2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
32 #include "md-bitmap.h"
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
98 static int max_queued_requests
= 1024;
100 static void allow_barrier(struct r10conf
*conf
);
101 static void lower_barrier(struct r10conf
*conf
);
102 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
103 static int enough(struct r10conf
*conf
, int ignore
);
104 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
106 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
107 static void end_reshape_write(struct bio
*bio
);
108 static void end_reshape(struct r10conf
*conf
);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 #include "raid1-10.c"
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
119 static inline struct r10bio
*get_resync_r10bio(struct bio
*bio
)
121 return get_resync_pages(bio
)->raid_bio
;
124 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
126 struct r10conf
*conf
= data
;
127 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
129 /* allocate a r10bio with room for raid_disks entries in the
131 return kzalloc(size
, gfp_flags
);
134 static void r10bio_pool_free(void *r10_bio
, void *data
)
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
154 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
156 struct r10conf
*conf
= data
;
157 struct r10bio
*r10_bio
;
160 int nalloc
, nalloc_rp
;
161 struct resync_pages
*rps
;
163 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
167 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
168 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
169 nalloc
= conf
->copies
; /* resync */
171 nalloc
= 2; /* recovery */
173 /* allocate once for all bios */
174 if (!conf
->have_replacement
)
177 nalloc_rp
= nalloc
* 2;
178 rps
= kmalloc_array(nalloc_rp
, sizeof(struct resync_pages
), gfp_flags
);
180 goto out_free_r10bio
;
185 for (j
= nalloc
; j
-- ; ) {
186 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
189 r10_bio
->devs
[j
].bio
= bio
;
190 if (!conf
->have_replacement
)
192 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
195 r10_bio
->devs
[j
].repl_bio
= bio
;
198 * Allocate RESYNC_PAGES data pages and attach them
201 for (j
= 0; j
< nalloc
; j
++) {
202 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
203 struct resync_pages
*rp
, *rp_repl
;
207 rp_repl
= &rps
[nalloc
+ j
];
209 bio
= r10_bio
->devs
[j
].bio
;
211 if (!j
|| test_bit(MD_RECOVERY_SYNC
,
212 &conf
->mddev
->recovery
)) {
213 if (resync_alloc_pages(rp
, gfp_flags
))
216 memcpy(rp
, &rps
[0], sizeof(*rp
));
217 resync_get_all_pages(rp
);
220 rp
->raid_bio
= r10_bio
;
221 bio
->bi_private
= rp
;
223 memcpy(rp_repl
, rp
, sizeof(*rp
));
224 rbio
->bi_private
= rp_repl
;
232 resync_free_pages(&rps
[j
]);
236 for ( ; j
< nalloc
; j
++) {
237 if (r10_bio
->devs
[j
].bio
)
238 bio_put(r10_bio
->devs
[j
].bio
);
239 if (r10_bio
->devs
[j
].repl_bio
)
240 bio_put(r10_bio
->devs
[j
].repl_bio
);
244 r10bio_pool_free(r10_bio
, conf
);
248 static void r10buf_pool_free(void *__r10_bio
, void *data
)
250 struct r10conf
*conf
= data
;
251 struct r10bio
*r10bio
= __r10_bio
;
253 struct resync_pages
*rp
= NULL
;
255 for (j
= conf
->copies
; j
--; ) {
256 struct bio
*bio
= r10bio
->devs
[j
].bio
;
259 rp
= get_resync_pages(bio
);
260 resync_free_pages(rp
);
264 bio
= r10bio
->devs
[j
].repl_bio
;
269 /* resync pages array stored in the 1st bio's .bi_private */
272 r10bio_pool_free(r10bio
, conf
);
275 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
279 for (i
= 0; i
< conf
->copies
; i
++) {
280 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
281 if (!BIO_SPECIAL(*bio
))
284 bio
= &r10_bio
->devs
[i
].repl_bio
;
285 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
291 static void free_r10bio(struct r10bio
*r10_bio
)
293 struct r10conf
*conf
= r10_bio
->mddev
->private;
295 put_all_bios(conf
, r10_bio
);
296 mempool_free(r10_bio
, &conf
->r10bio_pool
);
299 static void put_buf(struct r10bio
*r10_bio
)
301 struct r10conf
*conf
= r10_bio
->mddev
->private;
303 mempool_free(r10_bio
, &conf
->r10buf_pool
);
308 static void reschedule_retry(struct r10bio
*r10_bio
)
311 struct mddev
*mddev
= r10_bio
->mddev
;
312 struct r10conf
*conf
= mddev
->private;
314 spin_lock_irqsave(&conf
->device_lock
, flags
);
315 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
317 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
319 /* wake up frozen array... */
320 wake_up(&conf
->wait_barrier
);
322 md_wakeup_thread(mddev
->thread
);
326 * raid_end_bio_io() is called when we have finished servicing a mirrored
327 * operation and are ready to return a success/failure code to the buffer
330 static void raid_end_bio_io(struct r10bio
*r10_bio
)
332 struct bio
*bio
= r10_bio
->master_bio
;
333 struct r10conf
*conf
= r10_bio
->mddev
->private;
335 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
336 bio
->bi_status
= BLK_STS_IOERR
;
340 * Wake up any possible resync thread that waits for the device
345 free_r10bio(r10_bio
);
349 * Update disk head position estimator based on IRQ completion info.
351 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
353 struct r10conf
*conf
= r10_bio
->mddev
->private;
355 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
356 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
360 * Find the disk number which triggered given bio
362 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
363 struct bio
*bio
, int *slotp
, int *replp
)
368 for (slot
= 0; slot
< conf
->copies
; slot
++) {
369 if (r10_bio
->devs
[slot
].bio
== bio
)
371 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
377 BUG_ON(slot
== conf
->copies
);
378 update_head_pos(slot
, r10_bio
);
384 return r10_bio
->devs
[slot
].devnum
;
387 static void raid10_end_read_request(struct bio
*bio
)
389 int uptodate
= !bio
->bi_status
;
390 struct r10bio
*r10_bio
= bio
->bi_private
;
392 struct md_rdev
*rdev
;
393 struct r10conf
*conf
= r10_bio
->mddev
->private;
395 slot
= r10_bio
->read_slot
;
396 rdev
= r10_bio
->devs
[slot
].rdev
;
398 * this branch is our 'one mirror IO has finished' event handler:
400 update_head_pos(slot
, r10_bio
);
404 * Set R10BIO_Uptodate in our master bio, so that
405 * we will return a good error code to the higher
406 * levels even if IO on some other mirrored buffer fails.
408 * The 'master' represents the composite IO operation to
409 * user-side. So if something waits for IO, then it will
410 * wait for the 'master' bio.
412 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
414 /* If all other devices that store this block have
415 * failed, we want to return the error upwards rather
416 * than fail the last device. Here we redefine
417 * "uptodate" to mean "Don't want to retry"
419 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
424 raid_end_bio_io(r10_bio
);
425 rdev_dec_pending(rdev
, conf
->mddev
);
428 * oops, read error - keep the refcount on the rdev
430 char b
[BDEVNAME_SIZE
];
431 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
433 bdevname(rdev
->bdev
, b
),
434 (unsigned long long)r10_bio
->sector
);
435 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
436 reschedule_retry(r10_bio
);
440 static void close_write(struct r10bio
*r10_bio
)
442 /* clear the bitmap if all writes complete successfully */
443 md_bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
445 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
447 md_write_end(r10_bio
->mddev
);
450 static void one_write_done(struct r10bio
*r10_bio
)
452 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
453 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
454 reschedule_retry(r10_bio
);
456 close_write(r10_bio
);
457 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
458 reschedule_retry(r10_bio
);
460 raid_end_bio_io(r10_bio
);
465 static void raid10_end_write_request(struct bio
*bio
)
467 struct r10bio
*r10_bio
= bio
->bi_private
;
470 struct r10conf
*conf
= r10_bio
->mddev
->private;
472 struct md_rdev
*rdev
= NULL
;
473 struct bio
*to_put
= NULL
;
476 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
478 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
481 rdev
= conf
->mirrors
[dev
].replacement
;
485 rdev
= conf
->mirrors
[dev
].rdev
;
488 * this branch is our 'one mirror IO has finished' event handler:
490 if (bio
->bi_status
&& !discard_error
) {
492 /* Never record new bad blocks to replacement,
495 md_error(rdev
->mddev
, rdev
);
497 set_bit(WriteErrorSeen
, &rdev
->flags
);
498 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
499 set_bit(MD_RECOVERY_NEEDED
,
500 &rdev
->mddev
->recovery
);
503 if (test_bit(FailFast
, &rdev
->flags
) &&
504 (bio
->bi_opf
& MD_FAILFAST
)) {
505 md_error(rdev
->mddev
, rdev
);
506 if (!test_bit(Faulty
, &rdev
->flags
))
507 /* This is the only remaining device,
508 * We need to retry the write without
511 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
513 r10_bio
->devs
[slot
].bio
= NULL
;
518 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
522 * Set R10BIO_Uptodate in our master bio, so that
523 * we will return a good error code for to the higher
524 * levels even if IO on some other mirrored buffer fails.
526 * The 'master' represents the composite IO operation to
527 * user-side. So if something waits for IO, then it will
528 * wait for the 'master' bio.
534 * Do not set R10BIO_Uptodate if the current device is
535 * rebuilding or Faulty. This is because we cannot use
536 * such device for properly reading the data back (we could
537 * potentially use it, if the current write would have felt
538 * before rdev->recovery_offset, but for simplicity we don't
541 if (test_bit(In_sync
, &rdev
->flags
) &&
542 !test_bit(Faulty
, &rdev
->flags
))
543 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
545 /* Maybe we can clear some bad blocks. */
546 if (is_badblock(rdev
,
547 r10_bio
->devs
[slot
].addr
,
549 &first_bad
, &bad_sectors
) && !discard_error
) {
552 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
554 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
556 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
562 * Let's see if all mirrored write operations have finished
565 one_write_done(r10_bio
);
567 rdev_dec_pending(rdev
, conf
->mddev
);
573 * RAID10 layout manager
574 * As well as the chunksize and raid_disks count, there are two
575 * parameters: near_copies and far_copies.
576 * near_copies * far_copies must be <= raid_disks.
577 * Normally one of these will be 1.
578 * If both are 1, we get raid0.
579 * If near_copies == raid_disks, we get raid1.
581 * Chunks are laid out in raid0 style with near_copies copies of the
582 * first chunk, followed by near_copies copies of the next chunk and
584 * If far_copies > 1, then after 1/far_copies of the array has been assigned
585 * as described above, we start again with a device offset of near_copies.
586 * So we effectively have another copy of the whole array further down all
587 * the drives, but with blocks on different drives.
588 * With this layout, and block is never stored twice on the one device.
590 * raid10_find_phys finds the sector offset of a given virtual sector
591 * on each device that it is on.
593 * raid10_find_virt does the reverse mapping, from a device and a
594 * sector offset to a virtual address
597 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
605 int last_far_set_start
, last_far_set_size
;
607 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
608 last_far_set_start
*= geo
->far_set_size
;
610 last_far_set_size
= geo
->far_set_size
;
611 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
613 /* now calculate first sector/dev */
614 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
615 sector
= r10bio
->sector
& geo
->chunk_mask
;
617 chunk
*= geo
->near_copies
;
619 dev
= sector_div(stripe
, geo
->raid_disks
);
621 stripe
*= geo
->far_copies
;
623 sector
+= stripe
<< geo
->chunk_shift
;
625 /* and calculate all the others */
626 for (n
= 0; n
< geo
->near_copies
; n
++) {
630 r10bio
->devs
[slot
].devnum
= d
;
631 r10bio
->devs
[slot
].addr
= s
;
634 for (f
= 1; f
< geo
->far_copies
; f
++) {
635 set
= d
/ geo
->far_set_size
;
636 d
+= geo
->near_copies
;
638 if ((geo
->raid_disks
% geo
->far_set_size
) &&
639 (d
> last_far_set_start
)) {
640 d
-= last_far_set_start
;
641 d
%= last_far_set_size
;
642 d
+= last_far_set_start
;
644 d
%= geo
->far_set_size
;
645 d
+= geo
->far_set_size
* set
;
648 r10bio
->devs
[slot
].devnum
= d
;
649 r10bio
->devs
[slot
].addr
= s
;
653 if (dev
>= geo
->raid_disks
) {
655 sector
+= (geo
->chunk_mask
+ 1);
660 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
662 struct geom
*geo
= &conf
->geo
;
664 if (conf
->reshape_progress
!= MaxSector
&&
665 ((r10bio
->sector
>= conf
->reshape_progress
) !=
666 conf
->mddev
->reshape_backwards
)) {
667 set_bit(R10BIO_Previous
, &r10bio
->state
);
670 clear_bit(R10BIO_Previous
, &r10bio
->state
);
672 __raid10_find_phys(geo
, r10bio
);
675 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
677 sector_t offset
, chunk
, vchunk
;
678 /* Never use conf->prev as this is only called during resync
679 * or recovery, so reshape isn't happening
681 struct geom
*geo
= &conf
->geo
;
682 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
683 int far_set_size
= geo
->far_set_size
;
684 int last_far_set_start
;
686 if (geo
->raid_disks
% geo
->far_set_size
) {
687 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
688 last_far_set_start
*= geo
->far_set_size
;
690 if (dev
>= last_far_set_start
) {
691 far_set_size
= geo
->far_set_size
;
692 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
693 far_set_start
= last_far_set_start
;
697 offset
= sector
& geo
->chunk_mask
;
698 if (geo
->far_offset
) {
700 chunk
= sector
>> geo
->chunk_shift
;
701 fc
= sector_div(chunk
, geo
->far_copies
);
702 dev
-= fc
* geo
->near_copies
;
703 if (dev
< far_set_start
)
706 while (sector
>= geo
->stride
) {
707 sector
-= geo
->stride
;
708 if (dev
< (geo
->near_copies
+ far_set_start
))
709 dev
+= far_set_size
- geo
->near_copies
;
711 dev
-= geo
->near_copies
;
713 chunk
= sector
>> geo
->chunk_shift
;
715 vchunk
= chunk
* geo
->raid_disks
+ dev
;
716 sector_div(vchunk
, geo
->near_copies
);
717 return (vchunk
<< geo
->chunk_shift
) + offset
;
721 * This routine returns the disk from which the requested read should
722 * be done. There is a per-array 'next expected sequential IO' sector
723 * number - if this matches on the next IO then we use the last disk.
724 * There is also a per-disk 'last know head position' sector that is
725 * maintained from IRQ contexts, both the normal and the resync IO
726 * completion handlers update this position correctly. If there is no
727 * perfect sequential match then we pick the disk whose head is closest.
729 * If there are 2 mirrors in the same 2 devices, performance degrades
730 * because position is mirror, not device based.
732 * The rdev for the device selected will have nr_pending incremented.
736 * FIXME: possibly should rethink readbalancing and do it differently
737 * depending on near_copies / far_copies geometry.
739 static struct md_rdev
*read_balance(struct r10conf
*conf
,
740 struct r10bio
*r10_bio
,
743 const sector_t this_sector
= r10_bio
->sector
;
745 int sectors
= r10_bio
->sectors
;
746 int best_good_sectors
;
747 sector_t new_distance
, best_dist
;
748 struct md_rdev
*best_rdev
, *rdev
= NULL
;
751 struct geom
*geo
= &conf
->geo
;
753 raid10_find_phys(conf
, r10_bio
);
757 best_dist
= MaxSector
;
758 best_good_sectors
= 0;
760 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
762 * Check if we can balance. We can balance on the whole
763 * device if no resync is going on (recovery is ok), or below
764 * the resync window. We take the first readable disk when
765 * above the resync window.
