2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
26 #include "md-bitmap.h"
27 #include "raid5-log.h"
30 * metadata/data stored in disk with 4k size unit (a block) regardless
31 * underneath hardware sector size. only works with PAGE_SIZE == 4096
33 #define BLOCK_SECTORS (8)
34 #define BLOCK_SECTOR_SHIFT (3)
37 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
39 * In write through mode, the reclaim runs every log->max_free_space.
40 * This can prevent the recovery scans for too long
42 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
43 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
45 /* wake up reclaim thread periodically */
46 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
47 /* start flush with these full stripes */
48 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
49 /* reclaim stripes in groups */
50 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
53 * We only need 2 bios per I/O unit to make progress, but ensure we
54 * have a few more available to not get too tight.
56 #define R5L_POOL_SIZE 4
58 static char *r5c_journal_mode_str
[] = {"write-through",
61 * raid5 cache state machine
63 * With the RAID cache, each stripe works in two phases:
67 * These two phases are controlled by bit STRIPE_R5C_CACHING:
68 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
69 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
71 * When there is no journal, or the journal is in write-through mode,
72 * the stripe is always in writing-out phase.
74 * For write-back journal, the stripe is sent to caching phase on write
75 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
76 * the write-out phase by clearing STRIPE_R5C_CACHING.
78 * Stripes in caching phase do not write the raid disks. Instead, all
79 * writes are committed from the log device. Therefore, a stripe in
80 * caching phase handles writes as:
81 * - write to log device
84 * Stripes in writing-out phase handle writes as:
86 * - write pending data and parity to journal
87 * - write data and parity to raid disks
88 * - return IO for pending writes
96 sector_t device_size
; /* log device size, round to
98 sector_t max_free_space
; /* reclaim run if free space is at
101 sector_t last_checkpoint
; /* log tail. where recovery scan
103 u64 last_cp_seq
; /* log tail sequence */
105 sector_t log_start
; /* log head. where new data appends */
106 u64 seq
; /* log head sequence */
108 sector_t next_checkpoint
;
110 struct mutex io_mutex
;
111 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
113 spinlock_t io_list_lock
;
114 struct list_head running_ios
; /* io_units which are still running,
115 * and have not yet been completely
116 * written to the log */
117 struct list_head io_end_ios
; /* io_units which have been completely
118 * written to the log but not yet written
120 struct list_head flushing_ios
; /* io_units which are waiting for log
122 struct list_head finished_ios
; /* io_units which settle down in log disk */
123 struct bio flush_bio
;
125 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
127 struct kmem_cache
*io_kc
;
132 struct md_thread
*reclaim_thread
;
133 unsigned long reclaim_target
; /* number of space that need to be
134 * reclaimed. if it's 0, reclaim spaces
135 * used by io_units which are in
136 * IO_UNIT_STRIPE_END state (eg, reclaim
137 * dones't wait for specific io_unit
138 * switching to IO_UNIT_STRIPE_END
140 wait_queue_head_t iounit_wait
;
142 struct list_head no_space_stripes
; /* pending stripes, log has no space */
143 spinlock_t no_space_stripes_lock
;
145 bool need_cache_flush
;
148 enum r5c_journal_mode r5c_journal_mode
;
150 /* all stripes in r5cache, in the order of seq at sh->log_start */
151 struct list_head stripe_in_journal_list
;
153 spinlock_t stripe_in_journal_lock
;
154 atomic_t stripe_in_journal_count
;
156 /* to submit async io_units, to fulfill ordering of flush */
157 struct work_struct deferred_io_work
;
158 /* to disable write back during in degraded mode */
159 struct work_struct disable_writeback_work
;
161 /* to for chunk_aligned_read in writeback mode, details below */
162 spinlock_t tree_lock
;
163 struct radix_tree_root big_stripe_tree
;
167 * Enable chunk_aligned_read() with write back cache.
169 * Each chunk may contain more than one stripe (for example, a 256kB
170 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
171 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
172 * For each big_stripe, we count how many stripes of this big_stripe
173 * are in the write back cache. These data are tracked in a radix tree
174 * (big_stripe_tree). We use radix_tree item pointer as the counter.
175 * r5c_tree_index() is used to calculate keys for the radix tree.
177 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
178 * big_stripe of each chunk in the tree. If this big_stripe is in the
179 * tree, chunk_aligned_read() aborts. This look up is protected by
182 * It is necessary to remember whether a stripe is counted in
183 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
184 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
185 * two flags are set, the stripe is counted in big_stripe_tree. This
186 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
187 * r5c_try_caching_write(); and moving clear_bit of
188 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
189 * r5c_finish_stripe_write_out().
193 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
194 * So it is necessary to left shift the counter by 2 bits before using it
195 * as data pointer of the tree.
197 #define R5C_RADIX_COUNT_SHIFT 2
200 * calculate key for big_stripe_tree
202 * sect: align_bi->bi_iter.bi_sector or sh->sector
204 static inline sector_t
r5c_tree_index(struct r5conf
*conf
,
209 offset
= sector_div(sect
, conf
->chunk_sectors
);
214 * an IO range starts from a meta data block and end at the next meta data
215 * block. The io unit's the meta data block tracks data/parity followed it. io
216 * unit is written to log disk with normal write, as we always flush log disk
217 * first and then start move data to raid disks, there is no requirement to
218 * write io unit with FLUSH/FUA
223 struct page
*meta_page
; /* store meta block */
224 int meta_offset
; /* current offset in meta_page */
226 struct bio
*current_bio
;/* current_bio accepting new data */
228 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
229 u64 seq
; /* seq number of the metablock */
230 sector_t log_start
; /* where the io_unit starts */
231 sector_t log_end
; /* where the io_unit ends */
232 struct list_head log_sibling
; /* log->running_ios */
233 struct list_head stripe_list
; /* stripes added to the io_unit */
237 struct bio
*split_bio
;
239 unsigned int has_flush
:1; /* include flush request */
240 unsigned int has_fua
:1; /* include fua request */
241 unsigned int has_null_flush
:1; /* include null flush request */
242 unsigned int has_flush_payload
:1; /* include flush payload */
244 * io isn't sent yet, flush/fua request can only be submitted till it's
245 * the first IO in running_ios list
247 unsigned int io_deferred
:1;
249 struct bio_list flush_barriers
; /* size == 0 flush bios */
252 /* r5l_io_unit state */
253 enum r5l_io_unit_state
{
254 IO_UNIT_RUNNING
= 0, /* accepting new IO */
255 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
256 * don't accepting new bio */
257 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
258 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
261 bool r5c_is_writeback(struct r5l_log
*log
)
263 return (log
!= NULL
&&
264 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
267 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
270 if (start
>= log
->device_size
)
271 start
= start
- log
->device_size
;
275 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
281 return end
+ log
->device_size
- start
;
284 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
288 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
291 return log
->device_size
> used_size
+ size
;
294 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
295 enum r5l_io_unit_state state
)
297 if (WARN_ON(io
->state
>= state
))
303 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
)
305 struct bio
*wbi
, *wbi2
;
309 while (wbi
&& wbi
->bi_iter
.bi_sector
<
310 dev
->sector
+ STRIPE_SECTORS
) {
311 wbi2
= r5_next_bio(wbi
, dev
->sector
);
312 md_write_end(conf
->mddev
);
318 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
319 struct stripe_head
*sh
, int disks
)
323 for (i
= sh
->disks
; i
--; ) {
324 if (sh
->dev
[i
].written
) {
325 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
326 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
]);
327 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
329 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
335 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
337 /* Check whether we should flush some stripes to free up stripe cache */
338 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
342 if (!r5c_is_writeback(conf
->log
))
345 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
346 atomic_read(&conf
->r5c_cached_full_stripes
);
349 * The following condition is true for either of the following:
350 * - stripe cache pressure high:
351 * total_cached > 3/4 min_nr_stripes ||
352 * empty_inactive_list_nr > 0
353 * - stripe cache pressure moderate:
354 * total_cached > 1/2 min_nr_stripes
356 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
357 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
358 r5l_wake_reclaim(conf
->log
, 0);
362 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
363 * stripes in the cache
365 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
367 if (!r5c_is_writeback(conf
->log
))
371 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
372 * or a full stripe (chunk size / 4k stripes).
374 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
375 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf
),
376 conf
->chunk_sectors
>> STRIPE_SHIFT
))
377 r5l_wake_reclaim(conf
->log
, 0);
381 * Total log space (in sectors) needed to flush all data in cache
383 * To avoid deadlock due to log space, it is necessary to reserve log
384 * space to flush critical stripes (stripes that occupying log space near
385 * last_checkpoint). This function helps check how much log space is
386 * required to flush all cached stripes.
388 * To reduce log space requirements, two mechanisms are used to give cache
389 * flush higher priorities:
390 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
391 * stripes ALREADY in journal can be flushed w/o pending writes;
392 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
393 * can be delayed (r5l_add_no_space_stripe).
395 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
396 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
397 * pages of journal space. For stripes that has not passed 1, flushing it
398 * requires (conf->raid_disks + 1) pages of journal space. There are at
399 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
400 * required to flush all cached stripes (in pages) is:
402 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
403 * (group_cnt + 1) * (raid_disks + 1)
405 * (stripe_in_journal_count) * (max_degraded + 1) +
406 * (group_cnt + 1) * (raid_disks - max_degraded)
408 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
410 struct r5l_log
*log
= conf
->log
;
412 if (!r5c_is_writeback(log
))
415 return BLOCK_SECTORS
*
416 ((conf
->max_degraded
+ 1) * atomic_read(&log
->stripe_in_journal_count
) +
417 (conf
->raid_disks
- conf
->max_degraded
) * (conf
->group_cnt
+ 1));
421 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
423 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
424 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
425 * device is less than 2x of reclaim_required_space.
