->sector
);
2010 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
2011 rdev
= conf
->mirrors
[d
].rdev
;
2012 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
2014 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2018 conf
->recovery_disabled
=
2019 mddev
->recovery_disabled
;
2020 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2021 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2033 /* write it back and re-read */
2034 while (d
!= r1_bio
->read_disk
) {
2036 d
= conf
->raid_disks
* 2;
2038 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2040 rdev
= conf
->mirrors
[d
].rdev
;
2041 if (r1_sync_page_io(rdev
, sect
, s
,
2044 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2045 rdev_dec_pending(rdev
, mddev
);
2049 while (d
!= r1_bio
->read_disk
) {
2051 d
= conf
->raid_disks
* 2;
2053 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2055 rdev
= conf
->mirrors
[d
].rdev
;
2056 if (r1_sync_page_io(rdev
, sect
, s
,
2059 atomic_add(s
, &rdev
->corrected_errors
);
2065 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2070 static void process_checks(struct r1bio
*r1_bio
)
2072 /* We have read all readable devices. If we haven't
2073 * got the block, then there is no hope left.
2074 * If we have, then we want to do a comparison
2075 * and skip the write if everything is the same.
2076 * If any blocks failed to read, then we need to
2077 * attempt an over-write
2079 struct mddev
*mddev
= r1_bio
->mddev
;
2080 struct r1conf
*conf
= mddev
->private;
2085 /* Fix variable parts of all bios */
2086 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2087 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2088 blk_status_t status
;
2089 struct bio
*b
= r1_bio
->bios
[i
];
2090 struct resync_pages
*rp
= get_resync_pages(b
);
2091 if (b
->bi_end_io
!= end_sync_read
)
2093 /* fixup the bio for reuse, but preserve errno */
2094 status
= b
->bi_status
;
2096 b
->bi_status
= status
;
2097 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2098 conf
->mirrors
[i
].rdev
->data_offset
;
2099 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2100 b
->bi_end_io
= end_sync_read
;
2101 rp
->raid_bio
= r1_bio
;
2104 /* initialize bvec table again */
2105 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2107 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2108 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2109 !r1_bio
->bios
[primary
]->bi_status
) {
2110 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2111 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2114 r1_bio
->read_disk
= primary
;
2115 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2117 struct bio
*pbio
= r1_bio
->bios
[primary
];
2118 struct bio
*sbio
= r1_bio
->bios
[i
];
2119 blk_status_t status
= sbio
->bi_status
;
2120 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2121 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2123 int page_len
[RESYNC_PAGES
] = { 0 };
2125 if (sbio
->bi_end_io
!= end_sync_read
)
2127 /* Now we can 'fixup' the error value */
2128 sbio
->bi_status
= 0;
2130 bio_for_each_segment_all(bi
, sbio
, j
)
2131 page_len
[j
] = bi
->bv_len
;
2134 for (j
= vcnt
; j
-- ; ) {
2135 if (memcmp(page_address(ppages
[j
]),
2136 page_address(spages
[j
]),
2143 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2144 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2146 /* No need to write to this device. */
2147 sbio
->bi_end_io
= NULL
;
2148 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2152 bio_copy_data(sbio
, pbio
);
2156 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2158 struct r1conf
*conf
= mddev
->private;
2160 int disks
= conf
->raid_disks
* 2;
2163 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2164 /* ouch - failed to read all of that. */
2165 if (!fix_sync_read_error(r1_bio
))
2168 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2169 process_checks(r1_bio
);
2174 atomic_set(&r1_bio
->remaining
, 1);
2175 for (i
= 0; i
< disks
; i
++) {
2176 wbio
= r1_bio
->bios
[i
];
2177 if (wbio
->bi_end_io
== NULL
||
2178 (wbio
->bi_end_io
== end_sync_read
&&
2179 (i
== r1_bio
->read_disk
||
2180 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2182 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
)) {
2183 abort_sync_write(mddev
, r1_bio
);
2187 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2188 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2189 wbio
->bi_opf
|= MD_FAILFAST
;
2191 wbio
->bi_end_io
= end_sync_write
;
2192 atomic_inc(&r1_bio
->remaining
);
2193 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2195 generic_make_request(wbio
);
2198 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2199 /* if we're here, all write(s) have completed, so clean up */
2200 int s
= r1_bio
->sectors
;
2201 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2202 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2203 reschedule_retry(r1_bio
);
2206 md_done_sync(mddev
, s
, 1);
2212 * This is a kernel thread which:
2214 * 1. Retries failed read operations on working mirrors.