767 if ((conf
->mddev
->recovery_cp
< MaxSector
768 && (this_sector
+ sectors
>= conf
->next_resync
)) ||
769 (mddev_is_clustered(conf
->mddev
) &&
770 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
771 this_sector
+ sectors
)))
774 for (slot
= 0; slot
< conf
->copies
; slot
++) {
779 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
781 disk
= r10_bio
->devs
[slot
].devnum
;
782 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
783 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
784 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
785 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
787 test_bit(Faulty
, &rdev
->flags
))
789 if (!test_bit(In_sync
, &rdev
->flags
) &&
790 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
793 dev_sector
= r10_bio
->devs
[slot
].addr
;
794 if (is_badblock(rdev
, dev_sector
, sectors
,
795 &first_bad
, &bad_sectors
)) {
796 if (best_dist
< MaxSector
)
797 /* Already have a better slot */
799 if (first_bad
<= dev_sector
) {
800 /* Cannot read here. If this is the
801 * 'primary' device, then we must not read
802 * beyond 'bad_sectors' from another device.
804 bad_sectors
-= (dev_sector
- first_bad
);
805 if (!do_balance
&& sectors
> bad_sectors
)
806 sectors
= bad_sectors
;
807 if (best_good_sectors
> sectors
)
808 best_good_sectors
= sectors
;
810 sector_t good_sectors
=
811 first_bad
- dev_sector
;
812 if (good_sectors
> best_good_sectors
) {
813 best_good_sectors
= good_sectors
;
818 /* Must read from here */
823 best_good_sectors
= sectors
;
829 /* At least 2 disks to choose from so failfast is OK */
830 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
831 /* This optimisation is debatable, and completely destroys
832 * sequential read speed for 'far copies' arrays. So only
833 * keep it for 'near' arrays, and review those later.
835 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
838 /* for far > 1 always use the lowest address */
839 else if (geo
->far_copies
> 1)
840 new_distance
= r10_bio
->devs
[slot
].addr
;
842 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
843 conf
->mirrors
[disk
].head_position
);
844 if (new_distance
< best_dist
) {
845 best_dist
= new_distance
;
850 if (slot
>= conf
->copies
) {
856 atomic_inc(&rdev
->nr_pending
);
857 r10_bio
->read_slot
= slot
;
861 *max_sectors
= best_good_sectors
;
866 static int raid10_congested(struct mddev
*mddev
, int bits
)
868 struct r10conf
*conf
= mddev
->private;
871 if ((bits
& (1 << WB_async_congested
)) &&
872 conf
->pending_count
>= max_queued_requests
)
877 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
880 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
881 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
882 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
884 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
891 static void flush_pending_writes(struct r10conf
*conf
)
893 /* Any writes that have been queued but are awaiting
894 * bitmap updates get flushed here.
896 spin_lock_irq(&conf
->device_lock
);
898 if (conf
->pending_bio_list
.head
) {
899 struct blk_plug plug
;
902 bio
= bio_list_get(&conf
->pending_bio_list
);
903 conf
->pending_count
= 0;
904 spin_unlock_irq(&conf
->device_lock
);
907 * As this is called in a wait_event() loop (see freeze_array),
908 * current->state might be TASK_UNINTERRUPTIBLE which will
909 * cause a warning when we prepare to wait again. As it is
910 * rare that this path is taken, it is perfectly safe to force
911 * us to go around the wait_event() loop again, so the warning
912 * is a false-positive. Silence the warning by resetting
915 __set_current_state(TASK_RUNNING
);
917 blk_start_plug(&plug
);
918 /* flush any pending bitmap writes to disk
919 * before proceeding w/ I/O */
920 md_bitmap_unplug(conf
->mddev
->bitmap
);
921 wake_up(&conf
->wait_barrier
);
923 while (bio
) { /* submit pending writes */
924 struct bio
*next
= bio
->bi_next
;
925 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
927 bio_set_dev(bio
, rdev
->bdev
);
928 if (test_bit(Faulty
, &rdev
->flags
)) {
930 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
931 !blk_queue_discard(bio
->bi_disk
->queue
)))
935 generic_make_request(bio
);
938 blk_finish_plug(&plug
);
940 spin_unlock_irq(&conf
->device_lock
);
944 * Sometimes we need to suspend IO while we do something else,
945 * either some resync/recovery, or reconfigure the array.
946 * To do this we raise a 'barrier'.
947 * The 'barrier' is a counter that can be raised multiple times
948 * to count how many activities are happening which preclude
950 * We can only raise the barrier if there is no pending IO.
951 * i.e. if nr_pending == 0.
952 * We choose only to raise the barrier if no-one is waiting for the
953 * barrier to go down. This means that as soon as an IO request
954 * is ready, no other operations which require a barrier will start
955 * until the IO request has had a chance.
957 * So: regular IO calls 'wait_barrier'. When that returns there
958 * is no backgroup IO happening, It must arrange to call
959 * allow_barrier when it has finished its IO.
960 * backgroup IO calls must call raise_barrier. Once that returns
961 * there is no normal IO happeing. It must arrange to call
962 * lower_barrier when the particular background IO completes.
965 static void raise_barrier(struct r10conf
*conf
, int force
)
967 BUG_ON(force
&& !conf
->barrier
);
968 spin_lock_irq(&conf
->resync_lock
);
970 /* Wait until no block IO is waiting (unless 'force') */
971 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
974 /* block any new IO from starting */
977 /* Now wait for all pending IO to complete */
978 wait_event_lock_irq(conf
->wait_barrier
,
979 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
982 spin_unlock_irq(&conf
->resync_lock
);
985 static void lower_barrier(struct r10conf
*conf
)
988 spin_lock_irqsave(&conf
->resync_lock
, flags
);
990 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
991 wake_up(&conf
->wait_barrier
);
994 static void wait_barrier(struct r10conf
*conf
)
996 spin_lock_irq(&conf
->resync_lock
);
999 /* Wait for the barrier to drop.
1000 * However if there are already pending
1001 * requests (preventing the barrier from
1002 * rising completely), and the
1003 * pre-process bio queue isn't empty,
1004 * then don't wait, as we need to empty
1005 * that queue to get the nr_pending
1008 raid10_log(conf
->mddev
, "wait barrier");
1009 wait_event_lock_irq(conf
->wait_barrier
,
1011 (atomic_read(&conf
->nr_pending
) &&
1012 current
->bio_list
&&
1013 (!bio_list_empty(¤t
->bio_list
[0]) ||
1014 !bio_list_empty(¤t
->bio_list
[1]))),
1017 if (!conf
->nr_waiting
)
1018 wake_up(&conf
->wait_barrier
);
1020 atomic_inc(&conf
->nr_pending
);
1021 spin_unlock_irq(&conf
->resync_lock
);
1024 static void allow_barrier(struct r10conf
*conf
)
1026 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
1027 (conf
->array_freeze_pending
))
1028 wake_up(&conf
->wait_barrier
);
1031 static void freeze_array(struct r10conf
*conf
, int extra
)
1033 /* stop syncio and normal IO and wait for everything to
1035 * We increment barrier and nr_waiting, and then
1036 * wait until nr_pending match nr_queued+extra
1037 * This is called in the context of one normal IO request
1038 * that has failed. Thus any sync request that might be pending
1039 * will be blocked by nr_pending, and we need to wait for
1040 * pending IO requests to complete or be queued for re-try.
1041 * Thus the number queued (nr_queued) plus this request (extra)
1042 * must match the number of pending IOs (nr_pending) before
1045 spin_lock_irq(&conf
->resync_lock
);
1046 conf
->array_freeze_pending
++;
1049 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1050 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1052 flush_pending_writes(conf
));
1054 conf
->array_freeze_pending
--;
1055 spin_unlock_irq(&conf
->resync_lock
);
1058 static void unfreeze_array(struct r10conf
*conf
)
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf
->resync_lock
);
1064 wake_up(&conf
->wait_barrier
);
1065 spin_unlock_irq(&conf
->resync_lock
);
1068 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1069 struct md_rdev
*rdev
)
1071 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1072 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1073 return rdev
->data_offset
;
1075 return rdev
->new_data_offset
;
1078 struct raid10_plug_cb
{
1079 struct blk_plug_cb cb
;
1080 struct bio_list pending
;
1084 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1086 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1088 struct mddev
*mddev
= plug
->cb
.data
;
1089 struct r10conf
*conf
= mddev
->private;
1092 if (from_schedule
|| current
->bio_list
) {
1093 spin_lock_irq(&conf
->device_lock
);
1094 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1095 conf
->pending_count
+= plug
->pending_cnt
;
1096 spin_unlock_irq(&conf
->device_lock
);
1097 wake_up(&conf
->wait_barrier
);
1098 md_wakeup_thread(mddev
->thread
);
1103 /* we aren't scheduling, so we can do the write-out directly. */
1104 bio
= bio_list_get(&plug
->pending
);
1105 md_bitmap_unplug(mddev
->bitmap
);
1106 wake_up(&conf
->wait_barrier
);
1108 while (bio
) { /* submit pending writes */
1109 struct bio
*next
= bio
->bi_next
;
1110 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
1111 bio
->bi_next
= NULL
;
1112 bio_set_dev(bio
, rdev
->bdev
);
1113 if (test_bit(Faulty
, &rdev
->flags
)) {
1115 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1116 !blk_queue_discard(bio
->bi_disk
->queue
)))
1117 /* Just ignore it */
1120 generic_make_request(bio
);
1126 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1127 struct r10bio
*r10_bio
)
1129 struct r10conf
*conf
= mddev
->private;
1130 struct bio
*read_bio
;
1131 const int op
= bio_op(bio
);
1132 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1135 struct md_rdev
*rdev
;
1136 char b
[BDEVNAME_SIZE
];
1137 int slot
= r10_bio
->read_slot
;
1138 struct md_rdev
*err_rdev
= NULL
;
1139 gfp_t gfp
= GFP_NOIO
;
1141 if (r10_bio
->devs
[slot
].rdev
) {
1143 * This is an error retry, but we cannot
1144 * safely dereference the rdev in the r10_bio,
1145 * we must use the one in conf.
1146 * If it has already been disconnected (unlikely)
1147 * we lose the device name in error messages.
1151 * As we are blocking raid10, it is a little safer to
1154 gfp
= GFP_NOIO
| __GFP_HIGH
;
1157 disk
= r10_bio
->devs
[slot
].devnum
;
1158 err_rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
1160 bdevname(err_rdev
->bdev
, b
);
1163 /* This never gets dereferenced */
1164 err_rdev
= r10_bio
->devs
[slot
].rdev
;
1169 * Register the new request and wait if the reconstruction
1170 * thread has put up a bar for new requests.
1171 * Continue immediately if no resync is active currently.
1175 sectors
= r10_bio
->sectors
;
1176 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1177 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1178 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1180 * IO spans the reshape position. Need to wait for reshape to
1183 raid10_log(conf
->mddev
, "wait reshape");
1184 allow_barrier(conf
);
1185 wait_event(conf
->wait_barrier
,
1186 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1187 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1192 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1197 (unsigned long long)r10_bio
->sector
);
1199 raid_end_bio_io(r10_bio
);
1203 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1205 bdevname(rdev
->bdev
, b
),
1206 (unsigned long long)r10_bio
->sector
);
1207 if (max_sectors
< bio_sectors(bio
)) {
1208 struct bio
*split
= bio_split(bio
, max_sectors
,
1209 gfp
, &conf
->bio_split
);
1210 bio_chain(split
, bio
);
1211 allow_barrier(conf
);
1212 generic_make_request(bio
);
1215 r10_bio
->master_bio
= bio
;
1216 r10_bio
->sectors
= max_sectors
;
1218 slot
= r10_bio
->read_slot
;
1220 read_bio
= bio_clone_fast(bio
, gfp
, &mddev
->bio_set
);
1222 r10_bio
->devs
[slot
].bio
= read_bio
;
1223 r10_bio
->devs
[slot
].rdev
= rdev
;
1225 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1226 choose_data_offset(r10_bio
, rdev
);
1227 bio_set_dev(read_bio
, rdev
->bdev
);
1228 read_bio
->bi_end_io
= raid10_end_read_request
;
1229 bio_set_op_attrs(read_bio
, op
, do_sync
);
1230 if (test_bit(FailFast
, &rdev
->flags
) &&
1231 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1232 read_bio
->bi_opf
|= MD_FAILFAST
;
1233 read_bio
->bi_private
= r10_bio
;
1236 trace_block_bio_remap(read_bio
->bi_disk
->queue
,
1237 read_bio
, disk_devt(mddev
->gendisk
),
1239 generic_make_request(read_bio
);
1243 static void raid10_write_one_disk(struct mddev
*mddev
, struct r10bio
*r10_bio
,
1244 struct bio
*bio
, bool replacement
,
1247 const int op
= bio_op(bio
);
1248 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1249 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1250 unsigned long flags
;
1251 struct blk_plug_cb
*cb
;
1252 struct raid10_plug_cb
*plug
= NULL
;
1253 struct r10conf
*conf
= mddev
->private;
1254 struct md_rdev
*rdev
;
1255 int devnum
= r10_bio
->devs
[n_copy
].devnum
;
1259 rdev
= conf
->mirrors
[devnum
].replacement
;
1261 /* Replacement just got moved to main 'rdev' */
1263 rdev
= conf
->mirrors
[devnum
].rdev
;
1266 rdev
= conf
->mirrors
[devnum
].rdev
;
1268 mbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
1270 r10_bio
->devs
[n_copy
].repl_bio
= mbio
;
1272 r10_bio
->devs
[n_copy
].bio
= mbio
;
1274 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[n_copy
].addr
+
1275 choose_data_offset(r10_bio
, rdev
));
1276 bio_set_dev(mbio
, rdev
->bdev
);
1277 mbio
->bi_end_io
= raid10_end_write_request
;
1278 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1279 if (!replacement
&& test_bit(FailFast
,
1280 &conf
->mirrors
[devnum
].rdev
->flags
)
1281 && enough(conf
, devnum
))
1282 mbio
->bi_opf
|= MD_FAILFAST
;
1283 mbio
->bi_private
= r10_bio
;
1285 if (conf
->mddev
->gendisk
)
1286 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1287 mbio
, disk_devt(conf
->mddev
->gendisk
),
1289 /* flush_pending_writes() needs access to the rdev so...*/
1290 mbio
->bi_disk
= (void *)rdev
;
1292 atomic_inc(&r10_bio
->remaining
);
1294 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1296 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1300 bio_list_add(&plug
->pending
, mbio
);
1301 plug
->pending_cnt
++;
1303 spin_lock_irqsave(&conf
->device_lock
, flags
);
1304 bio_list_add(&conf
->pending_bio_list
, mbio
);
1305 conf
->pending_count
++;
1306 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1307 md_wakeup_thread(mddev
->thread
);
1311 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1312 struct r10bio
*r10_bio
)
1314 struct r10conf
*conf
= mddev
->private;
1316 struct md_rdev
*blocked_rdev
;
1320 if ((mddev_is_clustered(mddev
) &&
1321 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1322 bio
->bi_iter
.bi_sector
,
1323 bio_end_sector(bio
)))) {
1326 prepare_to_wait(&conf
->wait_barrier
,
1328 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1329 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))
1333 finish_wait(&conf
->wait_barrier
, &w
);
1337 * Register the new request and wait if the reconstruction
1338 * thread has put up a bar for new requests.