427 static inline void r5c_update_log_state(struct r5l_log
*log
)
429 struct r5conf
*conf
= log
->rdev
->mddev
->private;
431 sector_t reclaim_space
;
432 bool wake_reclaim
= false;
434 if (!r5c_is_writeback(log
))
437 free_space
= r5l_ring_distance(log
, log
->log_start
,
438 log
->last_checkpoint
);
439 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
440 if (free_space
< 2 * reclaim_space
)
441 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
443 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
445 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
447 if (free_space
< 3 * reclaim_space
)
448 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
450 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
453 r5l_wake_reclaim(log
, 0);
457 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
458 * This function should only be called in write-back mode.
460 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
462 struct r5conf
*conf
= sh
->raid_conf
;
463 struct r5l_log
*log
= conf
->log
;
465 BUG_ON(!r5c_is_writeback(log
));
467 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
468 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
470 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
471 atomic_inc(&conf
->preread_active_stripes
);
474 static void r5c_handle_data_cached(struct stripe_head
*sh
)
478 for (i
= sh
->disks
; i
--; )
479 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
480 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
481 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
483 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
487 * this journal write must contain full parity,
488 * it may also contain some data pages
490 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
494 for (i
= sh
->disks
; i
--; )
495 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
496 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
500 * Setting proper flags after writing (or flushing) data and/or parity to the
501 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
503 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
505 struct r5l_log
*log
= sh
->raid_conf
->log
;
507 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
508 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
510 * Set R5_InJournal for parity dev[pd_idx]. This means
511 * all data AND parity in the journal. For RAID 6, it is
512 * NOT necessary to set the flag for dev[qd_idx], as the
513 * two parities are written out together.
515 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
516 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
517 r5c_handle_data_cached(sh
);
519 r5c_handle_parity_cached(sh
);
520 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
524 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
526 struct stripe_head
*sh
, *next
;
528 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
529 list_del_init(&sh
->log_list
);
531 r5c_finish_cache_stripe(sh
);
533 set_bit(STRIPE_HANDLE
, &sh
->state
);
534 raid5_release_stripe(sh
);
538 static void r5l_log_run_stripes(struct r5l_log
*log
)
540 struct r5l_io_unit
*io
, *next
;
542 lockdep_assert_held(&log
->io_list_lock
);
544 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
545 /* don't change list order */
546 if (io
->state
< IO_UNIT_IO_END
)
549 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
550 r5l_io_run_stripes(io
);
554 static void r5l_move_to_end_ios(struct r5l_log
*log
)
556 struct r5l_io_unit
*io
, *next
;
558 lockdep_assert_held(&log
->io_list_lock
);
560 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
561 /* don't change list order */
562 if (io
->state
< IO_UNIT_IO_END
)
564 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
568 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
569 static void r5l_log_endio(struct bio
*bio
)
571 struct r5l_io_unit
*io
= bio
->bi_private
;
572 struct r5l_io_unit
*io_deferred
;
573 struct r5l_log
*log
= io
->log
;
576 bool has_flush_payload
;
579 md_error(log
->rdev
->mddev
, log
->rdev
);
582 mempool_free(io
->meta_page
, &log
->meta_pool
);
584 spin_lock_irqsave(&log
->io_list_lock
, flags
);
585 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
588 * if the io doesn't not have null_flush or flush payload,
589 * it is not safe to access it after releasing io_list_lock.
590 * Therefore, it is necessary to check the condition with
593 has_null_flush
= io
->has_null_flush
;
594 has_flush_payload
= io
->has_flush_payload
;
596 if (log
->need_cache_flush
&& !list_empty(&io
->stripe_list
))
597 r5l_move_to_end_ios(log
);
599 r5l_log_run_stripes(log
);
600 if (!list_empty(&log
->running_ios
)) {
602 * FLUSH/FUA io_unit is deferred because of ordering, now we
605 io_deferred
= list_first_entry(&log
->running_ios
,
606 struct r5l_io_unit
, log_sibling
);
607 if (io_deferred
->io_deferred
)
608 schedule_work(&log
->deferred_io_work
);
611 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
613 if (log
->need_cache_flush
)
614 md_wakeup_thread(log
->rdev
->mddev
->thread
);
616 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
617 if (has_null_flush
) {
620 WARN_ON(bio_list_empty(&io
->flush_barriers
));
621 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
623 if (atomic_dec_and_test(&io
->pending_stripe
)) {
624 __r5l_stripe_write_finished(io
);
629 /* decrease pending_stripe for flush payload */
630 if (has_flush_payload
)
631 if (atomic_dec_and_test(&io
->pending_stripe
))
632 __r5l_stripe_write_finished(io
);
635 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
639 spin_lock_irqsave(&log
->io_list_lock
, flags
);
640 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
641 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
644 * In case of journal device failures, submit_bio will get error
645 * and calls endio, then active stripes will continue write
646 * process. Therefore, it is not necessary to check Faulty bit
647 * of journal device here.
649 * We can't check split_bio after current_bio is submitted. If
650 * io->split_bio is null, after current_bio is submitted, current_bio
651 * might already be completed and the io_unit is freed. We submit
652 * split_bio first to avoid the issue.
656 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
658 io
->split_bio
->bi_opf
|= REQ_FUA
;
659 submit_bio(io
->split_bio
);
663 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
665 io
->current_bio
->bi_opf
|= REQ_FUA
;
666 submit_bio(io
->current_bio
);
669 /* deferred io_unit will be dispatched here */
670 static void r5l_submit_io_async(struct work_struct
*work
)
672 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
674 struct r5l_io_unit
*io
= NULL
;
677 spin_lock_irqsave(&log
->io_list_lock
, flags
);
678 if (!list_empty(&log
->running_ios
)) {
679 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
681 if (!io
->io_deferred
)
686 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
688 r5l_do_submit_io(log
, io
);
691 static void r5c_disable_writeback_async(struct work_struct
*work
)
693 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
694 disable_writeback_work
);
695 struct mddev
*mddev
= log
->rdev
->mddev
;
696 struct r5conf
*conf
= mddev
->private;
699 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
701 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
704 /* wait superblock change before suspend */
705 wait_event(mddev
->sb_wait
,
707 (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
) &&
708 (locked
= mddev_trylock(mddev
))));
710 mddev_suspend(mddev
);
711 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
717 static void r5l_submit_current_io(struct r5l_log
*log
)
719 struct r5l_io_unit
*io
= log
->current_io
;
720 struct r5l_meta_block
*block
;
723 bool do_submit
= true;
728 block
= page_address(io
->meta_page
);
729 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
730 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
731 block
->checksum
= cpu_to_le32(crc
);
733 log
->current_io
= NULL
;
734 spin_lock_irqsave(&log
->io_list_lock
, flags
);
735 if (io
->has_flush
|| io
->has_fua
) {
736 if (io
!= list_first_entry(&log
->running_ios
,
737 struct r5l_io_unit
, log_sibling
)) {
742 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
744 r5l_do_submit_io(log
, io
);
747 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
749 struct bio
*bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
, &log
->bs
);
751 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
752 bio_set_dev(bio
, log
->rdev
->bdev
);
753 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
758 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
760 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
762 r5c_update_log_state(log
);
764 * If we filled up the log device start from the beginning again,
765 * which will require a new bio.
767 * Note: for this to work properly the log size needs to me a multiple
770 if (log
->log_start
== 0)
771 io
->need_split_bio
= true;
773 io
->log_end
= log
->log_start
;
776 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
778 struct r5l_io_unit
*io
;
779 struct r5l_meta_block
*block
;
781 io
= mempool_alloc(&log
->io_pool
, GFP_ATOMIC
);
784 memset(io
, 0, sizeof(*io
));
787 INIT_LIST_HEAD(&io
->log_sibling
);
788 INIT_LIST_HEAD(&io
->stripe_list
);
789 bio_list_init(&io
->flush_barriers
);
790 io
->state
= IO_UNIT_RUNNING
;
792 io
->meta_page
= mempool_alloc(&log
->meta_pool
, GFP_NOIO
);
793 block
= page_address(io
->meta_page
);
795 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
796 block
->version
= R5LOG_VERSION
;
797 block
->seq
= cpu_to_le64(log
->seq
);
798 block
->position
= cpu_to_le64(log
->log_start
);
800 io
->log_start
= log
->log_start
;
801 io
->meta_offset
= sizeof(struct r5l_meta_block
);
802 io
->seq
= log
->seq
++;
804 io
->current_bio
= r5l_bio_alloc(log
);
805 io
->current_bio
->bi_end_io
= r5l_log_endio
;
806 io
->current_bio
->bi_private
= io
;
807 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
809 r5_reserve_log_entry(log
, io
);
811 spin_lock_irq(&log
->io_list_lock
);
812 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
813 spin_unlock_irq(&log
->io_list_lock
);
818 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
820 if (log
->current_io
&&
821 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
822 r5l_submit_current_io(log
);
824 if (!log
->current_io
) {
825 log
->current_io
= r5l_new_meta(log
);
826 if (!log
->current_io
)
833 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
835 u32 checksum1
, u32 checksum2
,
836 bool checksum2_valid
)
838 struct r5l_io_unit
*io
= log
->current_io
;
839 struct r5l_payload_data_parity
*payload
;
841 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
842 payload
->header
.type
= cpu_to_le16(type
);
843 payload
->header
.flags
= cpu_to_le16(0);
844 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
846 payload
->location
= cpu_to_le64(location
);
847 payload
->checksum
[0] = cpu_to_le32(checksum1
);
849 payload
->checksum
[1] = cpu_to_le32(checksum2
);
851 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
852 sizeof(__le32
) * (1 + !!checksum2_valid
);
855 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
857 struct r5l_io_unit
*io
= log
->current_io
;
859 if (io
->need_split_bio
) {
860 BUG_ON(io
->split_bio
);
861 io
->split_bio
= io
->current_bio
;
862 io
->current_bio
= r5l_bio_alloc(log
);
863 bio_chain(io
->current_bio
, io
->split_bio
);
864 io
->need_split_bio
= false;
867 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
870 r5_reserve_log_entry(log
, io
);
873 static void r5l_append_flush_payload(struct r5l_log
*log
, sector_t sect
)
875 struct mddev
*mddev
= log
->rdev
->mddev
;
876 struct r5conf
*conf
= mddev
->private;
877 struct r5l_io_unit
*io
;
878 struct r5l_payload_flush
*payload
;
882 * payload_flush requires extra writes to the journal.
