2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
73 static bool devices_handle_discard_safely
= false;
74 module_param(devices_handle_discard_safely
, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely
,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct
*raid5_wq
;
79 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
81 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
82 return &conf
->stripe_hashtbl
[hash
];
85 static inline int stripe_hash_locks_hash(sector_t sect
)
87 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
90 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
92 spin_lock_irq(conf
->hash_locks
+ hash
);
93 spin_lock(&conf
->device_lock
);
96 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
98 spin_unlock(&conf
->device_lock
);
99 spin_unlock_irq(conf
->hash_locks
+ hash
);
102 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
105 spin_lock_irq(conf
->hash_locks
);
106 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
107 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
108 spin_lock(&conf
->device_lock
);
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_unlock(&conf
->device_lock
);
115 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
116 spin_unlock(conf
->hash_locks
+ i
);
117 spin_unlock_irq(conf
->hash_locks
);
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head
*sh
)
124 /* ddf always start from first device */
126 /* md starts just after Q block */
127 if (sh
->qd_idx
== sh
->disks
- 1)
130 return sh
->qd_idx
+ 1;
132 static inline int raid6_next_disk(int disk
, int raid_disks
)
135 return (disk
< raid_disks
) ? disk
: 0;
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
143 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
144 int *count
, int syndrome_disks
)
150 if (idx
== sh
->pd_idx
)
151 return syndrome_disks
;
152 if (idx
== sh
->qd_idx
)
153 return syndrome_disks
+ 1;
159 static void print_raid5_conf (struct r5conf
*conf
);
161 static int stripe_operations_active(struct stripe_head
*sh
)
163 return sh
->check_state
|| sh
->reconstruct_state
||
164 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
165 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
168 static bool stripe_is_lowprio(struct stripe_head
*sh
)
170 return (test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) &&
172 !test_bit(STRIPE_R5C_CACHING
, &sh
->state
);
175 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 if (stripe_is_lowprio(sh
))
191 list_add_tail(&sh
->lru
, &group
->loprio_list
);
193 list_add_tail(&sh
->lru
, &group
->handle_list
);
194 group
->stripes_cnt
++;
198 if (conf
->worker_cnt_per_group
== 0) {
199 md_wakeup_thread(conf
->mddev
->thread
);
203 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
205 group
->workers
[0].working
= true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
209 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
210 /* wakeup more workers */
211 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
212 if (group
->workers
[i
].working
== false) {
213 group
->workers
[i
].working
= true;
214 queue_work_on(sh
->cpu
, raid5_wq
,
215 &group
->workers
[i
].work
);
221 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
222 struct list_head
*temp_inactive_list
)
225 int injournal
= 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh
->lru
));
228 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
230 if (r5c_is_writeback(conf
->log
))
231 for (i
= sh
->disks
; i
--; )
232 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) ||
242 (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
243 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0)) {
244 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
245 r5c_make_stripe_write_out(sh
);
246 set_bit(STRIPE_HANDLE
, &sh
->state
);
249 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
250 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
252 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
253 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
254 sh
->bm_seq
- conf
->seq_write
> 0)
255 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
257 clear_bit(STRIPE_DELAYED
, &sh
->state
);
258 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
259 if (conf
->worker_cnt_per_group
== 0) {
260 if (stripe_is_lowprio(sh
))
261 list_add_tail(&sh
->lru
,
264 list_add_tail(&sh
->lru
,
267 raid5_wakeup_stripe_thread(sh
);
271 md_wakeup_thread(conf
->mddev
->thread
);
273 BUG_ON(stripe_operations_active(sh
));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
275 if (atomic_dec_return(&conf
->preread_active_stripes
)
277 md_wakeup_thread(conf
->mddev
->thread
);
278 atomic_dec(&conf
->active_stripes
);
279 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
280 if (!r5c_is_writeback(conf
->log
))
281 list_add_tail(&sh
->lru
, temp_inactive_list
);
283 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
285 list_add_tail(&sh
->lru
, temp_inactive_list
);
286 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
289 atomic_inc(&conf
->r5c_cached_full_stripes
);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
291 atomic_dec(&conf
->r5c_cached_partial_stripes
);
292 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
293 r5c_check_cached_full_stripe(conf
);
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
300 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
306 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
307 struct list_head
*temp_inactive_list
)
309 if (atomic_dec_and_test(&sh
->count
))
310 do_release_stripe(conf
, sh
, temp_inactive_list
);
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
320 static void release_inactive_stripe_list(struct r5conf
*conf
,
321 struct list_head
*temp_inactive_list
,
325 bool do_wakeup
= false;
328 if (hash
== NR_STRIPE_HASH_LOCKS
) {
329 size
= NR_STRIPE_HASH_LOCKS
;
330 hash
= NR_STRIPE_HASH_LOCKS
- 1;
334 struct list_head
*list
= &temp_inactive_list
[size
- 1];
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
340 if (!list_empty_careful(list
)) {
341 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
342 if (list_empty(conf
->inactive_list
+ hash
) &&
344 atomic_dec(&conf
->empty_inactive_list_nr
);
345 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
347 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
354 wake_up(&conf
->wait_for_stripe
);
355 if (atomic_read(&conf
->active_stripes
) == 0)
356 wake_up(&conf
->wait_for_quiescent
);
357 if (conf
->retry_read_aligned
)
358 md_wakeup_thread(conf
->mddev
->thread
);
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf
*conf
,
364 struct list_head
*temp_inactive_list
)
366 struct stripe_head
*sh
, *t
;
368 struct llist_node
*head
;
370 head
= llist_del_all(&conf
->released_stripes
);
371 head
= llist_reverse_order(head
);
372 llist_for_each_entry_safe(sh
, t
, head
, release_list
) {
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
383 hash
= sh
->hash_lock_index
;
384 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
391 void raid5_release_stripe(struct stripe_head
*sh
)
393 struct r5conf
*conf
= sh
->raid_conf
;
395 struct list_head list
;
399 /* Avoid release_list until the last reference.
401 if (atomic_add_unless(&sh
->count
, -1, 1))
404 if (unlikely(!conf
->mddev
->thread
) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
407 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
409 md_wakeup_thread(conf
->mddev
->thread
);
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh
->count
, &conf
->device_lock
, flags
)) {
414 INIT_LIST_HEAD(&list
);
415 hash
= sh
->hash_lock_index
;
416 do_release_stripe(conf
, sh
, &list
);
417 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
418 release_inactive_stripe_list(conf
, &list
, hash
);
422 static inline void remove_hash(struct stripe_head
*sh
)
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh
->sector
);
427 hlist_del_init(&sh
->hash
);
430 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
432 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh
->sector
);
437 hlist_add_head(&sh
->hash
, hp
);
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
443 struct stripe_head
*sh
= NULL
;
444 struct list_head
*first
;
446 if (list_empty(conf
->inactive_list
+ hash
))
448 first
= (conf
->inactive_list
+ hash
)->next
;
449 sh
= list_entry(first
, struct stripe_head
, lru
);
450 list_del_init(first
);
452 atomic_inc(&conf
->active_stripes
);
453 BUG_ON(hash
!= sh
->hash_lock_index
);
454 if (list_empty(conf
->inactive_list
+ hash
))
455 atomic_inc(&conf
->empty_inactive_list_nr
);
460 static void shrink_buffers(struct stripe_head
*sh
)
464 int num
= sh
->raid_conf
->pool_size
;
466 for (i
= 0; i
< num
; i
++) {
467 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
471 sh
->dev
[i
].page
= NULL
;
476 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
479 int num
= sh
->raid_conf
->pool_size
;
481 for (i
= 0; i
< num
; i
++) {
484 if (!(page
= alloc_page(gfp
))) {
487 sh
->dev
[i
].page
= page
;
488 sh
->dev
[i
].orig_page
= page
;
494 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
495 struct stripe_head
*sh
);
497 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
499 struct r5conf
*conf
= sh
->raid_conf
;
502 BUG_ON(atomic_read(&sh
->count
) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
504 BUG_ON(stripe_operations_active(sh
));
505 BUG_ON(sh
->batch_head
);
507 pr_debug("init_stripe called, stripe %llu\n",
508 (unsigned long long)sector
);
510 seq
= read_seqcount_begin(&conf
->gen_lock
);
511 sh
->generation
= conf
->generation
- previous
;
512 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
514 stripe_set_idx(sector
, conf
, previous
, sh
);
517 for (i
= sh
->disks
; i
--; ) {
518 struct r5dev
*dev
= &sh
->dev
[i
];
520 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
521 test_bit(R5_LOCKED
, &dev
->flags
)) {
522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 (unsigned long long)sh
->sector
, i
, dev
->toread
,
524 dev
->read
, dev
->towrite
, dev
->written
,
525 test_bit(R5_LOCKED
, &dev
->flags
));
529 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
531 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
533 sh
->overwrite_disks
= 0;
534 insert_hash(conf
, sh
);
535 sh
->cpu
= smp_processor_id();
536 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
539 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
542 struct stripe_head
*sh
;
544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
545 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
546 if (sh
->sector
== sector
&& sh
->generation
== generation
)
548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
553 * Need to check if array has failed when deciding whether to:
555 * - remove non-faulty devices
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
565 int raid5_calc_degraded(struct r5conf
*conf
)
567 int degraded
, degraded2
;
572 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
573 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
574 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
575 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
576 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
578 else if (test_bit(In_sync
, &rdev
->flags
))
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
590 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
594 if (conf
->raid_disks
== conf
->previous_raid_disks
)
598 for (i
= 0; i
< conf
->raid_disks
; i
++) {
599 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
600 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
601 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
602 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
604 else if (test_bit(In_sync
, &rdev
->flags
))
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
612 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
616 if (degraded2
> degraded
)
621 static int has_failed(struct r5conf
*conf
)
625 if (conf
->mddev
->reshape_position
== MaxSector
)
626 return conf
->mddev
->degraded
> conf
->max_degraded
;
628 degraded
= raid5_calc_degraded(conf
);
629 if (degraded
> conf
->max_degraded
)
635 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
636 int previous
, int noblock
, int noquiesce
)
638 struct stripe_head
*sh
;
639 int hash
= stripe_hash_locks_hash(sector
);
640 int inc_empty_inactive_list_flag
;
642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
644 spin_lock_irq(conf
->hash_locks
+ hash
);
647 wait_event_lock_irq(conf
->wait_for_quiescent
,
648 conf
->quiesce
== 0 || noquiesce
,
649 *(conf
->hash_locks
+ hash
));
650 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
652 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
653 sh
= get_free_stripe(conf
, hash
);
654 if (!sh
&& !test_bit(R5_DID_ALLOC
,
656 set_bit(R5_ALLOC_MORE
,
659 if (noblock
&& sh
== NULL
)
662 r5c_check_stripe_cache_usage(conf
);
664 set_bit(R5_INACTIVE_BLOCKED
,
666 r5l_wake_reclaim(conf
->log
, 0);
668 conf
->wait_for_stripe
,
669 !list_empty(conf
->inactive_list
+ hash
) &&
670 (atomic_read(&conf
->active_stripes
)
671 < (conf
->max_nr_stripes
* 3 / 4)
672 || !test_bit(R5_INACTIVE_BLOCKED
,
673 &conf
->cache_state
)),
674 *(conf
->hash_locks
+ hash
));
675 clear_bit(R5_INACTIVE_BLOCKED
,
678 init_stripe(sh
, sector
, previous
);
679 atomic_inc(&sh
->count
);
681 } else if (!atomic_inc_not_zero(&sh
->count
)) {
682 spin_lock(&conf
->device_lock
);
683 if (!atomic_read(&sh
->count
)) {
684 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
685 atomic_inc(&conf
->active_stripes
);
686 BUG_ON(list_empty(&sh
->lru
) &&
687 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
688 inc_empty_inactive_list_flag
= 0;
689 if (!list_empty(conf
->inactive_list
+ hash
))
690 inc_empty_inactive_list_flag
= 1;
691 list_del_init(&sh
->lru
);
692 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
693 atomic_inc(&conf
->empty_inactive_list_nr
);
695 sh
->group
->stripes_cnt
--;
699 atomic_inc(&sh
->count
);
700 spin_unlock(&conf
->device_lock
);
702 } while (sh
== NULL
);
704 spin_unlock_irq(conf
->hash_locks
+ hash
);
708 static bool is_full_stripe_write(struct stripe_head
*sh
)
710 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
711 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
714 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
717 spin_lock_irq(&sh2
->stripe_lock
);
718 spin_lock_nested(&sh1
->stripe_lock
, 1);
720 spin_lock_irq(&sh1
->stripe_lock
);
721 spin_lock_nested(&sh2
->stripe_lock
, 1);
725 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
727 spin_unlock(&sh1
->stripe_lock
);
728 spin_unlock_irq(&sh2
->stripe_lock
);
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head
*sh
)
734 struct r5conf
*conf
= sh
->raid_conf
;
736 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
738 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
739 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
740 is_full_stripe_write(sh
);
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
746 struct stripe_head
*head
;
747 sector_t head_sector
, tmp_sec
;
750 int inc_empty_inactive_list_flag
;
752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec
= sh
->sector
;
754 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
756 head_sector
= sh
->sector
- STRIPE_SECTORS
;
758 hash
= stripe_hash_locks_hash(head_sector
);
759 spin_lock_irq(conf
->hash_locks
+ hash
);
760 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
761 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
762 spin_lock(&conf
->device_lock
);
763 if (!atomic_read(&head
->count
)) {
764 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
765 atomic_inc(&conf
->active_stripes
);
766 BUG_ON(list_empty(&head
->lru
) &&
767 !test_bit(STRIPE_EXPANDING
, &head
->state
));
768 inc_empty_inactive_list_flag
= 0;
769 if (!list_empty(conf
->inactive_list
+ hash
))
770 inc_empty_inactive_list_flag
= 1;
771 list_del_init(&head
->lru
);
772 if (list_empty(conf
->inactive_list
+ hash
) && inc_empty_inactive_list_flag
)
773 atomic_inc(&conf
->empty_inactive_list_nr
);
775 head
->group
->stripes_cnt
--;
779 atomic_inc(&head
->count
);
780 spin_unlock(&conf
->device_lock
);
782 spin_unlock_irq(conf
->hash_locks
+ hash
);
786 if (!stripe_can_batch(head
))
789 lock_two_stripes(head
, sh
);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
798 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
800 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
801 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
804 if (head
->batch_head
) {
805 spin_lock(&head
->batch_head
->batch_lock
);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head
)) {
808 spin_unlock(&head
->batch_head
->batch_lock
);
812 * We must assign batch_head of this stripe within the
813 * batch_lock, otherwise clear_batch_ready of batch head
814 * stripe could clear BATCH_READY bit of this stripe and
815 * this stripe->batch_head doesn't get assigned, which
816 * could confuse clear_batch_ready for this stripe
818 sh
->batch_head
= head
->batch_head
;
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh
->batch_list
, &head
->batch_list
);
825 spin_unlock(&head
->batch_head
->batch_lock
);
827 head
->batch_head
= head
;
828 sh
->batch_head
= head
->batch_head
;
829 spin_lock(&head
->batch_lock
);
830 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
831 spin_unlock(&head
->batch_lock
);
834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
835 if (atomic_dec_return(&conf
->preread_active_stripes
)
837 md_wakeup_thread(conf
->mddev
->thread
);
839 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
840 int seq
= sh
->bm_seq
;
841 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
842 sh
->batch_head
->bm_seq
> seq
)
843 seq
= sh
->batch_head
->bm_seq
;
844 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
845 sh
->batch_head
->bm_seq
= seq
;
848 atomic_inc(&sh
->count
);
850 unlock_two_stripes(head
, sh
);
852 raid5_release_stripe(head
);
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856 * in this stripe_head.
858 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
860 sector_t progress
= conf
->reshape_progress
;
861 /* Need a memory barrier to make sure we see the value
862 * of conf->generation, or ->data_offset that was set before
863 * reshape_progress was updated.
866 if (progress
== MaxSector
)
868 if (sh
->generation
== conf
->generation
- 1)
870 /* We are in a reshape, and this is a new-generation stripe,
871 * so use new_data_offset.