1339 * Continue immediately if no resync is active currently.
1343 sectors
= r10_bio
->sectors
;
1344 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1345 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1346 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1348 * IO spans the reshape position. Need to wait for reshape to
1351 raid10_log(conf
->mddev
, "wait reshape");
1352 allow_barrier(conf
);
1353 wait_event(conf
->wait_barrier
,
1354 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1355 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1360 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1361 (mddev
->reshape_backwards
1362 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1363 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1364 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1365 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1366 /* Need to update reshape_position in metadata */
1367 mddev
->reshape_position
= conf
->reshape_progress
;
1368 set_mask_bits(&mddev
->sb_flags
, 0,
1369 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1370 md_wakeup_thread(mddev
->thread
);
1371 raid10_log(conf
->mddev
, "wait reshape metadata");
1372 wait_event(mddev
->sb_wait
,
1373 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1375 conf
->reshape_safe
= mddev
->reshape_position
;
1378 if (conf
->pending_count
>= max_queued_requests
) {
1379 md_wakeup_thread(mddev
->thread
);
1380 raid10_log(mddev
, "wait queued");
1381 wait_event(conf
->wait_barrier
,
1382 conf
->pending_count
< max_queued_requests
);
1384 /* first select target devices under rcu_lock and
1385 * inc refcount on their rdev. Record them by setting
1387 * If there are known/acknowledged bad blocks on any device
1388 * on which we have seen a write error, we want to avoid
1389 * writing to those blocks. This potentially requires several
1390 * writes to write around the bad blocks. Each set of writes
1391 * gets its own r10_bio with a set of bios attached.
1394 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1395 raid10_find_phys(conf
, r10_bio
);
1397 blocked_rdev
= NULL
;
1399 max_sectors
= r10_bio
->sectors
;
1401 for (i
= 0; i
< conf
->copies
; i
++) {
1402 int d
= r10_bio
->devs
[i
].devnum
;
1403 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1404 struct md_rdev
*rrdev
= rcu_dereference(
1405 conf
->mirrors
[d
].replacement
);
1408 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1409 atomic_inc(&rdev
->nr_pending
);
1410 blocked_rdev
= rdev
;
1413 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1414 atomic_inc(&rrdev
->nr_pending
);
1415 blocked_rdev
= rrdev
;
1418 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1420 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1423 r10_bio
->devs
[i
].bio
= NULL
;
1424 r10_bio
->devs
[i
].repl_bio
= NULL
;
1426 if (!rdev
&& !rrdev
) {
1427 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1430 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1432 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1436 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1437 &first_bad
, &bad_sectors
);
1439 /* Mustn't write here until the bad block
1442 atomic_inc(&rdev
->nr_pending
);
1443 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1444 blocked_rdev
= rdev
;
1447 if (is_bad
&& first_bad
<= dev_sector
) {
1448 /* Cannot write here at all */
1449 bad_sectors
-= (dev_sector
- first_bad
);
1450 if (bad_sectors
< max_sectors
)
1451 /* Mustn't write more than bad_sectors
1452 * to other devices yet
1454 max_sectors
= bad_sectors
;
1455 /* We don't set R10BIO_Degraded as that
1456 * only applies if the disk is missing,
1457 * so it might be re-added, and we want to
1458 * know to recover this chunk.
1459 * In this case the device is here, and the
1460 * fact that this chunk is not in-sync is
1461 * recorded in the bad block log.
1466 int good_sectors
= first_bad
- dev_sector
;
1467 if (good_sectors
< max_sectors
)
1468 max_sectors
= good_sectors
;
1472 r10_bio
->devs
[i
].bio
= bio
;
1473 atomic_inc(&rdev
->nr_pending
);
1476 r10_bio
->devs
[i
].repl_bio
= bio
;
1477 atomic_inc(&rrdev
->nr_pending
);
1482 if (unlikely(blocked_rdev
)) {
1483 /* Have to wait for this device to get unblocked, then retry */
1487 for (j
= 0; j
< i
; j
++) {
1488 if (r10_bio
->devs
[j
].bio
) {
1489 d
= r10_bio
->devs
[j
].devnum
;
1490 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1492 if (r10_bio
->devs
[j
].repl_bio
) {
1493 struct md_rdev
*rdev
;
1494 d
= r10_bio
->devs
[j
].devnum
;
1495 rdev
= conf
->mirrors
[d
].replacement
;
1497 /* Race with remove_disk */
1499 rdev
= conf
->mirrors
[d
].rdev
;
1501 rdev_dec_pending(rdev
, mddev
);
1504 allow_barrier(conf
);
1505 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1506 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1511 if (max_sectors
< r10_bio
->sectors
)
1512 r10_bio
->sectors
= max_sectors
;
1514 if (r10_bio
->sectors
< bio_sectors(bio
)) {
1515 struct bio
*split
= bio_split(bio
, r10_bio
->sectors
,
1516 GFP_NOIO
, &conf
->bio_split
);
1517 bio_chain(split
, bio
);
1518 allow_barrier(conf
);
1519 generic_make_request(bio
);
1522 r10_bio
->master_bio
= bio
;
1525 atomic_set(&r10_bio
->remaining
, 1);
1526 md_bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1528 for (i
= 0; i
< conf
->copies
; i
++) {
1529 if (r10_bio
->devs
[i
].bio
)
1530 raid10_write_one_disk(mddev
, r10_bio
, bio
, false, i
);
1531 if (r10_bio
->devs
[i
].repl_bio
)
1532 raid10_write_one_disk(mddev
, r10_bio
, bio
, true, i
);
1534 one_write_done(r10_bio
);
1537 static void __make_request(struct mddev
*mddev
, struct bio
*bio
, int sectors
)
1539 struct r10conf
*conf
= mddev
->private;
1540 struct r10bio
*r10_bio
;
1542 r10_bio
= mempool_alloc(&conf
->r10bio_pool
, GFP_NOIO
);
1544 r10_bio
->master_bio
= bio
;
1545 r10_bio
->sectors
= sectors
;
1547 r10_bio
->mddev
= mddev
;
1548 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1550 memset(r10_bio
->devs
, 0, sizeof(r10_bio
->devs
[0]) * conf
->copies
);
1552 if (bio_data_dir(bio
) == READ
)
1553 raid10_read_request(mddev
, bio
, r10_bio
);
1555 raid10_write_request(mddev
, bio
, r10_bio
);
1558 static bool raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1560 struct r10conf
*conf
= mddev
->private;
1561 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1562 int chunk_sects
= chunk_mask
+ 1;
1563 int sectors
= bio_sectors(bio
);
1565 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)
1566 && md_flush_request(mddev
, bio
))
1569 if (!md_write_start(mddev
, bio
))
1573 * If this request crosses a chunk boundary, we need to split
1576 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1577 sectors
> chunk_sects
1578 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1579 || conf
->prev
.near_copies
<
1580 conf
->prev
.raid_disks
)))
1581 sectors
= chunk_sects
-
1582 (bio
->bi_iter
.bi_sector
&
1584 __make_request(mddev
, bio
, sectors
);
1586 /* In case raid10d snuck in to freeze_array */
1587 wake_up(&conf
->wait_barrier
);
1591 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1593 struct r10conf
*conf
= mddev
->private;
1596 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1597 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1598 if (conf
->geo
.near_copies
> 1)
1599 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1600 if (conf
->geo
.far_copies
> 1) {
1601 if (conf
->geo
.far_offset
)
1602 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1604 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1605 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1606 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1608 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1609 conf
->geo
.raid_disks
- mddev
->degraded
);
1611 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1612 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1613 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1616 seq_printf(seq
, "]");
1619 /* check if there are enough drives for
1620 * every block to appear on atleast one.
1621 * Don't consider the device numbered 'ignore'
1622 * as we might be about to remove it.
1624 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1630 disks
= conf
->prev
.raid_disks
;
1631 ncopies
= conf
->prev
.near_copies
;
1633 disks
= conf
->geo
.raid_disks
;
1634 ncopies
= conf
->geo
.near_copies
;
1639 int n
= conf
->copies
;
1643 struct md_rdev
*rdev
;
1644 if (this != ignore
&&
1645 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1646 test_bit(In_sync
, &rdev
->flags
))
1648 this = (this+1) % disks
;
1652 first
= (first
+ ncopies
) % disks
;
1653 } while (first
!= 0);
1660 static int enough(struct r10conf
*conf
, int ignore
)
1662 /* when calling 'enough', both 'prev' and 'geo' must
1664 * This is ensured if ->reconfig_mutex or ->device_lock
1667 return _enough(conf
, 0, ignore
) &&
1668 _enough(conf
, 1, ignore
);
1671 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1673 char b
[BDEVNAME_SIZE
];
1674 struct r10conf
*conf
= mddev
->private;
1675 unsigned long flags
;
1678 * If it is not operational, then we have already marked it as dead
1679 * else if it is the last working disks, ignore the error, let the
1680 * next level up know.
1681 * else mark the drive as failed
1683 spin_lock_irqsave(&conf
->device_lock
, flags
);
1684 if (test_bit(In_sync
, &rdev
->flags
)
1685 && !enough(conf
, rdev
->raid_disk
)) {
1687 * Don't fail the drive, just return an IO error.
1689 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1692 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1695 * If recovery is running, make sure it aborts.
1697 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1698 set_bit(Blocked
, &rdev
->flags
);
1699 set_bit(Faulty
, &rdev
->flags
);
1700 set_mask_bits(&mddev
->sb_flags
, 0,
1701 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1702 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1703 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1704 "md/raid10:%s: Operation continuing on %d devices.\n",
1705 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1706 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1709 static void print_conf(struct r10conf
*conf
)
1712 struct md_rdev
*rdev
;
1714 pr_debug("RAID10 conf printout:\n");
1716 pr_debug("(!conf)\n");
1719 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1720 conf
->geo
.raid_disks
);
1722 /* This is only called with ->reconfix_mutex held, so
1723 * rcu protection of rdev is not needed */
1724 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1725 char b
[BDEVNAME_SIZE
];
1726 rdev
= conf
->mirrors
[i
].rdev
;
1728 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1729 i
, !test_bit(In_sync
, &rdev
->flags
),
1730 !test_bit(Faulty
, &rdev
->flags
),
1731 bdevname(rdev
->bdev
,b
));
1735 static void close_sync(struct r10conf
*conf
)
1738 allow_barrier(conf
);
1740 mempool_exit(&conf
->r10buf_pool
);
1743 static int raid10_spare_active(struct mddev
*mddev
)
1746 struct r10conf
*conf
= mddev
->private;
1747 struct raid10_info
*tmp
;
1749 unsigned long flags
;
1752 * Find all non-in_sync disks within the RAID10 configuration
1753 * and mark them in_sync
1755 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1756 tmp
= conf
->mirrors
+ i
;
1757 if (tmp
->replacement
1758 && tmp
->replacement
->recovery_offset
== MaxSector
1759 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1760 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1761 /* Replacement has just become active */
1763 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1766 /* Replaced device not technically faulty,
1767 * but we need to be sure it gets removed
1768 * and never re-added.
1770 set_bit(Faulty
, &tmp
->rdev
->flags
);
1771 sysfs_notify_dirent_safe(
1772 tmp
->rdev
->sysfs_state
);
1774 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1775 } else if (tmp
->rdev
1776 && tmp
->rdev
->recovery_offset
== MaxSector
1777 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1778 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1780 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1783 spin_lock_irqsave(&conf
->device_lock
, flags
);
1784 mddev
->degraded
-= count
;
1785 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1791 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1793 struct r10conf
*conf
= mddev
->private;
1797 int last
= conf
->geo
.raid_disks
- 1;
1799 if (mddev
->recovery_cp
< MaxSector
)
1800 /* only hot-add to in-sync arrays, as recovery is
1801 * very different from resync
1804 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1807 if (md_integrity_add_rdev(rdev
, mddev
))
1810 if (rdev
->raid_disk
>= 0)
1811 first
= last
= rdev
->raid_disk
;
1813 if (rdev
->saved_raid_disk
>= first
&&
1814 rdev
->saved_raid_disk
< conf
->geo
.raid_disks
&&
1815 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1816 mirror
= rdev
->saved_raid_disk
;
1819 for ( ; mirror
<= last
; mirror
++) {
1820 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1821 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1824 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1825 p
->replacement
!= NULL
)
1827 clear_bit(In_sync
, &rdev
->flags
);
1828 set_bit(Replacement
, &rdev
->flags
);
1829 rdev
->raid_disk
= mirror
;
1832 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1833 rdev
->data_offset
<< 9);
1835 rcu_assign_pointer(p
->replacement
, rdev
);
1840 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1841 rdev
->data_offset
<< 9);
1843 p
->head_position
= 0;
1844 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1845 rdev
->raid_disk
= mirror
;
1847 if (rdev
->saved_raid_disk
!= mirror
)
1849 rcu_assign_pointer(p
->rdev
, rdev
);
1852 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1853 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1859 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1861 struct r10conf
*conf
= mddev
->private;
1863 int number
= rdev
->raid_disk
;
1864 struct md_rdev
**rdevp
;
1865 struct raid10_info
*p
= conf
->mirrors
+ number
;
1868 if (rdev
== p
->rdev
)
1870 else if (rdev
== p
->replacement
)
1871 rdevp
= &p
->replacement
;
1875 if (test_bit(In_sync
, &rdev
->flags
) ||
1876 atomic_read(&rdev
->nr_pending
)) {
1880 /* Only remove non-faulty devices if recovery
1883 if (!test_bit(Faulty
, &rdev
->flags
) &&
1884 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1885 (!p
->replacement
|| p
->replacement
== rdev
) &&
1886 number
< conf
->geo
.raid_disks
&&
1892 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1894 if (atomic_read(&rdev
->nr_pending
)) {
1895 /* lost the race, try later */
1901 if (p
->replacement
) {
1902 /* We must have just cleared 'rdev' */
1903 p
->rdev
= p
->replacement
;
1904 clear_bit(Replacement
, &p
->replacement
->flags
);
1905 smp_mb(); /* Make sure other CPUs may see both as identical
1906 * but will never see neither -- if they are careful.
1908 p
->replacement
= NULL
;
1911 clear_bit(WantReplacement
, &rdev
->flags
);
1912 err
= md_integrity_register(mddev
);
1920 static void __end_sync_read(struct r10bio
*r10_bio
, struct bio
*bio
, int d
)
1922 struct r10conf
*conf
= r10_bio
->mddev
->private;
1924 if (!bio
->bi_status
)
1925 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1927 /* The write handler will notice the lack of
1928 * R10BIO_Uptodate and record any errors etc
1930 atomic_add(r10_bio
->sectors
,
1931 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1933 /* for reconstruct, we always reschedule after a read.