883 * To avoid handling the extra IO in quiesce, just skip
889 mutex_lock(&log
->io_mutex
);
890 meta_size
= sizeof(struct r5l_payload_flush
) + sizeof(__le64
);
892 if (r5l_get_meta(log
, meta_size
)) {
893 mutex_unlock(&log
->io_mutex
);
897 /* current implementation is one stripe per flush payload */
898 io
= log
->current_io
;
899 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
900 payload
->header
.type
= cpu_to_le16(R5LOG_PAYLOAD_FLUSH
);
901 payload
->header
.flags
= cpu_to_le16(0);
902 payload
->size
= cpu_to_le32(sizeof(__le64
));
903 payload
->flush_stripes
[0] = cpu_to_le64(sect
);
904 io
->meta_offset
+= meta_size
;
905 /* multiple flush payloads count as one pending_stripe */
906 if (!io
->has_flush_payload
) {
907 io
->has_flush_payload
= 1;
908 atomic_inc(&io
->pending_stripe
);
910 mutex_unlock(&log
->io_mutex
);
913 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
914 int data_pages
, int parity_pages
)
919 struct r5l_io_unit
*io
;
922 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
924 sizeof(struct r5l_payload_data_parity
) +
925 sizeof(__le32
) * parity_pages
;
927 ret
= r5l_get_meta(log
, meta_size
);
931 io
= log
->current_io
;
933 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
936 for (i
= 0; i
< sh
->disks
; i
++) {
937 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
938 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
940 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
942 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
943 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
946 * we need to flush journal to make sure recovery can
947 * reach the data with fua flag
951 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
952 raid5_compute_blocknr(sh
, i
, 0),
953 sh
->dev
[i
].log_checksum
, 0, false);
954 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
957 if (parity_pages
== 2) {
958 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
959 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
960 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
961 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
962 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
963 } else if (parity_pages
== 1) {
964 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
965 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
967 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
968 } else /* Just writing data, not parity, in caching phase */
969 BUG_ON(parity_pages
!= 0);
971 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
972 atomic_inc(&io
->pending_stripe
);
975 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
978 if (sh
->log_start
== MaxSector
) {
979 BUG_ON(!list_empty(&sh
->r5c
));
980 sh
->log_start
= io
->log_start
;
981 spin_lock_irq(&log
->stripe_in_journal_lock
);
982 list_add_tail(&sh
->r5c
,
983 &log
->stripe_in_journal_list
);
984 spin_unlock_irq(&log
->stripe_in_journal_lock
);
985 atomic_inc(&log
->stripe_in_journal_count
);
990 /* add stripe to no_space_stripes, and then wake up reclaim */
991 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
992 struct stripe_head
*sh
)
994 spin_lock(&log
->no_space_stripes_lock
);
995 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
996 spin_unlock(&log
->no_space_stripes_lock
);
1000 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
1001 * data from log to raid disks), so we shouldn't wait for reclaim here
1003 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
1005 struct r5conf
*conf
= sh
->raid_conf
;
1006 int write_disks
= 0;
1007 int data_pages
, parity_pages
;
1011 bool wake_reclaim
= false;
1015 /* Don't support stripe batch */
1016 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
1017 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
1018 /* the stripe is written to log, we start writing it to raid */
1019 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1023 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1025 for (i
= 0; i
< sh
->disks
; i
++) {
1028 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
1029 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1033 /* checksum is already calculated in last run */
1034 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
1036 addr
= kmap_atomic(sh
->dev
[i
].page
);
1037 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
1039 kunmap_atomic(addr
);
1041 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
1042 data_pages
= write_disks
- parity_pages
;
1044 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1046 * The stripe must enter state machine again to finish the write, so
1049 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1050 atomic_inc(&sh
->count
);
1052 mutex_lock(&log
->io_mutex
);
1054 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
1056 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1057 if (!r5l_has_free_space(log
, reserve
)) {
1058 r5l_add_no_space_stripe(log
, sh
);
1059 wake_reclaim
= true;
1061 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1063 spin_lock_irq(&log
->io_list_lock
);
1064 list_add_tail(&sh
->log_list
,
1065 &log
->no_mem_stripes
);
1066 spin_unlock_irq(&log
->io_list_lock
);
1069 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1071 * log space critical, do not process stripes that are
1072 * not in cache yet (sh->log_start == MaxSector).
1074 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
1075 sh
->log_start
== MaxSector
) {
1076 r5l_add_no_space_stripe(log
, sh
);
1077 wake_reclaim
= true;
1079 } else if (!r5l_has_free_space(log
, reserve
)) {
1080 if (sh
->log_start
== log
->last_checkpoint
)
1083 r5l_add_no_space_stripe(log
, sh
);
1085 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1087 spin_lock_irq(&log
->io_list_lock
);
1088 list_add_tail(&sh
->log_list
,
1089 &log
->no_mem_stripes
);
1090 spin_unlock_irq(&log
->io_list_lock
);
1095 mutex_unlock(&log
->io_mutex
);
1097 r5l_wake_reclaim(log
, reserve
);
1101 void r5l_write_stripe_run(struct r5l_log
*log
)
1105 mutex_lock(&log
->io_mutex
);
1106 r5l_submit_current_io(log
);
1107 mutex_unlock(&log
->io_mutex
);
1110 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
1112 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1114 * in write through (journal only)
1115 * we flush log disk cache first, then write stripe data to
1116 * raid disks. So if bio is finished, the log disk cache is
1117 * flushed already. The recovery guarantees we can recovery
1118 * the bio from log disk, so we don't need to flush again
1120 if (bio
->bi_iter
.bi_size
== 0) {
1124 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1126 /* write back (with cache) */
1127 if (bio
->bi_iter
.bi_size
== 0) {
1128 mutex_lock(&log
->io_mutex
);
1129 r5l_get_meta(log
, 0);
1130 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1131 log
->current_io
->has_flush
= 1;
1132 log
->current_io
->has_null_flush
= 1;
1133 atomic_inc(&log
->current_io
->pending_stripe
);
1134 r5l_submit_current_io(log
);
1135 mutex_unlock(&log
->io_mutex
);
1142 /* This will run after log space is reclaimed */
1143 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1145 struct stripe_head
*sh
;
1147 spin_lock(&log
->no_space_stripes_lock
);
1148 while (!list_empty(&log
->no_space_stripes
)) {
1149 sh
= list_first_entry(&log
->no_space_stripes
,
1150 struct stripe_head
, log_list
);
1151 list_del_init(&sh
->log_list
);
1152 set_bit(STRIPE_HANDLE
, &sh
->state
);
1153 raid5_release_stripe(sh
);
1155 spin_unlock(&log
->no_space_stripes_lock
);
1159 * calculate new last_checkpoint
1160 * for write through mode, returns log->next_checkpoint
1161 * for write back, returns log_start of first sh in stripe_in_journal_list
1163 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1165 struct stripe_head
*sh
;
1166 struct r5l_log
*log
= conf
->log
;
1168 unsigned long flags
;
1170 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1171 return log
->next_checkpoint
;
1173 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1174 if (list_empty(&conf
->log
->stripe_in_journal_list
)) {
1175 /* all stripes flushed */
1176 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1177 return log
->next_checkpoint
;
1179 sh
= list_first_entry(&conf
->log
->stripe_in_journal_list
,
1180 struct stripe_head
, r5c
);
1181 new_cp
= sh
->log_start
;
1182 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1186 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1188 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1190 return r5l_ring_distance(log
, log
->last_checkpoint
,
1191 r5c_calculate_new_cp(conf
));
1194 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1196 struct stripe_head
*sh
;
1198 lockdep_assert_held(&log
->io_list_lock
);
1200 if (!list_empty(&log
->no_mem_stripes
)) {
1201 sh
= list_first_entry(&log
->no_mem_stripes
,
1202 struct stripe_head
, log_list
);
1203 list_del_init(&sh
->log_list
);
1204 set_bit(STRIPE_HANDLE
, &sh
->state
);
1205 raid5_release_stripe(sh
);
1209 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1211 struct r5l_io_unit
*io
, *next
;
1214 lockdep_assert_held(&log
->io_list_lock
);
1216 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1217 /* don't change list order */
1218 if (io
->state
< IO_UNIT_STRIPE_END
)
1221 log
->next_checkpoint
= io
->log_start
;
1223 list_del(&io
->log_sibling
);
1224 mempool_free(io
, &log
->io_pool
);
1225 r5l_run_no_mem_stripe(log
);
1233 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1235 struct r5l_log
*log
= io
->log
;
1236 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1237 unsigned long flags
;
1239 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1240 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1242 if (!r5l_complete_finished_ios(log
)) {
1243 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1247 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1248 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1249 r5l_wake_reclaim(log
, 0);
1251 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1252 wake_up(&log
->iounit_wait
);
1255 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1257 struct r5l_io_unit
*io
;
1262 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1263 __r5l_stripe_write_finished(io
);
1266 static void r5l_log_flush_endio(struct bio
*bio
)
1268 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1270 unsigned long flags
;
1271 struct r5l_io_unit
*io
;
1274 md_error(log
->rdev
->mddev
, log
->rdev
);
1276 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1277 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1278 r5l_io_run_stripes(io
);
1279 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1280 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1284 * Starting dispatch IO to raid.