2215 * 2. Updates the raid superblock when problems encounter.
2216 * 3. Performs writes following reads for array synchronising.
2219 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2220 sector_t sect
, int sectors
)
2222 struct mddev
*mddev
= conf
->mddev
;
2228 struct md_rdev
*rdev
;
2230 if (s
> (PAGE_SIZE
>>9))
2238 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2240 (test_bit(In_sync
, &rdev
->flags
) ||
2241 (!test_bit(Faulty
, &rdev
->flags
) &&
2242 rdev
->recovery_offset
>= sect
+ s
)) &&
2243 is_badblock(rdev
, sect
, s
,
2244 &first_bad
, &bad_sectors
) == 0) {
2245 atomic_inc(&rdev
->nr_pending
);
2247 if (sync_page_io(rdev
, sect
, s
<<9,
2248 conf
->tmppage
, REQ_OP_READ
, 0, false))
2250 rdev_dec_pending(rdev
, mddev
);
2256 if (d
== conf
->raid_disks
* 2)
2258 } while (!success
&& d
!= read_disk
);
2261 /* Cannot read from anywhere - mark it bad */
2262 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2263 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2264 md_error(mddev
, rdev
);
2267 /* write it back and re-read */
2269 while (d
!= read_disk
) {
2271 d
= conf
->raid_disks
* 2;
2274 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2276 !test_bit(Faulty
, &rdev
->flags
)) {
2277 atomic_inc(&rdev
->nr_pending
);
2279 r1_sync_page_io(rdev
, sect
, s
,
2280 conf
->tmppage
, WRITE
);
2281 rdev_dec_pending(rdev
, mddev
);
2286 while (d
!= read_disk
) {
2287 char b
[BDEVNAME_SIZE
];
2289 d
= conf
->raid_disks
* 2;
2292 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2294 !test_bit(Faulty
, &rdev
->flags
)) {
2295 atomic_inc(&rdev
->nr_pending
);
2297 if (r1_sync_page_io(rdev
, sect
, s
,
2298 conf
->tmppage
, READ
)) {
2299 atomic_add(s
, &rdev
->corrected_errors
);
2300 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2302 (unsigned long long)(sect
+
2304 bdevname(rdev
->bdev
, b
));
2306 rdev_dec_pending(rdev
, mddev
);
2315 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2317 struct mddev
*mddev
= r1_bio
->mddev
;
2318 struct r1conf
*conf
= mddev
->private;
2319 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2321 /* bio has the data to be written to device 'i' where
2322 * we just recently had a write error.
2323 * We repeatedly clone the bio and trim down to one block,
2324 * then try the write. Where the write fails we record
2326 * It is conceivable that the bio doesn't exactly align with
2327 * blocks. We must handle this somehow.
2329 * We currently own a reference on the rdev.