1934 * for resync, only after all reads
1936 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1937 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1938 atomic_dec_and_test(&r10_bio
->remaining
)) {
1939 /* we have read all the blocks,
1940 * do the comparison in process context in raid10d
1942 reschedule_retry(r10_bio
);
1946 static void end_sync_read(struct bio
*bio
)
1948 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1949 struct r10conf
*conf
= r10_bio
->mddev
->private;
1950 int d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1952 __end_sync_read(r10_bio
, bio
, d
);
1955 static void end_reshape_read(struct bio
*bio
)
1957 /* reshape read bio isn't allocated from r10buf_pool */
1958 struct r10bio
*r10_bio
= bio
->bi_private
;
1960 __end_sync_read(r10_bio
, bio
, r10_bio
->read_slot
);
1963 static void end_sync_request(struct r10bio
*r10_bio
)
1965 struct mddev
*mddev
= r10_bio
->mddev
;
1967 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1968 if (r10_bio
->master_bio
== NULL
) {
1969 /* the primary of several recovery bios */
1970 sector_t s
= r10_bio
->sectors
;
1971 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1972 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1973 reschedule_retry(r10_bio
);
1976 md_done_sync(mddev
, s
, 1);
1979 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1980 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1981 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1982 reschedule_retry(r10_bio
);
1990 static void end_sync_write(struct bio
*bio
)
1992 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1993 struct mddev
*mddev
= r10_bio
->mddev
;
1994 struct r10conf
*conf
= mddev
->private;
2000 struct md_rdev
*rdev
= NULL
;
2002 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
2004 rdev
= conf
->mirrors
[d
].replacement
;
2006 rdev
= conf
->mirrors
[d
].rdev
;
2008 if (bio
->bi_status
) {
2010 md_error(mddev
, rdev
);
2012 set_bit(WriteErrorSeen
, &rdev
->flags
);
2013 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2014 set_bit(MD_RECOVERY_NEEDED
,
2015 &rdev
->mddev
->recovery
);
2016 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
2018 } else if (is_badblock(rdev
,
2019 r10_bio
->devs
[slot
].addr
,
2021 &first_bad
, &bad_sectors
))
2022 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
2024 rdev_dec_pending(rdev
, mddev
);
2026 end_sync_request(r10_bio
);
2030 * Note: sync and recover and handled very differently for raid10
2031 * This code is for resync.
2032 * For resync, we read through virtual addresses and read all blocks.
2033 * If there is any error, we schedule a write. The lowest numbered
2034 * drive is authoritative.
2035 * However requests come for physical address, so we need to map.
2036 * For every physical address there are raid_disks/copies virtual addresses,
2037 * which is always are least one, but is not necessarly an integer.
2038 * This means that a physical address can span multiple chunks, so we may
2039 * have to submit multiple io requests for a single sync request.
2042 * We check if all blocks are in-sync and only write to blocks that
2045 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2047 struct r10conf
*conf
= mddev
->private;
2049 struct bio
*tbio
, *fbio
;
2051 struct page
**tpages
, **fpages
;
2053 atomic_set(&r10_bio
->remaining
, 1);
2055 /* find the first device with a block */
2056 for (i
=0; i
<conf
->copies
; i
++)
2057 if (!r10_bio
->devs
[i
].bio
->bi_status
)
2060 if (i
== conf
->copies
)
2064 fbio
= r10_bio
->devs
[i
].bio
;
2065 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2066 fbio
->bi_iter
.bi_idx
= 0;
2067 fpages
= get_resync_pages(fbio
)->pages
;
2069 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2070 /* now find blocks with errors */
2071 for (i
=0 ; i
< conf
->copies
; i
++) {
2073 struct md_rdev
*rdev
;
2074 struct resync_pages
*rp
;
2076 tbio
= r10_bio
->devs
[i
].bio
;
2078 if (tbio
->bi_end_io
!= end_sync_read
)
2083 tpages
= get_resync_pages(tbio
)->pages
;
2084 d
= r10_bio
->devs
[i
].devnum
;
2085 rdev
= conf
->mirrors
[d
].rdev
;
2086 if (!r10_bio
->devs
[i
].bio
->bi_status
) {
2087 /* We know that the bi_io_vec layout is the same for
2088 * both 'first' and 'i', so we just compare them.
2089 * All vec entries are PAGE_SIZE;
2091 int sectors
= r10_bio
->sectors
;
2092 for (j
= 0; j
< vcnt
; j
++) {
2093 int len
= PAGE_SIZE
;
2094 if (sectors
< (len
/ 512))
2095 len
= sectors
* 512;
2096 if (memcmp(page_address(fpages
[j
]),
2097 page_address(tpages
[j
]),
2104 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2105 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2106 /* Don't fix anything. */
2108 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2109 /* Just give up on this device */
2110 md_error(rdev
->mddev
, rdev
);
2113 /* Ok, we need to write this bio, either to correct an
2114 * inconsistency or to correct an unreadable block.
2115 * First we need to fixup bv_offset, bv_len and
2116 * bi_vecs, as the read request might have corrupted these
2118 rp
= get_resync_pages(tbio
);
2121 md_bio_reset_resync_pages(tbio
, rp
, fbio
->bi_iter
.bi_size
);
2123 rp
->raid_bio
= r10_bio
;
2124 tbio
->bi_private
= rp
;
2125 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2126 tbio
->bi_end_io
= end_sync_write
;
2127 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2129 bio_copy_data(tbio
, fbio
);
2131 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2132 atomic_inc(&r10_bio
->remaining
);
2133 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2135 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2136 tbio
->bi_opf
|= MD_FAILFAST
;
2137 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2138 bio_set_dev(tbio
, conf
->mirrors
[d
].rdev
->bdev
);
2139 generic_make_request(tbio
);
2142 /* Now write out to any replacement devices
2145 for (i
= 0; i
< conf
->copies
; i
++) {
2148 tbio
= r10_bio
->devs
[i
].repl_bio
;
2149 if (!tbio
|| !tbio
->bi_end_io
)
2151 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2152 && r10_bio
->devs
[i
].bio
!= fbio
)
2153 bio_copy_data(tbio
, fbio
);
2154 d
= r10_bio
->devs
[i
].devnum
;
2155 atomic_inc(&r10_bio
->remaining
);
2156 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2158 generic_make_request(tbio
);
2162 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2163 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2169 * Now for the recovery code.
2170 * Recovery happens across physical sectors.
2171 * We recover all non-is_sync drives by finding the virtual address of
2172 * each, and then choose a working drive that also has that virt address.
2173 * There is a separate r10_bio for each non-in_sync drive.
2174 * Only the first two slots are in use. The first for reading,
2175 * The second for writing.
2178 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2180 /* We got a read error during recovery.
2181 * We repeat the read in smaller page-sized sections.
2182 * If a read succeeds, write it to the new device or record
2183 * a bad block if we cannot.
2184 * If a read fails, record a bad block on both old and
2187 struct mddev
*mddev
= r10_bio
->mddev
;
2188 struct r10conf
*conf
= mddev
->private;
2189 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2191 int sectors
= r10_bio
->sectors
;
2193 int dr
= r10_bio
->devs
[0].devnum
;
2194 int dw
= r10_bio
->devs
[1].devnum
;
2195 struct page
**pages
= get_resync_pages(bio
)->pages
;
2199 struct md_rdev
*rdev
;
2203 if (s
> (PAGE_SIZE
>>9))
2206 rdev
= conf
->mirrors
[dr
].rdev
;
2207 addr
= r10_bio
->devs
[0].addr
+ sect
,
2208 ok
= sync_page_io(rdev
,
2212 REQ_OP_READ
, 0, false);
2214 rdev
= conf
->mirrors
[dw
].rdev
;
2215 addr
= r10_bio
->devs
[1].addr
+ sect
;
2216 ok
= sync_page_io(rdev
,
2220 REQ_OP_WRITE
, 0, false);
2222 set_bit(WriteErrorSeen
, &rdev
->flags
);
2223 if (!test_and_set_bit(WantReplacement
,
2225 set_bit(MD_RECOVERY_NEEDED
,
2226 &rdev
->mddev
->recovery
);
2230 /* We don't worry if we cannot set a bad block -
2231 * it really is bad so there is no loss in not
2234 rdev_set_badblocks(rdev
, addr
, s
, 0);
2236 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2237 /* need bad block on destination too */
2238 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2239 addr
= r10_bio
->devs
[1].addr
+ sect
;
2240 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2242 /* just abort the recovery */
2243 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2246 conf
->mirrors
[dw
].recovery_disabled
2247 = mddev
->recovery_disabled
;
2248 set_bit(MD_RECOVERY_INTR
,
2261 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2263 struct r10conf
*conf
= mddev
->private;
2265 struct bio
*wbio
, *wbio2
;
2267 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2268 fix_recovery_read_error(r10_bio
);
2269 end_sync_request(r10_bio
);
2274 * share the pages with the first bio
2275 * and submit the write request
2277 d
= r10_bio
->devs
[1].devnum
;
2278 wbio
= r10_bio
->devs
[1].bio
;
2279 wbio2
= r10_bio
->devs
[1].repl_bio
;
2280 /* Need to test wbio2->bi_end_io before we call
2281 * generic_make_request as if the former is NULL,
2282 * the latter is free to free wbio2.
2284 if (wbio2
&& !wbio2
->bi_end_io
)
2286 if (wbio
->bi_end_io
) {
2287 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2288 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2289 generic_make_request(wbio
);
2292 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2293 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2294 bio_sectors(wbio2
));
2295 generic_make_request(wbio2
);
2300 * Used by fix_read_error() to decay the per rdev read_errors.
2301 * We halve the read error count for every hour that has elapsed
2302 * since the last recorded read error.
2305 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2308 unsigned long hours_since_last
;
2309 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2311 cur_time_mon
= ktime_get_seconds();
2313 if (rdev
->last_read_error
== 0) {
2314 /* first time we've seen a read error */
2315 rdev
->last_read_error
= cur_time_mon
;
2319 hours_since_last
= (long)(cur_time_mon
-
2320 rdev
->last_read_error
) / 3600;
2322 rdev
->last_read_error
= cur_time_mon
;
2325 * if hours_since_last is > the number of bits in read_errors
2326 * just set read errors to 0. We do this to avoid
2327 * overflowing the shift of read_errors by hours_since_last.
2329 if (hours_since_last
>= 8 * sizeof(read_errors
))
2330 atomic_set(&rdev
->read_errors
, 0);
2332 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2335 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2336 int sectors
, struct page
*page
, int rw
)
2341 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2342 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2344 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2348 set_bit(WriteErrorSeen
, &rdev
->flags
);
2349 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2350 set_bit(MD_RECOVERY_NEEDED
,
2351 &rdev
->mddev
->recovery
);
2353 /* need to record an error - either for the block or the device */
2354 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2355 md_error(rdev
->mddev
, rdev
);
2360 * This is a kernel thread which:
2362 * 1. Retries failed read operations on working mirrors.
2363 * 2. Updates the raid superblock when problems encounter.
2364 * 3. Performs writes following reads for array synchronising.
2367 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2369 int sect
= 0; /* Offset from r10_bio->sector */
2370 int sectors
= r10_bio
->sectors
;
2371 struct md_rdev
*rdev
;
2372 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2373 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2375 /* still own a reference to this rdev, so it cannot
2376 * have been cleared recently.
2378 rdev
= conf
->mirrors
[d
].rdev
;
2380 if (test_bit(Faulty
, &rdev
->flags
))
2381 /* drive has already been failed, just ignore any
2382 more fix_read_error() attempts */
2385 check_decay_read_errors(mddev
, rdev
);
2386 atomic_inc(&rdev
->read_errors
);
2387 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2388 char b
[BDEVNAME_SIZE
];
2389 bdevname(rdev
->bdev
, b
);
2391 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2393 atomic_read(&rdev
->read_errors
), max_read_errors
);
2394 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2396 md_error(mddev
, rdev
);
2397 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2403 int sl
= r10_bio
->read_slot
;
2407 if (s
> (PAGE_SIZE
>>9))
2415 d
= r10_bio
->devs
[sl
].devnum
;
2416 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2418 test_bit(In_sync
, &rdev
->flags
) &&
2419 !test_bit(Faulty
, &rdev
->flags
) &&
2420 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2421 &first_bad
, &bad_sectors
) == 0) {
2422 atomic_inc(&rdev
->nr_pending
);
2424 success
= sync_page_io(rdev
,
2425 r10_bio
->devs
[sl
].addr
+
2429 REQ_OP_READ
, 0, false);
2430 rdev_dec_pending(rdev
, mddev
);
2436 if (sl
== conf
->copies
)
2438 } while (!success
&& sl
!= r10_bio
->read_slot
);
2442 /* Cannot read from anywhere, just mark the block
2443 * as bad on the first device to discourage future
2446 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2447 rdev
= conf
->mirrors
[dn
].rdev
;
2449 if (!rdev_set_badblocks(
2451 r10_bio
->devs
[r10_bio
->read_slot
].addr
2454 md_error(mddev
, rdev
);
2455 r10_bio
->devs
[r10_bio
->read_slot
].bio
2462 /* write it back and re-read */
2464 while (sl
!= r10_bio
->read_slot
) {
2465 char b
[BDEVNAME_SIZE
];
2470 d
= r10_bio
->devs
[sl
].devnum
;
2471 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2473 test_bit(Faulty
, &rdev
->flags
) ||
2474 !test_bit(In_sync
, &rdev
->flags
))
2477 atomic_inc(&rdev
->nr_pending
);
2479 if (r10_sync_page_io(rdev
,
2480 r10_bio
->devs
[sl
].addr
+
2482 s
, conf
->tmppage
, WRITE
)
2484 /* Well, this device is dead */
2485 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2487 (unsigned long long)(
2489 choose_data_offset(r10_bio
,
2491 bdevname(rdev
->bdev
, b
));
2492 pr_notice("md/raid10:%s: %s: failing drive\n",
2494 bdevname(rdev
->bdev
, b
));
2496 rdev_dec_pending(rdev
, mddev
);
2500 while (sl
!= r10_bio
->read_slot
) {
2501 char b
[BDEVNAME_SIZE
];
2506 d
= r10_bio
->devs
[sl
].devnum
;
2507 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2509 test_bit(Faulty
, &rdev
->flags
) ||
2510 !test_bit(In_sync
, &rdev
->flags
))
2513 atomic_inc(&rdev
->nr_pending
);
2515 switch (r10_sync_page_io(rdev
,
2516 r10_bio
->devs
[sl
].addr
+
2521 /* Well, this device is dead */
2522 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2524 (unsigned long long)(
2526 choose_data_offset(r10_bio
, rdev
)),
2527 bdevname(rdev
->bdev
, b
));
2528 pr_notice("md/raid10:%s: %s: failing drive\n",
2530 bdevname(rdev
->bdev
, b
));
2533 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2535 (unsigned long long)(
2537 choose_data_offset(r10_bio
, rdev
)),
2538 bdevname(rdev
->bdev
, b
));
2539 atomic_add(s
, &rdev
->corrected_errors
);
2542 rdev_dec_pending(rdev
, mddev
);
2552 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2554 struct bio
*bio
= r10_bio
->master_bio
;
2555 struct mddev
*mddev
= r10_bio
->mddev
;
2556 struct r10conf
*conf
= mddev
->private;
2557 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2558 /* bio has the data to be written to slot 'i' where
2559 * we just recently had a write error.
2560 * We repeatedly clone the bio and trim down to one block,
2561 * then try the write. Where the write fails we record
2563 * It is conceivable that the bio doesn't exactly align with
2564 * blocks. We must handle this.
2566 * We currently own a reference to the rdev.