1285 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1286 * broken meta in the middle of a log causes recovery can't find meta at the
1287 * head of log. If operations require meta at the head persistent in log, we
1288 * must make sure meta before it persistent in log too. A case is:
1290 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1291 * data/parity must be persistent in log before we do the write to raid disks.
1293 * The solution is we restrictly maintain io_unit list order. In this case, we
1294 * only write stripes of an io_unit to raid disks till the io_unit is the first
1295 * one whose data/parity is in log.
1297 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1301 if (!log
|| !log
->need_cache_flush
)
1304 spin_lock_irq(&log
->io_list_lock
);
1305 /* flush bio is running */
1306 if (!list_empty(&log
->flushing_ios
)) {
1307 spin_unlock_irq(&log
->io_list_lock
);
1310 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1311 do_flush
= !list_empty(&log
->flushing_ios
);
1312 spin_unlock_irq(&log
->io_list_lock
);
1316 bio_reset(&log
->flush_bio
);
1317 bio_set_dev(&log
->flush_bio
, log
->rdev
->bdev
);
1318 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1319 log
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1320 submit_bio(&log
->flush_bio
);
1323 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1324 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1327 struct block_device
*bdev
= log
->rdev
->bdev
;
1328 struct mddev
*mddev
;
1330 r5l_write_super(log
, end
);
1332 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1335 mddev
= log
->rdev
->mddev
;
1337 * Discard could zero data, so before discard we must make sure
1338 * superblock is updated to new log tail. Updating superblock (either
1339 * directly call md_update_sb() or depend on md thread) must hold
1340 * reconfig mutex. On the other hand, raid5_quiesce is called with
1341 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1342 * for all IO finish, hence waitting for reclaim thread, while reclaim
1343 * thread is calling this function and waitting for reconfig mutex. So
1344 * there is a deadlock. We workaround this issue with a trylock.
1345 * FIXME: we could miss discard if we can't take reconfig mutex
1347 set_mask_bits(&mddev
->sb_flags
, 0,
1348 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1349 if (!mddev_trylock(mddev
))
1351 md_update_sb(mddev
, 1);
1352 mddev_unlock(mddev
);
1354 /* discard IO error really doesn't matter, ignore it */
1355 if (log
->last_checkpoint
< end
) {
1356 blkdev_issue_discard(bdev
,
1357 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1358 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
1360 blkdev_issue_discard(bdev
,
1361 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1362 log
->device_size
- log
->last_checkpoint
,
1364 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1370 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1371 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1373 * must hold conf->device_lock
1375 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1377 BUG_ON(list_empty(&sh
->lru
));
1378 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1379 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1382 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1383 * raid5_release_stripe() while holding conf->device_lock
1385 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1386 lockdep_assert_held(&conf
->device_lock
);
1388 list_del_init(&sh
->lru
);
1389 atomic_inc(&sh
->count
);
1391 set_bit(STRIPE_HANDLE
, &sh
->state
);
1392 atomic_inc(&conf
->active_stripes
);
1393 r5c_make_stripe_write_out(sh
);
1395 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
1396 atomic_inc(&conf
->r5c_flushing_partial_stripes
);
1398 atomic_inc(&conf
->r5c_flushing_full_stripes
);
1399 raid5_release_stripe(sh
);
1403 * if num == 0, flush all full stripes
1404 * if num > 0, flush all full stripes. If less than num full stripes are
1405 * flushed, flush some partial stripes until totally num stripes are
1406 * flushed or there is no more cached stripes.
1408 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1411 struct stripe_head
*sh
, *next
;
1413 lockdep_assert_held(&conf
->device_lock
);
1418 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1419 r5c_flush_stripe(conf
, sh
);
1425 list_for_each_entry_safe(sh
, next
,
1426 &conf
->r5c_partial_stripe_list
, lru
) {
1427 r5c_flush_stripe(conf
, sh
);
1433 static void r5c_do_reclaim(struct r5conf
*conf
)
1435 struct r5l_log
*log
= conf
->log
;
1436 struct stripe_head
*sh
;
1438 unsigned long flags
;
1440 int stripes_to_flush
;
1441 int flushing_partial
, flushing_full
;
1443 if (!r5c_is_writeback(log
))
1446 flushing_partial
= atomic_read(&conf
->r5c_flushing_partial_stripes
);
1447 flushing_full
= atomic_read(&conf
->r5c_flushing_full_stripes
);
1448 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1449 atomic_read(&conf
->r5c_cached_full_stripes
) -
1450 flushing_full
- flushing_partial
;
1452 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1453 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1455 * if stripe cache pressure high, flush all full stripes and
1456 * some partial stripes
1458 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1459 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1460 atomic_read(&conf
->r5c_cached_full_stripes
) - flushing_full
>
1461 R5C_FULL_STRIPE_FLUSH_BATCH(conf
))
1463 * if stripe cache pressure moderate, or if there is many full
1464 * stripes,flush all full stripes
1466 stripes_to_flush
= 0;
1468 /* no need to flush */
1469 stripes_to_flush
= -1;
1471 if (stripes_to_flush
>= 0) {
1472 spin_lock_irqsave(&conf
->device_lock
, flags
);
1473 r5c_flush_cache(conf
, stripes_to_flush
);
1474 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1477 /* if log space is tight, flush stripes on stripe_in_journal_list */
1478 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1479 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1480 spin_lock(&conf
->device_lock
);
1481 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1483 * stripes on stripe_in_journal_list could be in any
1484 * state of the stripe_cache state machine. In this
1485 * case, we only want to flush stripe on
1486 * r5c_cached_full/partial_stripes. The following
1487 * condition makes sure the stripe is on one of the
1490 if (!list_empty(&sh
->lru
) &&
1491 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1492 atomic_read(&sh
->count
) == 0) {
1493 r5c_flush_stripe(conf
, sh
);
1494 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1498 spin_unlock(&conf
->device_lock
);
1499 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1502 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1503 r5l_run_no_space_stripes(log
);
1505 md_wakeup_thread(conf
->mddev
->thread
);
1508 static void r5l_do_reclaim(struct r5l_log
*log
)
1510 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1511 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1512 sector_t reclaimable
;
1513 sector_t next_checkpoint
;
1516 spin_lock_irq(&log
->io_list_lock
);
1517 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1518 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1520 * move proper io_unit to reclaim list. We should not change the order.
1521 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1522 * shouldn't reuse space of an unreclaimable io_unit
1525 reclaimable
= r5l_reclaimable_space(log
);
1526 if (reclaimable
>= reclaim_target
||
1527 (list_empty(&log
->running_ios
) &&
1528 list_empty(&log
->io_end_ios
) &&
1529 list_empty(&log
->flushing_ios
) &&
1530 list_empty(&log
->finished_ios
)))
1533 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1534 wait_event_lock_irq(log
->iounit_wait
,
1535 r5l_reclaimable_space(log
) > reclaimable
,
1539 next_checkpoint
= r5c_calculate_new_cp(conf
);
1540 spin_unlock_irq(&log
->io_list_lock
);
1542 if (reclaimable
== 0 || !write_super
)
1546 * write_super will flush cache of each raid disk. We must write super
1547 * here, because the log area might be reused soon and we don't want to
1550 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1552 mutex_lock(&log
->io_mutex
);
1553 log
->last_checkpoint
= next_checkpoint
;
1554 r5c_update_log_state(log
);
1555 mutex_unlock(&log
->io_mutex
);
1557 r5l_run_no_space_stripes(log
);
1560 static void r5l_reclaim_thread(struct md_thread
*thread
)
1562 struct mddev
*mddev
= thread
->mddev
;
1563 struct r5conf
*conf
= mddev
->private;
1564 struct r5l_log
*log
= conf
->log
;
1568 r5c_do_reclaim(conf
);
1569 r5l_do_reclaim(log
);
1572 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1574 unsigned long target
;
1575 unsigned long new = (unsigned long)space
; /* overflow in theory */
1580 target
= log
->reclaim_target
;
1583 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
1584 md_wakeup_thread(log
->reclaim_thread
);
1587 void r5l_quiesce(struct r5l_log
*log
, int quiesce
)
1589 struct mddev
*mddev
;
1592 /* make sure r5l_write_super_and_discard_space exits */
1593 mddev
= log
->rdev
->mddev
;
1594 wake_up(&mddev
->sb_wait
);
1595 kthread_park(log
->reclaim_thread
->tsk
);
1596 r5l_wake_reclaim(log
, MaxSector
);
1597 r5l_do_reclaim(log
);
1599 kthread_unpark(log
->reclaim_thread
->tsk
);
1602 bool r5l_log_disk_error(struct r5conf
*conf
)
1604 struct r5l_log
*log
;
1606 /* don't allow write if journal disk is missing */
1608 log
= rcu_dereference(conf
->log
);
1611 ret
= test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1613 ret
= test_bit(Faulty
, &log
->rdev
->flags
);
1618 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1620 struct r5l_recovery_ctx
{
1621 struct page
*meta_page
; /* current meta */
1622 sector_t meta_total_blocks
; /* total size of current meta and data */
1623 sector_t pos
; /* recovery position */
1624 u64 seq
; /* recovery position seq */
1625 int data_parity_stripes
; /* number of data_parity stripes */
1626 int data_only_stripes
; /* number of data_only stripes */
1627 struct list_head cached_list
;
1630 * read ahead page pool (ra_pool)
1631 * in recovery, log is read sequentially. It is not efficient to
1632 * read every page with sync_page_io(). The read ahead page pool
1633 * reads multiple pages with one IO, so further log read can
1634 * just copy data from the pool.