2335 int sect_to_write
= r1_bio
->sectors
;
2338 if (rdev
->badblocks
.shift
< 0)
2341 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2342 bdev_logical_block_size(rdev
->bdev
) >> 9);
2343 sector
= r1_bio
->sector
;
2344 sectors
= ((sector
+ block_sectors
)
2345 & ~(sector_t
)(block_sectors
- 1))
2348 while (sect_to_write
) {
2350 if (sectors
> sect_to_write
)
2351 sectors
= sect_to_write
;
2352 /* Write at 'sector' for 'sectors'*/
2354 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2355 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2359 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2363 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2364 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2365 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2367 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2368 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2369 bio_set_dev(wbio
, rdev
->bdev
);
2371 if (submit_bio_wait(wbio
) < 0)
2373 ok
= rdev_set_badblocks(rdev
, sector
,
2378 sect_to_write
-= sectors
;
2380 sectors
= block_sectors
;
2385 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2388 int s
= r1_bio
->sectors
;
2389 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2390 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2391 struct bio
*bio
= r1_bio
->bios
[m
];
2392 if (bio
->bi_end_io
== NULL
)
2394 if (!bio
->bi_status
&&
2395 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2396 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2398 if (bio
->bi_status
&&
2399 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2400 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2401 md_error(conf
->mddev
, rdev
);
2405 md_done_sync(conf
->mddev
, s
, 1);
2408 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2413 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2414 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2415 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2416 rdev_clear_badblocks(rdev
,
2418 r1_bio
->sectors
, 0);
2419 rdev_dec_pending(rdev
, conf
->mddev
);
2420 } else if (r1_bio
->bios
[m
] != NULL
) {
2421 /* This drive got a write error. We need to
2422 * narrow down and record precise write
2426 if (!narrow_write_error(r1_bio
, m
)) {
2427 md_error(conf
->mddev
,
2428 conf
->mirrors
[m
].rdev
);
2429 /* an I/O failed, we can't clear the bitmap */
2430 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2432 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2436 spin_lock_irq(&conf
->device_lock
);
2437 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2438 idx
= sector_to_idx(r1_bio
->sector
);
2439 atomic_inc(&conf
->nr_queued
[idx
]);
2440 spin_unlock_irq(&conf
->device_lock
);
2442 * In case freeze_array() is waiting for condition
2443 * get_unqueued_pending() == extra to be true.
2445 wake_up(&conf
->wait_barrier
);
2446 md_wakeup_thread(conf
->mddev
->thread
);
2448 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2449 close_write(r1_bio
);
2450 raid_end_bio_io(r1_bio
);
2454 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2456 struct mddev
*mddev
= conf
->mddev
;
2458 struct md_rdev
*rdev
;
2460 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2461 /* we got a read error. Maybe the drive is bad. Maybe just
2462 * the block and we can fix it.
2463 * We freeze all other IO, and try reading the block from
2464 * other devices. When we find one, we re-write
2465 * and check it that fixes the read error.
2466 * This is all done synchronously while the array is
2470 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2472 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2474 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2476 && !test_bit(FailFast
, &rdev
->flags
)) {
2477 freeze_array(conf
, 1);
2478 fix_read_error(conf
, r1_bio
->read_disk
,
2479 r1_bio
->sector
, r1_bio
->sectors
);
2480 unfreeze_array(conf
);
2481 } else if (mddev
->ro
== 0 && test_bit(FailFast
, &rdev
->flags
)) {
2482 md_error(mddev
, rdev
);
2484 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2487 rdev_dec_pending(rdev
, conf
->mddev
);
2488 allow_barrier(conf
, r1_bio
->sector
);
2489 bio
= r1_bio
->master_bio
;
2491 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2493 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2496 static void raid1d(struct md_thread
*thread
)
2498 struct mddev
*mddev
= thread
->mddev
;
2499 struct r1bio
*r1_bio
;
2500 unsigned long flags
;
2501 struct r1conf
*conf
= mddev
->private;
2502 struct list_head
*head
= &conf
->retry_list
;
2503 struct blk_plug plug
;
2506 md_check_recovery(mddev
);
2508 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2509 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2511 spin_lock_irqsave(&conf
->device_lock
, flags
);
2512 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2513 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2514 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2515 while (!list_empty(&tmp