2572 int sect_to_write
= r10_bio
->sectors
;
2575 if (rdev
->badblocks
.shift
< 0)
2578 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2579 bdev_logical_block_size(rdev
->bdev
) >> 9);
2580 sector
= r10_bio
->sector
;
2581 sectors
= ((r10_bio
->sector
+ block_sectors
)
2582 & ~(sector_t
)(block_sectors
- 1))
2585 while (sect_to_write
) {
2588 if (sectors
> sect_to_write
)
2589 sectors
= sect_to_write
;
2590 /* Write at 'sector' for 'sectors' */
2591 wbio
= bio_clone_fast(bio
, GFP_NOIO
, &mddev
->bio_set
);
2592 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2593 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2594 wbio
->bi_iter
.bi_sector
= wsector
+
2595 choose_data_offset(r10_bio
, rdev
);
2596 bio_set_dev(wbio
, rdev
->bdev
);
2597 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2599 if (submit_bio_wait(wbio
) < 0)
2601 ok
= rdev_set_badblocks(rdev
, wsector
,
2606 sect_to_write
-= sectors
;
2608 sectors
= block_sectors
;
2613 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2615 int slot
= r10_bio
->read_slot
;
2617 struct r10conf
*conf
= mddev
->private;
2618 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2620 /* we got a read error. Maybe the drive is bad. Maybe just
2621 * the block and we can fix it.
2622 * We freeze all other IO, and try reading the block from
2623 * other devices. When we find one, we re-write
2624 * and check it that fixes the read error.
2625 * This is all done synchronously while the array is
2628 bio
= r10_bio
->devs
[slot
].bio
;
2630 r10_bio
->devs
[slot
].bio
= NULL
;
2633 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2634 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2635 freeze_array(conf
, 1);
2636 fix_read_error(conf
, mddev
, r10_bio
);
2637 unfreeze_array(conf
);
2639 md_error(mddev
, rdev
);
2641 rdev_dec_pending(rdev
, mddev
);
2642 allow_barrier(conf
);
2644 raid10_read_request(mddev
, r10_bio
->master_bio
, r10_bio
);
2647 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2649 /* Some sort of write request has finished and it
2650 * succeeded in writing where we thought there was a
2651 * bad block. So forget the bad block.
2652 * Or possibly if failed and we need to record
2656 struct md_rdev
*rdev
;
2658 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2659 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2660 for (m
= 0; m
< conf
->copies
; m
++) {
2661 int dev
= r10_bio
->devs
[m
].devnum
;
2662 rdev
= conf
->mirrors
[dev
].rdev
;
2663 if (r10_bio
->devs
[m
].bio
== NULL
||
2664 r10_bio
->devs
[m
].bio
->bi_end_io
== NULL
)
2666 if (!r10_bio
->devs
[m
].bio
->bi_status
) {
2667 rdev_clear_badblocks(
2669 r10_bio
->devs
[m
].addr
,
2670 r10_bio
->sectors
, 0);
2672 if (!rdev_set_badblocks(
2674 r10_bio
->devs
[m
].addr
,
2675 r10_bio
->sectors
, 0))
2676 md_error(conf
->mddev
, rdev
);
2678 rdev
= conf
->mirrors
[dev
].replacement
;
2679 if (r10_bio
->devs
[m
].repl_bio
== NULL
||
2680 r10_bio
->devs
[m
].repl_bio
->bi_end_io
== NULL
)
2683 if (!r10_bio
->devs
[m
].repl_bio
->bi_status
) {
2684 rdev_clear_badblocks(
2686 r10_bio
->devs
[m
].addr
,
2687 r10_bio
->sectors
, 0);
2689 if (!rdev_set_badblocks(
2691 r10_bio
->devs
[m
].addr
,
2692 r10_bio
->sectors
, 0))
2693 md_error(conf
->mddev
, rdev
);
2699 for (m
= 0; m
< conf
->copies
; m
++) {
2700 int dev
= r10_bio
->devs
[m
].devnum
;
2701 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2702 rdev
= conf
->mirrors
[dev
].rdev
;
2703 if (bio
== IO_MADE_GOOD
) {
2704 rdev_clear_badblocks(
2706 r10_bio
->devs
[m
].addr
,
2707 r10_bio
->sectors
, 0);
2708 rdev_dec_pending(rdev
, conf
->mddev
);
2709 } else if (bio
!= NULL
&& bio
->bi_status
) {
2711 if (!narrow_write_error(r10_bio
, m
)) {
2712 md_error(conf
->mddev
, rdev
);
2713 set_bit(R10BIO_Degraded
,
2716 rdev_dec_pending(rdev
, conf
->mddev
);
2718 bio
= r10_bio
->devs
[m
].repl_bio
;
2719 rdev
= conf
->mirrors
[dev
].replacement
;
2720 if (rdev
&& bio
== IO_MADE_GOOD
) {
2721 rdev_clear_badblocks(
2723 r10_bio
->devs
[m
].addr
,
2724 r10_bio
->sectors
, 0);
2725 rdev_dec_pending(rdev
, conf
->mddev
);
2729 spin_lock_irq(&conf
->device_lock
);
2730 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2732 spin_unlock_irq(&conf
->device_lock
);
2734 * In case freeze_array() is waiting for condition
2735 * nr_pending == nr_queued + extra to be true.
2737 wake_up(&conf
->wait_barrier
);
2738 md_wakeup_thread(conf
->mddev
->thread
);
2740 if (test_bit(R10BIO_WriteError
,
2742 close_write(r10_bio
);
2743 raid_end_bio_io(r10_bio
);
2748 static void raid10d(struct md_thread
*thread
)
2750 struct mddev
*mddev
= thread
->mddev
;
2751 struct r10bio
*r10_bio
;
2752 unsigned long flags
;
2753 struct r10conf
*conf
= mddev
->private;
2754 struct list_head
*head
= &conf
->retry_list
;
2755 struct blk_plug plug
;
2757 md_check_recovery(mddev
);
2759 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2760 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2762 spin_lock_irqsave(&conf
->device_lock
, flags
);
2763 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2764 while (!list_empty(&conf
->bio_end_io_list
)) {
2765 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2769 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2770 while (!list_empty(&tmp
)) {
2771 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2773 list_del(&r10_bio
->retry_list
);
2774 if (mddev
->degraded
)
2775 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2777 if (test_bit(R10BIO_WriteError
,
2779 close_write(r10_bio
);
2780 raid_end_bio_io(r10_bio
);
2784 blk_start_plug(&plug
);
2787 flush_pending_writes(conf
);
2789 spin_lock_irqsave(&conf
->device_lock
, flags
);
2790 if (list_empty(head
)) {
2791 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2794 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2795 list_del(head
->prev
);
2797 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2799 mddev
= r10_bio
->mddev
;
2800 conf
= mddev
->private;
2801 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2802 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2803 handle_write_completed(conf
, r10_bio
);
2804 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2805 reshape_request_write(mddev
, r10_bio
);
2806 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2807 sync_request_write(mddev
, r10_bio
);
2808 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2809 recovery_request_write(mddev
, r10_bio
);
2810 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2811 handle_read_error(mddev
, r10_bio
);
2816 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2817 md_check_recovery(mddev
);
2819 blk_finish_plug(&plug
);
2822 static int init_resync(struct r10conf
*conf
)
2826 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2827 BUG_ON(mempool_initialized(&conf
->r10buf_pool
));
2828 conf
->have_replacement
= 0;
2829 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2830 if (conf
->mirrors
[i
].replacement
)
2831 conf
->have_replacement
= 1;
2832 ret
= mempool_init(&conf
->r10buf_pool
, buffs
,
2833 r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2836 conf
->next_resync
= 0;
2840 static struct r10bio
*raid10_alloc_init_r10buf(struct r10conf
*conf
)
2842 struct r10bio
*r10bio
= mempool_alloc(&conf
->r10buf_pool
, GFP_NOIO
);
2843 struct rsync_pages
*rp
;
2848 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
2849 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
2850 nalloc
= conf
->copies
; /* resync */
2852 nalloc
= 2; /* recovery */
2854 for (i
= 0; i
< nalloc
; i
++) {
2855 bio
= r10bio
->devs
[i
].bio
;
2856 rp
= bio
->bi_private
;
2858 bio
->bi_private
= rp
;
2859 bio
= r10bio
->devs
[i
].repl_bio
;
2861 rp
= bio
->bi_private
;
2863 bio
->bi_private
= rp
;
2870 * Set cluster_sync_high since we need other nodes to add the
2871 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2873 static void raid10_set_cluster_sync_high(struct r10conf
*conf
)
2875 sector_t window_size
;
2876 int extra_chunk
, chunks
;
2879 * First, here we define "stripe" as a unit which across
2880 * all member devices one time, so we get chunks by use
2881 * raid_disks / near_copies. Otherwise, if near_copies is
2882 * close to raid_disks, then resync window could increases
2883 * linearly with the increase of raid_disks, which means
2884 * we will suspend a really large IO window while it is not
2885 * necessary. If raid_disks is not divisible by near_copies,
2886 * an extra chunk is needed to ensure the whole "stripe" is
2890 chunks
= conf
->geo
.raid_disks
/ conf
->geo
.near_copies
;
2891 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
== 0)
2895 window_size
= (chunks
+ extra_chunk
) * conf
->mddev
->chunk_sectors
;
2898 * At least use a 32M window to align with raid1's resync window
2900 window_size
= (CLUSTER_RESYNC_WINDOW_SECTORS
> window_size
) ?
2901 CLUSTER_RESYNC_WINDOW_SECTORS
: window_size
;
2903 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ window_size
;
2907 * perform a "sync" on one "block"
2909 * We need to make sure that no normal I/O request - particularly write
2910 * requests - conflict with active sync requests.
2912 * This is achieved by tracking pending requests and a 'barrier' concept
2913 * that can be installed to exclude normal IO requests.
2915 * Resync and recovery are handled very differently.
2916 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2918 * For resync, we iterate over virtual addresses, read all copies,
2919 * and update if there are differences. If only one copy is live,
2921 * For recovery, we iterate over physical addresses, read a good
2922 * value for each non-in_sync drive, and over-write.
2924 * So, for recovery we may have several outstanding complex requests for a
2925 * given address, one for each out-of-sync device. We model this by allocating
2926 * a number of r10_bio structures, one for each out-of-sync device.
2927 * As we setup these structures, we collect all bio's together into a list
2928 * which we then process collectively to add pages, and then process again
2929 * to pass to generic_make_request.
2931 * The r10_bio structures are linked using a borrowed master_bio pointer.
2932 * This link is counted in ->remaining. When the r10_bio that points to NULL
2933 * has its remaining count decremented to 0, the whole complex operation
2938 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2941 struct r10conf
*conf
= mddev
->private;
2942 struct r10bio
*r10_bio
;
2943 struct bio
*biolist
= NULL
, *bio
;
2944 sector_t max_sector
, nr_sectors
;
2947 sector_t sync_blocks
;
2948 sector_t sectors_skipped
= 0;
2949 int chunks_skipped
= 0;
2950 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2953 if (!mempool_initialized(&conf
->r10buf_pool
))
2954 if (init_resync(conf
))
2958 * Allow skipping a full rebuild for incremental assembly
2959 * of a clean array, like RAID1 does.
2961 if (mddev
->bitmap
== NULL
&&
2962 mddev
->recovery_cp
== MaxSector
&&
2963 mddev
->reshape_position
== MaxSector
&&
2964 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2965 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2966 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2967 conf
->fullsync
== 0) {
2969 return mddev
->dev_sectors
- sector_nr
;
2973 max_sector
= mddev
->dev_sectors
;
2974 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2975 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2976 max_sector
= mddev
->resync_max_sectors
;
2977 if (sector_nr
>= max_sector
) {
2978 conf
->cluster_sync_low
= 0;
2979 conf
->cluster_sync_high
= 0;
2981 /* If we aborted, we need to abort the
2982 * sync on the 'current' bitmap chucks (there can
2983 * be several when recovering multiple devices).
2984 * as we may have started syncing it but not finished.
2985 * We can find the current address in
2986 * mddev->curr_resync, but for recovery,
2987 * we need to convert that to several
2988 * virtual addresses.
2990 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2996 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2997 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2998 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3000 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3002 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
3003 md_bitmap_end_sync(mddev
->bitmap
, sect
,
3007 /* completed sync */
3008 if ((!mddev
->bitmap
|| conf
->fullsync
)
3009 && conf
->have_replacement
3010 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3011 /* Completed a full sync so the replacements
3012 * are now fully recovered.
3015 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3016 struct md_rdev
*rdev
=
3017 rcu_dereference(conf
->mirrors
[i
].replacement
);
3019 rdev
->recovery_offset
= MaxSector
;
3025 md_bitmap_close_sync(mddev
->bitmap
);
3028 return sectors_skipped
;
3031 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3032 return reshape_request(mddev
, sector_nr
, skipped
);
3034 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
3035 /* if there has been nothing to do on any drive,
3036 * then there is nothing to do at all..
3039 return (max_sector
- sector_nr
) + sectors_skipped
;
3042 if (max_sector
> mddev
->resync_max
)
3043 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
3045 /* make sure whole request will fit in a chunk - if chunks
3048 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
3049 max_sector
> (sector_nr
| chunk_mask
))
3050 max_sector
= (sector_nr
| chunk_mask
) + 1;
3053 * If there is non-resync activity waiting for a turn, then let it
3054 * though before starting on this new sync request.
3056 if (conf
->nr_waiting
)
3057 schedule_timeout_uninterruptible(1);
3059 /* Again, very different code for resync and recovery.
3060 * Both must result in an r10bio with a list of bios that
3061 * have bi_end_io, bi_sector, bi_disk set,
3062 * and bi_private set to the r10bio.
3063 * For recovery, we may actually create several r10bios
3064 * with 2 bios in each, that correspond to the bios in the main one.
3065 * In this case, the subordinate r10bios link back through a
3066 * borrowed master_bio pointer, and the counter in the master
3067 * includes a ref from each subordinate.
3069 /* First, we decide what to do and set ->bi_end_io
3070 * To end_sync_read if we want to read, and
3071 * end_sync_write if we will want to write.
3074 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3075 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3076 /* recovery... the complicated one */
3080 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3086 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3087 struct md_rdev
*mrdev
, *mreplace
;
3090 mrdev
= rcu_dereference(mirror
->rdev
);
3091 mreplace
= rcu_dereference(mirror
->replacement
);
3093 if ((mrdev
== NULL
||
3094 test_bit(Faulty
, &mrdev
->flags
) ||
3095 test_bit(In_sync
, &mrdev
->flags
)) &&
3096 (mreplace
== NULL
||
3097 test_bit(Faulty
, &mreplace
->flags
))) {
3103 /* want to reconstruct this device */
3105 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3106 if (sect
>= mddev
->resync_max_sectors
) {
3107 /* last stripe is not complete - don't
3108 * try to recover this sector.