1636 struct page
*ra_pool
[R5L_RECOVERY_PAGE_POOL_SIZE
];
1637 sector_t pool_offset
; /* offset of first page in the pool */
1638 int total_pages
; /* total allocated pages */
1639 int valid_pages
; /* pages with valid data */
1640 struct bio
*ra_bio
; /* bio to do the read ahead */
1643 static int r5l_recovery_allocate_ra_pool(struct r5l_log
*log
,
1644 struct r5l_recovery_ctx
*ctx
)
1648 ctx
->ra_bio
= bio_alloc_bioset(GFP_KERNEL
, BIO_MAX_PAGES
, &log
->bs
);
1652 ctx
->valid_pages
= 0;
1653 ctx
->total_pages
= 0;
1654 while (ctx
->total_pages
< R5L_RECOVERY_PAGE_POOL_SIZE
) {
1655 page
= alloc_page(GFP_KERNEL
);
1659 ctx
->ra_pool
[ctx
->total_pages
] = page
;
1660 ctx
->total_pages
+= 1;
1663 if (ctx
->total_pages
== 0) {
1664 bio_put(ctx
->ra_bio
);
1668 ctx
->pool_offset
= 0;
1672 static void r5l_recovery_free_ra_pool(struct r5l_log
*log
,
1673 struct r5l_recovery_ctx
*ctx
)
1677 for (i
= 0; i
< ctx
->total_pages
; ++i
)
1678 put_page(ctx
->ra_pool
[i
]);
1679 bio_put(ctx
->ra_bio
);
1683 * fetch ctx->valid_pages pages from offset
1684 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1685 * However, if the offset is close to the end of the journal device,
1686 * ctx->valid_pages could be smaller than ctx->total_pages
1688 static int r5l_recovery_fetch_ra_pool(struct r5l_log
*log
,
1689 struct r5l_recovery_ctx
*ctx
,
1692 bio_reset(ctx
->ra_bio
);
1693 bio_set_dev(ctx
->ra_bio
, log
->rdev
->bdev
);
1694 bio_set_op_attrs(ctx
->ra_bio
, REQ_OP_READ
, 0);
1695 ctx
->ra_bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ offset
;
1697 ctx
->valid_pages
= 0;
1698 ctx
->pool_offset
= offset
;
1700 while (ctx
->valid_pages
< ctx
->total_pages
) {
1701 bio_add_page(ctx
->ra_bio
,
1702 ctx
->ra_pool
[ctx
->valid_pages
], PAGE_SIZE
, 0);
1703 ctx
->valid_pages
+= 1;
1705 offset
= r5l_ring_add(log
, offset
, BLOCK_SECTORS
);
1707 if (offset
== 0) /* reached end of the device */
1711 return submit_bio_wait(ctx
->ra_bio
);
1715 * try read a page from the read ahead page pool, if the page is not in the
1716 * pool, call r5l_recovery_fetch_ra_pool
1718 static int r5l_recovery_read_page(struct r5l_log
*log
,
1719 struct r5l_recovery_ctx
*ctx
,
1725 if (offset
< ctx
->pool_offset
||
1726 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
) {
1727 ret
= r5l_recovery_fetch_ra_pool(log
, ctx
, offset
);
1732 BUG_ON(offset
< ctx
->pool_offset
||
1733 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
);
1735 memcpy(page_address(page
),
1736 page_address(ctx
->ra_pool
[(offset
- ctx
->pool_offset
) >>
1737 BLOCK_SECTOR_SHIFT
]),
1742 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1743 struct r5l_recovery_ctx
*ctx
)
1745 struct page
*page
= ctx
->meta_page
;
1746 struct r5l_meta_block
*mb
;
1747 u32 crc
, stored_crc
;
1750 ret
= r5l_recovery_read_page(log
, ctx
, page
, ctx
->pos
);
1754 mb
= page_address(page
);
1755 stored_crc
= le32_to_cpu(mb
->checksum
);
1758 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1759 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1760 mb
->version
!= R5LOG_VERSION
||
1761 le64_to_cpu(mb
->position
) != ctx
->pos
)
1764 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1765 if (stored_crc
!= crc
)
1768 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1771 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1777 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1779 sector_t pos
, u64 seq
)
1781 struct r5l_meta_block
*mb
;
1783 mb
= page_address(page
);
1785 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1786 mb
->version
= R5LOG_VERSION
;
1787 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1788 mb
->seq
= cpu_to_le64(seq
);
1789 mb
->position
= cpu_to_le64(pos
);
1792 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1796 struct r5l_meta_block
*mb
;
1798 page
= alloc_page(GFP_KERNEL
);
1801 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1802 mb
= page_address(page
);
1803 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1805 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
,
1806 REQ_SYNC
| REQ_FUA
, false)) {
1815 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1816 * to mark valid (potentially not flushed) data in the journal.
1818 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1819 * so there should not be any mismatch here.
1821 static void r5l_recovery_load_data(struct r5l_log
*log
,
1822 struct stripe_head
*sh
,
1823 struct r5l_recovery_ctx
*ctx
,
1824 struct r5l_payload_data_parity
*payload
,
1825 sector_t log_offset
)
1827 struct mddev
*mddev
= log
->rdev
->mddev
;
1828 struct r5conf
*conf
= mddev
->private;
1831 raid5_compute_sector(conf
,
1832 le64_to_cpu(payload
->location
), 0,
1834 r5l_recovery_read_page(log
, ctx
, sh
->dev
[dd_idx
].page
, log_offset
);
1835 sh
->dev
[dd_idx
].log_checksum
=
1836 le32_to_cpu(payload
->checksum
[0]);
1837 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1839 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1840 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1843 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1844 struct stripe_head
*sh
,
1845 struct r5l_recovery_ctx
*ctx
,
1846 struct r5l_payload_data_parity
*payload
,
1847 sector_t log_offset
)
1849 struct mddev
*mddev
= log
->rdev
->mddev
;
1850 struct r5conf
*conf
= mddev
->private;
1852 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1853 r5l_recovery_read_page(log
, ctx
, sh
->dev
[sh
->pd_idx
].page
, log_offset
);
1854 sh
->dev
[sh
->pd_idx
].log_checksum
=
1855 le32_to_cpu(payload
->checksum
[0]);
1856 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1858 if (sh
->qd_idx
>= 0) {
1859 r5l_recovery_read_page(
1860 log
, ctx
, sh
->dev
[sh
->qd_idx
].page
,
1861 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
));
1862 sh
->dev
[sh
->qd_idx
].log_checksum
=
1863 le32_to_cpu(payload
->checksum
[1]);
1864 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1866 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1869 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1874 sh
->log_start
= MaxSector
;
1875 for (i
= sh
->disks
; i
--; )
1876 sh
->dev
[i
].flags
= 0;
1880 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1881 struct stripe_head
*sh
,
1882 struct r5l_recovery_ctx
*ctx
)
1884 struct md_rdev
*rdev
, *rrdev
;
1888 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1889 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1891 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1897 * stripes that only have parity must have been flushed
1898 * before the crash that we are now recovering from, so
1899 * there is nothing more to recovery.