876 static void dispatch_bio_list(struct bio_list
*tmp
)
880 while ((bio
= bio_list_pop(tmp
)))
881 generic_make_request(bio
);
884 static int cmp_stripe(void *priv
, struct list_head
*a
, struct list_head
*b
)
886 const struct r5pending_data
*da
= list_entry(a
,
887 struct r5pending_data
, sibling
);
888 const struct r5pending_data
*db
= list_entry(b
,
889 struct r5pending_data
, sibling
);
890 if (da
->sector
> db
->sector
)
892 if (da
->sector
< db
->sector
)
897 static void dispatch_defer_bios(struct r5conf
*conf
, int target
,
898 struct bio_list
*list
)
900 struct r5pending_data
*data
;
901 struct list_head
*first
, *next
= NULL
;
904 if (conf
->pending_data_cnt
== 0)
907 list_sort(NULL
, &conf
->pending_list
, cmp_stripe
);
909 first
= conf
->pending_list
.next
;
911 /* temporarily move the head */
912 if (conf
->next_pending_data
)
913 list_move_tail(&conf
->pending_list
,
914 &conf
->next_pending_data
->sibling
);
916 while (!list_empty(&conf
->pending_list
)) {
917 data
= list_first_entry(&conf
->pending_list
,
918 struct r5pending_data
, sibling
);
919 if (&data
->sibling
== first
)
920 first
= data
->sibling
.next
;
921 next
= data
->sibling
.next
;
923 bio_list_merge(list
, &data
->bios
);
924 list_move(&data
->sibling
, &conf
->free_list
);
929 conf
->pending_data_cnt
-= cnt
;
930 BUG_ON(conf
->pending_data_cnt
< 0 || cnt
< target
);
932 if (next
!= &conf
->pending_list
)
933 conf
->next_pending_data
= list_entry(next
,
934 struct r5pending_data
, sibling
);
936 conf
->next_pending_data
= NULL
;
937 /* list isn't empty */
938 if (first
!= &conf
->pending_list
)
939 list_move_tail(&conf
->pending_list
, first
);
942 static void flush_deferred_bios(struct r5conf
*conf
)
944 struct bio_list tmp
= BIO_EMPTY_LIST
;
946 if (conf
->pending_data_cnt
== 0)
949 spin_lock(&conf
->pending_bios_lock
);
950 dispatch_defer_bios(conf
, conf
->pending_data_cnt
, &tmp
);
951 BUG_ON(conf
->pending_data_cnt
!= 0);
952 spin_unlock(&conf
->pending_bios_lock
);
954 dispatch_bio_list(&tmp
);
957 static void defer_issue_bios(struct r5conf
*conf
, sector_t sector
,
958 struct bio_list
*bios
)
960 struct bio_list tmp
= BIO_EMPTY_LIST
;
961 struct r5pending_data
*ent
;
963 spin_lock(&conf
->pending_bios_lock
);
964 ent
= list_first_entry(&conf
->free_list
, struct r5pending_data
,
966 list_move_tail(&ent
->sibling
, &conf
->pending_list
);
967 ent
->sector
= sector
;
968 bio_list_init(&ent
->bios
);
969 bio_list_merge(&ent
->bios
, bios
);
970 conf
->pending_data_cnt
++;
971 if (conf
->pending_data_cnt
>= PENDING_IO_MAX
)
972 dispatch_defer_bios(conf
, PENDING_IO_ONE_FLUSH
, &tmp
);
974 spin_unlock(&conf
->pending_bios_lock
);
976 dispatch_bio_list(&tmp
);
980 raid5_end_read_request(struct bio
*bi
);
982 raid5_end_write_request(struct bio
*bi
);
984 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
986 struct r5conf
*conf
= sh
->raid_conf
;
987 int i
, disks
= sh
->disks
;
988 struct stripe_head
*head_sh
= sh
;
989 struct bio_list pending_bios
= BIO_EMPTY_LIST
;
994 if (log_stripe(sh
, s
) == 0)
997 should_defer
= conf
->batch_bio_dispatch
&& conf
->group_cnt
;
999 for (i
= disks
; i
--; ) {
1000 int op
, op_flags
= 0;
1001 int replace_only
= 0;
1002 struct bio
*bi
, *rbi
;
1003 struct md_rdev
*rdev
, *rrdev
= NULL
;
1006 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
1008 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
1010 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1011 op
= REQ_OP_DISCARD
;
1012 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1014 else if (test_and_clear_bit(R5_WantReplace
,
1015 &sh
->dev
[i
].flags
)) {
1020 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
1021 op_flags
|= REQ_SYNC
;
1024 bi
= &sh
->dev
[i
].req
;
1025 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
1028 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1035 if (op_is_write(op
)) {
1039 /* We raced and saw duplicates */
1042 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
1047 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1050 atomic_inc(&rdev
->nr_pending
);
1051 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1054 atomic_inc(&rrdev
->nr_pending
);
1057 /* We have already checked bad blocks for reads. Now
1058 * need to check for writes. We never accept write errors
1059 * on the replacement, so we don't to check rrdev.
1061 while (op_is_write(op
) && rdev
&&
1062 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1065 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
1066 &first_bad
, &bad_sectors
);
1071 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1072 if (!conf
->mddev
->external
&&
1073 conf
->mddev
->sb_flags
) {
1074 /* It is very unlikely, but we might
1075 * still need to write out the
1076 * bad block log - better give it
1078 md_check_recovery(conf
->mddev
);
1081 * Because md_wait_for_blocked_rdev
1082 * will dec nr_pending, we must
1083 * increment it first.
1085 atomic_inc(&rdev
->nr_pending
);
1086 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
1088 /* Acknowledged bad block - skip the write */
1089 rdev_dec_pending(rdev
, conf
->mddev
);
1095 if (s
->syncing
|| s
->expanding
|| s
->expanded
1097 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1099 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1101 bio_set_dev(bi
, rdev
->bdev
);
1102 bio_set_op_attrs(bi
, op
, op_flags
);
1103 bi
->bi_end_io
= op_is_write(op
)
1104 ? raid5_end_write_request
1105 : raid5_end_read_request
;
1106 bi
->bi_private
= sh
;
1108 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 __func__
, (unsigned long long)sh
->sector
,
1111 atomic_inc(&sh
->count
);
1113 atomic_inc(&head_sh
->count
);
1114 if (use_new_offset(conf
, sh
))
1115 bi
->bi_iter
.bi_sector
= (sh
->sector
1116 + rdev
->new_data_offset
);
1118 bi
->bi_iter
.bi_sector
= (sh
->sector
1119 + rdev
->data_offset
);
1120 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1121 bi
->bi_opf
|= REQ_NOMERGE
;
1123 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1124 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1126 if (!op_is_write(op
) &&
1127 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1129 * issuing read for a page in journal, this
1130 * must be preparing for prexor in rmw; read
1131 * the data into orig_page
1133 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].orig_page
;
1135 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1137 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1138 bi
->bi_io_vec
[0].bv_offset
= 0;
1139 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1140 bi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1142 sh
->dev
[i
].write_hint
= RWF_WRITE_LIFE_NOT_SET
;
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1147 if (op
== REQ_OP_DISCARD
)
1150 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1152 if (conf
->mddev
->gendisk
)
1153 trace_block_bio_remap(bi
->bi_disk
->queue
,
1154 bi
, disk_devt(conf
->mddev
->gendisk
),
1156 if (should_defer
&& op_is_write(op
))
1157 bio_list_add(&pending_bios
, bi
);
1159 generic_make_request(bi
);
1162 if (s
->syncing
|| s
->expanding
|| s
->expanded
1164 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1166 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1168 bio_set_dev(rbi
, rrdev
->bdev
);
1169 bio_set_op_attrs(rbi
, op
, op_flags
);
1170 BUG_ON(!op_is_write(op
));
1171 rbi
->bi_end_io
= raid5_end_write_request
;
1172 rbi
->bi_private
= sh
;
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__
, (unsigned long long)sh
->sector
,
1178 atomic_inc(&sh
->count
);
1180 atomic_inc(&head_sh
->count
);
1181 if (use_new_offset(conf
, sh
))
1182 rbi
->bi_iter
.bi_sector
= (sh
->sector
1183 + rrdev
->new_data_offset
);
1185 rbi
->bi_iter
.bi_sector
= (sh
->sector
1186 + rrdev
->data_offset
);
1187 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1188 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1189 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1191 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1192 rbi
->bi_io_vec
[0].bv_offset
= 0;
1193 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1194 rbi
->bi_write_hint
= sh
->dev
[i
].write_hint
;
1195 sh
->dev
[i
].write_hint
= RWF_WRITE_LIFE_NOT_SET
;
1197 * If this is discard request, set bi_vcnt 0. We don't
1198 * want to confuse SCSI because SCSI will replace payload
1200 if (op
== REQ_OP_DISCARD
)
1202 if (conf
->mddev
->gendisk
)
1203 trace_block_bio_remap(rbi
->bi_disk
->queue
,
1204 rbi
, disk_devt(conf
->mddev
->gendisk
),
1206 if (should_defer
&& op_is_write(op
))
1207 bio_list_add(&pending_bios
, rbi
);
1209 generic_make_request(rbi
);
1211 if (!rdev
&& !rrdev
) {
1212 if (op_is_write(op
))
1213 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1214 pr_debug("skip op %d on disc %d for sector %llu\n",
1215 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1216 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1217 set_bit(STRIPE_HANDLE
, &sh
->state
);
1220 if (!head_sh
->batch_head
)
1222 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1228 if (should_defer
&& !bio_list_empty(&pending_bios
))
1229 defer_issue_bios(conf
, head_sh
->sector
, &pending_bios
);
1232 static struct dma_async_tx_descriptor
*
1233 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1234 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1235 struct stripe_head
*sh
, int no_skipcopy
)
1238 struct bvec_iter iter
;
1239 struct page
*bio_page
;
1241 struct async_submit_ctl submit
;
1242 enum async_tx_flags flags
= 0;
1244 if (bio
->bi_iter
.bi_sector
>= sector
)
1245 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1247 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1250 flags
|= ASYNC_TX_FENCE
;
1251 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1253 bio_for_each_segment(bvl
, bio
, iter
) {
1254 int len
= bvl
.bv_len
;
1258 if (page_offset
< 0) {
1259 b_offset
= -page_offset
;
1260 page_offset
+= b_offset
;
1264 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1265 clen
= STRIPE_SIZE
- page_offset
;
1270 b_offset
+= bvl
.bv_offset
;
1271 bio_page
= bvl
.bv_page
;
1273 if (sh
->raid_conf
->skip_copy
&&
1274 b_offset
== 0 && page_offset
== 0 &&
1275 clen
== STRIPE_SIZE
&&
1279 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1280 b_offset
, clen
, &submit
);
1282 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1283 page_offset
, clen
, &submit
);
1285 /* chain the operations */
1286 submit
.depend_tx
= tx
;
1288 if (clen
< len
) /* hit end of page */
1296 static void ops_complete_biofill(void *stripe_head_ref
)
1298 struct stripe_head
*sh
= stripe_head_ref
;
1301 pr_debug("%s: stripe %llu\n", __func__
,
1302 (unsigned long long)sh
->sector
);
1304 /* clear completed biofills */
1305 for (i
= sh
->disks
; i
--; ) {
1306 struct r5dev
*dev
= &sh
->dev
[i
];
1308 /* acknowledge completion of a biofill operation */
1309 /* and check if we need to reply to a read request,
1310 * new R5_Wantfill requests are held off until
1311 * !STRIPE_BIOFILL_RUN
1313 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1314 struct bio
*rbi
, *rbi2
;
1319 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1320 dev
->sector
+ STRIPE_SECTORS
) {
1321 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1327 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1329 set_bit(STRIPE_HANDLE
, &sh
->state
);
1330 raid5_release_stripe(sh
);
1333 static void ops_run_biofill(struct stripe_head
*sh
)
1335 struct dma_async_tx_descriptor
*tx
= NULL
;
1336 struct async_submit_ctl submit
;
1339 BUG_ON(sh
->batch_head
);
1340 pr_debug("%s: stripe %llu\n", __func__
,
1341 (unsigned long long)sh
->sector
);
1343 for (i
= sh
->disks
; i
--; ) {
1344 struct r5dev
*dev
= &sh
->dev
[i
];
1345 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1347 spin_lock_irq(&sh
->stripe_lock
);
1348 dev
->read
= rbi
= dev
->toread
;
1350 spin_unlock_irq(&sh
->stripe_lock
);
1351 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1352 dev
->sector
+ STRIPE_SECTORS
) {
1353 tx
= async_copy_data(0, rbi
, &dev
->page
,
1354 dev
->sector
, tx
, sh
, 0);
1355 rbi
= r5_next_bio(rbi
, dev
->sector
);
1360 atomic_inc(&sh
->count
);
1361 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1362 async_trigger_callback(&submit
);
1365 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1372 tgt
= &sh
->dev
[target
];
1373 set_bit(R5_UPTODATE
, &tgt
->flags
);
1374 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1375 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1378 static void ops_complete_compute(void *stripe_head_ref
)
1380 struct stripe_head
*sh
= stripe_head_ref
;
1382 pr_debug("%s: stripe %llu\n", __func__
,
1383 (unsigned long long)sh
->sector
);
1385 /* mark the computed target(s) as uptodate */
1386 mark_target_uptodate(sh
, sh
->ops
.target
);
1387 mark_target_uptodate(sh
, sh
->ops
.target2
);
1389 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1390 if (sh
->check_state
== check_state_compute_run
)
1391 sh
->check_state
= check_state_compute_result
;
1392 set_bit(STRIPE_HANDLE
, &sh
->state
);
1393 raid5_release_stripe(sh
);
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1398 struct raid5_percpu
*percpu
, int i
)
1402 addr
= flex_array_get(percpu
->scribble
, i
);
1403 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1411 addr
= flex_array_get(percpu
->scribble
, i
);
1415 static struct dma_async_tx_descriptor
*
1416 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1418 int disks
= sh
->disks
;
1419 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1420 int target
= sh
->ops
.target
;
1421 struct r5dev
*tgt
= &sh
->dev
[target
];
1422 struct page
*xor_dest
= tgt
->page
;
1424 struct dma_async_tx_descriptor
*tx
;
1425 struct async_submit_ctl submit
;
1428 BUG_ON(sh
->batch_head
);
1430 pr_debug("%s: stripe %llu block: %d\n",
1431 __func__
, (unsigned long long)sh
->sector
, target
);
1432 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1434 for (i
= disks
; i
--; )
1436 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1438 atomic_inc(&sh
->count
);
1440 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1441 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1442 if (unlikely(count
== 1))
1443 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1445 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1459 static int set_syndrome_sources(struct page
**srcs
,
1460 struct stripe_head
*sh
,
1463 int disks
= sh
->disks
;
1464 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1465 int d0_idx
= raid6_d0(sh
);
1469 for (i
= 0; i
< disks
; i
++)
1475 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1476 struct r5dev
*dev
= &sh
->dev
[i
];
1478 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1479 (srctype
== SYNDROME_SRC_ALL
) ||
1480 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1481 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1482 test_bit(R5_InJournal
, &dev
->flags
))) ||
1483 (srctype
== SYNDROME_SRC_WRITTEN
&&
1485 test_bit(R5_InJournal
, &dev
->flags
)))) {
1486 if (test_bit(R5_InJournal
, &dev
->flags
))
1487 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1489 srcs
[slot
] = sh
->dev
[i
].page
;
1491 i
= raid6_next_disk(i
, disks
);
1492 } while (i
!= d0_idx
);
1494 return syndrome_disks
;
1497 static struct dma_async_tx_descriptor
*
1498 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1500 int disks
= sh
->disks
;
1501 struct page
**blocks
= to_addr_page(percpu
, 0);
1503 int qd_idx
= sh
->qd_idx
;
1504 struct dma_async_tx_descriptor
*tx
;
1505 struct async_submit_ctl submit
;
1511 BUG_ON(sh
->batch_head
);
1512 if (sh
->ops
.target
< 0)
1513 target
= sh
->ops
.target2
;
1514 else if (sh
->ops
.target2
< 0)
1515 target
= sh
->ops
.target
;
1517 /* we should only have one valid target */
1520 pr_debug("%s: stripe %llu block: %d\n",
1521 __func__
, (unsigned long long)sh
->sector
, target
);
1523 tgt
= &sh
->dev
[target
];
1524 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1527 atomic_inc(&sh
->count
);
1529 if (target
== qd_idx
) {
1530 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1531 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1532 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1533 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1534 ops_complete_compute
, sh
,
1535 to_addr_conv(sh
, percpu
, 0));
1536 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1538 /* Compute any data- or p-drive using XOR */
1540 for (i
= disks
; i
-- ; ) {
1541 if (i
== target
|| i
== qd_idx
)
1543 blocks
[count
++] = sh
->dev
[i
].page
;
1546 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1547 NULL
, ops_complete_compute
, sh
,
1548 to_addr_conv(sh
, percpu
, 0));
1549 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1555 static struct dma_async_tx_descriptor
*
1556 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1558 int i
, count
, disks
= sh
->disks
;
1559 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1560 int d0_idx
= raid6_d0(sh
);
1561 int faila
= -1, failb
= -1;
1562 int target
= sh
->ops
.target
;
1563 int target2
= sh
->ops
.target2
;
1564 struct r5dev
*tgt
= &sh
->dev
[target
];
1565 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1566 struct dma_async_tx_descriptor
*tx
;
1567 struct page
**blocks
= to_addr_page(percpu
, 0);
1568 struct async_submit_ctl submit
;
1570 BUG_ON(sh
->batch_head
);
1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1573 BUG_ON(target
< 0 || target2
< 0);
1574 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1575 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1577 /* we need to open-code set_syndrome_sources to handle the
1578 * slot number conversion for 'faila' and 'failb'
1580 for (i
= 0; i
< disks
; i
++)
1585 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1587 blocks
[slot
] = sh
->dev
[i
].page
;
1593 i
= raid6_next_disk(i
, disks
);
1594 } while (i
!= d0_idx
);
1596 BUG_ON(faila
== failb
);
1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1602 atomic_inc(&sh
->count
);
1604 if (failb
== syndrome_disks
+1) {
1605 /* Q disk is one of the missing disks */
1606 if (faila
== syndrome_disks
) {
1607 /* Missing P+Q, just recompute */
1608 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1609 ops_complete_compute
, sh
,
1610 to_addr_conv(sh
, percpu
, 0));
1611 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1612 STRIPE_SIZE
, &submit
);
1616 int qd_idx
= sh
->qd_idx
;
1618 /* Missing D+Q: recompute D from P, then recompute Q */
1619 if (target
== qd_idx
)
1620 data_target
= target2
;
1622 data_target
= target
;
1625 for (i
= disks
; i
-- ; ) {
1626 if (i
== data_target
|| i
== qd_idx
)
1628 blocks
[count
++] = sh
->dev
[i
].page
;
1630 dest
= sh
->dev
[data_target
].page
;
1631 init_async_submit(&submit
,
1632 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1634 to_addr_conv(sh
, percpu
, 0));
1635 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1638 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1639 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1640 ops_complete_compute
, sh
,
1641 to_addr_conv(sh
, percpu
, 0));
1642 return async_gen_syndrome(blocks
, 0, count
+2,
1643 STRIPE_SIZE
, &submit
);
1646 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1647 ops_complete_compute
, sh
,
1648 to_addr_conv(sh
, percpu
, 0));
1649 if (failb
== syndrome_disks
) {
1650 /* We're missing D+P. */
1651 return async_raid6_datap_recov(syndrome_disks
+2,
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks
+2,
1657 STRIPE_SIZE
, faila
, failb
,
1663 static void ops_complete_prexor(void *stripe_head_ref
)
1665 struct stripe_head
*sh
= stripe_head_ref
;
1667 pr_debug("%s: stripe %llu\n", __func__
,
1668 (unsigned long long)sh
->sector
);
1670 if (r5c_is_writeback(sh
->raid_conf
->log
))
1672 * raid5-cache write back uses orig_page during prexor.