3113 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3115 /* Unless we are doing a full sync, or a replacement
3116 * we only need to recover the block if it is set in
3119 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3121 if (sync_blocks
< max_sync
)
3122 max_sync
= sync_blocks
;
3126 /* yep, skip the sync_blocks here, but don't assume
3127 * that there will never be anything to do here
3129 chunks_skipped
= -1;
3133 atomic_inc(&mrdev
->nr_pending
);
3135 atomic_inc(&mreplace
->nr_pending
);
3138 r10_bio
= raid10_alloc_init_r10buf(conf
);
3140 raise_barrier(conf
, rb2
!= NULL
);
3141 atomic_set(&r10_bio
->remaining
, 0);
3143 r10_bio
->master_bio
= (struct bio
*)rb2
;
3145 atomic_inc(&rb2
->remaining
);
3146 r10_bio
->mddev
= mddev
;
3147 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3148 r10_bio
->sector
= sect
;
3150 raid10_find_phys(conf
, r10_bio
);
3152 /* Need to check if the array will still be
3156 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3157 struct md_rdev
*rdev
= rcu_dereference(
3158 conf
->mirrors
[j
].rdev
);
3159 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3165 must_sync
= md_bitmap_start_sync(mddev
->bitmap
, sect
,
3166 &sync_blocks
, still_degraded
);
3169 for (j
=0; j
<conf
->copies
;j
++) {
3171 int d
= r10_bio
->devs
[j
].devnum
;
3172 sector_t from_addr
, to_addr
;
3173 struct md_rdev
*rdev
=
3174 rcu_dereference(conf
->mirrors
[d
].rdev
);
3175 sector_t sector
, first_bad
;
3178 !test_bit(In_sync
, &rdev
->flags
))
3180 /* This is where we read from */
3182 sector
= r10_bio
->devs
[j
].addr
;
3184 if (is_badblock(rdev
, sector
, max_sync
,
3185 &first_bad
, &bad_sectors
)) {
3186 if (first_bad
> sector
)
3187 max_sync
= first_bad
- sector
;
3189 bad_sectors
-= (sector
3191 if (max_sync
> bad_sectors
)
3192 max_sync
= bad_sectors
;
3196 bio
= r10_bio
->devs
[0].bio
;
3197 bio
->bi_next
= biolist
;
3199 bio
->bi_end_io
= end_sync_read
;
3200 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3201 if (test_bit(FailFast
, &rdev
->flags
))
3202 bio
->bi_opf
|= MD_FAILFAST
;
3203 from_addr
= r10_bio
->devs
[j
].addr
;
3204 bio
->bi_iter
.bi_sector
= from_addr
+
3206 bio_set_dev(bio
, rdev
->bdev
);
3207 atomic_inc(&rdev
->nr_pending
);
3208 /* and we write to 'i' (if not in_sync) */
3210 for (k
=0; k
<conf
->copies
; k
++)
3211 if (r10_bio
->devs
[k
].devnum
== i
)
3213 BUG_ON(k
== conf
->copies
);
3214 to_addr
= r10_bio
->devs
[k
].addr
;
3215 r10_bio
->devs
[0].devnum
= d
;
3216 r10_bio
->devs
[0].addr
= from_addr
;
3217 r10_bio
->devs
[1].devnum
= i
;
3218 r10_bio
->devs
[1].addr
= to_addr
;
3220 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3221 bio
= r10_bio
->devs
[1].bio
;
3222 bio
->bi_next
= biolist
;
3224 bio
->bi_end_io
= end_sync_write
;
3225 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3226 bio
->bi_iter
.bi_sector
= to_addr
3227 + mrdev
->data_offset
;
3228 bio_set_dev(bio
, mrdev
->bdev
);
3229 atomic_inc(&r10_bio
->remaining
);
3231 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3233 /* and maybe write to replacement */
3234 bio
= r10_bio
->devs
[1].repl_bio
;
3236 bio
->bi_end_io
= NULL
;
3237 /* Note: if mreplace != NULL, then bio
3238 * cannot be NULL as r10buf_pool_alloc will
3239 * have allocated it.
3240 * So the second test here is pointless.
3241 * But it keeps semantic-checkers happy, and
3242 * this comment keeps human reviewers
3245 if (mreplace
== NULL
|| bio
== NULL
||
3246 test_bit(Faulty
, &mreplace
->flags
))
3248 bio
->bi_next
= biolist
;
3250 bio
->bi_end_io
= end_sync_write
;
3251 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3252 bio
->bi_iter
.bi_sector
= to_addr
+
3253 mreplace
->data_offset
;
3254 bio_set_dev(bio
, mreplace
->bdev
);
3255 atomic_inc(&r10_bio
->remaining
);
3259 if (j
== conf
->copies
) {
3260 /* Cannot recover, so abort the recovery or
3261 * record a bad block */
3263 /* problem is that there are bad blocks
3264 * on other device(s)
3267 for (k
= 0; k
< conf
->copies
; k
++)
3268 if (r10_bio
->devs
[k
].devnum
== i
)
3270 if (!test_bit(In_sync
,
3272 && !rdev_set_badblocks(
3274 r10_bio
->devs
[k
].addr
,
3278 !rdev_set_badblocks(
3280 r10_bio
->devs
[k
].addr
,
3285 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3287 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3289 mirror
->recovery_disabled
3290 = mddev
->recovery_disabled
;
3294 atomic_dec(&rb2
->remaining
);
3296 rdev_dec_pending(mrdev
, mddev
);
3298 rdev_dec_pending(mreplace
, mddev
);
3301 rdev_dec_pending(mrdev
, mddev
);
3303 rdev_dec_pending(mreplace
, mddev
);
3304 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3305 /* Only want this if there is elsewhere to
3306 * read from. 'j' is currently the first
3310 for (; j
< conf
->copies
; j
++) {
3311 int d
= r10_bio
->devs
[j
].devnum
;
3312 if (conf
->mirrors
[d
].rdev
&&
3314 &conf
->mirrors
[d
].rdev
->flags
))
3318 r10_bio
->devs
[0].bio
->bi_opf
3322 if (biolist
== NULL
) {
3324 struct r10bio
*rb2
= r10_bio
;
3325 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3326 rb2
->master_bio
= NULL
;
3332 /* resync. Schedule a read for every block at this virt offset */
3336 * Since curr_resync_completed could probably not update in
3337 * time, and we will set cluster_sync_low based on it.
3338 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3339 * safety reason, which ensures curr_resync_completed is
3340 * updated in bitmap_cond_end_sync.
3342 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
3343 mddev_is_clustered(mddev
) &&
3344 (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
3346 if (!md_bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3347 &sync_blocks
, mddev
->degraded
) &&
3348 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3349 &mddev
->recovery
)) {
3350 /* We can skip this block */
3352 return sync_blocks
+ sectors_skipped
;
3354 if (sync_blocks
< max_sync
)
3355 max_sync
= sync_blocks
;
3356 r10_bio
= raid10_alloc_init_r10buf(conf
);
3359 r10_bio
->mddev
= mddev
;
3360 atomic_set(&r10_bio
->remaining
, 0);
3361 raise_barrier(conf
, 0);
3362 conf
->next_resync
= sector_nr
;
3364 r10_bio
->master_bio
= NULL
;
3365 r10_bio
->sector
= sector_nr
;
3366 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3367 raid10_find_phys(conf
, r10_bio
);
3368 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3370 for (i
= 0; i
< conf
->copies
; i
++) {
3371 int d
= r10_bio
->devs
[i
].devnum
;
3372 sector_t first_bad
, sector
;
3374 struct md_rdev
*rdev
;
3376 if (r10_bio
->devs
[i
].repl_bio
)
3377 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3379 bio
= r10_bio
->devs
[i
].bio
;
3380 bio
->bi_status
= BLK_STS_IOERR
;
3382 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3383 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3387 sector
= r10_bio
->devs
[i
].addr
;
3388 if (is_badblock(rdev
, sector
, max_sync
,
3389 &first_bad
, &bad_sectors
)) {
3390 if (first_bad
> sector
)
3391 max_sync
= first_bad
- sector
;
3393 bad_sectors
-= (sector
- first_bad
);
3394 if (max_sync
> bad_sectors
)
3395 max_sync
= bad_sectors
;
3400 atomic_inc(&rdev
->nr_pending
);
3401 atomic_inc(&r10_bio
->remaining
);
3402 bio
->bi_next
= biolist
;
3404 bio
->bi_end_io
= end_sync_read
;
3405 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3406 if (test_bit(FailFast
, &rdev
->flags
))
3407 bio
->bi_opf
|= MD_FAILFAST
;
3408 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3409 bio_set_dev(bio
, rdev
->bdev
);
3412 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3413 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3417 atomic_inc(&rdev
->nr_pending
);
3419 /* Need to set up for writing to the replacement */
3420 bio
= r10_bio
->devs
[i
].repl_bio
;
3421 bio
->bi_status
= BLK_STS_IOERR
;
3423 sector
= r10_bio
->devs
[i
].addr
;
3424 bio
->bi_next
= biolist
;
3426 bio
->bi_end_io
= end_sync_write
;
3427 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3428 if (test_bit(FailFast
, &rdev
->flags
))
3429 bio
->bi_opf
|= MD_FAILFAST
;
3430 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3431 bio_set_dev(bio
, rdev
->bdev
);
3437 for (i
=0; i
<conf
->copies
; i
++) {
3438 int d
= r10_bio
->devs
[i
].devnum
;
3439 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3440 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3442 if (r10_bio
->devs
[i
].repl_bio
&&
3443 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3445 conf
->mirrors
[d
].replacement
,
3455 if (sector_nr
+ max_sync
< max_sector
)
3456 max_sector
= sector_nr
+ max_sync
;
3459 int len
= PAGE_SIZE
;
3460 if (sector_nr
+ (len
>>9) > max_sector
)
3461 len
= (max_sector
- sector_nr
) << 9;
3464 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3465 struct resync_pages
*rp
= get_resync_pages(bio
);
3466 page
= resync_fetch_page(rp
, page_idx
);
3468 * won't fail because the vec table is big enough
3469 * to hold all these pages
3471 bio_add_page(bio
, page
, len
, 0);
3473 nr_sectors
+= len
>>9;
3474 sector_nr
+= len
>>9;
3475 } while (++page_idx
< RESYNC_PAGES
);
3476 r10_bio
->sectors
= nr_sectors
;
3478 if (mddev_is_clustered(mddev
) &&
3479 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3480 /* It is resync not recovery */
3481 if (conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
3482 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
3483 raid10_set_cluster_sync_high(conf
);
3484 /* Send resync message */
3485 md_cluster_ops
->resync_info_update(mddev
,
3486 conf
->cluster_sync_low
,
3487 conf
->cluster_sync_high
);
3489 } else if (mddev_is_clustered(mddev
)) {
3490 /* This is recovery not resync */
3491 sector_t sect_va1
, sect_va2
;
3492 bool broadcast_msg
= false;
3494 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3496 * sector_nr is a device address for recovery, so we
3497 * need translate it to array address before compare
3498 * with cluster_sync_high.
3500 sect_va1
= raid10_find_virt(conf
, sector_nr
, i
);
3502 if (conf
->cluster_sync_high
< sect_va1
+ nr_sectors
) {
3503 broadcast_msg
= true;
3505 * curr_resync_completed is similar as
3506 * sector_nr, so make the translation too.
3508 sect_va2
= raid10_find_virt(conf
,
3509 mddev
->curr_resync_completed
, i
);
3511 if (conf
->cluster_sync_low
== 0 ||
3512 conf
->cluster_sync_low
> sect_va2
)
3513 conf
->cluster_sync_low
= sect_va2
;
3516 if (broadcast_msg
) {
3517 raid10_set_cluster_sync_high(conf
);
3518 md_cluster_ops
->resync_info_update(mddev
,
3519 conf
->cluster_sync_low
,
3520 conf
->cluster_sync_high
);
3526 biolist
= biolist
->bi_next
;
3528 bio
->bi_next
= NULL
;
3529 r10_bio
= get_resync_r10bio(bio
);
3530 r10_bio
->sectors
= nr_sectors
;
3532 if (bio
->bi_end_io
== end_sync_read
) {
3533 md_sync_acct_bio(bio
, nr_sectors
);
3535 generic_make_request(bio
);
3539 if (sectors_skipped
)
3540 /* pretend they weren't skipped, it makes
3541 * no important difference in this case
3543 md_done_sync(mddev
, sectors_skipped
, 1);
3545 return sectors_skipped
+ nr_sectors
;
3547 /* There is nowhere to write, so all non-sync
3548 * drives must be failed or in resync, all drives
3549 * have a bad block, so try the next chunk...
3551 if (sector_nr
+ max_sync
< max_sector
)
3552 max_sector
= sector_nr
+ max_sync
;
3554 sectors_skipped
+= (max_sector
- sector_nr
);
3556 sector_nr
= max_sector
;
3561 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3564 struct r10conf
*conf
= mddev
->private;
3567 raid_disks
= min(conf
->geo
.raid_disks
,
3568 conf
->prev
.raid_disks
);
3570 sectors
= conf
->dev_sectors
;
3572 size
= sectors
>> conf
->geo
.chunk_shift
;
3573 sector_div(size
, conf
->geo
.far_copies
);
3574 size
= size
* raid_disks
;
3575 sector_div(size
, conf
->geo
.near_copies
);
3577 return size
<< conf
->geo
.chunk_shift
;
3580 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3582 /* Calculate the number of sectors-per-device that will
3583 * actually be used, and set conf->dev_sectors and
3587 size
= size
>> conf
->geo
.chunk_shift
;
3588 sector_div(size
, conf
->geo
.far_copies
);
3589 size
= size
* conf
->geo
.raid_disks
;
3590 sector_div(size
, conf
->geo
.near_copies
);
3591 /* 'size' is now the number of chunks in the array */
3592 /* calculate "used chunks per device" */
3593 size
= size
* conf
->copies
;
3595 /* We need to round up when dividing by raid_disks to
3596 * get the stride size.