)) {
2516 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2518 list_del(&r1_bio
->retry_list
);
2519 idx
= sector_to_idx(r1_bio
->sector
);
2520 atomic_dec(&conf
->nr_queued
[idx
]);
2521 if (mddev
->degraded
)
2522 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2523 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2524 close_write(r1_bio
);
2525 raid_end_bio_io(r1_bio
);
2529 blk_start_plug(&plug
);
2532 flush_pending_writes(conf
);
2534 spin_lock_irqsave(&conf
->device_lock
, flags
);
2535 if (list_empty(head
)) {
2536 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2539 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2540 list_del(head
->prev
);
2541 idx
= sector_to_idx(r1_bio
->sector
);
2542 atomic_dec(&conf
->nr_queued
[idx
]);
2543 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2545 mddev
= r1_bio
->mddev
;
2546 conf
= mddev
->private;
2547 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2548 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2549 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2550 handle_sync_write_finished(conf
, r1_bio
);
2552 sync_request_write(mddev
, r1_bio
);
2553 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2554 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2555 handle_write_finished(conf
, r1_bio
);
2556 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2557 handle_read_error(conf
, r1_bio
);
2562 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2563 md_check_recovery(mddev
);
2565 blk_finish_plug(&plug
);
2568 static int init_resync(struct r1conf
*conf
)
2572 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2573 BUG_ON(mempool_initialized(&conf
->r1buf_pool
));
2575 return mempool_init(&conf
->r1buf_pool
, buffs
, r1buf_pool_alloc
,
2576 r1buf_pool_free
, conf
->poolinfo
);
2579 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2581 struct r1bio
*r1bio
= mempool_alloc(&conf
->r1buf_pool
, GFP_NOIO
);
2582 struct resync_pages
*rps
;
2586 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2587 bio
= r1bio
->bios
[i
];
2588 rps
= bio
->bi_private
;
2590 bio
->bi_private
= rps
;
2592 r1bio
->master_bio
= NULL
;
2597 * perform a "sync" on one "block"
2599 * We need to make sure that no normal I/O request - particularly write
2600 * requests - conflict with active sync requests.
2602 * This is achieved by tracking pending requests and a 'barrier' concept
2603 * that can be installed to exclude normal IO requests.
2606 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2609 struct r1conf
*conf
= mddev
->private;
2610 struct r1bio
*r1_bio
;
2612 sector_t max_sector
, nr_sectors
;
2616 int write_targets
= 0, read_targets
= 0;
2617 sector_t sync_blocks
;
2618 int still_degraded
= 0;
2619 int good_sectors
= RESYNC_SECTORS
;
2620 int min_bad
= 0; /* number of sectors that are bad in all devices */
2621 int idx
= sector_to_idx(sector_nr
);
2624 if (!mempool_initialized(&conf
->r1buf_pool
))
2625 if (init_resync(conf
))
2628 max_sector
= mddev
->dev_sectors
;
2629 if (sector_nr
>= max_sector
) {
2630 /* If we aborted, we need to abort the
2631 * sync on the 'current' bitmap chunk (there will
2632 * only be one in raid1 resync.
2633 * We can find the current addess in mddev->curr_resync
2635 if (mddev
->curr_resync
< max_sector
) /* aborted */
2636 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2638 else /* completed sync */
2641 md_bitmap_close_sync(mddev
->bitmap
);
2644 if (mddev_is_clustered(mddev
)) {
2645 conf
->cluster_sync_low
= 0;
2646 conf
->cluster_sync_high
= 0;
2651 if (mddev
->bitmap
== NULL
&&
2652 mddev
->recovery_cp
== MaxSector
&&
2653 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2654 conf
->fullsync
== 0) {
2656 return max_sector
- sector_nr
;
2658 /* before building a request, check if we can skip these blocks..
2659 * This call the bitmap_start_sync doesn't actually record anything
2661 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2662 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2663 /* We can skip this block, and probably several more */
2669 * If there is non-resync activity waiting for a turn, then let it
2670 * though before starting on this new sync request.
2672 if (atomic_read(&conf
->nr_waiting
[idx
]))
2673 schedule_timeout_uninterruptible(1);
2675 /* we are incrementing sector_nr below. To be safe, we check against
2676 * sector_nr + two times RESYNC_SECTORS
2679 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2680 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2683 if (raise_barrier(conf
, sector_nr
))
2686 r1_bio
= raid1_alloc_init_r1buf(conf
);
2690 * If we get a correctably read error during resync or recovery,
2691 * we might want to read from a different device. So we
2692 * flag all drives that could conceivably be read from for READ,
2693 * and any others (which will be non-In_sync devices) for WRITE.