1673 * After prexor, it is time to free orig_page
1675 r5c_release_extra_page(sh
);
1678 static struct dma_async_tx_descriptor
*
1679 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1680 struct dma_async_tx_descriptor
*tx
)
1682 int disks
= sh
->disks
;
1683 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1684 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1685 struct async_submit_ctl submit
;
1687 /* existing parity data subtracted */
1688 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1690 BUG_ON(sh
->batch_head
);
1691 pr_debug("%s: stripe %llu\n", __func__
,
1692 (unsigned long long)sh
->sector
);
1694 for (i
= disks
; i
--; ) {
1695 struct r5dev
*dev
= &sh
->dev
[i
];
1696 /* Only process blocks that are known to be uptodate */
1697 if (test_bit(R5_InJournal
, &dev
->flags
))
1698 xor_srcs
[count
++] = dev
->orig_page
;
1699 else if (test_bit(R5_Wantdrain
, &dev
->flags
))
1700 xor_srcs
[count
++] = dev
->page
;
1703 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1704 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1705 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1710 static struct dma_async_tx_descriptor
*
1711 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1712 struct dma_async_tx_descriptor
*tx
)
1714 struct page
**blocks
= to_addr_page(percpu
, 0);
1716 struct async_submit_ctl submit
;
1718 pr_debug("%s: stripe %llu\n", __func__
,
1719 (unsigned long long)sh
->sector
);
1721 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1723 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1724 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1725 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1730 static struct dma_async_tx_descriptor
*
1731 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1733 struct r5conf
*conf
= sh
->raid_conf
;
1734 int disks
= sh
->disks
;
1736 struct stripe_head
*head_sh
= sh
;
1738 pr_debug("%s: stripe %llu\n", __func__
,
1739 (unsigned long long)sh
->sector
);
1741 for (i
= disks
; i
--; ) {
1746 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1752 * clear R5_InJournal, so when rewriting a page in
1753 * journal, it is not skipped by r5l_log_stripe()
1755 clear_bit(R5_InJournal
, &dev
->flags
);
1756 spin_lock_irq(&sh
->stripe_lock
);
1757 chosen
= dev
->towrite
;
1758 dev
->towrite
= NULL
;
1759 sh
->overwrite_disks
= 0;
1760 BUG_ON(dev
->written
);
1761 wbi
= dev
->written
= chosen
;
1762 spin_unlock_irq(&sh
->stripe_lock
);
1763 WARN_ON(dev
->page
!= dev
->orig_page
);
1765 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1766 dev
->sector
+ STRIPE_SECTORS
) {
1767 if (wbi
->bi_opf
& REQ_FUA
)
1768 set_bit(R5_WantFUA
, &dev
->flags
);
1769 if (wbi
->bi_opf
& REQ_SYNC
)
1770 set_bit(R5_SyncIO
, &dev
->flags
);
1771 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1772 set_bit(R5_Discard
, &dev
->flags
);
1774 tx
= async_copy_data(1, wbi
, &dev
->page
,
1775 dev
->sector
, tx
, sh
,
1776 r5c_is_writeback(conf
->log
));
1777 if (dev
->page
!= dev
->orig_page
&&
1778 !r5c_is_writeback(conf
->log
)) {
1779 set_bit(R5_SkipCopy
, &dev
->flags
);
1780 clear_bit(R5_UPTODATE
, &dev
->flags
);
1781 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1784 wbi
= r5_next_bio(wbi
, dev
->sector
);
1787 if (head_sh
->batch_head
) {
1788 sh
= list_first_entry(&sh
->batch_list
,
1801 static void ops_complete_reconstruct(void *stripe_head_ref
)
1803 struct stripe_head
*sh
= stripe_head_ref
;
1804 int disks
= sh
->disks
;
1805 int pd_idx
= sh
->pd_idx
;
1806 int qd_idx
= sh
->qd_idx
;
1808 bool fua
= false, sync
= false, discard
= false;
1810 pr_debug("%s: stripe %llu\n", __func__
,
1811 (unsigned long long)sh
->sector
);
1813 for (i
= disks
; i
--; ) {
1814 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1815 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1816 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1819 for (i
= disks
; i
--; ) {
1820 struct r5dev
*dev
= &sh
->dev
[i
];
1822 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1823 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
1824 set_bit(R5_UPTODATE
, &dev
->flags
);
1825 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
1826 set_bit(R5_Expanded
, &dev
->flags
);
1829 set_bit(R5_WantFUA
, &dev
->flags
);
1831 set_bit(R5_SyncIO
, &dev
->flags
);
1835 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1836 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1837 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1838 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1840 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1841 sh
->reconstruct_state
= reconstruct_state_result
;
1844 set_bit(STRIPE_HANDLE
, &sh
->state
);
1845 raid5_release_stripe(sh
);
1849 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1850 struct dma_async_tx_descriptor
*tx
)
1852 int disks
= sh
->disks
;
1853 struct page
**xor_srcs
;
1854 struct async_submit_ctl submit
;
1855 int count
, pd_idx
= sh
->pd_idx
, i
;
1856 struct page
*xor_dest
;
1858 unsigned long flags
;
1860 struct stripe_head
*head_sh
= sh
;
1863 pr_debug("%s: stripe %llu\n", __func__
,
1864 (unsigned long long)sh
->sector
);
1866 for (i
= 0; i
< sh
->disks
; i
++) {
1869 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1872 if (i
>= sh
->disks
) {
1873 atomic_inc(&sh
->count
);
1874 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1875 ops_complete_reconstruct(sh
);
1880 xor_srcs
= to_addr_page(percpu
, j
);
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1884 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1886 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1887 for (i
= disks
; i
--; ) {
1888 struct r5dev
*dev
= &sh
->dev
[i
];
1889 if (head_sh
->dev
[i
].written
||
1890 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
))
1891 xor_srcs
[count
++] = dev
->page
;
1894 xor_dest
= sh
->dev
[pd_idx
].page
;
1895 for (i
= disks
; i
--; ) {
1896 struct r5dev
*dev
= &sh
->dev
[i
];
1898 xor_srcs
[count
++] = dev
->page
;
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1907 last_stripe
= !head_sh
->batch_head
||
1908 list_first_entry(&sh
->batch_list
,
1909 struct stripe_head
, batch_list
) == head_sh
;
1911 flags
= ASYNC_TX_ACK
|
1912 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1914 atomic_inc(&head_sh
->count
);
1915 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1916 to_addr_conv(sh
, percpu
, j
));
1918 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1919 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1920 to_addr_conv(sh
, percpu
, j
));
1923 if (unlikely(count
== 1))
1924 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1926 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1929 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1936 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1937 struct dma_async_tx_descriptor
*tx
)
1939 struct async_submit_ctl submit
;
1940 struct page
**blocks
;
1941 int count
, i
, j
= 0;
1942 struct stripe_head
*head_sh
= sh
;
1945 unsigned long txflags
;
1947 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1949 for (i
= 0; i
< sh
->disks
; i
++) {
1950 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1952 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1955 if (i
>= sh
->disks
) {
1956 atomic_inc(&sh
->count
);
1957 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1958 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1959 ops_complete_reconstruct(sh
);
1964 blocks
= to_addr_page(percpu
, j
);
1966 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1967 synflags
= SYNDROME_SRC_WRITTEN
;
1968 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1970 synflags
= SYNDROME_SRC_ALL
;
1971 txflags
= ASYNC_TX_ACK
;
1974 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1975 last_stripe
= !head_sh
->batch_head
||
1976 list_first_entry(&sh
->batch_list
,
1977 struct stripe_head
, batch_list
) == head_sh
;
1980 atomic_inc(&head_sh
->count
);
1981 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1982 head_sh
, to_addr_conv(sh
, percpu
, j
));
1984 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1985 to_addr_conv(sh
, percpu
, j
));
1986 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1989 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1995 static void ops_complete_check(void *stripe_head_ref
)
1997 struct stripe_head
*sh
= stripe_head_ref
;
1999 pr_debug("%s: stripe %llu\n", __func__
,
2000 (unsigned long long)sh
->sector
);
2002 sh
->check_state
= check_state_check_result
;
2003 set_bit(STRIPE_HANDLE
, &sh
->state
);
2004 raid5_release_stripe(sh
);
2007 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
2009 int disks
= sh
->disks
;
2010 int pd_idx
= sh
->pd_idx
;
2011 int qd_idx
= sh
->qd_idx
;
2012 struct page
*xor_dest
;
2013 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
2014 struct dma_async_tx_descriptor
*tx
;
2015 struct async_submit_ctl submit
;
2019 pr_debug("%s: stripe %llu\n", __func__
,
2020 (unsigned long long)sh
->sector
);
2022 BUG_ON(sh
->batch_head
);
2024 xor_dest
= sh
->dev
[pd_idx
].page
;
2025 xor_srcs
[count
++] = xor_dest
;
2026 for (i
= disks
; i
--; ) {
2027 if (i
== pd_idx
|| i
== qd_idx
)
2029 xor_srcs
[count
++] = sh
->dev
[i
].page
;
2032 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
2033 to_addr_conv(sh
, percpu
, 0));
2034 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
2035 &sh
->ops
.zero_sum_result
, &submit
);
2037 atomic_inc(&sh
->count
);
2038 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
2039 tx
= async_trigger_callback(&submit
);
2042 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
2044 struct page
**srcs
= to_addr_page(percpu
, 0);
2045 struct async_submit_ctl submit
;
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
2049 (unsigned long long)sh
->sector
, checkp
);
2051 BUG_ON(sh
->batch_head
);
2052 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
2056 atomic_inc(&sh
->count
);
2057 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
2058 sh
, to_addr_conv(sh
, percpu
, 0));
2059 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
2060 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
2063 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
2065 int overlap_clear
= 0, i
, disks
= sh
->disks
;
2066 struct dma_async_tx_descriptor
*tx
= NULL
;
2067 struct r5conf
*conf
= sh
->raid_conf
;
2068 int level
= conf
->level
;
2069 struct raid5_percpu
*percpu
;
2073 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2074 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
2075 ops_run_biofill(sh
);
2079 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
2081 tx
= ops_run_compute5(sh
, percpu
);
2083 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
2084 tx
= ops_run_compute6_1(sh
, percpu
);
2086 tx
= ops_run_compute6_2(sh
, percpu
);
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
2093 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
2095 tx
= ops_run_prexor5(sh
, percpu
, tx
);
2097 tx
= ops_run_prexor6(sh
, percpu
, tx
);
2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY
, &ops_request
))
2101 tx
= ops_run_partial_parity(sh
, percpu
, tx
);
2103 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
2104 tx
= ops_run_biodrain(sh
, tx
);
2108 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
2110 ops_run_reconstruct5(sh
, percpu
, tx
);
2112 ops_run_reconstruct6(sh
, percpu
, tx
);
2115 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
2116 if (sh
->check_state
== check_state_run
)
2117 ops_run_check_p(sh
, percpu
);
2118 else if (sh
->check_state
== check_state_run_q
)
2119 ops_run_check_pq(sh
, percpu
, 0);
2120 else if (sh
->check_state
== check_state_run_pq
)
2121 ops_run_check_pq(sh
, percpu
, 1);
2126 if (overlap_clear
&& !sh
->batch_head
)
2127 for (i
= disks
; i
--; ) {
2128 struct r5dev
*dev
= &sh
->dev
[i
];
2129 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2130 wake_up(&sh
->raid_conf
->wait_for_overlap
);
2135 static void free_stripe(struct kmem_cache
*sc
, struct stripe_head
*sh
)
2138 __free_page(sh
->ppl_page
);
2139 kmem_cache_free(sc
, sh
);
2142 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2143 int disks
, struct r5conf
*conf
)
2145 struct stripe_head
*sh
;
2148 sh
= kmem_cache_zalloc(sc
, gfp
);
2150 spin_lock_init(&sh
->stripe_lock
);
2151 spin_lock_init(&sh
->batch_lock
);
2152 INIT_LIST_HEAD(&sh
->batch_list
);
2153 INIT_LIST_HEAD(&sh
->lru
);
2154 INIT_LIST_HEAD(&sh
->r5c
);
2155 INIT_LIST_HEAD(&sh
->log_list
);
2156 atomic_set(&sh
->count
, 1);
2157 sh
->raid_conf
= conf
;
2158 sh
->log_start
= MaxSector
;
2159 for (i
= 0; i
< disks
; i
++) {
2160 struct r5dev
*dev
= &sh
->dev
[i
];
2162 bio_init(&dev
->req
, &dev
->vec
, 1);
2163 bio_init(&dev
->rreq
, &dev
->rvec
, 1);
2166 if (raid5_has_ppl(conf
)) {
2167 sh
->ppl_page
= alloc_page(gfp
);
2168 if (!sh
->ppl_page
) {
2169 free_stripe(sc
, sh
);
2176 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2178 struct stripe_head
*sh
;
2180 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
, conf
);
2184 if (grow_buffers(sh
, gfp
)) {
2186 free_stripe(conf
->slab_cache
, sh
);
2189 sh
->hash_lock_index
=
2190 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2191 /* we just created an active stripe so... */
2192 atomic_inc(&conf
->active_stripes
);
2194 raid5_release_stripe(sh
);
2195 conf
->max_nr_stripes
++;
2199 static int grow_stripes(struct r5conf
*conf
, int num
)
2201 struct kmem_cache
*sc
;
2202 size_t namelen
= sizeof(conf
->cache_name
[0]);
2203 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2205 if (conf
->mddev
->gendisk
)
2206 snprintf(conf
->cache_name
[0], namelen
,
2207 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2209 snprintf(conf
->cache_name
[0], namelen
,
2210 "raid%d-%p", conf
->level
, conf
->mddev
);
2211 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2213 conf
->active_name
= 0;
2214 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2215 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2219 conf
->slab_cache
= sc
;
2220 conf
->pool_size
= devs
;
2222 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 * (dma_map_page()) or page (page_address()) address.
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2241 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2243 struct flex_array
*ret
;
2246 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2247 ret
= flex_array_alloc(len
, cnt
, flags
);
2250 /* always prealloc all elements, so no locking is required */
2251 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2252 flex_array_free(ret
);
2258 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2264 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 * should equal to new_disks and new_sectors
2268 if (conf
->scribble_disks
>= new_disks
&&
2269 conf
->scribble_sectors
>= new_sectors
)
2271 mddev_suspend(conf
->mddev
);
2273 for_each_present_cpu(cpu
) {
2274 struct raid5_percpu
*percpu
;
2275 struct flex_array
*scribble
;
2277 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2278 scribble
= scribble_alloc(new_disks
,
2279 new_sectors
/ STRIPE_SECTORS
,
2283 flex_array_free(percpu
->scribble
);
2284 percpu
->scribble
= scribble
;
2291 mddev_resume(conf
->mddev
);
2293 conf
->scribble_disks
= new_disks
;
2294 conf
->scribble_sectors
= new_sectors
;
2299 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2301 /* Make all the stripes able to hold 'newsize' devices.
2302 * New slots in each stripe get 'page' set to a new page.
2304 * This happens in stages:
2305 * 1/ create a new kmem_cache and allocate the required number of
2307 * 2/ gather all the old stripe_heads and transfer the pages across
2308 * to the new stripe_heads. This will have the side effect of
2309 * freezing the array as once all stripe_heads have been collected,
2310 * no IO will be possible. Old stripe heads are freed once their
2311 * pages have been transferred over, and the old kmem_cache is
2312 * freed when all stripes are done.
2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2314 * we simple return a failure status - no need to clean anything up.
2315 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 * If this fails, we don't bother trying the shrink the
2317 * stripe_heads down again, we just leave them as they are.
2318 * As each stripe_head is processed the new one is released into
2321 * Once step2 is started, we cannot afford to wait for a write,
2322 * so we use GFP_NOIO allocations.
2324 struct stripe_head
*osh
, *nsh
;
2325 LIST_HEAD(newstripes
);
2326 struct disk_info
*ndisks
;
2328 struct kmem_cache
*sc
;
2332 md_allow_write(conf
->mddev
);
2335 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2336 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2341 /* Need to ensure auto-resizing doesn't interfere */
2342 mutex_lock(&conf
->cache_size_mutex
);
2344 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2345 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
, conf
);
2349 list_add(&nsh
->lru
, &newstripes
);
2352 /* didn't get enough, give up */
2353 while (!list_empty(&newstripes
)) {
2354 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2355 list_del(&nsh
->lru
);
2356 free_stripe(sc
, nsh
);
2358 kmem_cache_destroy(sc
);
2359 mutex_unlock(&conf
->cache_size_mutex
);
2362 /* Step 2 - Must use GFP_NOIO now.