1901 if (data_count
== 0)
1904 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1905 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1908 /* in case device is broken */
1910 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
1912 atomic_inc(&rdev
->nr_pending
);
1914 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1915 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1917 rdev_dec_pending(rdev
, rdev
->mddev
);
1920 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
1922 atomic_inc(&rrdev
->nr_pending
);
1924 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1925 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
, 0,
1927 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1932 ctx
->data_parity_stripes
++;
1934 r5l_recovery_reset_stripe(sh
);
1937 static struct stripe_head
*
1938 r5c_recovery_alloc_stripe(
1939 struct r5conf
*conf
,
1940 sector_t stripe_sect
,
1943 struct stripe_head
*sh
;
1945 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, noblock
, 0);
1947 return NULL
; /* no more stripe available */
1949 r5l_recovery_reset_stripe(sh
);
1954 static struct stripe_head
*
1955 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1957 struct stripe_head
*sh
;
1959 list_for_each_entry(sh
, list
, lru
)
1960 if (sh
->sector
== sect
)
1966 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1967 struct r5l_recovery_ctx
*ctx
)
1969 struct stripe_head
*sh
, *next
;
1971 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1972 r5l_recovery_reset_stripe(sh
);
1973 list_del_init(&sh
->lru
);
1974 raid5_release_stripe(sh
);
1979 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1980 struct r5l_recovery_ctx
*ctx
)
1982 struct stripe_head
*sh
, *next
;
1984 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1985 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1986 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1987 list_del_init(&sh
->lru
);
1988 raid5_release_stripe(sh
);
1992 /* if matches return 0; otherwise return -EINVAL */
1994 r5l_recovery_verify_data_checksum(struct r5l_log
*log
,
1995 struct r5l_recovery_ctx
*ctx
,
1997 sector_t log_offset
, __le32 log_checksum
)
2002 r5l_recovery_read_page(log
, ctx
, page
, log_offset
);
2003 addr
= kmap_atomic(page
);
2004 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
2005 kunmap_atomic(addr
);
2006 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
2010 * before loading data to stripe cache, we need verify checksum for all data,
2011 * if there is mismatch for any data page, we drop all data in the mata block
2014 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
2015 struct r5l_recovery_ctx
*ctx
)
2017 struct mddev
*mddev
= log
->rdev
->mddev
;
2018 struct r5conf
*conf
= mddev
->private;
2019 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
2020 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
2021 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2023 struct r5l_payload_data_parity
*payload
;
2024 struct r5l_payload_flush
*payload_flush
;
2026 page
= alloc_page(GFP_KERNEL
);
2030 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2031 payload
= (void *)mb
+ mb_offset
;
2032 payload_flush
= (void *)mb
+ mb_offset
;
2034 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2035 if (r5l_recovery_verify_data_checksum(
2036 log
, ctx
, page
, log_offset
,
2037 payload
->checksum
[0]) < 0)
2039 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
) {
2040 if (r5l_recovery_verify_data_checksum(
2041 log
, ctx
, page
, log_offset
,
2042 payload
->checksum
[0]) < 0)
2044 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
2045 r5l_recovery_verify_data_checksum(
2047 r5l_ring_add(log
, log_offset
,
2049 payload
->checksum
[1]) < 0)
2051 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2052 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2053 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2056 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2057 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2058 le32_to_cpu(payload_flush
->size
);
2060 /* DATA or PARITY payload */
2061 log_offset
= r5l_ring_add(log
, log_offset
,
2062 le32_to_cpu(payload
->size
));
2063 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2065 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2079 * Analyze all data/parity pages in one meta block
2082 * -EINVAL for unknown playload type
2083 * -EAGAIN for checksum mismatch of data page
2084 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2087 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
2088 struct r5l_recovery_ctx
*ctx
,
2089 struct list_head
*cached_stripe_list
)
2091 struct mddev
*mddev
= log
->rdev
->mddev
;
2092 struct r5conf
*conf
= mddev
->private;
2093 struct r5l_meta_block
*mb
;
2094 struct r5l_payload_data_parity
*payload
;
2095 struct r5l_payload_flush
*payload_flush
;
2097 sector_t log_offset
;
2098 sector_t stripe_sect
;
2099 struct stripe_head
*sh
;
2103 * for mismatch in data blocks, we will drop all data in this mb, but
2104 * we will still read next mb for other data with FLUSH flag, as
2105 * io_unit could finish out of order.
2107 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
2111 return ret
; /* -ENOMEM duo to alloc_page() failed */
2113 mb
= page_address(ctx
->meta_page
);
2114 mb_offset
= sizeof(struct r5l_meta_block
);
2115 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2117 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2120 payload
= (void *)mb
+ mb_offset
;
2121 payload_flush
= (void *)mb
+ mb_offset
;
2123 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2126 count
= le32_to_cpu(payload_flush
->size
) / sizeof(__le64
);
2127 for (i
= 0; i
< count
; ++i
) {
2128 stripe_sect
= le64_to_cpu(payload_flush
->flush_stripes
[i
]);
2129 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2132 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2133 r5l_recovery_reset_stripe(sh
);
2134 list_del_init(&sh
->lru
);
2135 raid5_release_stripe(sh
);
2139 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2140 le32_to_cpu(payload_flush
->size
);
2144 /* DATA or PARITY payload */
2145 stripe_sect
= (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) ?
2146 raid5_compute_sector(
2147 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
2149 : le64_to_cpu(payload
->location
);
2151 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2155 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
, 1);
2157 * cannot get stripe from raid5_get_active_stripe
2158 * try replay some stripes
2161 r5c_recovery_replay_stripes(
2162 cached_stripe_list
, ctx
);
2163 sh
= r5c_recovery_alloc_stripe(
2164 conf
, stripe_sect
, 1);
2167 int new_size
= conf
->min_nr_stripes
* 2;
2168 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2171 ret
= raid5_set_cache_size(mddev
, new_size
);
2172 if (conf
->min_nr_stripes
<= new_size
/ 2) {
2173 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2177 conf
->min_nr_stripes
,
2178 conf
->max_nr_stripes
);
2181 sh
= r5c_recovery_alloc_stripe(
2182 conf
, stripe_sect
, 0);
2185 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2189 list_add_tail(&sh
->lru
, cached_stripe_list
);
2192 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2193 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
2194 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2195 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
2196 list_move_tail(&sh
->lru
, cached_stripe_list
);
2198 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
2200 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
2201 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
2206 log_offset
= r5l_ring_add(log
, log_offset
,
2207 le32_to_cpu(payload
->size
));
2209 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2211 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2218 * Load the stripe into cache. The stripe will be written out later by
2219 * the stripe cache state machine.
2221 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
2222 struct stripe_head
*sh
)
2227 for (i
= sh
->disks
; i
--; ) {
2229 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
2230 set_bit(R5_InJournal
, &dev
->flags
);
2231 set_bit(R5_UPTODATE
, &dev
->flags
);
2237 * Scan through the log for all to-be-flushed data
2239 * For stripes with data and parity, namely Data-Parity stripe
2240 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2242 * For stripes with only data, namely Data-Only stripe
2243 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2245 * For a stripe, if we see data after parity, we should discard all previous
2246 * data and parity for this stripe, as these data are already flushed to
2249 * At the end of the scan, we return the new journal_tail, which points to
2250 * first data-only stripe on the journal device, or next invalid meta block.
2252 static int r5c_recovery_flush_log(struct r5l_log
*log
,
2253 struct r5l_recovery_ctx
*ctx
)
2255 struct stripe_head
*sh
;
2258 /* scan through the log */
2260 if (r5l_recovery_read_meta_block(log
, ctx
))
2263 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
2266 * -EAGAIN means mismatch in data block, in this case, we still
2267 * try scan the next metablock
2269 if (ret
&& ret
!= -EAGAIN
)
2270 break; /* ret == -EINVAL or -ENOMEM */
2272 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
2275 if (ret
== -ENOMEM
) {
2276 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
2280 /* replay data-parity stripes */
2281 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
2283 /* load data-only stripes to stripe cache */
2284 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2285 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2286 r5c_recovery_load_one_stripe(log
, sh
);
2287 ctx
->data_only_stripes
++;
2294 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2295 * log will start here. but we can't let superblock point to last valid
2296 * meta block. The log might looks like:
2297 * | meta 1| meta 2| meta 3|
2298 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2299 * superblock points to meta 1, we write a new valid meta 2n. if crash
2300 * happens again, new recovery will start from meta 1. Since meta 2n is
2301 * valid now, recovery will think meta 3 is valid, which is wrong.
2302 * The solution is we create a new meta in meta2 with its seq == meta
2303 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2304 * will not think meta 3 is a valid meta, because its seq doesn't match
2308 * Before recovery, the log looks like the following
2310 * ---------------------------------------------
2311 * | valid log | invalid log |
2312 * ---------------------------------------------
2314 * |- log->last_checkpoint
2315 * |- log->last_cp_seq
2317 * Now we scan through the log until we see invalid entry
2319 * ---------------------------------------------
2320 * | valid log | invalid log |
2321 * ---------------------------------------------
2323 * |- log->last_checkpoint |- ctx->pos
2324 * |- log->last_cp_seq |- ctx->seq
2326 * From this point, we need to increase seq number by 10 to avoid
2327 * confusing next recovery.
2329 * ---------------------------------------------
2330 * | valid log | invalid log |
2331 * ---------------------------------------------
2333 * |- log->last_checkpoint |- ctx->pos+1
2334 * |- log->last_cp_seq |- ctx->seq+10001
2336 * However, it is not safe to start the state machine yet, because data only
2337 * parities are not yet secured in RAID. To save these data only parities, we
2338 * rewrite them from seq+11.
2340 * -----------------------------------------------------------------
2341 * | valid log | data only stripes | invalid log |
2342 * -----------------------------------------------------------------
2344 * |- log->last_checkpoint |- ctx->pos+n
2345 * |- log->last_cp_seq |- ctx->seq+10000+n
2347 * If failure happens again during this process, the recovery can safe start
2348 * again from log->last_checkpoint.
2350 * Once data only stripes are rewritten to journal, we move log_tail
2352 * -----------------------------------------------------------------
2353 * | old log | data only stripes | invalid log |
2354 * -----------------------------------------------------------------
2356 * |- log->last_checkpoint |- ctx->pos+n
2357 * |- log->last_cp_seq |- ctx->seq+10000+n
2359 * Then we can safely start the state machine. If failure happens from this
2360 * point on, the recovery will start from new log->last_checkpoint.