2694 * If a read fails, we try reading from something else for which READ
2698 r1_bio
->mddev
= mddev
;
2699 r1_bio
->sector
= sector_nr
;
2701 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2702 /* make sure good_sectors won't go across barrier unit boundary */
2703 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2705 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2706 struct md_rdev
*rdev
;
2707 bio
= r1_bio
->bios
[i
];
2709 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2711 test_bit(Faulty
, &rdev
->flags
)) {
2712 if (i
< conf
->raid_disks
)
2714 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2715 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2716 bio
->bi_end_io
= end_sync_write
;
2719 /* may need to read from here */
2720 sector_t first_bad
= MaxSector
;
2723 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2724 &first_bad
, &bad_sectors
)) {
2725 if (first_bad
> sector_nr
)
2726 good_sectors
= first_bad
- sector_nr
;
2728 bad_sectors
-= (sector_nr
- first_bad
);
2730 min_bad
> bad_sectors
)
2731 min_bad
= bad_sectors
;
2734 if (sector_nr
< first_bad
) {
2735 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2742 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2743 bio
->bi_end_io
= end_sync_read
;
2745 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2746 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2747 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2749 * The device is suitable for reading (InSync),
2750 * but has bad block(s) here. Let's try to correct them,
2751 * if we are doing resync or repair. Otherwise, leave
2752 * this device alone for this sync request.
2754 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2755 bio
->bi_end_io
= end_sync_write
;
2759 if (rdev
&& bio
->bi_end_io
) {
2760 atomic_inc(&rdev
->nr_pending
);
2761 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2762 bio_set_dev(bio
, rdev
->bdev
);
2763 if (test_bit(FailFast
, &rdev
->flags
))
2764 bio
->bi_opf
|= MD_FAILFAST
;
2770 r1_bio
->read_disk
= disk
;
2772 if (read_targets
== 0 && min_bad
> 0) {
2773 /* These sectors are bad on all InSync devices, so we
2774 * need to mark them bad on all write targets
2777 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2778 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2779 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2780 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2784 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2789 /* Cannot record the badblocks, so need to
2791 * If there are multiple read targets, could just
2792 * fail the really bad ones ???
2794 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2795 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2801 if (min_bad
> 0 && min_bad
< good_sectors
) {
2802 /* only resync enough to reach the next bad->good
2804 good_sectors
= min_bad
;
2807 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2808 /* extra read targets are also write targets */
2809 write_targets
+= read_targets
-1;
2811 if (write_targets
== 0 || read_targets
== 0) {
2812 /* There is nowhere to write, so all non-sync
2813 * drives must be failed - so we are finished
2817 max_sector
= sector_nr
+ min_bad
;
2818 rv
= max_sector
- sector_nr
;
2824 if (max_sector
> mddev
->resync_max
)
2825 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2826 if (max_sector
> sector_nr
+ good_sectors
)
2827 max_sector
= sector_nr
+ good_sectors
;
2832 int len
= PAGE_SIZE
;
2833 if (sector_nr
+ (len
>>9) > max_sector
)
2834 len
= (max_sector
- sector_nr
) << 9;
2837 if (sync_blocks
== 0) {
2838 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2839 &sync_blocks
, still_degraded
) &&
2841 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2843 if ((len
>> 9) > sync_blocks
)
2844 len
= sync_blocks
<<9;
2847 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2848 struct resync_pages
*rp
;
2850 bio
= r1_bio
->bios
[i
];
2851 rp
= get_resync_pages(bio
);
2852 if (bio
->bi_end_io
) {
2853 page
= resync_fetch_page(rp
, page_idx
);
2856 * won't fail because the vec table is big
2857 * enough to hold all these pages