2363 * OK, we have enough stripes, start collecting inactive
2364 * stripes and copying them over
2368 list_for_each_entry(nsh
, &newstripes
, lru
) {
2369 lock_device_hash_lock(conf
, hash
);
2370 wait_event_cmd(conf
->wait_for_stripe
,
2371 !list_empty(conf
->inactive_list
+ hash
),
2372 unlock_device_hash_lock(conf
, hash
),
2373 lock_device_hash_lock(conf
, hash
));
2374 osh
= get_free_stripe(conf
, hash
);
2375 unlock_device_hash_lock(conf
, hash
);
2377 for(i
=0; i
<conf
->pool_size
; i
++) {
2378 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2379 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2381 nsh
->hash_lock_index
= hash
;
2382 free_stripe(conf
->slab_cache
, osh
);
2384 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2385 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2390 kmem_cache_destroy(conf
->slab_cache
);
2393 * At this point, we are holding all the stripes so the array
2394 * is completely stalled, so now is a good time to resize
2395 * conf->disks and the scribble region
2397 ndisks
= kcalloc(newsize
, sizeof(struct disk_info
), GFP_NOIO
);
2399 for (i
= 0; i
< conf
->pool_size
; i
++)
2400 ndisks
[i
] = conf
->disks
[i
];
2402 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2403 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2404 if (!ndisks
[i
].extra_page
)
2409 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2410 if (ndisks
[i
].extra_page
)
2411 put_page(ndisks
[i
].extra_page
);
2415 conf
->disks
= ndisks
;
2420 mutex_unlock(&conf
->cache_size_mutex
);
2422 conf
->slab_cache
= sc
;
2423 conf
->active_name
= 1-conf
->active_name
;
2425 /* Step 4, return new stripes to service */
2426 while(!list_empty(&newstripes
)) {
2427 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2428 list_del_init(&nsh
->lru
);
2430 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2431 if (nsh
->dev
[i
].page
== NULL
) {
2432 struct page
*p
= alloc_page(GFP_NOIO
);
2433 nsh
->dev
[i
].page
= p
;
2434 nsh
->dev
[i
].orig_page
= p
;
2438 raid5_release_stripe(nsh
);
2440 /* critical section pass, GFP_NOIO no longer needed */
2443 conf
->pool_size
= newsize
;
2447 static int drop_one_stripe(struct r5conf
*conf
)
2449 struct stripe_head
*sh
;
2450 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2452 spin_lock_irq(conf
->hash_locks
+ hash
);
2453 sh
= get_free_stripe(conf
, hash
);
2454 spin_unlock_irq(conf
->hash_locks
+ hash
);
2457 BUG_ON(atomic_read(&sh
->count
));
2459 free_stripe(conf
->slab_cache
, sh
);
2460 atomic_dec(&conf
->active_stripes
);
2461 conf
->max_nr_stripes
--;
2465 static void shrink_stripes(struct r5conf
*conf
)
2467 while (conf
->max_nr_stripes
&&
2468 drop_one_stripe(conf
))
2471 kmem_cache_destroy(conf
->slab_cache
);
2472 conf
->slab_cache
= NULL
;
2475 static void raid5_end_read_request(struct bio
* bi
)
2477 struct stripe_head
*sh
= bi
->bi_private
;
2478 struct r5conf
*conf
= sh
->raid_conf
;
2479 int disks
= sh
->disks
, i
;
2480 char b
[BDEVNAME_SIZE
];
2481 struct md_rdev
*rdev
= NULL
;
2484 for (i
=0 ; i
<disks
; i
++)
2485 if (bi
== &sh
->dev
[i
].req
)
2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2496 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2497 /* If replacement finished while this request was outstanding,
2498 * 'replacement' might be NULL already.
2499 * In that case it moved down to 'rdev'.
2500 * rdev is not removed until all requests are finished.
2502 rdev
= conf
->disks
[i
].replacement
;
2504 rdev
= conf
->disks
[i
].rdev
;
2506 if (use_new_offset(conf
, sh
))
2507 s
= sh
->sector
+ rdev
->new_data_offset
;
2509 s
= sh
->sector
+ rdev
->data_offset
;
2510 if (!bi
->bi_status
) {
2511 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2512 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2513 /* Note that this cannot happen on a
2514 * replacement device. We just fail those on
2517 pr_info_ratelimited(
2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 mdname(conf
->mddev
), STRIPE_SECTORS
,
2520 (unsigned long long)s
,
2521 bdevname(rdev
->bdev
, b
));
2522 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2523 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2524 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2525 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2526 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2528 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
2530 * end read for a page in journal, this
2531 * must be preparing for prexor in rmw
2533 set_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2535 if (atomic_read(&rdev
->read_errors
))
2536 atomic_set(&rdev
->read_errors
, 0);
2538 const char *bdn
= bdevname(rdev
->bdev
, b
);
2542 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2543 if (!(bi
->bi_status
== BLK_STS_PROTECTION
))
2544 atomic_inc(&rdev
->read_errors
);
2545 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2548 mdname(conf
->mddev
),
2549 (unsigned long long)s
,
2551 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2553 pr_warn_ratelimited(
2554 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2555 mdname(conf
->mddev
),
2556 (unsigned long long)s
,
2558 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2561 pr_warn_ratelimited(
2562 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2563 mdname(conf
->mddev
),
2564 (unsigned long long)s
,
2566 } else if (atomic_read(&rdev
->read_errors
)
2567 > conf
->max_nr_stripes
)
2568 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2569 mdname(conf
->mddev
), bdn
);
2572 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2573 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2576 if (sh
->qd_idx
>= 0 && sh
->pd_idx
== i
)
2577 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2578 else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2579 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2580 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2582 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2584 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2585 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2587 && test_bit(In_sync
, &rdev
->flags
)
2588 && rdev_set_badblocks(
2589 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2590 md_error(conf
->mddev
, rdev
);
2593 rdev_dec_pending(rdev
, conf
->mddev
);
2595 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2596 set_bit(STRIPE_HANDLE
, &sh
->state
);
2597 raid5_release_stripe(sh
);
2600 static void raid5_end_write_request(struct bio
*bi
)
2602 struct stripe_head
*sh
= bi
->bi_private
;
2603 struct r5conf
*conf
= sh
->raid_conf
;
2604 int disks
= sh
->disks
, i
;
2605 struct md_rdev
*uninitialized_var(rdev
);
2608 int replacement
= 0;
2610 for (i
= 0 ; i
< disks
; i
++) {
2611 if (bi
== &sh
->dev
[i
].req
) {
2612 rdev
= conf
->disks
[i
].rdev
;
2615 if (bi
== &sh
->dev
[i
].rreq
) {
2616 rdev
= conf
->disks
[i
].replacement
;
2620 /* rdev was removed and 'replacement'
2621 * replaced it. rdev is not removed
2622 * until all requests are finished.
2624 rdev
= conf
->disks
[i
].rdev
;
2628 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2629 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2639 md_error(conf
->mddev
, rdev
);
2640 else if (is_badblock(rdev
, sh
->sector
,
2642 &first_bad
, &bad_sectors
))
2643 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2645 if (bi
->bi_status
) {
2646 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2647 set_bit(WriteErrorSeen
, &rdev
->flags
);
2648 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2649 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2650 set_bit(MD_RECOVERY_NEEDED
,
2651 &rdev
->mddev
->recovery
);
2652 } else if (is_badblock(rdev
, sh
->sector
,
2654 &first_bad
, &bad_sectors
)) {
2655 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2656 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2657 /* That was a successful write so make
2658 * sure it looks like we already did
2661 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2664 rdev_dec_pending(rdev
, conf
->mddev
);
2666 if (sh
->batch_head
&& bi
->bi_status
&& !replacement
)
2667 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2670 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2671 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2672 set_bit(STRIPE_HANDLE
, &sh
->state
);
2673 raid5_release_stripe(sh
);
2675 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2676 raid5_release_stripe(sh
->batch_head
);
2679 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2681 char b
[BDEVNAME_SIZE
];
2682 struct r5conf
*conf
= mddev
->private;
2683 unsigned long flags
;
2684 pr_debug("raid456: error called\n");
2686 spin_lock_irqsave(&conf
->device_lock
, flags
);
2687 set_bit(Faulty
, &rdev
->flags
);
2688 clear_bit(In_sync
, &rdev
->flags
);
2689 mddev
->degraded
= raid5_calc_degraded(conf
);
2690 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2691 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2693 set_bit(Blocked
, &rdev
->flags
);
2694 set_mask_bits(&mddev
->sb_flags
, 0,
2695 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2696 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2697 "md/raid:%s: Operation continuing on %d devices.\n",
2699 bdevname(rdev
->bdev
, b
),
2701 conf
->raid_disks
- mddev
->degraded
);
2702 r5c_update_on_rdev_error(mddev
, rdev
);
2706 * Input: a 'big' sector number,
2707 * Output: index of the data and parity disk, and the sector # in them.
2709 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2710 int previous
, int *dd_idx
,
2711 struct stripe_head
*sh
)
2713 sector_t stripe
, stripe2
;
2714 sector_t chunk_number
;
2715 unsigned int chunk_offset
;
2718 sector_t new_sector
;
2719 int algorithm
= previous
? conf
->prev_algo
2721 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2722 : conf
->chunk_sectors
;
2723 int raid_disks
= previous
? conf
->previous_raid_disks
2725 int data_disks
= raid_disks
- conf
->max_degraded
;
2727 /* First compute the information on this sector */
2730 * Compute the chunk number and the sector offset inside the chunk
2732 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2733 chunk_number
= r_sector
;
2736 * Compute the stripe number
2738 stripe
= chunk_number
;
2739 *dd_idx
= sector_div(stripe
, data_disks
);
2742 * Select the parity disk based on the user selected algorithm.
2744 pd_idx
= qd_idx
= -1;
2745 switch(conf
->level
) {
2747 pd_idx
= data_disks
;
2750 switch (algorithm
) {
2751 case ALGORITHM_LEFT_ASYMMETRIC
:
2752 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2753 if (*dd_idx
>= pd_idx
)
2756 case ALGORITHM_RIGHT_ASYMMETRIC
:
2757 pd_idx
= sector_div(stripe2
, raid_disks
);
2758 if (*dd_idx
>= pd_idx
)
2761 case ALGORITHM_LEFT_SYMMETRIC
:
2762 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2763 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2765 case ALGORITHM_RIGHT_SYMMETRIC
:
2766 pd_idx
= sector_div(stripe2
, raid_disks
);
2767 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2769 case ALGORITHM_PARITY_0
:
2773 case ALGORITHM_PARITY_N
:
2774 pd_idx
= data_disks
;
2782 switch (algorithm
) {
2783 case ALGORITHM_LEFT_ASYMMETRIC
:
2784 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2785 qd_idx
= pd_idx
+ 1;
2786 if (pd_idx
== raid_disks
-1) {
2787 (*dd_idx
)++; /* Q D D D P */
2789 } else if (*dd_idx
>= pd_idx
)
2790 (*dd_idx
) += 2; /* D D P Q D */
2792 case ALGORITHM_RIGHT_ASYMMETRIC
:
2793 pd_idx
= sector_div(stripe2
, raid_disks
);
2794 qd_idx
= pd_idx
+ 1;
2795 if (pd_idx
== raid_disks
-1) {
2796 (*dd_idx
)++; /* Q D D D P */
2798 } else if (*dd_idx
>= pd_idx
)
2799 (*dd_idx
) += 2; /* D D P Q D */
2801 case ALGORITHM_LEFT_SYMMETRIC
:
2802 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2803 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2804 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2806 case ALGORITHM_RIGHT_SYMMETRIC
:
2807 pd_idx
= sector_div(stripe2
, raid_disks
);
2808 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2809 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2812 case ALGORITHM_PARITY_0
:
2817 case ALGORITHM_PARITY_N
:
2818 pd_idx
= data_disks
;
2819 qd_idx
= data_disks
+ 1;
2822 case ALGORITHM_ROTATING_ZERO_RESTART
:
2823 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2824 * of blocks for computing Q is different.
2826 pd_idx
= sector_div(stripe2
, raid_disks
);
2827 qd_idx
= pd_idx
+ 1;
2828 if (pd_idx
== raid_disks
-1) {
2829 (*dd_idx
)++; /* Q D D D P */
2831 } else if (*dd_idx
>= pd_idx
)
2832 (*dd_idx
) += 2; /* D D P Q D */
2836 case ALGORITHM_ROTATING_N_RESTART
:
2837 /* Same a left_asymmetric, by first stripe is
2838 * D D D P Q rather than
2842 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2843 qd_idx
= pd_idx
+ 1;
2844 if (pd_idx
== raid_disks
-1) {
2845 (*dd_idx
)++; /* Q D D D P */
2847 } else if (*dd_idx
>= pd_idx
)
2848 (*dd_idx
) += 2; /* D D P Q D */
2852 case ALGORITHM_ROTATING_N_CONTINUE
:
2853 /* Same as left_symmetric but Q is before P */
2854 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2855 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2856 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2860 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2861 /* RAID5 left_asymmetric, with Q on last device */
2862 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2863 if (*dd_idx
>= pd_idx
)
2865 qd_idx
= raid_disks
- 1;
2868 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2869 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2870 if (*dd_idx
>= pd_idx
)
2872 qd_idx
= raid_disks
- 1;
2875 case ALGORITHM_LEFT_SYMMETRIC_6
:
2876 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2877 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2878 qd_idx
= raid_disks
- 1;
2881 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2882 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2883 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2884 qd_idx
= raid_disks
- 1;
2887 case ALGORITHM_PARITY_0_6
:
2890 qd_idx
= raid_disks
- 1;
2900 sh
->pd_idx
= pd_idx
;
2901 sh
->qd_idx
= qd_idx
;
2902 sh
->ddf_layout
= ddf_layout
;
2905 * Finally, compute the new sector number
2907 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2911 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2913 struct r5conf
*conf
= sh
->raid_conf
;
2914 int raid_disks
= sh
->disks
;
2915 int data_disks
= raid_disks
- conf
->max_degraded
;
2916 sector_t new_sector
= sh
->sector
, check
;
2917 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2918 : conf
->chunk_sectors
;
2919 int algorithm
= previous
? conf
->prev_algo
2923 sector_t chunk_number
;
2924 int dummy1
, dd_idx
= i
;
2926 struct stripe_head sh2
;
2928 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2929 stripe
= new_sector
;
2931 if (i
== sh
->pd_idx
)
2933 switch(conf
->level
) {
2936 switch (algorithm
) {
2937 case ALGORITHM_LEFT_ASYMMETRIC
:
2938 case ALGORITHM_RIGHT_ASYMMETRIC
:
2942 case ALGORITHM_LEFT_SYMMETRIC
:
2943 case ALGORITHM_RIGHT_SYMMETRIC
:
2946 i
-= (sh
->pd_idx
+ 1);
2948 case ALGORITHM_PARITY_0
:
2951 case ALGORITHM_PARITY_N
:
2958 if (i
== sh
->qd_idx
)
2959 return 0; /* It is the Q disk */
2960 switch (algorithm
) {
2961 case ALGORITHM_LEFT_ASYMMETRIC
:
2962 case ALGORITHM_RIGHT_ASYMMETRIC
:
2963 case ALGORITHM_ROTATING_ZERO_RESTART
:
2964 case ALGORITHM_ROTATING_N_RESTART
:
2965 if (sh
->pd_idx
== raid_disks
-1)
2966 i
--; /* Q D D D P */
2967 else if (i
> sh
->pd_idx
)
2968 i
-= 2; /* D D P Q D */
2970 case ALGORITHM_LEFT_SYMMETRIC
:
2971 case ALGORITHM_RIGHT_SYMMETRIC
:
2972 if (sh
->pd_idx
== raid_disks
-1)
2973 i
--; /* Q D D D P */
2978 i
-= (sh
->pd_idx
+ 2);
2981 case ALGORITHM_PARITY_0
:
2984 case ALGORITHM_PARITY_N
:
2986 case ALGORITHM_ROTATING_N_CONTINUE
:
2987 /* Like left_symmetric, but P is before Q */
2988 if (sh
->pd_idx
== 0)
2989 i
--; /* P D D D Q */
2994 i
-= (sh
->pd_idx
+ 1);
2997 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2998 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
3002 case ALGORITHM_LEFT_SYMMETRIC_6
:
3003 case ALGORITHM_RIGHT_SYMMETRIC_6
:
3005 i
+= data_disks
+ 1;
3006 i
-= (sh
->pd_idx
+ 1);
3008 case ALGORITHM_PARITY_0_6
:
3017 chunk_number
= stripe
* data_disks
+ i
;
3018 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
3020 check
= raid5_compute_sector(conf
, r_sector
,
3021 previous
, &dummy1
, &sh2
);
3022 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
3023 || sh2
.qd_idx
!= sh
->qd_idx
) {
3024 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3025 mdname(conf
->mddev
));
3032 * There are cases where we want handle_stripe_dirtying() and
3033 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3035 * This function checks whether we want to delay the towrite. Specifically,
3036 * we delay the towrite when:
3038 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3039 * stripe has data in journal (for other devices).