3598 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3600 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3602 if (conf
->geo
.far_offset
)
3603 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3605 sector_div(size
, conf
->geo
.far_copies
);
3606 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3610 enum geo_type
{geo_new
, geo_old
, geo_start
};
3611 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3614 int layout
, chunk
, disks
;
3617 layout
= mddev
->layout
;
3618 chunk
= mddev
->chunk_sectors
;
3619 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3622 layout
= mddev
->new_layout
;
3623 chunk
= mddev
->new_chunk_sectors
;
3624 disks
= mddev
->raid_disks
;
3626 default: /* avoid 'may be unused' warnings */
3627 case geo_start
: /* new when starting reshape - raid_disks not
3629 layout
= mddev
->new_layout
;
3630 chunk
= mddev
->new_chunk_sectors
;
3631 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3636 if (chunk
< (PAGE_SIZE
>> 9) ||
3637 !is_power_of_2(chunk
))
3640 fc
= (layout
>> 8) & 255;
3641 fo
= layout
& (1<<16);
3642 geo
->raid_disks
= disks
;
3643 geo
->near_copies
= nc
;
3644 geo
->far_copies
= fc
;
3645 geo
->far_offset
= fo
;
3646 switch (layout
>> 17) {
3647 case 0: /* original layout. simple but not always optimal */
3648 geo
->far_set_size
= disks
;
3650 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3651 * actually using this, but leave code here just in case.*/
3652 geo
->far_set_size
= disks
/fc
;
3653 WARN(geo
->far_set_size
< fc
,
3654 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3656 case 2: /* "improved" layout fixed to match documentation */
3657 geo
->far_set_size
= fc
* nc
;
3659 default: /* Not a valid layout */
3662 geo
->chunk_mask
= chunk
- 1;
3663 geo
->chunk_shift
= ffz(~chunk
);
3667 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3669 struct r10conf
*conf
= NULL
;
3674 copies
= setup_geo(&geo
, mddev
, geo_new
);
3677 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3678 mdname(mddev
), PAGE_SIZE
);
3682 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3683 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3684 mdname(mddev
), mddev
->new_layout
);
3689 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3693 /* FIXME calc properly */
3694 conf
->mirrors
= kcalloc(mddev
->raid_disks
+ max(0, -mddev
->delta_disks
),
3695 sizeof(struct raid10_info
),
3700 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3705 conf
->copies
= copies
;
3706 err
= mempool_init(&conf
->r10bio_pool
, NR_RAID10_BIOS
, r10bio_pool_alloc
,
3707 r10bio_pool_free
, conf
);
3711 err
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
3715 calc_sectors(conf
, mddev
->dev_sectors
);
3716 if (mddev
->reshape_position
== MaxSector
) {
3717 conf
->prev
= conf
->geo
;
3718 conf
->reshape_progress
= MaxSector
;
3720 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3724 conf
->reshape_progress
= mddev
->reshape_position
;
3725 if (conf
->prev
.far_offset
)
3726 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3728 /* far_copies must be 1 */
3729 conf
->prev
.stride
= conf
->dev_sectors
;
3731 conf
->reshape_safe
= conf
->reshape_progress
;
3732 spin_lock_init(&conf
->device_lock
);
3733 INIT_LIST_HEAD(&conf
->retry_list
);
3734 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3736 spin_lock_init(&conf
->resync_lock
);
3737 init_waitqueue_head(&conf
->wait_barrier
);
3738 atomic_set(&conf
->nr_pending
, 0);
3741 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3745 conf
->mddev
= mddev
;
3750 mempool_exit(&conf
->r10bio_pool
);
3751 kfree(conf
->mirrors
);
3752 safe_put_page(conf
->tmppage
);
3753 bioset_exit(&conf
->bio_split
);
3756 return ERR_PTR(err
);
3759 static int raid10_run(struct mddev
*mddev
)
3761 struct r10conf
*conf
;
3762 int i
, disk_idx
, chunk_size
;
3763 struct raid10_info
*disk
;
3764 struct md_rdev
*rdev
;
3766 sector_t min_offset_diff
= 0;
3768 bool discard_supported
= false;
3770 if (mddev_init_writes_pending(mddev
) < 0)
3773 if (mddev
->private == NULL
) {
3774 conf
= setup_conf(mddev
);
3776 return PTR_ERR(conf
);
3777 mddev
->private = conf
;
3779 conf
= mddev
->private;
3783 if (mddev_is_clustered(conf
->mddev
)) {
3786 fc
= (mddev
->layout
>> 8) & 255;
3787 fo
= mddev
->layout
& (1<<16);
3788 if (fc
> 1 || fo
> 0) {
3789 pr_err("only near layout is supported by clustered"
3795 mddev
->thread
= conf
->thread
;
3796 conf
->thread
= NULL
;
3798 chunk_size
= mddev
->chunk_sectors
<< 9;
3800 blk_queue_max_discard_sectors(mddev
->queue
,
3801 mddev
->chunk_sectors
);
3802 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3803 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3804 blk_queue_io_min(mddev
->queue
, chunk_size
);
3805 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3806 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3808 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3809 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3812 rdev_for_each(rdev
, mddev
) {
3815 disk_idx
= rdev
->raid_disk
;
3818 if (disk_idx
>= conf
->geo
.raid_disks
&&
3819 disk_idx
>= conf
->prev
.raid_disks
)
3821 disk
= conf
->mirrors
+ disk_idx
;
3823 if (test_bit(Replacement
, &rdev
->flags
)) {
3824 if (disk
->replacement
)
3826 disk
->replacement
= rdev
;
3832 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3833 if (!mddev
->reshape_backwards
)
3837 if (first
|| diff
< min_offset_diff
)
3838 min_offset_diff
= diff
;
3841 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3842 rdev
->data_offset
<< 9);
3844 disk
->head_position
= 0;
3846 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3847 discard_supported
= true;
3852 if (discard_supported
)
3853 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
3856 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
3859 /* need to check that every block has at least one working mirror */
3860 if (!enough(conf
, -1)) {
3861 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3866 if (conf
->reshape_progress
!= MaxSector
) {
3867 /* must ensure that shape change is supported */
3868 if (conf
->geo
.far_copies
!= 1 &&
3869 conf
->geo
.far_offset
== 0)
3871 if (conf
->prev
.far_copies
!= 1 &&
3872 conf
->prev
.far_offset
== 0)
3876 mddev
->degraded
= 0;
3878 i
< conf
->geo
.raid_disks
3879 || i
< conf
->prev
.raid_disks
;
3882 disk
= conf
->mirrors
+ i
;
3884 if (!disk
->rdev
&& disk
->replacement
) {
3885 /* The replacement is all we have - use it */
3886 disk
->rdev
= disk
->replacement
;
3887 disk
->replacement
= NULL
;
3888 clear_bit(Replacement
, &disk
->rdev
->flags
);
3892 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3893 disk
->head_position
= 0;
3896 disk
->rdev
->saved_raid_disk
< 0)
3900 if (disk
->replacement
&&
3901 !test_bit(In_sync
, &disk
->replacement
->flags
) &&
3902 disk
->replacement
->saved_raid_disk
< 0) {
3906 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3909 if (mddev
->recovery_cp
!= MaxSector
)
3910 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3912 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3913 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3914 conf
->geo
.raid_disks
);
3916 * Ok, everything is just fine now
3918 mddev
->dev_sectors
= conf
->dev_sectors
;
3919 size
= raid10_size(mddev
, 0, 0);
3920 md_set_array_sectors(mddev
, size
);
3921 mddev
->resync_max_sectors
= size
;
3922 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3925 int stripe
= conf
->geo
.raid_disks
*
3926 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3928 /* Calculate max read-ahead size.
3929 * We need to readahead at least twice a whole stripe....
3932 stripe
/= conf
->geo
.near_copies
;
3933 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
3934 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
3937 if (md_integrity_register(mddev
))
3940 if (conf
->reshape_progress
!= MaxSector
) {
3941 unsigned long before_length
, after_length
;
3943 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3944 conf
->prev
.far_copies
);
3945 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3946 conf
->geo
.far_copies
);
3948 if (max(before_length
, after_length
) > min_offset_diff
) {
3949 /* This cannot work */
3950 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3953 conf
->offset_diff
= min_offset_diff
;
3955 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3956 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3957 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3958 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3959 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3961 if (!mddev
->sync_thread
)
3968 md_unregister_thread(&mddev
->thread
);
3969 mempool_exit(&conf
->r10bio_pool
);
3970 safe_put_page(conf
->tmppage
);
3971 kfree(conf
->mirrors
);
3973 mddev
->private = NULL
;
3978 static void raid10_free(struct mddev
*mddev
, void *priv
)
3980 struct r10conf
*conf
= priv
;
3982 mempool_exit(&conf
->r10bio_pool
);
3983 safe_put_page(conf
->tmppage
);
3984 kfree(conf
->mirrors
);
3985 kfree(conf
->mirrors_old
);
3986 kfree(conf
->mirrors_new
);
3987 bioset_exit(&conf
->bio_split
);
3991 static void raid10_quiesce(struct mddev
*mddev
, int quiesce
)
3993 struct r10conf
*conf
= mddev
->private;
3996 raise_barrier(conf
, 0);
3998 lower_barrier(conf
);
4001 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
4003 /* Resize of 'far' arrays is not supported.
4004 * For 'near' and 'offset' arrays we can set the
4005 * number of sectors used to be an appropriate multiple
4006 * of the chunk size.
4007 * For 'offset', this is far_copies*chunksize.
4008 * For 'near' the multiplier is the LCM of
4009 * near_copies and raid_disks.
4010 * So if far_copies > 1 && !far_offset, fail.
4011 * Else find LCM(raid_disks, near_copy)*far_copies and
4012 * multiply by chunk_size. Then round to this number.
4013 * This is mostly done by raid10_size()
4015 struct r10conf
*conf
= mddev
->private;
4016 sector_t oldsize
, size
;
4018 if (mddev
->reshape_position
!= MaxSector
)
4021 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
4024 oldsize
= raid10_size(mddev
, 0, 0);
4025 size
= raid10_size(mddev
, sectors
, 0);
4026 if (mddev
->external_size
&&
4027 mddev
->array_sectors
> size
)
4029 if (mddev
->bitmap
) {
4030 int ret
= md_bitmap_resize(mddev
->bitmap
, size
, 0, 0);
4034 md_set_array_sectors(mddev
, size
);
4035 if (sectors
> mddev
->dev_sectors
&&
4036 mddev
->recovery_cp
> oldsize
) {
4037 mddev
->recovery_cp
= oldsize
;
4038 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4040 calc_sectors(conf
, sectors
);
4041 mddev
->dev_sectors
= conf
->dev_sectors
;
4042 mddev
->resync_max_sectors
= size
;
4046 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
4048 struct md_rdev
*rdev
;
4049 struct r10conf
*conf
;
4051 if (mddev
->degraded
> 0) {
4052 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4054 return ERR_PTR(-EINVAL
);
4056 sector_div(size
, devs
);
4058 /* Set new parameters */
4059 mddev
->new_level
= 10;
4060 /* new layout: far_copies = 1, near_copies = 2 */
4061 mddev
->new_layout
= (1<<8) + 2;
4062 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4063 mddev
->delta_disks
= mddev
->raid_disks
;
4064 mddev
->raid_disks
*= 2;
4065 /* make sure it will be not marked as dirty */
4066 mddev
->recovery_cp
= MaxSector
;
4067 mddev
->dev_sectors
= size
;
4069 conf
= setup_conf(mddev
);
4070 if (!IS_ERR(conf
)) {
4071 rdev_for_each(rdev
, mddev
)
4072 if (rdev
->raid_disk
>= 0) {
4073 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
4074 rdev
->sectors
= size
;
4082 static void *raid10_takeover(struct mddev
*mddev
)
4084 struct r0conf
*raid0_conf
;
4086 /* raid10 can take over:
4087 * raid0 - providing it has only two drives
4089 if (mddev
->level
== 0) {
4090 /* for raid0 takeover only one zone is supported */
4091 raid0_conf
= mddev
->private;
4092 if (raid0_conf
->nr_strip_zones
> 1) {
4093 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4095 return ERR_PTR(-EINVAL
);
4097 return raid10_takeover_raid0(mddev
,
4098 raid0_conf
->strip_zone
->zone_end
,
4099 raid0_conf
->strip_zone
->nb_dev
);
4101 return ERR_PTR(-EINVAL
);
4104 static int raid10_check_reshape(struct mddev
*mddev
)
4106 /* Called when there is a request to change
4107 * - layout (to ->new_layout)
4108 * - chunk size (to ->new_chunk_sectors)
4109 * - raid_disks (by delta_disks)
4110 * or when trying to restart a reshape that was ongoing.
4112 * We need to validate the request and possibly allocate
4113 * space if that might be an issue later.
4115 * Currently we reject any reshape of a 'far' mode array,
4116 * allow chunk size to change if new is generally acceptable,
4117 * allow raid_disks to increase, and allow
4118 * a switch between 'near' mode and 'offset' mode.
4120 struct r10conf
*conf
= mddev
->private;
4123 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4126 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4127 /* mustn't change number of copies */
4129 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4130 /* Cannot switch to 'far' mode */
4133 if (mddev
->array_sectors
& geo
.chunk_mask
)
4134 /* not factor of array size */
4137 if (!enough(conf
, -1))
4140 kfree(conf
->mirrors_new
);
4141 conf
->mirrors_new
= NULL
;
4142 if (mddev
->delta_disks
> 0) {
4143 /* allocate new 'mirrors' list */
4145 kcalloc(mddev
->raid_disks
+ mddev
->delta_disks
,
4146 sizeof(struct raid10_info
),
4148 if (!conf
->mirrors_new
)
4155 * Need to check if array has failed when deciding whether to:
4157 * - remove non-faulty devices
4160 * This determination is simple when no reshape is happening.
4161 * However if there is a reshape, we need to carefully check
4162 * both the before and after sections.
4163 * This is because some failed devices may only affect one
4164 * of the two sections, and some non-in_sync devices may
4165 * be insync in the section most affected by failed devices.
4167 static int calc_degraded(struct r10conf
*conf
)
4169 int degraded
, degraded2
;
4174 /* 'prev' section first */
4175 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4176 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4177 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4179 else if (!test_bit(In_sync
, &rdev
->flags
))
4180 /* When we can reduce the number of devices in
4181 * an array, this might not contribute to
4182 * 'degraded'. It does now.
4187 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4191 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4192 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4193 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4195 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4196 /* If reshape is increasing the number of devices,
4197 * this section has already been recovered, so
4198 * it doesn't contribute to degraded.
4201 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4206 if (degraded2
> degraded
)
4211 static int raid10_start_reshape(struct mddev
*mddev
)
4213 /* A 'reshape' has been requested. This commits
4214 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4215 * This also checks if there are enough spares and adds them
4217 * We currently require enough spares to make the final
4218 * array non-degraded. We also require that the difference
4219 * between old and new data_offset - on each device - is
4220 * enough that we never risk over-writing.
4223 unsigned long before_length
, after_length
;
4224 sector_t min_offset_diff
= 0;
4227 struct r10conf
*conf
= mddev
->private;
4228 struct md_rdev
*rdev
;
4232 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4235 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4238 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4239 conf
->prev
.far_copies
);
4240 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4241 conf
->geo
.far_copies
);
4243 rdev_for_each(rdev
, mddev
) {
4244 if (!test_bit(In_sync
, &rdev
->flags
)
4245 && !test_bit(Faulty
, &rdev
->flags
))
4247 if (rdev
->raid_disk
>= 0) {
4248 long long diff
= (rdev
->new_data_offset
4249 - rdev
->data_offset
);
4250 if (!mddev
->reshape_backwards
)
4254 if (first
|| diff
< min_offset_diff
)
4255 min_offset_diff
= diff
;
4260 if (max(before_length
, after_length
) > min_offset_diff
)
4263 if (spares
< mddev
->delta_disks
)
4266 conf
->offset_diff
= min_offset_diff
;
4267 spin_lock_irq(&conf
->device_lock
);
4268 if (conf
->mirrors_new
) {
4269 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4270 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4272 kfree(conf
->mirrors_old
);
4273 conf
->mirrors_old
= conf
->mirrors
;
4274 conf
->mirrors
= conf
->mirrors_new
;
4275 conf
->mirrors_new
= NULL
;
4277 setup_geo(&conf
->geo
, mddev
, geo_start
);
4279 if (mddev
->reshape_backwards
) {
4280 sector_t size
= raid10_size(mddev
, 0, 0);
4281 if (size
< mddev
->array_sectors
) {
4282 spin_unlock_irq(&conf
->device_lock
);
4283 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4287 mddev
->resync_max_sectors
= size
;
4288 conf
->reshape_progress
= size
;
4290 conf
->reshape_progress
= 0;
4291 conf
->reshape_safe
= conf
->reshape_progress
;
4292 spin_unlock_irq(&conf
->device_lock
);
4294 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4295 ret
= md_bitmap_resize(mddev
->bitmap
,
4296 raid10_size(mddev
, 0, conf
->geo
.raid_disks
),
4301 if (mddev
->delta_disks
> 0) {
4302 rdev_for_each(rdev
, mddev
)
4303 if (rdev
->raid_disk
< 0 &&
4304 !test_bit(Faulty
, &rdev
->flags
)) {
4305 if (raid10_add_disk(mddev
, rdev
) == 0) {
4306 if (rdev
->raid_disk
>=
4307 conf
->prev
.raid_disks
)
4308 set_bit(In_sync
, &rdev
->flags
);
4310 rdev
->recovery_offset
= 0;
4312 if (sysfs_link_rdev(mddev
, rdev
))
4313 /* Failure here is OK */;
4315 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4316 && !test_bit(Faulty
, &rdev
->flags
)) {
4317 /* This is a spare that was manually added */
4318 set_bit(In_sync
, &rdev
->flags
);
4321 /* When a reshape changes the number of devices,
4322 * ->degraded is measured against the larger of the
4323 * pre and post numbers.