2859 bio_add_page(bio
, page
, len
, 0);
2862 nr_sectors
+= len
>>9;
2863 sector_nr
+= len
>>9;
2864 sync_blocks
-= (len
>>9);
2865 } while (++page_idx
< RESYNC_PAGES
);
2867 r1_bio
->sectors
= nr_sectors
;
2869 if (mddev_is_clustered(mddev
) &&
2870 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2871 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2872 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2873 /* Send resync message */
2874 md_cluster_ops
->resync_info_update(mddev
,
2875 conf
->cluster_sync_low
,
2876 conf
->cluster_sync_high
);
2879 /* For a user-requested sync, we read all readable devices and do a
2882 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2883 atomic_set(&r1_bio
->remaining
, read_targets
);
2884 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2885 bio
= r1_bio
->bios
[i
];
2886 if (bio
->bi_end_io
== end_sync_read
) {
2888 md_sync_acct_bio(bio
, nr_sectors
);
2889 if (read_targets
== 1)
2890 bio
->bi_opf
&= ~MD_FAILFAST
;
2891 generic_make_request(bio
);
2895 atomic_set(&r1_bio
->remaining
, 1);
2896 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2897 md_sync_acct_bio(bio
, nr_sectors
);
2898 if (read_targets
== 1)
2899 bio
->bi_opf
&= ~MD_FAILFAST
;
2900 generic_make_request(bio
);
2906 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2911 return mddev
->dev_sectors
;
2914 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2916 struct r1conf
*conf
;
2918 struct raid1_info
*disk
;
2919 struct md_rdev
*rdev
;
2922 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2926 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2927 sizeof(atomic_t
), GFP_KERNEL
);
2928 if (!conf
->nr_pending
)
2931 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2932 sizeof(atomic_t
), GFP_KERNEL
);
2933 if (!conf
->nr_waiting
)
2936 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2937 sizeof(atomic_t
), GFP_KERNEL
);
2938 if (!conf
->nr_queued
)
2941 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2942 sizeof(atomic_t
), GFP_KERNEL
);
2946 conf
->mirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
2947 mddev
->raid_disks
, 2),
2952 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2956 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2957 if (!conf
->poolinfo
)
2959 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2960 err
= mempool_init(&conf
->r1bio_pool
, NR_RAID1_BIOS
, r1bio_pool_alloc
,
2961 r1bio_pool_free
, conf
->poolinfo
);
2965 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
2969 conf
->poolinfo
->mddev
= mddev
;
2972 spin_lock_init(&conf
->device_lock
);
2973 rdev_for_each(rdev
, mddev
) {
2974 int disk_idx
= rdev
->raid_disk
;
2975 if (disk_idx
>= mddev
->raid_disks
2978 if (test_bit(Replacement
, &rdev
->flags
))
2979 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2981 disk
= conf
->mirrors
+ disk_idx
;
2986 disk
->head_position
= 0;
2987 disk
->seq_start
= MaxSector
;
2989 conf
->raid_disks
= mddev
->raid_disks
;
2990 conf
->mddev
= mddev
;
2991 INIT_LIST_HEAD(&conf
->retry_list
);
2992 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2994 spin_lock_init(&conf
->resync_lock
);
2995 init_waitqueue_head(&conf
->wait_barrier
);
2997 bio_list_init(&conf
->pending_bio_list
);
2998 conf
->pending_count
= 0;
2999 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3002 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
3004 disk
= conf
->mirrors
+ i
;
3006 if (i
< conf
->raid_disks
&&
3007 disk
[conf
->raid_disks
].rdev
) {
3008 /* This slot has a replacement. */
3010 /* No original, just make the replacement
3011 * a recovering spare
3014 disk
[conf
->raid_disks
].rdev
;
3015 disk
[conf
->raid_disks
].rdev
= NULL
;
3016 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
3017 /* Original is not in_sync - bad */
3022 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3023 disk
->head_position
= 0;
3025 (disk
->rdev
->saved_raid_disk
< 0))
3031 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3039 mempool_exit(&conf
->r1bio_pool
);
3040 kfree(conf
->mirrors
);
3041 safe_put_page(conf
->tmppage
);
3042 kfree(conf
->poolinfo
);
3043 kfree(conf
->nr_pending
);
3044 kfree(conf