3041 * In this case, when reading data for the non-overwrite dev, it is
3042 * necessary to handle complex rmw of write back cache (prexor with
3043 * orig_page, and xor with page). To keep read path simple, we would
3044 * like to flush data in journal to RAID disks first, so complex rmw
3045 * is handled in the write patch (handle_stripe_dirtying).
3047 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3049 * It is important to be able to flush all stripes in raid5-cache.
3050 * Therefore, we need reserve some space on the journal device for
3051 * these flushes. If flush operation includes pending writes to the
3052 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3053 * for the flush out. If we exclude these pending writes from flush
3054 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3055 * Therefore, excluding pending writes in these cases enables more
3056 * efficient use of the journal device.
3058 * Note: To make sure the stripe makes progress, we only delay
3059 * towrite for stripes with data already in journal (injournal > 0).
3060 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3061 * no_space_stripes list.
3063 * 3. during journal failure
3064 * In journal failure, we try to flush all cached data to raid disks
3065 * based on data in stripe cache. The array is read-only to upper
3066 * layers, so we would skip all pending writes.
3069 static inline bool delay_towrite(struct r5conf
*conf
,
3071 struct stripe_head_state
*s
)
3074 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3075 !test_bit(R5_Insync
, &dev
->flags
) && s
->injournal
)
3078 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
3082 if (s
->log_failed
&& s
->injournal
)
3088 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3089 int rcw
, int expand
)
3091 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
3092 struct r5conf
*conf
= sh
->raid_conf
;
3093 int level
= conf
->level
;
3097 * In some cases, handle_stripe_dirtying initially decided to
3098 * run rmw and allocates extra page for prexor. However, rcw is
3099 * cheaper later on. We need to free the extra page now,
3100 * because we won't be able to do that in ops_complete_prexor().
3102 r5c_release_extra_page(sh
);
3104 for (i
= disks
; i
--; ) {
3105 struct r5dev
*dev
= &sh
->dev
[i
];
3107 if (dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) {
3108 set_bit(R5_LOCKED
, &dev
->flags
);
3109 set_bit(R5_Wantdrain
, &dev
->flags
);
3111 clear_bit(R5_UPTODATE
, &dev
->flags
);
3113 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3114 set_bit(R5_LOCKED
, &dev
->flags
);
3118 /* if we are not expanding this is a proper write request, and
3119 * there will be bios with new data to be drained into the
3124 /* False alarm, nothing to do */
3126 sh
->reconstruct_state
= reconstruct_state_drain_run
;
3127 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3129 sh
->reconstruct_state
= reconstruct_state_run
;
3131 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3133 if (s
->locked
+ conf
->max_degraded
== disks
)
3134 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3135 atomic_inc(&conf
->pending_full_writes
);
3137 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
3138 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
3139 BUG_ON(level
== 6 &&
3140 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
3141 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
3143 for (i
= disks
; i
--; ) {
3144 struct r5dev
*dev
= &sh
->dev
[i
];
3145 if (i
== pd_idx
|| i
== qd_idx
)
3149 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3150 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3151 set_bit(R5_Wantdrain
, &dev
->flags
);
3152 set_bit(R5_LOCKED
, &dev
->flags
);
3153 clear_bit(R5_UPTODATE
, &dev
->flags
);
3155 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3156 set_bit(R5_LOCKED
, &dev
->flags
);
3161 /* False alarm - nothing to do */
3163 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
3164 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
3165 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3166 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3169 /* keep the parity disk(s) locked while asynchronous operations
3172 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
3173 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3177 int qd_idx
= sh
->qd_idx
;
3178 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
3180 set_bit(R5_LOCKED
, &dev
->flags
);
3181 clear_bit(R5_UPTODATE
, &dev
->flags
);
3185 if (raid5_has_ppl(sh
->raid_conf
) && sh
->ppl_page
&&
3186 test_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
) &&
3187 !test_bit(STRIPE_FULL_WRITE
, &sh
->state
) &&
3188 test_bit(R5_Insync
, &sh
->dev
[pd_idx
].flags
))
3189 set_bit(STRIPE_OP_PARTIAL_PARITY
, &s
->ops_request
);
3191 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3192 __func__
, (unsigned long long)sh
->sector
,
3193 s
->locked
, s
->ops_request
);
3197 * Each stripe/dev can have one or more bion attached.
3198 * toread/towrite point to the first in a chain.
3199 * The bi_next chain must be in order.
3201 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
3202 int forwrite
, int previous
)
3205 struct r5conf
*conf
= sh
->raid_conf
;
3208 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3209 (unsigned long long)bi
->bi_iter
.bi_sector
,
3210 (unsigned long long)sh
->sector
);
3212 spin_lock_irq(&sh
->stripe_lock
);
3213 sh
->dev
[dd_idx
].write_hint
= bi
->bi_write_hint
;
3214 /* Don't allow new IO added to stripes in batch list */
3218 bip
= &sh
->dev
[dd_idx
].towrite
;
3222 bip
= &sh
->dev
[dd_idx
].toread
;
3223 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3224 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3226 bip
= & (*bip
)->bi_next
;
3228 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3231 if (forwrite
&& raid5_has_ppl(conf
)) {
3233 * With PPL only writes to consecutive data chunks within a
3234 * stripe are allowed because for a single stripe_head we can
3235 * only have one PPL entry at a time, which describes one data
3236 * range. Not really an overlap, but wait_for_overlap can be
3237 * used to handle this.
3245 for (i
= 0; i
< sh
->disks
; i
++) {
3246 if (i
!= sh
->pd_idx
&&
3247 (i
== dd_idx
|| sh
->dev
[i
].towrite
)) {
3248 sector
= sh
->dev
[i
].sector
;
3249 if (count
== 0 || sector
< first
)
3257 if (first
+ conf
->chunk_sectors
* (count
- 1) != last
)
3261 if (!forwrite
|| previous
)
3262 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3264 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3268 bio_inc_remaining(bi
);
3269 md_write_inc(conf
->mddev
, bi
);
3272 /* check if page is covered */
3273 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3274 for (bi
=sh
->dev
[dd_idx
].towrite
;
3275 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3276 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3277 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3278 if (bio_end_sector(bi
) >= sector
)
3279 sector
= bio_end_sector(bi
);
3281 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3282 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3283 sh
->overwrite_disks
++;
3286 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3287 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3288 (unsigned long long)sh
->sector
, dd_idx
);
3290 if (conf
->mddev
->bitmap
&& firstwrite
) {
3291 /* Cannot hold spinlock over bitmap_startwrite,
3292 * but must ensure this isn't added to a batch until
3293 * we have added to the bitmap and set bm_seq.
3294 * So set STRIPE_BITMAP_PENDING to prevent
3296 * If multiple add_stripe_bio() calls race here they
3297 * much all set STRIPE_BITMAP_PENDING. So only the first one
3298 * to complete "bitmap_startwrite" gets to set
3299 * STRIPE_BIT_DELAY. This is important as once a stripe
3300 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3303 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3304 spin_unlock_irq(&sh
->stripe_lock
);
3305 md_bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3307 spin_lock_irq(&sh
->stripe_lock
);
3308 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3309 if (!sh
->batch_head
) {
3310 sh
->bm_seq
= conf
->seq_flush
+1;
3311 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3314 spin_unlock_irq(&sh
->stripe_lock
);
3316 if (stripe_can_batch(sh
))
3317 stripe_add_to_batch_list(conf
, sh
);
3321 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3322 spin_unlock_irq(&sh
->stripe_lock
);
3326 static void end_reshape(struct r5conf
*conf
);
3328 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3329 struct stripe_head
*sh
)
3331 int sectors_per_chunk
=
3332 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3334 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3335 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3337 raid5_compute_sector(conf
,
3338 stripe
* (disks
- conf
->max_degraded
)
3339 *sectors_per_chunk
+ chunk_offset
,
3345 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3346 struct stripe_head_state
*s
, int disks
)
3349 BUG_ON(sh
->batch_head
);
3350 for (i
= disks
; i
--; ) {
3354 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3355 struct md_rdev
*rdev
;
3357 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3358 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3359 !test_bit(Faulty
, &rdev
->flags
))
3360 atomic_inc(&rdev
->nr_pending
);
3365 if (!rdev_set_badblocks(
3369 md_error(conf
->mddev
, rdev
);
3370 rdev_dec_pending(rdev
, conf
->mddev
);
3373 spin_lock_irq(&sh
->stripe_lock
);
3374 /* fail all writes first */
3375 bi
= sh
->dev
[i
].towrite
;
3376 sh
->dev
[i
].towrite
= NULL
;
3377 sh
->overwrite_disks
= 0;
3378 spin_unlock_irq(&sh
->stripe_lock
);
3382 log_stripe_write_finished(sh
);
3384 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3385 wake_up(&conf
->wait_for_overlap
);
3387 while (bi
&& bi
->bi_iter
.bi_sector
<
3388 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3389 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3391 md_write_end(conf
->mddev
);
3396 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3397 STRIPE_SECTORS
, 0, 0);
3399 /* and fail all 'written' */
3400 bi
= sh
->dev
[i
].written
;
3401 sh
->dev
[i
].written
= NULL
;
3402 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3403 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3404 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3407 if (bi
) bitmap_end
= 1;
3408 while (bi
&& bi
->bi_iter
.bi_sector
<
3409 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3410 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3412 md_write_end(conf
->mddev
);
3417 /* fail any reads if this device is non-operational and
3418 * the data has not reached the cache yet.
3420 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3421 s
->failed
> conf
->max_degraded
&&
3422 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3423 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3424 spin_lock_irq(&sh
->stripe_lock
);
3425 bi
= sh
->dev
[i
].toread
;
3426 sh
->dev
[i
].toread
= NULL
;
3427 spin_unlock_irq(&sh
->stripe_lock
);
3428 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3429 wake_up(&conf
->wait_for_overlap
);
3432 while (bi
&& bi
->bi_iter
.bi_sector
<
3433 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3434 struct bio
*nextbi
=
3435 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3442 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3443 STRIPE_SECTORS
, 0, 0);
3444 /* If we were in the middle of a write the parity block might
3445 * still be locked - so just clear all R5_LOCKED flags
3447 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3452 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3453 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3454 md_wakeup_thread(conf
->mddev
->thread
);
3458 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3459 struct stripe_head_state
*s
)
3464 BUG_ON(sh
->batch_head
);
3465 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3466 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3467 wake_up(&conf
->wait_for_overlap
);
3470 /* There is nothing more to do for sync/check/repair.
3471 * Don't even need to abort as that is handled elsewhere
3472 * if needed, and not always wanted e.g. if there is a known
3474 * For recover/replace we need to record a bad block on all
3475 * non-sync devices, or abort the recovery
3477 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3478 /* During recovery devices cannot be removed, so
3479 * locking and refcounting of rdevs is not needed
3482 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3483 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3485 && !test_bit(Faulty
, &rdev
->flags
)
3486 && !test_bit(In_sync
, &rdev
->flags
)
3487 && !rdev_set_badblocks(rdev
, sh
->sector
,
3490 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3492 && !test_bit(Faulty
, &rdev
->flags
)
3493 && !test_bit(In_sync
, &rdev
->flags
)
3494 && !rdev_set_badblocks(rdev
, sh
->sector
,
3500 conf
->recovery_disabled
=
3501 conf
->mddev
->recovery_disabled
;
3503 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3506 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3508 struct md_rdev
*rdev
;
3512 rdev
= rcu_dereference(sh
->raid_conf
->disks
[disk_idx
].replacement
);
3514 && !test_bit(Faulty
, &rdev
->flags
)
3515 && !test_bit(In_sync
, &rdev
->flags
)
3516 && (rdev
->recovery_offset
<= sh
->sector
3517 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3523 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3524 int disk_idx
, int disks
)
3526 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3527 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3528 &sh
->dev
[s
->failed_num
[1]] };
3532 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3533 test_bit(R5_UPTODATE
, &dev
->flags
))
3534 /* No point reading this as we already have it or have
3535 * decided to get it.
3540 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3541 /* We need this block to directly satisfy a request */
3544 if (s
->syncing
|| s
->expanding
||
3545 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3546 /* When syncing, or expanding we read everything.
3547 * When replacing, we need the replaced block.
3551 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3552 (s
->failed
>= 2 && fdev
[1]->toread
))
3553 /* If we want to read from a failed device, then
3554 * we need to actually read every other device.
3558 /* Sometimes neither read-modify-write nor reconstruct-write
3559 * cycles can work. In those cases we read every block we
3560 * can. Then the parity-update is certain to have enough to
3562 * This can only be a problem when we need to write something,
3563 * and some device has failed. If either of those tests
3564 * fail we need look no further.
3566 if (!s
->failed
|| !s
->to_write
)
3569 if (test_bit(R5_Insync
, &dev
->flags
) &&
3570 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3571 /* Pre-reads at not permitted until after short delay
3572 * to gather multiple requests. However if this
3573 * device is no Insync, the block could only be computed
3574 * and there is no need to delay that.
3578 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3579 if (fdev
[i
]->towrite
&&
3580 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3581 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3582 /* If we have a partial write to a failed
3583 * device, then we will need to reconstruct
3584 * the content of that device, so all other
3585 * devices must be read.
3590 /* If we are forced to do a reconstruct-write, either because
3591 * the current RAID6 implementation only supports that, or
3592 * because parity cannot be trusted and we are currently
3593 * recovering it, there is extra need to be careful.
3594 * If one of the devices that we would need to read, because
3595 * it is not being overwritten (and maybe not written at all)
3596 * is missing/faulty, then we need to read everything we can.
3598 if (sh
->raid_conf
->level
!= 6 &&
3599 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3600 /* reconstruct-write isn't being forced */
3602 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3603 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3604 s
->failed_num
[i
] != sh
->qd_idx
&&
3605 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3606 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3613 /* fetch_block - checks the given member device to see if its data needs
3614 * to be read or computed to satisfy a request.
3616 * Returns 1 when no more member devices need to be checked, otherwise returns
3617 * 0 to tell the loop in handle_stripe_fill to continue
3619 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3620 int disk_idx
, int disks
)
3622 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3624 /* is the data in this block needed, and can we get it? */
3625 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3626 /* we would like to get this block, possibly by computing it,
3627 * otherwise read it if the backing disk is insync
3629 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3630 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3631 BUG_ON(sh
->batch_head
);
3634 * In the raid6 case if the only non-uptodate disk is P
3635 * then we already trusted P to compute the other failed
3636 * drives. It is safe to compute rather than re-read P.
3637 * In other cases we only compute blocks from failed
3638 * devices, otherwise check/repair might fail to detect
3639 * a real inconsistency.
3642 if ((s
->uptodate
== disks
- 1) &&
3643 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3644 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3645 disk_idx
== s
->failed_num
[1])))) {
3646 /* have disk failed, and we're requested to fetch it;
3649 pr_debug("Computing stripe %llu block %d\n",
3650 (unsigned long long)sh
->sector
, disk_idx
);
3651 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3652 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3653 set_bit(R5_Wantcompute
, &dev
->flags
);
3654 sh
->ops
.target
= disk_idx
;
3655 sh
->ops
.target2
= -1; /* no 2nd target */
3657 /* Careful: from this point on 'uptodate' is in the eye
3658 * of raid_run_ops which services 'compute' operations
3659 * before writes. R5_Wantcompute flags a block that will
3660 * be R5_UPTODATE by the time it is needed for a
3661 * subsequent operation.
3665 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3666 /* Computing 2-failure is *very* expensive; only
3667 * do it if failed >= 2
3670 for (other
= disks
; other
--; ) {
3671 if (other
== disk_idx
)
3673 if (!test_bit(R5_UPTODATE
,
3674 &sh
->dev
[other
].flags
))
3678 pr_debug("Computing stripe %llu blocks %d,%d\n",
3679 (unsigned long long)sh
->sector
,
3681 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3682 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3683 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3684 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3685 sh
->ops
.target
= disk_idx
;
3686 sh
->ops
.target2
= other
;
3690 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3691 set_bit(R5_LOCKED
, &dev
->flags
);
3692 set_bit(R5_Wantread
, &dev
->flags
);
3694 pr_debug("Reading block %d (sync=%d)\n",
3695 disk_idx
, s
->syncing
);
3703 * handle_stripe_fill - read or compute data to satisfy pending requests.
3705 static void handle_stripe_fill(struct stripe_head
*sh
,
3706 struct stripe_head_state
*s
,
3711 /* look for blocks to read/compute, skip this if a compute
3712 * is already in flight, or if the stripe contents are in the
3713 * midst of changing due to a write
3715 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3716 !sh
->reconstruct_state
) {
3719 * For degraded stripe with data in journal, do not handle
3720 * read requests yet, instead, flush the stripe to raid
3721 * disks first, this avoids handling complex rmw of write
3722 * back cache (prexor with orig_page, and then xor with
3723 * page) in the read path
3725 if (s
->injournal
&& s
->failed
) {
3726 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
3727 r5c_make_stripe_write_out(sh
);
3731 for (i
= disks
; i
--; )
3732 if (fetch_block(sh
, s
, i
, disks
))
3736 set_bit(STRIPE_HANDLE
, &sh
->state
);
3739 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3740 unsigned long handle_flags
);
3741 /* handle_stripe_clean_event
3742 * any written block on an uptodate or failed drive can be returned.
3743 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3744 * never LOCKED, so we don't need to test 'failed' directly.