4325 spin_lock_irq(&conf
->device_lock
);
4326 mddev
->degraded
= calc_degraded(conf
);
4327 spin_unlock_irq(&conf
->device_lock
);
4328 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4329 mddev
->reshape_position
= conf
->reshape_progress
;
4330 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4332 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4333 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4334 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4335 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4336 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4338 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4340 if (!mddev
->sync_thread
) {
4344 conf
->reshape_checkpoint
= jiffies
;
4345 md_wakeup_thread(mddev
->sync_thread
);
4346 md_new_event(mddev
);
4350 mddev
->recovery
= 0;
4351 spin_lock_irq(&conf
->device_lock
);
4352 conf
->geo
= conf
->prev
;
4353 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4354 rdev_for_each(rdev
, mddev
)
4355 rdev
->new_data_offset
= rdev
->data_offset
;
4357 conf
->reshape_progress
= MaxSector
;
4358 conf
->reshape_safe
= MaxSector
;
4359 mddev
->reshape_position
= MaxSector
;
4360 spin_unlock_irq(&conf
->device_lock
);
4364 /* Calculate the last device-address that could contain
4365 * any block from the chunk that includes the array-address 's'
4366 * and report the next address.
4367 * i.e. the address returned will be chunk-aligned and after
4368 * any data that is in the chunk containing 's'.
4370 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4372 s
= (s
| geo
->chunk_mask
) + 1;
4373 s
>>= geo
->chunk_shift
;
4374 s
*= geo
->near_copies
;
4375 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4376 s
*= geo
->far_copies
;
4377 s
<<= geo
->chunk_shift
;
4381 /* Calculate the first device-address that could contain
4382 * any block from the chunk that includes the array-address 's'.
4383 * This too will be the start of a chunk
4385 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4387 s
>>= geo
->chunk_shift
;
4388 s
*= geo
->near_copies
;
4389 sector_div(s
, geo
->raid_disks
);
4390 s
*= geo
->far_copies
;
4391 s
<<= geo
->chunk_shift
;
4395 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4398 /* We simply copy at most one chunk (smallest of old and new)
4399 * at a time, possibly less if that exceeds RESYNC_PAGES,
4400 * or we hit a bad block or something.
4401 * This might mean we pause for normal IO in the middle of
4402 * a chunk, but that is not a problem as mddev->reshape_position
4403 * can record any location.
4405 * If we will want to write to a location that isn't
4406 * yet recorded as 'safe' (i.e. in metadata on disk) then
4407 * we need to flush all reshape requests and update the metadata.
4409 * When reshaping forwards (e.g. to more devices), we interpret
4410 * 'safe' as the earliest block which might not have been copied
4411 * down yet. We divide this by previous stripe size and multiply
4412 * by previous stripe length to get lowest device offset that we
4413 * cannot write to yet.
4414 * We interpret 'sector_nr' as an address that we want to write to.
4415 * From this we use last_device_address() to find where we might
4416 * write to, and first_device_address on the 'safe' position.
4417 * If this 'next' write position is after the 'safe' position,
4418 * we must update the metadata to increase the 'safe' position.
4420 * When reshaping backwards, we round in the opposite direction
4421 * and perform the reverse test: next write position must not be
4422 * less than current safe position.
4424 * In all this the minimum difference in data offsets
4425 * (conf->offset_diff - always positive) allows a bit of slack,
4426 * so next can be after 'safe', but not by more than offset_diff
4428 * We need to prepare all the bios here before we start any IO
4429 * to ensure the size we choose is acceptable to all devices.
4430 * The means one for each copy for write-out and an extra one for
4432 * We store the read-in bio in ->master_bio and the others in
4433 * ->devs[x].bio and ->devs[x].repl_bio.
4435 struct r10conf
*conf
= mddev
->private;
4436 struct r10bio
*r10_bio
;
4437 sector_t next
, safe
, last
;
4441 struct md_rdev
*rdev
;
4444 struct bio
*bio
, *read_bio
;
4445 int sectors_done
= 0;
4446 struct page
**pages
;
4448 if (sector_nr
== 0) {
4449 /* If restarting in the middle, skip the initial sectors */
4450 if (mddev
->reshape_backwards
&&
4451 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4452 sector_nr
= (raid10_size(mddev
, 0, 0)
4453 - conf
->reshape_progress
);
4454 } else if (!mddev
->reshape_backwards
&&
4455 conf
->reshape_progress
> 0)
4456 sector_nr
= conf
->reshape_progress
;
4458 mddev
->curr_resync_completed
= sector_nr
;
4459 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4465 /* We don't use sector_nr to track where we are up to
4466 * as that doesn't work well for ->reshape_backwards.
4467 * So just use ->reshape_progress.
4469 if (mddev
->reshape_backwards
) {
4470 /* 'next' is the earliest device address that we might
4471 * write to for this chunk in the new layout
4473 next
= first_dev_address(conf
->reshape_progress
- 1,
4476 /* 'safe' is the last device address that we might read from
4477 * in the old layout after a restart
4479 safe
= last_dev_address(conf
->reshape_safe
- 1,
4482 if (next
+ conf
->offset_diff
< safe
)
4485 last
= conf
->reshape_progress
- 1;
4486 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4487 & conf
->prev
.chunk_mask
);
4488 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4489 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4491 /* 'next' is after the last device address that we
4492 * might write to for this chunk in the new layout
4494 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4496 /* 'safe' is the earliest device address that we might
4497 * read from in the old layout after a restart
4499 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4501 /* Need to update metadata if 'next' might be beyond 'safe'
4502 * as that would possibly corrupt data
4504 if (next
> safe
+ conf
->offset_diff
)
4507 sector_nr
= conf
->reshape_progress
;
4508 last
= sector_nr
| (conf
->geo
.chunk_mask
4509 & conf
->prev
.chunk_mask
);
4511 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4512 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4516 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4517 /* Need to update reshape_position in metadata */
4519 mddev
->reshape_position
= conf
->reshape_progress
;
4520 if (mddev
->reshape_backwards
)
4521 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4522 - conf
->reshape_progress
;
4524 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4525 conf
->reshape_checkpoint
= jiffies
;
4526 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4527 md_wakeup_thread(mddev
->thread
);
4528 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4529 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4530 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4531 allow_barrier(conf
);
4532 return sectors_done
;
4534 conf
->reshape_safe
= mddev
->reshape_position
;
4535 allow_barrier(conf
);
4538 raise_barrier(conf
, 0);
4540 /* Now schedule reads for blocks from sector_nr to last */
4541 r10_bio
= raid10_alloc_init_r10buf(conf
);
4543 raise_barrier(conf
, 1);
4544 atomic_set(&r10_bio
->remaining
, 0);
4545 r10_bio
->mddev
= mddev
;
4546 r10_bio
->sector
= sector_nr
;
4547 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4548 r10_bio
->sectors
= last
- sector_nr
+ 1;
4549 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4550 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4553 /* Cannot read from here, so need to record bad blocks
4554 * on all the target devices.
4557 mempool_free(r10_bio
, &conf
->r10buf_pool
);
4558 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4559 return sectors_done
;
4562 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4564 bio_set_dev(read_bio
, rdev
->bdev
);
4565 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4566 + rdev
->data_offset
);
4567 read_bio
->bi_private
= r10_bio
;
4568 read_bio
->bi_end_io
= end_reshape_read
;
4569 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4570 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4571 read_bio
->bi_status
= 0;
4572 read_bio
->bi_vcnt
= 0;
4573 read_bio
->bi_iter
.bi_size
= 0;
4574 r10_bio
->master_bio
= read_bio
;
4575 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4577 /* Now find the locations in the new layout */
4578 __raid10_find_phys(&conf
->geo
, r10_bio
);
4581 read_bio
->bi_next
= NULL
;
4584 for (s
= 0; s
< conf
->copies
*2; s
++) {
4586 int d
= r10_bio
->devs
[s
/2].devnum
;
4587 struct md_rdev
*rdev2
;
4589 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4590 b
= r10_bio
->devs
[s
/2].repl_bio
;
4592 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4593 b
= r10_bio
->devs
[s
/2].bio
;
4595 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4598 bio_set_dev(b
, rdev2
->bdev
);
4599 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4600 rdev2
->new_data_offset
;
4601 b
->bi_end_io
= end_reshape_write
;
4602 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4607 /* Now add as many pages as possible to all of these bios. */
4610 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4611 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4612 struct page
*page
= pages
[s
/ (PAGE_SIZE
>> 9)];
4613 int len
= (max_sectors
- s
) << 9;
4614 if (len
> PAGE_SIZE
)
4616 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4618 * won't fail because the vec table is big enough
4619 * to hold all these pages
4621 bio_add_page(bio
, page
, len
, 0);
4623 sector_nr
+= len
>> 9;
4624 nr_sectors
+= len
>> 9;
4627 r10_bio
->sectors
= nr_sectors
;
4629 /* Now submit the read */
4630 md_sync_acct_bio(read_bio
, r10_bio
->sectors
);
4631 atomic_inc(&r10_bio
->remaining
);
4632 read_bio
->bi_next
= NULL
;
4633 generic_make_request(read_bio
);
4634 sectors_done
+= nr_sectors
;
4635 if (sector_nr
<= last
)
4638 lower_barrier(conf
);
4640 /* Now that we have done the whole section we can
4641 * update reshape_progress
4643 if (mddev
->reshape_backwards
)
4644 conf
->reshape_progress
-= sectors_done
;
4646 conf
->reshape_progress
+= sectors_done
;
4648 return sectors_done
;
4651 static void end_reshape_request(struct r10bio
*r10_bio
);
4652 static int handle_reshape_read_error(struct mddev
*mddev
,
4653 struct r10bio
*r10_bio
);
4654 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4656 /* Reshape read completed. Hopefully we have a block
4658 * If we got a read error then we do sync 1-page reads from
4659 * elsewhere until we find the data - or give up.
4661 struct r10conf
*conf
= mddev
->private;
4664 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4665 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4666 /* Reshape has been aborted */
4667 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4671 /* We definitely have the data in the pages, schedule the
4674 atomic_set(&r10_bio
->remaining
, 1);
4675 for (s
= 0; s
< conf
->copies
*2; s
++) {
4677 int d
= r10_bio
->devs
[s
/2].devnum
;
4678 struct md_rdev
*rdev
;
4681 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4682 b
= r10_bio
->devs
[s
/2].repl_bio
;
4684 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4685 b
= r10_bio
->devs
[s
/2].bio
;
4687 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4691 atomic_inc(&rdev
->nr_pending
);
4693 md_sync_acct_bio(b
, r10_bio
->sectors
);
4694 atomic_inc(&r10_bio
->remaining
);
4696 generic_make_request(b
);
4698 end_reshape_request(r10_bio
);
4701 static void end_reshape(struct r10conf
*conf
)
4703 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4706 spin_lock_irq(&conf
->device_lock
);
4707 conf
->prev
= conf
->geo
;
4708 md_finish_reshape(conf
->mddev
);
4710 conf
->reshape_progress
= MaxSector
;
4711 conf
->reshape_safe
= MaxSector
;
4712 spin_unlock_irq(&conf
->device_lock
);
4714 /* read-ahead size must cover two whole stripes, which is
4715 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4717 if (conf
->mddev
->queue
) {
4718 int stripe
= conf
->geo
.raid_disks
*
4719 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4720 stripe
/= conf
->geo
.near_copies
;
4721 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
4722 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
4727 static int handle_reshape_read_error(struct mddev
*mddev
,
4728 struct r10bio
*r10_bio
)
4730 /* Use sync reads to get the blocks from somewhere else */
4731 int sectors
= r10_bio
->sectors
;
4732 struct r10conf
*conf
= mddev
->private;
4733 struct r10bio
*r10b
;
4736 struct page
**pages
;
4738 r10b
= kmalloc(sizeof(*r10b
) +
4739 sizeof(struct r10dev
) * conf
->copies
, GFP_NOIO
);
4741 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4745 /* reshape IOs share pages from .devs[0].bio */
4746 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4748 r10b
->sector
= r10_bio
->sector
;
4749 __raid10_find_phys(&conf
->prev
, r10b
);
4754 int first_slot
= slot
;
4756 if (s
> (PAGE_SIZE
>> 9))
4761 int d
= r10b
->devs
[slot
].devnum
;
4762 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4765 test_bit(Faulty
, &rdev
->flags
) ||
4766 !test_bit(In_sync
, &rdev
->flags
))
4769 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4770 atomic_inc(&rdev
->nr_pending
);
4772 success
= sync_page_io(rdev
,
4776 REQ_OP_READ
, 0, false);
4777 rdev_dec_pending(rdev
, mddev
);
4783 if (slot
>= conf
->copies
)
4785 if (slot
== first_slot
)
4790 /* couldn't read this block, must give up */
4791 set_bit(MD_RECOVERY_INTR
,
4803 static void end_reshape_write(struct bio
*bio
)
4805 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
4806 struct mddev
*mddev
= r10_bio
->mddev
;
4807 struct r10conf
*conf
= mddev
->private;
4811 struct md_rdev
*rdev
= NULL
;
4813 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4815 rdev
= conf
->mirrors
[d
].replacement
;
4818 rdev
= conf
->mirrors
[d
].rdev
;
4821 if (bio
->bi_status
) {
4822 /* FIXME should record badblock */
4823 md_error(mddev
, rdev
);
4826 rdev_dec_pending(rdev
, mddev
);
4827 end_reshape_request(r10_bio
);
4830 static void end_reshape_request(struct r10bio
*r10_bio
)
4832 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4834 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4835 bio_put(r10_bio
->master_bio
);
4839 static void raid10_finish_reshape(struct mddev
*mddev
)
4841 struct r10conf
*conf
= mddev
->private;
4843 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4846 if (mddev
->delta_disks
> 0) {
4847 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4848 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4849 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4851 mddev
->resync_max_sectors
= mddev
->array_sectors
;
4855 for (d
= conf
->geo
.raid_disks
;
4856 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4858 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4860 clear_bit(In_sync
, &rdev
->flags
);
4861 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4863 clear_bit(In_sync
, &rdev
->flags
);
4867 mddev
->layout
= mddev
->new_layout
;
4868 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4869 mddev
->reshape_position
= MaxSector
;
4870 mddev
->delta_disks
= 0;
4871 mddev
->reshape_backwards
= 0;
4874 static struct md_personality raid10_personality
=
4878 .owner
= THIS_MODULE
,
4879 .make_request
= raid10_make_request
,
4881 .free
= raid10_free
,
4882 .status
= raid10_status
,
4883 .error_handler
= raid10_error
,
4884 .hot_add_disk
= raid10_add_disk
,
4885 .hot_remove_disk
= raid10_remove_disk
,
4886 .spare_active
= raid10_spare_active
,
4887 .sync_request
= raid10_sync_request
,
4888 .quiesce
= raid10_quiesce
,
4889 .size
= raid10_size
,
4890 .resize
= raid10_resize
,
4891 .takeover
= raid10_takeover
,
4892 .check_reshape
= raid10_check_reshape
,
4893 .start_reshape
= raid10_start_reshape
,
4894 .finish_reshape
= raid10_finish_reshape
,
4895 .congested
= raid10_congested
,
4898 static int __init
raid_init(void)
4900 return register_md_personality(&raid10_personality
);
4903 static void raid_exit(void)
4905 unregister_md_personality(&raid10_personality
);
4908 module_init(raid_init
);
4909 module_exit(raid_exit
);
4910 MODULE_LICENSE("GPL");
4911 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4912 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4913 MODULE_ALIAS("md-raid10");
4914 MODULE_ALIAS("md-level-10");
4916 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);