2363 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2364 struct r5l_recovery_ctx
*ctx
)
2366 struct stripe_head
*sh
;
2367 struct mddev
*mddev
= log
->rdev
->mddev
;
2369 sector_t next_checkpoint
= MaxSector
;
2371 page
= alloc_page(GFP_KERNEL
);
2373 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2378 WARN_ON(list_empty(&ctx
->cached_list
));
2380 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2381 struct r5l_meta_block
*mb
;
2386 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2387 r5l_recovery_create_empty_meta_block(log
, page
,
2388 ctx
->pos
, ctx
->seq
);
2389 mb
= page_address(page
);
2390 offset
= le32_to_cpu(mb
->meta_size
);
2391 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2393 for (i
= sh
->disks
; i
--; ) {
2394 struct r5dev
*dev
= &sh
->dev
[i
];
2395 struct r5l_payload_data_parity
*payload
;
2398 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2399 payload
= (void *)mb
+ offset
;
2400 payload
->header
.type
= cpu_to_le16(
2401 R5LOG_PAYLOAD_DATA
);
2402 payload
->size
= cpu_to_le32(BLOCK_SECTORS
);
2403 payload
->location
= cpu_to_le64(
2404 raid5_compute_blocknr(sh
, i
, 0));
2405 addr
= kmap_atomic(dev
->page
);
2406 payload
->checksum
[0] = cpu_to_le32(
2407 crc32c_le(log
->uuid_checksum
, addr
,
2409 kunmap_atomic(addr
);
2410 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2411 dev
->page
, REQ_OP_WRITE
, 0, false);
2412 write_pos
= r5l_ring_add(log
, write_pos
,
2414 offset
+= sizeof(__le32
) +
2415 sizeof(struct r5l_payload_data_parity
);
2419 mb
->meta_size
= cpu_to_le32(offset
);
2420 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2422 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2423 REQ_OP_WRITE
, REQ_SYNC
| REQ_FUA
, false);
2424 sh
->log_start
= ctx
->pos
;
2425 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2426 atomic_inc(&log
->stripe_in_journal_count
);
2427 ctx
->pos
= write_pos
;
2429 next_checkpoint
= sh
->log_start
;
2431 log
->next_checkpoint
= next_checkpoint
;
2436 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2437 struct r5l_recovery_ctx
*ctx
)
2439 struct mddev
*mddev
= log
->rdev
->mddev
;
2440 struct r5conf
*conf
= mddev
->private;
2441 struct stripe_head
*sh
, *next
;
2443 if (ctx
->data_only_stripes
== 0)
2446 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2448 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2449 r5c_make_stripe_write_out(sh
);
2450 set_bit(STRIPE_HANDLE
, &sh
->state
);
2451 list_del_init(&sh
->lru
);
2452 raid5_release_stripe(sh
);
2455 /* reuse conf->wait_for_quiescent in recovery */
2456 wait_event(conf
->wait_for_quiescent
,
2457 atomic_read(&conf
->active_stripes
) == 0);
2459 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2462 static int r5l_recovery_log(struct r5l_log
*log
)
2464 struct mddev
*mddev
= log
->rdev
->mddev
;
2465 struct r5l_recovery_ctx
*ctx
;
2469 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2473 ctx
->pos
= log
->last_checkpoint
;
2474 ctx
->seq
= log
->last_cp_seq
;
2475 INIT_LIST_HEAD(&ctx
->cached_list
);
2476 ctx
->meta_page
= alloc_page(GFP_KERNEL
);
2478 if (!ctx
->meta_page
) {
2483 if (r5l_recovery_allocate_ra_pool(log
, ctx
) != 0) {
2488 ret
= r5c_recovery_flush_log(log
, ctx
);
2496 if ((ctx
->data_only_stripes
== 0) && (ctx
->data_parity_stripes
== 0))
2497 pr_info("md/raid:%s: starting from clean shutdown\n",
2500 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2501 mdname(mddev
), ctx
->data_only_stripes
,
2502 ctx
->data_parity_stripes
);
2504 if (ctx
->data_only_stripes
== 0) {
2505 log
->next_checkpoint
= ctx
->pos
;
2506 r5l_log_write_empty_meta_block(log
, ctx
->pos
, ctx
->seq
++);
2507 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2508 } else if (r5c_recovery_rewrite_data_only_stripes(log
, ctx
)) {
2509 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2515 log
->log_start
= ctx
->pos
;
2516 log
->seq
= ctx
->seq
;
2517 log
->last_checkpoint
= pos
;
2518 r5l_write_super(log
, pos
);
2520 r5c_recovery_flush_data_only_stripes(log
, ctx
);
2523 r5l_recovery_free_ra_pool(log
, ctx
);
2525 __free_page(ctx
->meta_page
);
2531 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2533 struct mddev
*mddev
= log
->rdev
->mddev
;
2535 log
->rdev
->journal_tail
= cp
;
2536 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2539 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2541 struct r5conf
*conf
;
2544 ret
= mddev_lock(mddev
);
2548 conf
= mddev
->private;
2549 if (!conf
|| !conf
->log
) {
2550 mddev_unlock(mddev
);
2554 switch (conf
->log
->r5c_journal_mode
) {
2555 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2557 page
, PAGE_SIZE
, "[%s] %s\n",
2558 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2559 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2561 case R5C_JOURNAL_MODE_WRITE_BACK
:
2563 page
, PAGE_SIZE
, "%s [%s]\n",
2564 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2565 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2570 mddev_unlock(mddev
);
2575 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2577 * @mode as defined in 'enum r5c_journal_mode'.
2580 int r5c_journal_mode_set(struct mddev
*mddev
, int mode
)
2582 struct r5conf
*conf
;
2584 if (mode
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2585 mode
> R5C_JOURNAL_MODE_WRITE_BACK
)
2588 conf
= mddev
->private;
2589 if (!conf
|| !conf
->log
)
2592 if (raid5_calc_degraded(conf
) > 0 &&
2593 mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2596 mddev_suspend(mddev
);
2597 conf
->log
->r5c_journal_mode
= mode
;
2598 mddev_resume(mddev
);
2600 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2601 mdname(mddev
), mode
, r5c_journal_mode_str
[mode
]);
2604 EXPORT_SYMBOL(r5c_journal_mode_set
);
2606 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2607 const char *page
, size_t length
)
2609 int mode
= ARRAY_SIZE(r5c_journal_mode_str
);
2610 size_t len
= length
;
2616 if (page
[len
- 1] == '\n')
2620 if (strlen(r5c_journal_mode_str
[mode
]) == len
&&
2621 !strncmp(page
, r5c_journal_mode_str
[mode
], len
))
2623 ret
= mddev_lock(mddev
);
2626 ret
= r5c_journal_mode_set(mddev
, mode
);
2627 mddev_unlock(mddev
);
2628 return ret
?: length
;
2631 struct md_sysfs_entry
2632 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2633 r5c_journal_mode_show
, r5c_journal_mode_store
);
2636 * Try handle write operation in caching phase. This function should only
2637 * be called in write-back mode.
2639 * If all outstanding writes can be handled in caching phase, returns 0
2640 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2641 * and returns -EAGAIN
2643 int r5c_try_caching_write(struct r5conf
*conf
,
2644 struct stripe_head
*sh
,
2645 struct stripe_head_state
*s
,
2648 struct r5l_log
*log
= conf
->log
;
2653 sector_t tree_index
;
2657 BUG_ON(!r5c_is_writeback(log
));
2659 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2661 * There are two different scenarios here:
2662 * 1. The stripe has some data cached, and it is sent to
2663 * write-out phase for reclaim
2664 * 2. The stripe is clean, and this is the first write
2666 * For 1, return -EAGAIN, so we continue with
2667 * handle_stripe_dirtying().
2669 * For 2, set STRIPE_R5C_CACHING and continue with caching
2673 /* case 1: anything injournal or anything in written */
2674 if (s
->injournal
> 0 || s
->written
> 0)
2677 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2681 * When run in degraded mode, array is set to write-through mode.
2682 * This check helps drain pending write safely in the transition to
2683 * write-through mode.
2685 * When a stripe is syncing, the write is also handled in write
2688 if (s
->failed
|| test_bit(STRIPE_SYNCING
, &sh
->state
)) {
2689 r5c_make_stripe_write_out(sh
);
2693 for (i
= disks
; i
--; ) {
2695 /* if non-overwrite, use writing-out phase */
2696 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2697 !test_bit(R5_InJournal
, &dev
->flags
)) {
2698 r5c_make_stripe_write_out(sh
);
2703 /* if the stripe is not counted in big_stripe_tree, add it now */
2704 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
2705 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2706 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2707 spin_lock(&log
->tree_lock
);
2708 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2711 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2712 pslot
, &log
->tree_lock
) >>
2713 R5C_RADIX_COUNT_SHIFT
;
2714 radix_tree_replace_slot(
2715 &log
->big_stripe_tree
, pslot
,
2716 (void *)((refcount
+ 1) << R5C_RADIX_COUNT_SHIFT
));
2719 * this radix_tree_insert can fail safely, so no
2720 * need to call radix_tree_preload()
2722 ret
= radix_tree_insert(
2723 &log
->big_stripe_tree
, tree_index
,
2724 (void *)(1 << R5C_RADIX_COUNT_SHIFT
));
2726 spin_unlock(&log
->tree_lock
);
2727 r5c_make_stripe_write_out(sh
);
2731 spin_unlock(&log
->tree_lock
);
2734 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2735 * counted in the radix tree
2737 set_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
);
2738 atomic_inc(&conf
->r5c_cached_partial_stripes
);
2741 for (i
= disks
; i
--; ) {
2744 set_bit(R5_Wantwrite
, &dev
->flags
);
2745 set_bit(R5_Wantdrain
, &dev
->flags
);
2746 set_bit(R5_LOCKED
, &dev
->flags
);
2752 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2754 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2755 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2756 * r5c_handle_data_cached()
2758 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2765 * free extra pages (orig_page) we allocated for prexor
2767 void r5c_release_extra_page(struct stripe_head
*sh
)
2769 struct r5conf
*conf
= sh
->raid_conf
;
2771 bool using_disk_info_extra_page
;
2773 using_disk_info_extra_page
=
2774 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2776 for (i
= sh
->disks
; i
--; )
2777 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2778 struct page
*p
= sh
->dev
[i
].orig_page
;
2780 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2781 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2783 if (!using_disk_info_extra_page
)
2787 if (using_disk_info_extra_page
) {
2788 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2789 md_wakeup_thread(conf
->mddev
->thread
);
2793 void r5c_use_extra_page(struct stripe_head
*sh
)
2795 struct r5conf
*conf
= sh
->raid_conf
;
2799 for (i
= sh
->disks
; i
--; ) {
2801 if (dev
->orig_page
!= dev
->page
)
2802 put_page(dev
->orig_page
);
2803 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2808 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2809 * stripe is committed to RAID disks.