3746 static void handle_stripe_clean_event(struct r5conf
*conf
,
3747 struct stripe_head
*sh
, int disks
)
3751 int discard_pending
= 0;
3752 struct stripe_head
*head_sh
= sh
;
3753 bool do_endio
= false;
3755 for (i
= disks
; i
--; )
3756 if (sh
->dev
[i
].written
) {
3758 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3759 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3760 test_bit(R5_Discard
, &dev
->flags
) ||
3761 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3762 /* We can return any write requests */
3763 struct bio
*wbi
, *wbi2
;
3764 pr_debug("Return write for disc %d\n", i
);
3765 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3766 clear_bit(R5_UPTODATE
, &dev
->flags
);
3767 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3768 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3773 dev
->page
= dev
->orig_page
;
3775 dev
->written
= NULL
;
3776 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3777 dev
->sector
+ STRIPE_SECTORS
) {
3778 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3779 md_write_end(conf
->mddev
);
3783 md_bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3785 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3787 if (head_sh
->batch_head
) {
3788 sh
= list_first_entry(&sh
->batch_list
,
3791 if (sh
!= head_sh
) {
3798 } else if (test_bit(R5_Discard
, &dev
->flags
))
3799 discard_pending
= 1;
3802 log_stripe_write_finished(sh
);
3804 if (!discard_pending
&&
3805 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3807 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3808 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3809 if (sh
->qd_idx
>= 0) {
3810 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3811 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3813 /* now that discard is done we can proceed with any sync */
3814 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3816 * SCSI discard will change some bio fields and the stripe has
3817 * no updated data, so remove it from hash list and the stripe
3818 * will be reinitialized
3821 hash
= sh
->hash_lock_index
;
3822 spin_lock_irq(conf
->hash_locks
+ hash
);
3824 spin_unlock_irq(conf
->hash_locks
+ hash
);
3825 if (head_sh
->batch_head
) {
3826 sh
= list_first_entry(&sh
->batch_list
,
3827 struct stripe_head
, batch_list
);
3833 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3834 set_bit(STRIPE_HANDLE
, &sh
->state
);
3838 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3839 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3840 md_wakeup_thread(conf
->mddev
->thread
);
3842 if (head_sh
->batch_head
&& do_endio
)
3843 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3847 * For RMW in write back cache, we need extra page in prexor to store the
3848 * old data. This page is stored in dev->orig_page.
3850 * This function checks whether we have data for prexor. The exact logic
3852 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3854 static inline bool uptodate_for_rmw(struct r5dev
*dev
)
3856 return (test_bit(R5_UPTODATE
, &dev
->flags
)) &&
3857 (!test_bit(R5_InJournal
, &dev
->flags
) ||
3858 test_bit(R5_OrigPageUPTDODATE
, &dev
->flags
));
3861 static int handle_stripe_dirtying(struct r5conf
*conf
,
3862 struct stripe_head
*sh
,
3863 struct stripe_head_state
*s
,
3866 int rmw
= 0, rcw
= 0, i
;
3867 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3869 /* Check whether resync is now happening or should start.
3870 * If yes, then the array is dirty (after unclean shutdown or
3871 * initial creation), so parity in some stripes might be inconsistent.
3872 * In this case, we need to always do reconstruct-write, to ensure
3873 * that in case of drive failure or read-error correction, we
3874 * generate correct data from the parity.
3876 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3877 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3879 /* Calculate the real rcw later - for now make it
3880 * look like rcw is cheaper
3883 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3884 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3885 (unsigned long long)sh
->sector
);
3886 } else for (i
= disks
; i
--; ) {
3887 /* would I have to read this buffer for read_modify_write */
3888 struct r5dev
*dev
= &sh
->dev
[i
];
3889 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3890 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3891 test_bit(R5_InJournal
, &dev
->flags
)) &&
3892 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3893 !(uptodate_for_rmw(dev
) ||
3894 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3895 if (test_bit(R5_Insync
, &dev
->flags
))
3898 rmw
+= 2*disks
; /* cannot read it */
3900 /* Would I have to read this buffer for reconstruct_write */
3901 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3902 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3903 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3904 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3905 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3906 if (test_bit(R5_Insync
, &dev
->flags
))
3913 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3914 (unsigned long long)sh
->sector
, sh
->state
, rmw
, rcw
);
3915 set_bit(STRIPE_HANDLE
, &sh
->state
);
3916 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
3917 /* prefer read-modify-write, but need to get some data */
3918 if (conf
->mddev
->queue
)
3919 blk_add_trace_msg(conf
->mddev
->queue
,
3920 "raid5 rmw %llu %d",
3921 (unsigned long long)sh
->sector
, rmw
);
3922 for (i
= disks
; i
--; ) {
3923 struct r5dev
*dev
= &sh
->dev
[i
];
3924 if (test_bit(R5_InJournal
, &dev
->flags
) &&
3925 dev
->page
== dev
->orig_page
&&
3926 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3927 /* alloc page for prexor */
3928 struct page
*p
= alloc_page(GFP_NOIO
);
3936 * alloc_page() failed, try use
3937 * disk_info->extra_page
3939 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
3940 &conf
->cache_state
)) {
3941 r5c_use_extra_page(sh
);
3945 /* extra_page in use, add to delayed_list */
3946 set_bit(STRIPE_DELAYED
, &sh
->state
);
3947 s
->waiting_extra_page
= 1;
3952 for (i
= disks
; i
--; ) {
3953 struct r5dev
*dev
= &sh
->dev
[i
];
3954 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
3955 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3956 test_bit(R5_InJournal
, &dev
->flags
)) &&
3957 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3958 !(uptodate_for_rmw(dev
) ||
3959 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3960 test_bit(R5_Insync
, &dev
->flags
)) {
3961 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3963 pr_debug("Read_old block %d for r-m-w\n",
3965 set_bit(R5_LOCKED
, &dev
->flags
);
3966 set_bit(R5_Wantread
, &dev
->flags
);
3969 set_bit(STRIPE_DELAYED
, &sh
->state
);
3970 set_bit(STRIPE_HANDLE
, &sh
->state
);
3975 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
3976 /* want reconstruct write, but need to get some data */
3979 for (i
= disks
; i
--; ) {
3980 struct r5dev
*dev
= &sh
->dev
[i
];
3981 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3982 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3983 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3984 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3985 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3987 if (test_bit(R5_Insync
, &dev
->flags
) &&
3988 test_bit(STRIPE_PREREAD_ACTIVE
,
3990 pr_debug("Read_old block "
3991 "%d for Reconstruct\n", i
);
3992 set_bit(R5_LOCKED
, &dev
->flags
);
3993 set_bit(R5_Wantread
, &dev
->flags
);
3997 set_bit(STRIPE_DELAYED
, &sh
->state
);
3998 set_bit(STRIPE_HANDLE
, &sh
->state
);
4002 if (rcw
&& conf
->mddev
->queue
)
4003 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
4004 (unsigned long long)sh
->sector
,
4005 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
4008 if (rcw
> disks
&& rmw
> disks
&&
4009 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4010 set_bit(STRIPE_DELAYED
, &sh
->state
);
4012 /* now if nothing is locked, and if we have enough data,
4013 * we can start a write request
4015 /* since handle_stripe can be called at any time we need to handle the
4016 * case where a compute block operation has been submitted and then a
4017 * subsequent call wants to start a write request. raid_run_ops only
4018 * handles the case where compute block and reconstruct are requested
4019 * simultaneously. If this is not the case then new writes need to be
4020 * held off until the compute completes.
4022 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
4023 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
4024 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
4025 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
4029 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
4030 struct stripe_head_state
*s
, int disks
)
4032 struct r5dev
*dev
= NULL
;
4034 BUG_ON(sh
->batch_head
);
4035 set_bit(STRIPE_HANDLE
, &sh
->state
);
4037 switch (sh
->check_state
) {
4038 case check_state_idle
:
4039 /* start a new check operation if there are no failures */
4040 if (s
->failed
== 0) {
4041 BUG_ON(s
->uptodate
!= disks
);
4042 sh
->check_state
= check_state_run
;
4043 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4044 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4048 dev
= &sh
->dev
[s
->failed_num
[0]];
4050 case check_state_compute_result
:
4051 sh
->check_state
= check_state_idle
;
4053 dev
= &sh
->dev
[sh
->pd_idx
];
4055 /* check that a write has not made the stripe insync */
4056 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4059 /* either failed parity check, or recovery is happening */
4060 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
4061 BUG_ON(s
->uptodate
!= disks
);
4063 set_bit(R5_LOCKED
, &dev
->flags
);
4065 set_bit(R5_Wantwrite
, &dev
->flags
);
4067 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4068 set_bit(STRIPE_INSYNC
, &sh
->state
);
4070 case check_state_run
:
4071 break; /* we will be called again upon completion */
4072 case check_state_check_result
:
4073 sh
->check_state
= check_state_idle
;
4075 /* if a failure occurred during the check operation, leave
4076 * STRIPE_INSYNC not set and let the stripe be handled again
4081 /* handle a successful check operation, if parity is correct
4082 * we are done. Otherwise update the mismatch count and repair
4083 * parity if !MD_RECOVERY_CHECK
4085 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
4086 /* parity is correct (on disc,
4087 * not in buffer any more)
4089 set_bit(STRIPE_INSYNC
, &sh
->state
);
4091 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4092 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4093 /* don't try to repair!! */
4094 set_bit(STRIPE_INSYNC
, &sh
->state
);
4095 pr_warn_ratelimited("%s: mismatch sector in range "
4096 "%llu-%llu\n", mdname(conf
->mddev
),
4097 (unsigned long long) sh
->sector
,
4098 (unsigned long long) sh
->sector
+
4101 sh
->check_state
= check_state_compute_run
;
4102 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4103 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4104 set_bit(R5_Wantcompute
,
4105 &sh
->dev
[sh
->pd_idx
].flags
);
4106 sh
->ops
.target
= sh
->pd_idx
;
4107 sh
->ops
.target2
= -1;
4112 case check_state_compute_run
:
4115 pr_err("%s: unknown check_state: %d sector: %llu\n",
4116 __func__
, sh
->check_state
,
4117 (unsigned long long) sh
->sector
);
4122 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
4123 struct stripe_head_state
*s
,
4126 int pd_idx
= sh
->pd_idx
;
4127 int qd_idx
= sh
->qd_idx
;
4130 BUG_ON(sh
->batch_head
);
4131 set_bit(STRIPE_HANDLE
, &sh
->state
);
4133 BUG_ON(s
->failed
> 2);
4135 /* Want to check and possibly repair P and Q.
4136 * However there could be one 'failed' device, in which
4137 * case we can only check one of them, possibly using the
4138 * other to generate missing data
4141 switch (sh
->check_state
) {
4142 case check_state_idle
:
4143 /* start a new check operation if there are < 2 failures */
4144 if (s
->failed
== s
->q_failed
) {
4145 /* The only possible failed device holds Q, so it
4146 * makes sense to check P (If anything else were failed,
4147 * we would have used P to recreate it).
4149 sh
->check_state
= check_state_run
;
4151 if (!s
->q_failed
&& s
->failed
< 2) {
4152 /* Q is not failed, and we didn't use it to generate
4153 * anything, so it makes sense to check it
4155 if (sh
->check_state
== check_state_run
)
4156 sh
->check_state
= check_state_run_pq
;
4158 sh
->check_state
= check_state_run_q
;
4161 /* discard potentially stale zero_sum_result */
4162 sh
->ops
.zero_sum_result
= 0;
4164 if (sh
->check_state
== check_state_run
) {
4165 /* async_xor_zero_sum destroys the contents of P */
4166 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
4169 if (sh
->check_state
>= check_state_run
&&
4170 sh
->check_state
<= check_state_run_pq
) {
4171 /* async_syndrome_zero_sum preserves P and Q, so
4172 * no need to mark them !uptodate here
4174 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4178 /* we have 2-disk failure */
4179 BUG_ON(s
->failed
!= 2);
4181 case check_state_compute_result
:
4182 sh
->check_state
= check_state_idle
;
4184 /* check that a write has not made the stripe insync */
4185 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4188 /* now write out any block on a failed drive,
4189 * or P or Q if they were recomputed
4192 if (s
->failed
== 2) {
4193 dev
= &sh
->dev
[s
->failed_num
[1]];
4195 set_bit(R5_LOCKED
, &dev
->flags
);
4196 set_bit(R5_Wantwrite
, &dev
->flags
);
4198 if (s
->failed
>= 1) {
4199 dev
= &sh
->dev
[s
->failed_num
[0]];
4201 set_bit(R5_LOCKED
, &dev
->flags
);
4202 set_bit(R5_Wantwrite
, &dev
->flags
);
4204 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4205 dev
= &sh
->dev
[pd_idx
];
4207 set_bit(R5_LOCKED
, &dev
->flags
);
4208 set_bit(R5_Wantwrite
, &dev
->flags
);
4210 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4211 dev
= &sh
->dev
[qd_idx
];
4213 set_bit(R5_LOCKED
, &dev
->flags
);
4214 set_bit(R5_Wantwrite
, &dev
->flags
);
4216 if (WARN_ONCE(dev
&& !test_bit(R5_UPTODATE
, &dev
->flags
),
4217 "%s: disk%td not up to date\n",
4218 mdname(conf
->mddev
),
4219 dev
- (struct r5dev
*) &sh
->dev
)) {
4220 clear_bit(R5_LOCKED
, &dev
->flags
);
4221 clear_bit(R5_Wantwrite
, &dev
->flags
);
4224 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4226 set_bit(STRIPE_INSYNC
, &sh
->state
);
4228 case check_state_run
:
4229 case check_state_run_q
:
4230 case check_state_run_pq
:
4231 break; /* we will be called again upon completion */
4232 case check_state_check_result
:
4233 sh
->check_state
= check_state_idle
;
4235 /* handle a successful check operation, if parity is correct
4236 * we are done. Otherwise update the mismatch count and repair
4237 * parity if !MD_RECOVERY_CHECK
4239 if (sh
->ops
.zero_sum_result
== 0) {
4240 /* both parities are correct */
4242 set_bit(STRIPE_INSYNC
, &sh
->state
);
4244 /* in contrast to the raid5 case we can validate
4245 * parity, but still have a failure to write
4248 sh
->check_state
= check_state_compute_result
;
4249 /* Returning at this point means that we may go
4250 * off and bring p and/or q uptodate again so
4251 * we make sure to check zero_sum_result again
4252 * to verify if p or q need writeback
4256 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
4257 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4258 /* don't try to repair!! */
4259 set_bit(STRIPE_INSYNC
, &sh
->state
);
4260 pr_warn_ratelimited("%s: mismatch sector in range "
4261 "%llu-%llu\n", mdname(conf
->mddev
),
4262 (unsigned long long) sh
->sector
,
4263 (unsigned long long) sh
->sector
+
4266 int *target
= &sh
->ops
.target
;
4268 sh
->ops
.target
= -1;
4269 sh
->ops
.target2
= -1;
4270 sh
->check_state
= check_state_compute_run
;
4271 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4272 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4273 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4274 set_bit(R5_Wantcompute
,
4275 &sh
->dev
[pd_idx
].flags
);
4277 target
= &sh
->ops
.target2
;
4280 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4281 set_bit(R5_Wantcompute
,
4282 &sh
->dev
[qd_idx
].flags
);
4289 case check_state_compute_run
:
4292 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4293 __func__
, sh
->check_state
,
4294 (unsigned long long) sh
->sector
);
4299 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4303 /* We have read all the blocks in this stripe and now we need to
4304 * copy some of them into a target stripe for expand.
4306 struct dma_async_tx_descriptor
*tx
= NULL
;
4307 BUG_ON(sh
->batch_head
);
4308 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4309 for (i
= 0; i
< sh
->disks
; i
++)
4310 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4312 struct stripe_head
*sh2
;
4313 struct async_submit_ctl submit
;
4315 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4316 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4318 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
4320 /* so far only the early blocks of this stripe
4321 * have been requested. When later blocks
4322 * get requested, we will try again
4325 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4326 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4327 /* must have already done this block */
4328 raid5_release_stripe(sh2
);
4332 /* place all the copies on one channel */
4333 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4334 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4335 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
4338 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4339 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4340 for (j
= 0; j
< conf
->raid_disks
; j
++)
4341 if (j
!= sh2
->pd_idx
&&
4343 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4345 if (j
== conf
->raid_disks
) {
4346 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4347 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4349 raid5_release_stripe(sh2
);
4352 /* done submitting copies, wait for them to complete */
4353 async_tx_quiesce(&tx
);
4357 * handle_stripe - do things to a stripe.
4359 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4360 * state of various bits to see what needs to be done.
4362 * return some read requests which now have data
4363 * return some write requests which are safely on storage
4364 * schedule a read on some buffers
4365 * schedule a write of some buffers
4366 * return confirmation of parity correctness
4370 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4372 struct r5conf
*conf
= sh
->raid_conf
;
4373 int disks
= sh
->disks
;
4376 int do_recovery
= 0;
4378 memset(s
, 0, sizeof(*s
));
4380 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4381 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4382 s
->failed_num
[0] = -1;
4383 s
->failed_num
[1] = -1;
4384 s
->log_failed
= r5l_log_disk_error(conf
);
4386 /* Now to look around and see what can be done */
4388 for (i
=disks
; i
--; ) {
4389 struct md_rdev
*rdev
;
4396 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4398 dev
->toread
, dev
->towrite
, dev
->written
);
4399 /* maybe we can reply to a read
4401 * new wantfill requests are only permitted while
4402 * ops_complete_biofill is guaranteed to be inactive
4404 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4405 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4406 set_bit(R5_Wantfill
, &dev
->flags
);
4408 /* now count some things */
4409 if (test_bit(R5_LOCKED
, &dev
->flags
))
4411 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4413 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4415 BUG_ON(s
->compute
> 2);
4418 if (test_bit(R5_Wantfill
, &dev
->flags
))
4420 else if (dev
->toread
)
4424 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4429 /* Prefer to use the replacement for reads, but only
4430 * if it is recovered enough and has no bad blocks.