->nr_waiting
);
3045 kfree(conf
->nr_queued
);
3046 kfree(conf
->barrier
);
3047 bioset_exit(&conf
->bio_split
);
3050 return ERR_PTR(err
);
3053 static void raid1_free(struct mddev
*mddev
, void *priv
);
3054 static int raid1_run(struct mddev
*mddev
)
3056 struct r1conf
*conf
;
3058 struct md_rdev
*rdev
;
3060 bool discard_supported
= false;
3062 if (mddev
->level
!= 1) {
3063 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3064 mdname(mddev
), mddev
->level
);
3067 if (mddev
->reshape_position
!= MaxSector
) {
3068 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3072 if (mddev_init_writes_pending(mddev
) < 0)
3075 * copy the already verified devices into our private RAID1
3076 * bookkeeping area. [whatever we allocate in run(),
3077 * should be freed in raid1_free()]
3079 if (mddev
->private == NULL
)
3080 conf
= setup_conf(mddev
);
3082 conf
= mddev
->private;
3085 return PTR_ERR(conf
);
3088 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3089 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3092 rdev_for_each(rdev
, mddev
) {
3093 if (!mddev
->gendisk
)
3095 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3096 rdev
->data_offset
<< 9);
3097 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3098 discard_supported
= true;
3101 mddev
->degraded
= 0;
3102 for (i
=0; i
< conf
->raid_disks
; i
++)
3103 if (conf
->mirrors
[i
].rdev
== NULL
||
3104 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3105 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3108 * RAID1 needs at least one disk in active
3110 if (conf
->raid_disks
- mddev
->degraded
< 1) {
3115 if (conf
->raid_disks
- mddev
->degraded
== 1)
3116 mddev
->recovery_cp
= MaxSector
;
3118 if (mddev
->recovery_cp
!= MaxSector
)
3119 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3121 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3122 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3126 * Ok, everything is just fine now
3128 mddev
->thread
= conf
->thread
;
3129 conf
->thread
= NULL
;
3130 mddev
->private = conf
;
3131 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3133 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3136 if (discard_supported
)
3137 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3140 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3144 ret
= md_integrity_register(mddev
);
3146 md_unregister_thread(&mddev
->thread
);
3152 raid1_free(mddev
, conf
);
3156 static void raid1_free(struct mddev
*mddev
, void *priv
)
3158 struct r1conf
*conf
= priv
;
3160 mempool_exit(&conf
->r1bio_pool
);
3161 kfree(conf
->mirrors
);
3162 safe_put_page(conf
->tmppage
);
3163 kfree(conf
->poolinfo
);
3164 kfree(conf
->nr_pending
);
3165 kfree(conf
->nr_waiting
);
3166 kfree(conf
->nr_queued
);
3167 kfree(conf
->barrier
);
3168 bioset_exit(&conf
->bio_split
);
3172 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3174 /* no resync is happening, and there is enough space
3175 * on all devices, so we can resize.
3176 * We need to make sure resync covers any new space.
3177 * If the array is shrinking we should possibly wait until
3178 * any io in the removed space completes, but it hardly seems
3181 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3182 if (mddev
->external_size
&&
3183 mddev
->array_sectors
> newsize
)
3185 if (mddev
->bitmap
) {
3186 int ret
= md_bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3190 md_set_array_sectors(mddev
, newsize
);
3191 if (sectors
> mddev
->dev_sectors
&&
3192 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3193 mddev
->recovery_cp
= mddev
->dev_sectors
;
3194 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3196 mddev
->dev_sectors
= sectors
;
3197 mddev
->resync_max_sectors
= sectors
;
3201 static int raid1_reshape(struct mddev
*mddev
)
3204 * 1/ resize the r1bio_pool
3205 * 2/ resize conf->mirrors
3207 * We allocate a new r1bio_pool if we can.
3208 * Then raise a device barrier and wait until all IO stops.
3209 * Then resize conf->mirrors and swap in the new r1bio pool.
3211 * At the same time, we "pack" the devices so that all the missing
3212 * devices have the higher raid_disk numbers.