2811 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2812 struct stripe_head
*sh
,
2813 struct stripe_head_state
*s
)
2815 struct r5l_log
*log
= conf
->log
;
2818 sector_t tree_index
;
2822 if (!log
|| !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2825 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2826 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2828 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2831 for (i
= sh
->disks
; i
--; ) {
2832 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2833 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2838 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2839 * We updated R5_InJournal, so we also update s->injournal.
2843 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2844 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2845 md_wakeup_thread(conf
->mddev
->thread
);
2848 wake_up(&conf
->wait_for_overlap
);
2850 spin_lock_irq(&log
->stripe_in_journal_lock
);
2851 list_del_init(&sh
->r5c
);
2852 spin_unlock_irq(&log
->stripe_in_journal_lock
);
2853 sh
->log_start
= MaxSector
;
2855 atomic_dec(&log
->stripe_in_journal_count
);
2856 r5c_update_log_state(log
);
2858 /* stop counting this stripe in big_stripe_tree */
2859 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) ||
2860 test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2861 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2862 spin_lock(&log
->tree_lock
);
2863 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2865 BUG_ON(pslot
== NULL
);
2866 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2867 pslot
, &log
->tree_lock
) >>
2868 R5C_RADIX_COUNT_SHIFT
;
2870 radix_tree_delete(&log
->big_stripe_tree
, tree_index
);
2872 radix_tree_replace_slot(
2873 &log
->big_stripe_tree
, pslot
,
2874 (void *)((refcount
- 1) << R5C_RADIX_COUNT_SHIFT
));
2875 spin_unlock(&log
->tree_lock
);
2878 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
2879 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
2880 atomic_dec(&conf
->r5c_flushing_partial_stripes
);
2881 atomic_dec(&conf
->r5c_cached_partial_stripes
);
2884 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2885 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
2886 atomic_dec(&conf
->r5c_flushing_full_stripes
);
2887 atomic_dec(&conf
->r5c_cached_full_stripes
);
2890 r5l_append_flush_payload(log
, sh
->sector
);
2891 /* stripe is flused to raid disks, we can do resync now */
2892 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2893 set_bit(STRIPE_HANDLE
, &sh
->state
);
2896 int r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
)
2898 struct r5conf
*conf
= sh
->raid_conf
;
2906 for (i
= 0; i
< sh
->disks
; i
++) {
2909 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2911 addr
= kmap_atomic(sh
->dev
[i
].page
);
2912 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2914 kunmap_atomic(addr
);
2917 WARN_ON(pages
== 0);
2920 * The stripe must enter state machine again to call endio, so
2923 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2924 atomic_inc(&sh
->count
);
2926 mutex_lock(&log
->io_mutex
);
2928 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2930 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2931 sh
->log_start
== MaxSector
)
2932 r5l_add_no_space_stripe(log
, sh
);
2933 else if (!r5l_has_free_space(log
, reserve
)) {
2934 if (sh
->log_start
== log
->last_checkpoint
)
2937 r5l_add_no_space_stripe(log
, sh
);
2939 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2941 spin_lock_irq(&log
->io_list_lock
);
2942 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2943 spin_unlock_irq(&log
->io_list_lock
);
2947 mutex_unlock(&log
->io_mutex
);
2951 /* check whether this big stripe is in write back cache. */
2952 bool r5c_big_stripe_cached(struct r5conf
*conf
, sector_t sect
)
2954 struct r5l_log
*log
= conf
->log
;
2955 sector_t tree_index
;
2961 WARN_ON_ONCE(!rcu_read_lock_held());
2962 tree_index
= r5c_tree_index(conf
, sect
);
2963 slot
= radix_tree_lookup(&log
->big_stripe_tree
, tree_index
);
2964 return slot
!= NULL
;
2967 static int r5l_load_log(struct r5l_log
*log
)
2969 struct md_rdev
*rdev
= log
->rdev
;
2971 struct r5l_meta_block
*mb
;
2972 sector_t cp
= log
->rdev
->journal_tail
;
2973 u32 stored_crc
, expected_crc
;
2974 bool create_super
= false;
2977 /* Make sure it's valid */
2978 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2980 page
= alloc_page(GFP_KERNEL
);
2984 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, 0, false)) {
2988 mb
= page_address(page
);
2990 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2991 mb
->version
!= R5LOG_VERSION
) {
2992 create_super
= true;
2995 stored_crc
= le32_to_cpu(mb
->checksum
);
2997 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2998 if (stored_crc
!= expected_crc
) {
2999 create_super
= true;
3002 if (le64_to_cpu(mb
->position
) != cp
) {
3003 create_super
= true;
3008 log
->last_cp_seq
= prandom_u32();
3010 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
3012 * Make sure super points to correct address. Log might have
3013 * data very soon. If super hasn't correct log tail address,
3014 * recovery can't find the log
3016 r5l_write_super(log
, cp
);
3018 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
3020 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
3021 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
3022 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
3023 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
3024 log
->last_checkpoint
= cp
;
3029 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
3030 log
->seq
= log
->last_cp_seq
+ 1;
3031 log
->next_checkpoint
= cp
;
3033 ret
= r5l_recovery_log(log
);
3035 r5c_update_log_state(log
);
3042 int r5l_start(struct r5l_log
*log
)
3049 ret
= r5l_load_log(log
);
3051 struct mddev
*mddev
= log
->rdev
->mddev
;
3052 struct r5conf
*conf
= mddev
->private;
3059 void r5c_update_on_rdev_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
3061 struct r5conf
*conf
= mddev
->private;
3062 struct r5l_log
*log
= conf
->log
;
3067 if ((raid5_calc_degraded(conf
) > 0 ||
3068 test_bit(Journal
, &rdev
->flags
)) &&
3069 conf
->log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
3070 schedule_work(&log
->disable_writeback_work
);
3073 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
3075 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
3076 struct r5l_log
*log
;
3077 char b
[BDEVNAME_SIZE
];
3080 pr_debug("md/raid:%s: using device %s as journal\n",
3081 mdname(conf
->mddev
), bdevname(rdev
->bdev
, b
));
3083 if (PAGE_SIZE
!= 4096)
3087 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3088 * raid_disks r5l_payload_data_parity.
3090 * Write journal and cache does not work for very big array
3091 * (raid_disks > 203)
3093 if (sizeof(struct r5l_meta_block
) +
3094 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
3095 conf
->raid_disks
) > PAGE_SIZE
) {
3096 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3097 mdname(conf
->mddev
), conf
->raid_disks
);
3101 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
3106 log
->need_cache_flush
= test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
) != 0;
3108 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
3109 sizeof(rdev
->mddev
->uuid
));
3111 mutex_init(&log
->io_mutex
);
3113 spin_lock_init(&log
->io_list_lock
);
3114 INIT_LIST_HEAD(&log
->running_ios
);
3115 INIT_LIST_HEAD(&log
->io_end_ios
);
3116 INIT_LIST_HEAD(&log
->flushing_ios
);
3117 INIT_LIST_HEAD(&log
->finished_ios
);
3118 bio_init(&log
->flush_bio
, NULL
, 0);
3120 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
3124 ret
= mempool_init_slab_pool(&log
->io_pool
, R5L_POOL_SIZE
, log
->io_kc
);
3128 ret
= bioset_init(&log
->bs
, R5L_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
3132 ret
= mempool_init_page_pool(&log
->meta_pool
, R5L_POOL_SIZE
, 0);
3136 spin_lock_init(&log
->tree_lock
);
3137 INIT_RADIX_TREE(&log
->big_stripe_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
3139 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
3140 log
->rdev
->mddev
, "reclaim");
3141 if (!log
->reclaim_thread
)
3142 goto reclaim_thread
;
3143 log
->reclaim_thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
3145 init_waitqueue_head(&log
->iounit_wait
);
3147 INIT_LIST_HEAD(&log
->no_mem_stripes
);
3149 INIT_LIST_HEAD(&log
->no_space_stripes
);
3150 spin_lock_init(&log
->no_space_stripes_lock
);
3152 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
3153 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
3155 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
3156 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
3157 spin_lock_init(&log
->stripe_in_journal_lock
);
3158 atomic_set(&log
->stripe_in_journal_count
, 0);
3160 rcu_assign_pointer(conf
->log
, log
);
3162 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
3165 rcu_assign_pointer(conf
->log
, NULL
);
3166 md_unregister_thread(&log
->reclaim_thread
);
3168 mempool_exit(&log
->meta_pool
);
3170 bioset_exit(&log
->bs
);
3172 mempool_exit(&log
->io_pool
);
3174 kmem_cache_destroy(log
->io_kc
);
3180 void r5l_exit_log(struct r5conf
*conf
)
3182 struct r5l_log
*log
= conf
->log
;
3187 /* Ensure disable_writeback_work wakes up and exits */
3188 wake_up(&conf
->mddev
->sb_wait
);
3189 flush_work(&log
->disable_writeback_work
);
3190 md_unregister_thread(&log
->reclaim_thread
);
3191 mempool_exit(&log
->meta_pool
);
3192 bioset_exit(&log
->bs
);
3193 mempool_exit(&log
->io_pool
);
3194 kmem_cache_destroy(log
->io_kc
);