4432 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4433 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4434 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4435 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4436 &first_bad
, &bad_sectors
))
4437 set_bit(R5_ReadRepl
, &dev
->flags
);
4439 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4440 set_bit(R5_NeedReplace
, &dev
->flags
);
4442 clear_bit(R5_NeedReplace
, &dev
->flags
);
4443 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4444 clear_bit(R5_ReadRepl
, &dev
->flags
);
4446 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4449 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4450 &first_bad
, &bad_sectors
);
4451 if (s
->blocked_rdev
== NULL
4452 && (test_bit(Blocked
, &rdev
->flags
)
4455 set_bit(BlockedBadBlocks
,
4457 s
->blocked_rdev
= rdev
;
4458 atomic_inc(&rdev
->nr_pending
);
4461 clear_bit(R5_Insync
, &dev
->flags
);
4465 /* also not in-sync */
4466 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4467 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4468 /* treat as in-sync, but with a read error
4469 * which we can now try to correct
4471 set_bit(R5_Insync
, &dev
->flags
);
4472 set_bit(R5_ReadError
, &dev
->flags
);
4474 } else if (test_bit(In_sync
, &rdev
->flags
))
4475 set_bit(R5_Insync
, &dev
->flags
);
4476 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4477 /* in sync if before recovery_offset */
4478 set_bit(R5_Insync
, &dev
->flags
);
4479 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4480 test_bit(R5_Expanded
, &dev
->flags
))
4481 /* If we've reshaped into here, we assume it is Insync.
4482 * We will shortly update recovery_offset to make
4485 set_bit(R5_Insync
, &dev
->flags
);
4487 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4488 /* This flag does not apply to '.replacement'
4489 * only to .rdev, so make sure to check that*/
4490 struct md_rdev
*rdev2
= rcu_dereference(
4491 conf
->disks
[i
].rdev
);
4493 clear_bit(R5_Insync
, &dev
->flags
);
4494 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4495 s
->handle_bad_blocks
= 1;
4496 atomic_inc(&rdev2
->nr_pending
);
4498 clear_bit(R5_WriteError
, &dev
->flags
);
4500 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4501 /* This flag does not apply to '.replacement'
4502 * only to .rdev, so make sure to check that*/
4503 struct md_rdev
*rdev2
= rcu_dereference(
4504 conf
->disks
[i
].rdev
);
4505 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4506 s
->handle_bad_blocks
= 1;
4507 atomic_inc(&rdev2
->nr_pending
);
4509 clear_bit(R5_MadeGood
, &dev
->flags
);
4511 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4512 struct md_rdev
*rdev2
= rcu_dereference(
4513 conf
->disks
[i
].replacement
);
4514 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4515 s
->handle_bad_blocks
= 1;
4516 atomic_inc(&rdev2
->nr_pending
);
4518 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4520 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4521 /* The ReadError flag will just be confusing now */
4522 clear_bit(R5_ReadError
, &dev
->flags
);
4523 clear_bit(R5_ReWrite
, &dev
->flags
);
4525 if (test_bit(R5_ReadError
, &dev
->flags
))
4526 clear_bit(R5_Insync
, &dev
->flags
);
4527 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4529 s
->failed_num
[s
->failed
] = i
;
4531 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4534 rdev
= rcu_dereference(
4535 conf
->disks
[i
].replacement
);
4536 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4541 if (test_bit(R5_InJournal
, &dev
->flags
))
4543 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4546 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4547 /* If there is a failed device being replaced,
4548 * we must be recovering.
4549 * else if we are after recovery_cp, we must be syncing
4550 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4551 * else we can only be replacing
4552 * sync and recovery both need to read all devices, and so
4553 * use the same flag.
4556 sh
->sector
>= conf
->mddev
->recovery_cp
||
4557 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4565 static int clear_batch_ready(struct stripe_head
*sh
)
4567 /* Return '1' if this is a member of batch, or
4568 * '0' if it is a lone stripe or a head which can now be
4571 struct stripe_head
*tmp
;
4572 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4573 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4574 spin_lock(&sh
->stripe_lock
);
4575 if (!sh
->batch_head
) {
4576 spin_unlock(&sh
->stripe_lock
);
4581 * this stripe could be added to a batch list before we check
4582 * BATCH_READY, skips it
4584 if (sh
->batch_head
!= sh
) {
4585 spin_unlock(&sh
->stripe_lock
);
4588 spin_lock(&sh
->batch_lock
);
4589 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4590 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4591 spin_unlock(&sh
->batch_lock
);
4592 spin_unlock(&sh
->stripe_lock
);
4595 * BATCH_READY is cleared, no new stripes can be added.
4596 * batch_list can be accessed without lock
4601 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4602 unsigned long handle_flags
)
4604 struct stripe_head
*sh
, *next
;
4608 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4610 list_del_init(&sh
->batch_list
);
4612 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4613 (1 << STRIPE_SYNCING
) |
4614 (1 << STRIPE_REPLACED
) |
4615 (1 << STRIPE_DELAYED
) |
4616 (1 << STRIPE_BIT_DELAY
) |
4617 (1 << STRIPE_FULL_WRITE
) |
4618 (1 << STRIPE_BIOFILL_RUN
) |
4619 (1 << STRIPE_COMPUTE_RUN
) |
4620 (1 << STRIPE_OPS_REQ_PENDING
) |
4621 (1 << STRIPE_DISCARD
) |
4622 (1 << STRIPE_BATCH_READY
) |
4623 (1 << STRIPE_BATCH_ERR
) |
4624 (1 << STRIPE_BITMAP_PENDING
)),
4625 "stripe state: %lx\n", sh
->state
);
4626 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4627 (1 << STRIPE_REPLACED
)),
4628 "head stripe state: %lx\n", head_sh
->state
);
4630 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4631 (1 << STRIPE_PREREAD_ACTIVE
) |
4632 (1 << STRIPE_DEGRADED
) |
4633 (1 << STRIPE_ON_UNPLUG_LIST
)),
4634 head_sh
->state
& (1 << STRIPE_INSYNC
));
4636 sh
->check_state
= head_sh
->check_state
;
4637 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4638 spin_lock_irq(&sh
->stripe_lock
);
4639 sh
->batch_head
= NULL
;
4640 spin_unlock_irq(&sh
->stripe_lock
);
4641 for (i
= 0; i
< sh
->disks
; i
++) {
4642 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4644 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4645 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4647 if (handle_flags
== 0 ||
4648 sh
->state
& handle_flags
)
4649 set_bit(STRIPE_HANDLE
, &sh
->state
);
4650 raid5_release_stripe(sh
);
4652 spin_lock_irq(&head_sh
->stripe_lock
);
4653 head_sh
->batch_head
= NULL
;
4654 spin_unlock_irq(&head_sh
->stripe_lock
);
4655 for (i
= 0; i
< head_sh
->disks
; i
++)
4656 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4658 if (head_sh
->state
& handle_flags
)
4659 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4662 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4665 static void handle_stripe(struct stripe_head
*sh
)
4667 struct stripe_head_state s
;
4668 struct r5conf
*conf
= sh
->raid_conf
;
4671 int disks
= sh
->disks
;
4672 struct r5dev
*pdev
, *qdev
;
4674 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4675 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4676 /* already being handled, ensure it gets handled
4677 * again when current action finishes */
4678 set_bit(STRIPE_HANDLE
, &sh
->state
);
4682 if (clear_batch_ready(sh
) ) {
4683 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4687 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4688 break_stripe_batch_list(sh
, 0);
4690 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4691 spin_lock(&sh
->stripe_lock
);
4693 * Cannot process 'sync' concurrently with 'discard'.
4694 * Flush data in r5cache before 'sync'.
4696 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
4697 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) &&
4698 !test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4699 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4700 set_bit(STRIPE_SYNCING
, &sh
->state
);
4701 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4702 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4704 spin_unlock(&sh
->stripe_lock
);
4706 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4708 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4709 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4710 (unsigned long long)sh
->sector
, sh
->state
,
4711 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4712 sh
->check_state
, sh
->reconstruct_state
);
4714 analyse_stripe(sh
, &s
);
4716 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4719 if (s
.handle_bad_blocks
||
4720 test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4721 set_bit(STRIPE_HANDLE
, &sh
->state
);
4725 if (unlikely(s
.blocked_rdev
)) {
4726 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4727 s
.replacing
|| s
.to_write
|| s
.written
) {
4728 set_bit(STRIPE_HANDLE
, &sh
->state
);
4731 /* There is nothing for the blocked_rdev to block */
4732 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4733 s
.blocked_rdev
= NULL
;
4736 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4737 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4738 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4741 pr_debug("locked=%d uptodate=%d to_read=%d"
4742 " to_write=%d failed=%d failed_num=%d,%d\n",
4743 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4744 s
.failed_num
[0], s
.failed_num
[1]);
4746 * check if the array has lost more than max_degraded devices and,
4747 * if so, some requests might need to be failed.
4749 * When journal device failed (log_failed), we will only process
4750 * the stripe if there is data need write to raid disks
4752 if (s
.failed
> conf
->max_degraded
||
4753 (s
.log_failed
&& s
.injournal
== 0)) {
4754 sh
->check_state
= 0;
4755 sh
->reconstruct_state
= 0;
4756 break_stripe_batch_list(sh
, 0);
4757 if (s
.to_read
+s
.to_write
+s
.written
)
4758 handle_failed_stripe(conf
, sh
, &s
, disks
);
4759 if (s
.syncing
+ s
.replacing
)
4760 handle_failed_sync(conf
, sh
, &s
);
4763 /* Now we check to see if any write operations have recently
4767 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4769 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4770 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4771 sh
->reconstruct_state
= reconstruct_state_idle
;
4773 /* All the 'written' buffers and the parity block are ready to
4774 * be written back to disk
4776 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4777 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4778 BUG_ON(sh
->qd_idx
>= 0 &&
4779 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4780 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4781 for (i
= disks
; i
--; ) {
4782 struct r5dev
*dev
= &sh
->dev
[i
];
4783 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4784 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4785 dev
->written
|| test_bit(R5_InJournal
,
4787 pr_debug("Writing block %d\n", i
);
4788 set_bit(R5_Wantwrite
, &dev
->flags
);
4793 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4794 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4796 set_bit(STRIPE_INSYNC
, &sh
->state
);
4799 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4800 s
.dec_preread_active
= 1;
4804 * might be able to return some write requests if the parity blocks
4805 * are safe, or on a failed drive
4807 pdev
= &sh
->dev
[sh
->pd_idx
];
4808 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4809 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4810 qdev
= &sh
->dev
[sh
->qd_idx
];
4811 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4812 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4816 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4817 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4818 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4819 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4820 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4821 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4822 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4823 test_bit(R5_Discard
, &qdev
->flags
))))))
4824 handle_stripe_clean_event(conf
, sh
, disks
);
4827 r5c_handle_cached_data_endio(conf
, sh
, disks
);
4828 log_stripe_write_finished(sh
);
4830 /* Now we might consider reading some blocks, either to check/generate
4831 * parity, or to satisfy requests
4832 * or to load a block that is being partially written.
4834 if (s
.to_read
|| s
.non_overwrite
4835 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4836 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4839 handle_stripe_fill(sh
, &s
, disks
);
4842 * When the stripe finishes full journal write cycle (write to journal
4843 * and raid disk), this is the clean up procedure so it is ready for
4846 r5c_finish_stripe_write_out(conf
, sh
, &s
);
4849 * Now to consider new write requests, cache write back and what else,
4850 * if anything should be read. We do not handle new writes when:
4851 * 1/ A 'write' operation (copy+xor) is already in flight.
4852 * 2/ A 'check' operation is in flight, as it may clobber the parity
4854 * 3/ A r5c cache log write is in flight.
4857 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
4858 if (!r5c_is_writeback(conf
->log
)) {
4860 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4861 } else { /* write back cache */
4864 /* First, try handle writes in caching phase */
4866 ret
= r5c_try_caching_write(conf
, sh
, &s
,
4869 * If caching phase failed: ret == -EAGAIN
4871 * stripe under reclaim: !caching && injournal
4873 * fall back to handle_stripe_dirtying()
4875 if (ret
== -EAGAIN
||
4876 /* stripe under reclaim: !caching && injournal */
4877 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
4879 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
4887 /* maybe we need to check and possibly fix the parity for this stripe
4888 * Any reads will already have been scheduled, so we just see if enough
4889 * data is available. The parity check is held off while parity
4890 * dependent operations are in flight.
4892 if (sh
->check_state
||
4893 (s
.syncing
&& s
.locked
== 0 &&
4894 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4895 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4896 if (conf
->level
== 6)
4897 handle_parity_checks6(conf
, sh
, &s
, disks
);
4899 handle_parity_checks5(conf
, sh
, &s
, disks
);
4902 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4903 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4904 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4905 /* Write out to replacement devices where possible */
4906 for (i
= 0; i
< conf
->raid_disks
; i
++)
4907 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4908 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4909 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4910 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4914 set_bit(STRIPE_INSYNC
, &sh
->state
);
4915 set_bit(STRIPE_REPLACED
, &sh
->state
);
4917 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4918 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4919 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4920 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4921 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4922 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4923 wake_up(&conf
->wait_for_overlap
);
4926 /* If the failed drives are just a ReadError, then we might need
4927 * to progress the repair/check process
4929 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4930 for (i
= 0; i
< s
.failed
; i
++) {
4931 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4932 if (test_bit(R5_ReadError
, &dev
->flags
)
4933 && !test_bit(R5_LOCKED
, &dev
->flags
)
4934 && test_bit(R5_UPTODATE
, &dev
->flags
)
4936 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4937 set_bit(R5_Wantwrite
, &dev
->flags
);
4938 set_bit(R5_ReWrite
, &dev
->flags
);
4939 set_bit(R5_LOCKED
, &dev
->flags
);
4942 /* let's read it back */
4943 set_bit(R5_Wantread
, &dev
->flags
);
4944 set_bit(R5_LOCKED
, &dev
->flags
);
4950 /* Finish reconstruct operations initiated by the expansion process */
4951 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4952 struct stripe_head
*sh_src
4953 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4954 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4955 /* sh cannot be written until sh_src has been read.
4956 * so arrange for sh to be delayed a little
4958 set_bit(STRIPE_DELAYED
, &sh
->state
);
4959 set_bit(STRIPE_HANDLE
, &sh
->state
);
4960 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4962 atomic_inc(&conf
->preread_active_stripes
);
4963 raid5_release_stripe(sh_src
);
4967 raid5_release_stripe(sh_src
);
4969 sh
->reconstruct_state
= reconstruct_state_idle
;
4970 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4971 for (i
= conf
->raid_disks
; i
--; ) {
4972 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4973 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4978 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4979 !sh
->reconstruct_state
) {
4980 /* Need to write out all blocks after computing parity */
4981 sh
->disks
= conf
->raid_disks
;
4982 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4983 schedule_reconstruction(sh
, &s
, 1, 1);
4984 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4985 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4986 atomic_dec(&conf
->reshape_stripes
);
4987 wake_up(&conf
->wait_for_overlap
);
4988 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4991 if (s
.expanding
&& s
.locked
== 0 &&
4992 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4993 handle_stripe_expansion(conf
, sh
);
4996 /* wait for this device to become unblocked */
4997 if (unlikely(s
.blocked_rdev
)) {
4998 if (conf
->mddev
->external
)
4999 md_wait_for_blocked_rdev(s
.blocked_rdev
,
5002 /* Internal metadata will immediately
5003 * be written by raid5d, so we don't
5004 * need to wait here.
5006 rdev_dec_pending(s
.blocked_rdev
,
5010 if (s
.handle_bad_blocks
)
5011 for (i
= disks
; i
--; ) {
5012 struct md_rdev
*rdev
;
5013 struct r5dev
*dev
= &sh
->dev
[i
];
5014 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
5015 /* We own a safe reference to the rdev */
5016 rdev
= conf
->disks
[i
].rdev
;
5017 if (!rdev_set_badblocks(rdev
, sh
->sector
,
5019 md_error(conf
->mddev
, rdev
);
5020 rdev_dec_pending(rdev
, conf
->mddev
);
5022 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
5023 rdev
= conf
->disks
[i
].rdev
;
5024 rdev_clear_badblocks(rdev
, sh
->sector
,
5026 rdev_dec_pending(rdev
, conf
->mddev
);
5028 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
5029 rdev
= conf
->disks
[i
].replacement
;
5031 /* rdev have been moved down */
5032 rdev
= conf
->disks
[i
].rdev
;
5033 rdev_clear_badblocks(rdev
, sh
->sector
,
5035 rdev_dec_pending(rdev
, conf
->mddev
);
5040 raid_run_ops(sh
, s
.ops_request
);
5044 if (s
.dec_preread_active
) {
5045 /* We delay this until after ops_run_io so that if make_request
5046 * is waiting on a flush, it won't continue until the writes
5047 * have actually been submitted.