3214 mempool_t newpool
, oldpool
;
3215 struct pool_info
*newpoolinfo
;
3216 struct raid1_info
*newmirrors
;
3217 struct r1conf
*conf
= mddev
->private;
3218 int cnt
, raid_disks
;
3219 unsigned long flags
;
3223 memset(&newpool
, 0, sizeof(newpool
));
3224 memset(&oldpool
, 0, sizeof(oldpool
));
3226 /* Cannot change chunk_size, layout, or level */
3227 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3228 mddev
->layout
!= mddev
->new_layout
||
3229 mddev
->level
!= mddev
->new_level
) {
3230 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3231 mddev
->new_layout
= mddev
->layout
;
3232 mddev
->new_level
= mddev
->level
;
3236 if (!mddev_is_clustered(mddev
))
3237 md_allow_write(mddev
);
3239 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3241 if (raid_disks
< conf
->raid_disks
) {
3243 for (d
= 0; d
< conf
->raid_disks
; d
++)
3244 if (conf
->mirrors
[d
].rdev
)
3246 if (cnt
> raid_disks
)
3250 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3253 newpoolinfo
->mddev
= mddev
;
3254 newpoolinfo
->raid_disks
= raid_disks
* 2;
3256 ret
= mempool_init(&newpool
, NR_RAID1_BIOS
, r1bio_pool_alloc
,
3257 r1bio_pool_free
, newpoolinfo
);
3262 newmirrors
= kzalloc(array3_size(sizeof(struct raid1_info
),
3267 mempool_exit(&newpool
);
3271 freeze_array(conf
, 0);
3273 /* ok, everything is stopped */
3274 oldpool
= conf
->r1bio_pool
;
3275 conf
->r1bio_pool
= newpool
;
3277 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3278 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3279 if (rdev
&& rdev
->raid_disk
!= d2
) {
3280 sysfs_unlink_rdev(mddev
, rdev
);
3281 rdev
->raid_disk
= d2
;
3282 sysfs_unlink_rdev(mddev
, rdev
);
3283 if (sysfs_link_rdev(mddev
, rdev
))
3284 pr_warn("md/raid1:%s: cannot register rd%d\n",
3285 mdname(mddev
), rdev
->raid_disk
);
3288 newmirrors
[d2
++].rdev
= rdev
;
3290 kfree(conf
->mirrors
);
3291 conf
->mirrors
= newmirrors
;
3292 kfree(conf
->poolinfo
);
3293 conf
->poolinfo
= newpoolinfo
;
3295 spin_lock_irqsave(&conf
->device_lock
, flags
);
3296 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3297 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3298 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3299 mddev
->delta_disks
= 0;
3301 unfreeze_array(conf
);
3303 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3304 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3305 md_wakeup_thread(mddev
->thread
);
3307 mempool_exit(&oldpool
);
3311 static void raid1_quiesce(struct mddev
*mddev
, int quiesce
)
3313 struct r1conf
*conf
= mddev
->private;
3316 freeze_array(conf
, 0);
3318 unfreeze_array(conf
);
3321 static void *raid1_takeover(struct mddev
*mddev
)
3323 /* raid1 can take over:
3324 * raid5 with 2 devices, any layout or chunk size
3326 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3327 struct r1conf
*conf
;
3328 mddev
->new_level
= 1;
3329 mddev
->new_layout
= 0;
3330 mddev
->new_chunk_sectors
= 0;
3331 conf
= setup_conf(mddev
);
3332 if (!IS_ERR(conf
)) {
3333 /* Array must appear to be quiesced */
3334 conf
->array_frozen
= 1;
3335 mddev_clear_unsupported_flags(mddev
,
3336 UNSUPPORTED_MDDEV_FLAGS
);
3340 return ERR_PTR(-EINVAL
);
3343 static struct md_personality raid1_personality
=
3347 .owner
= THIS_MODULE
,
3348 .make_request
= raid1_make_request
,
3351 .status
= raid1_status
,
3352 .error_handler
= raid1_error
,
3353 .hot_add_disk
= raid1_add_disk
,
3354 .hot_remove_disk
= raid1_remove_disk
,
3355 .spare_active
= raid1_spare_active
,
3356 .sync_request
= raid1_sync_request
,
3357 .resize
= raid1_resize
,
3359 .check_reshape
= raid1_reshape
,
3360 .quiesce
= raid1_quiesce
,
3361 .takeover
= raid1_takeover
,
3362 .congested
= raid1_congested
,
3365 static int __init
raid_init(void)
3367 return register_md_personality(&raid1_personality
);
3370 static void raid_exit(void)
3372 unregister_md_personality(&raid1_personality
);
3375 module_init(raid_init
);
3376 module_exit(raid_exit
);
3377 MODULE_LICENSE("GPL");
3378 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3379 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3380 MODULE_ALIAS("md-raid1");
3381 MODULE_ALIAS("md-level-1");
3383 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);