5049 atomic_dec(&conf
->preread_active_stripes
);
5050 if (atomic_read(&conf
->preread_active_stripes
) <
5052 md_wakeup_thread(conf
->mddev
->thread
);
5055 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
5058 static void raid5_activate_delayed(struct r5conf
*conf
)
5060 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
5061 while (!list_empty(&conf
->delayed_list
)) {
5062 struct list_head
*l
= conf
->delayed_list
.next
;
5063 struct stripe_head
*sh
;
5064 sh
= list_entry(l
, struct stripe_head
, lru
);
5066 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5067 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5068 atomic_inc(&conf
->preread_active_stripes
);
5069 list_add_tail(&sh
->lru
, &conf
->hold_list
);
5070 raid5_wakeup_stripe_thread(sh
);
5075 static void activate_bit_delay(struct r5conf
*conf
,
5076 struct list_head
*temp_inactive_list
)
5078 /* device_lock is held */
5079 struct list_head head
;
5080 list_add(&head
, &conf
->bitmap_list
);
5081 list_del_init(&conf
->bitmap_list
);
5082 while (!list_empty(&head
)) {
5083 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
5085 list_del_init(&sh
->lru
);
5086 atomic_inc(&sh
->count
);
5087 hash
= sh
->hash_lock_index
;
5088 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
5092 static int raid5_congested(struct mddev
*mddev
, int bits
)
5094 struct r5conf
*conf
= mddev
->private;
5096 /* No difference between reads and writes. Just check
5097 * how busy the stripe_cache is
5100 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
5103 /* Also checks whether there is pressure on r5cache log space */
5104 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
5108 if (atomic_read(&conf
->empty_inactive_list_nr
))
5114 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
5116 struct r5conf
*conf
= mddev
->private;
5117 sector_t sector
= bio
->bi_iter
.bi_sector
;
5118 unsigned int chunk_sectors
;
5119 unsigned int bio_sectors
= bio_sectors(bio
);
5121 WARN_ON_ONCE(bio
->bi_partno
);
5123 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5124 return chunk_sectors
>=
5125 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
5129 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5130 * later sampled by raid5d.
5132 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
5134 unsigned long flags
;
5136 spin_lock_irqsave(&conf
->device_lock
, flags
);
5138 bi
->bi_next
= conf
->retry_read_aligned_list
;
5139 conf
->retry_read_aligned_list
= bi
;
5141 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5142 md_wakeup_thread(conf
->mddev
->thread
);
5145 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
,
5146 unsigned int *offset
)
5150 bi
= conf
->retry_read_aligned
;
5152 *offset
= conf
->retry_read_offset
;
5153 conf
->retry_read_aligned
= NULL
;
5156 bi
= conf
->retry_read_aligned_list
;
5158 conf
->retry_read_aligned_list
= bi
->bi_next
;
5167 * The "raid5_align_endio" should check if the read succeeded and if it
5168 * did, call bio_endio on the original bio (having bio_put the new bio
5170 * If the read failed..
5172 static void raid5_align_endio(struct bio
*bi
)
5174 struct bio
* raid_bi
= bi
->bi_private
;
5175 struct mddev
*mddev
;
5176 struct r5conf
*conf
;
5177 struct md_rdev
*rdev
;
5178 blk_status_t error
= bi
->bi_status
;
5182 rdev
= (void*)raid_bi
->bi_next
;
5183 raid_bi
->bi_next
= NULL
;
5184 mddev
= rdev
->mddev
;
5185 conf
= mddev
->private;
5187 rdev_dec_pending(rdev
, conf
->mddev
);
5191 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5192 wake_up(&conf
->wait_for_quiescent
);
5196 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5198 add_bio_to_retry(raid_bi
, conf
);
5201 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
5203 struct r5conf
*conf
= mddev
->private;
5205 struct bio
* align_bi
;
5206 struct md_rdev
*rdev
;
5207 sector_t end_sector
;
5209 if (!in_chunk_boundary(mddev
, raid_bio
)) {
5210 pr_debug("%s: non aligned\n", __func__
);
5214 * use bio_clone_fast to make a copy of the bio
5216 align_bi
= bio_clone_fast(raid_bio
, GFP_NOIO
, &mddev
->bio_set
);
5220 * set bi_end_io to a new function, and set bi_private to the
5223 align_bi
->bi_end_io
= raid5_align_endio
;
5224 align_bi
->bi_private
= raid_bio
;
5228 align_bi
->bi_iter
.bi_sector
=
5229 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
5232 end_sector
= bio_end_sector(align_bi
);
5234 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
5235 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
5236 rdev
->recovery_offset
< end_sector
) {
5237 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
5239 (test_bit(Faulty
, &rdev
->flags
) ||
5240 !(test_bit(In_sync
, &rdev
->flags
) ||
5241 rdev
->recovery_offset
>= end_sector
)))
5245 if (r5c_big_stripe_cached(conf
, align_bi
->bi_iter
.bi_sector
)) {
5255 atomic_inc(&rdev
->nr_pending
);
5257 raid_bio
->bi_next
= (void*)rdev
;
5258 bio_set_dev(align_bi
, rdev
->bdev
);
5259 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
5261 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
5262 bio_sectors(align_bi
),
5263 &first_bad
, &bad_sectors
)) {
5265 rdev_dec_pending(rdev
, mddev
);
5269 /* No reshape active, so we can trust rdev->data_offset */
5270 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
5272 spin_lock_irq(&conf
->device_lock
);
5273 wait_event_lock_irq(conf
->wait_for_quiescent
,
5276 atomic_inc(&conf
->active_aligned_reads
);
5277 spin_unlock_irq(&conf
->device_lock
);
5280 trace_block_bio_remap(align_bi
->bi_disk
->queue
,
5281 align_bi
, disk_devt(mddev
->gendisk
),
5282 raid_bio
->bi_iter
.bi_sector
);
5283 generic_make_request(align_bi
);
5292 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5295 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5296 unsigned chunk_sects
= mddev
->chunk_sectors
;
5297 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5299 if (sectors
< bio_sectors(raid_bio
)) {
5300 struct r5conf
*conf
= mddev
->private;
5301 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, &conf
->bio_split
);
5302 bio_chain(split
, raid_bio
);
5303 generic_make_request(raid_bio
);
5307 if (!raid5_read_one_chunk(mddev
, raid_bio
))
5313 /* __get_priority_stripe - get the next stripe to process
5315 * Full stripe writes are allowed to pass preread active stripes up until
5316 * the bypass_threshold is exceeded. In general the bypass_count
5317 * increments when the handle_list is handled before the hold_list; however, it
5318 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5319 * stripe with in flight i/o. The bypass_count will be reset when the
5320 * head of the hold_list has changed, i.e. the head was promoted to the
5323 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5325 struct stripe_head
*sh
, *tmp
;
5326 struct list_head
*handle_list
= NULL
;
5327 struct r5worker_group
*wg
;
5328 bool second_try
= !r5c_is_writeback(conf
->log
) &&
5329 !r5l_log_disk_error(conf
);
5330 bool try_loprio
= test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
) ||
5331 r5l_log_disk_error(conf
);
5336 if (conf
->worker_cnt_per_group
== 0) {
5337 handle_list
= try_loprio
? &conf
->loprio_list
:
5339 } else if (group
!= ANY_GROUP
) {
5340 handle_list
= try_loprio
? &conf
->worker_groups
[group
].loprio_list
:
5341 &conf
->worker_groups
[group
].handle_list
;
5342 wg
= &conf
->worker_groups
[group
];
5345 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5346 handle_list
= try_loprio
? &conf
->worker_groups
[i
].loprio_list
:
5347 &conf
->worker_groups
[i
].handle_list
;
5348 wg
= &conf
->worker_groups
[i
];
5349 if (!list_empty(handle_list
))
5354 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5356 list_empty(handle_list
) ? "empty" : "busy",
5357 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5358 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5360 if (!list_empty(handle_list
)) {
5361 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5363 if (list_empty(&conf
->hold_list
))
5364 conf
->bypass_count
= 0;
5365 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5366 if (conf
->hold_list
.next
== conf
->last_hold
)
5367 conf
->bypass_count
++;
5369 conf
->last_hold
= conf
->hold_list
.next
;
5370 conf
->bypass_count
-= conf
->bypass_threshold
;
5371 if (conf
->bypass_count
< 0)
5372 conf
->bypass_count
= 0;
5375 } else if (!list_empty(&conf
->hold_list
) &&
5376 ((conf
->bypass_threshold
&&
5377 conf
->bypass_count
> conf
->bypass_threshold
) ||
5378 atomic_read(&conf
->pending_full_writes
) == 0)) {
5380 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5381 if (conf
->worker_cnt_per_group
== 0 ||
5382 group
== ANY_GROUP
||
5383 !cpu_online(tmp
->cpu
) ||
5384 cpu_to_group(tmp
->cpu
) == group
) {
5391 conf
->bypass_count
-= conf
->bypass_threshold
;
5392 if (conf
->bypass_count
< 0)
5393 conf
->bypass_count
= 0;
5402 try_loprio
= !try_loprio
;
5410 list_del_init(&sh
->lru
);
5411 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5415 struct raid5_plug_cb
{
5416 struct blk_plug_cb cb
;
5417 struct list_head list
;
5418 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5421 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5423 struct raid5_plug_cb
*cb
= container_of(
5424 blk_cb
, struct raid5_plug_cb
, cb
);
5425 struct stripe_head
*sh
;
5426 struct mddev
*mddev
= cb
->cb
.data
;
5427 struct r5conf
*conf
= mddev
->private;
5431 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5432 spin_lock_irq(&conf
->device_lock
);
5433 while (!list_empty(&cb
->list
)) {
5434 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5435 list_del_init(&sh
->lru
);
5437 * avoid race release_stripe_plug() sees
5438 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5439 * is still in our list
5441 smp_mb__before_atomic();
5442 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5444 * STRIPE_ON_RELEASE_LIST could be set here. In that
5445 * case, the count is always > 1 here
5447 hash
= sh
->hash_lock_index
;
5448 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5451 spin_unlock_irq(&conf
->device_lock
);
5453 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5454 NR_STRIPE_HASH_LOCKS
);
5456 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5460 static void release_stripe_plug(struct mddev
*mddev
,
5461 struct stripe_head
*sh
)
5463 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5464 raid5_unplug
, mddev
,
5465 sizeof(struct raid5_plug_cb
));
5466 struct raid5_plug_cb
*cb
;
5469 raid5_release_stripe(sh
);
5473 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5475 if (cb
->list
.next
== NULL
) {
5477 INIT_LIST_HEAD(&cb
->list
);
5478 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5479 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5482 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5483 list_add_tail(&sh
->lru
, &cb
->list
);
5485 raid5_release_stripe(sh
);
5488 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5490 struct r5conf
*conf
= mddev
->private;
5491 sector_t logical_sector
, last_sector
;
5492 struct stripe_head
*sh
;
5495 if (mddev
->reshape_position
!= MaxSector
)
5496 /* Skip discard while reshape is happening */
5499 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5500 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5504 stripe_sectors
= conf
->chunk_sectors
*
5505 (conf
->raid_disks
- conf
->max_degraded
);
5506 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5508 sector_div(last_sector
, stripe_sectors
);
5510 logical_sector
*= conf
->chunk_sectors
;
5511 last_sector
*= conf
->chunk_sectors
;
5513 for (; logical_sector
< last_sector
;
5514 logical_sector
+= STRIPE_SECTORS
) {
5518 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5519 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5520 TASK_UNINTERRUPTIBLE
);
5521 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5522 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5523 raid5_release_stripe(sh
);
5527 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5528 spin_lock_irq(&sh
->stripe_lock
);
5529 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5530 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5532 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5533 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5534 spin_unlock_irq(&sh
->stripe_lock
);
5535 raid5_release_stripe(sh
);
5540 set_bit(STRIPE_DISCARD
, &sh
->state
);
5541 finish_wait(&conf
->wait_for_overlap
, &w
);
5542 sh
->overwrite_disks
= 0;
5543 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5544 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5546 sh
->dev
[d
].towrite
= bi
;
5547 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5548 bio_inc_remaining(bi
);
5549 md_write_inc(mddev
, bi
);
5550 sh
->overwrite_disks
++;
5552 spin_unlock_irq(&sh
->stripe_lock
);
5553 if (conf
->mddev
->bitmap
) {
5555 d
< conf
->raid_disks
- conf
->max_degraded
;
5557 md_bitmap_startwrite(mddev
->bitmap
,
5561 sh
->bm_seq
= conf
->seq_flush
+ 1;
5562 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5565 set_bit(STRIPE_HANDLE
, &sh
->state
);
5566 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5567 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5568 atomic_inc(&conf
->preread_active_stripes
);
5569 release_stripe_plug(mddev
, sh
);
5575 static bool raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
5577 struct r5conf
*conf
= mddev
->private;
5579 sector_t new_sector
;
5580 sector_t logical_sector
, last_sector
;
5581 struct stripe_head
*sh
;
5582 const int rw
= bio_data_dir(bi
);
5585 bool do_flush
= false;
5587 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
5588 int ret
= log_handle_flush_request(conf
, bi
);
5592 if (ret
== -ENODEV
) {
5593 if (md_flush_request(mddev
, bi
))
5596 /* ret == -EAGAIN, fallback */
5598 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5599 * we need to flush journal device
5601 do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
5604 if (!md_write_start(mddev
, bi
))
5607 * If array is degraded, better not do chunk aligned read because
5608 * later we might have to read it again in order to reconstruct
5609 * data on failed drives.
5611 if (rw
== READ
&& mddev
->degraded
== 0 &&
5612 mddev
->reshape_position
== MaxSector
) {
5613 bi
= chunk_aligned_read(mddev
, bi
);
5618 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
5619 make_discard_request(mddev
, bi
);
5620 md_write_end(mddev
);
5624 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5625 last_sector
= bio_end_sector(bi
);
5628 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5629 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5635 seq
= read_seqcount_begin(&conf
->gen_lock
);
5638 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5639 TASK_UNINTERRUPTIBLE
);
5640 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5641 /* spinlock is needed as reshape_progress may be
5642 * 64bit on a 32bit platform, and so it might be
5643 * possible to see a half-updated value
5644 * Of course reshape_progress could change after
5645 * the lock is dropped, so once we get a reference
5646 * to the stripe that we think it is, we will have
5649 spin_lock_irq(&conf
->device_lock
);
5650 if (mddev
->reshape_backwards
5651 ? logical_sector
< conf
->reshape_progress
5652 : logical_sector
>= conf
->reshape_progress
) {
5655 if (mddev
->reshape_backwards
5656 ? logical_sector
< conf
->reshape_safe
5657 : logical_sector
>= conf
->reshape_safe
) {
5658 spin_unlock_irq(&conf
->device_lock
);
5664 spin_unlock_irq(&conf
->device_lock
);
5667 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5670 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5671 (unsigned long long)new_sector
,
5672 (unsigned long long)logical_sector
);
5674 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5675 (bi
->bi_opf
& REQ_RAHEAD
), 0);
5677 if (unlikely(previous
)) {
5678 /* expansion might have moved on while waiting for a
5679 * stripe, so we must do the range check again.
5680 * Expansion could still move past after this
5681 * test, but as we are holding a reference to
5682 * 'sh', we know that if that happens,
5683 * STRIPE_EXPANDING will get set and the expansion
5684 * won't proceed until we finish with the stripe.
5687 spin_lock_irq(&conf
->device_lock
);
5688 if (mddev
->reshape_backwards
5689 ? logical_sector
>= conf
->reshape_progress
5690 : logical_sector
< conf
->reshape_progress
)
5691 /* mismatch, need to try again */
5693 spin_unlock_irq(&conf
->device_lock
);
5695 raid5_release_stripe(sh
);
5701 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5702 /* Might have got the wrong stripe_head
5705 raid5_release_stripe(sh
);
5709 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5710 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5711 /* Stripe is busy expanding or
5712 * add failed due to overlap. Flush everything
5715 md_wakeup_thread(mddev
->thread
);
5716 raid5_release_stripe(sh
);
5722 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
5723 /* we only need flush for one stripe */
5727 if (!sh
->batch_head
|| sh
== sh
->batch_head
)
5728 set_bit(STRIPE_HANDLE
, &sh
->state
);
5729 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5730 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5731 (bi
->bi_opf
& REQ_SYNC
) &&
5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5733 atomic_inc(&conf
->preread_active_stripes
);
5734 release_stripe_plug(mddev
, sh
);
5736 /* cannot get stripe for read-ahead, just give-up */
5737 bi
->bi_status
= BLK_STS_IOERR
;
5741 finish_wait(&conf
->wait_for_overlap
, &w
);
5744 md_write_end(mddev
);
5749 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5751 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5753 /* reshaping is quite different to recovery/resync so it is
5754 * handled quite separately ... here.
5756 * On each call to sync_request, we gather one chunk worth of
5757 * destination stripes and flag them as expanding.
5758 * Then we find all the source stripes and request reads.
5759 * As the reads complete, handle_stripe will copy the data
5760 * into the destination stripe and release that stripe.
5762 struct r5conf
*conf
= mddev
->private;
5763 struct stripe_head
*sh
;
5764 struct md_rdev
*rdev
;
5765 sector_t first_sector
, last_sector
;
5766 int raid_disks
= conf
->previous_raid_disks
;
5767 int data_disks
= raid_disks
- conf
->max_degraded
;
5768 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5771 sector_t writepos
, readpos
, safepos
;
5772 sector_t stripe_addr
;
5773 int reshape_sectors
;
5774 struct list_head stripes
;
5777 if (sector_nr
== 0) {
5778 /* If restarting in the middle, skip the initial sectors */
5779 if (mddev
->reshape_backwards
&&
5780 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5781 sector_nr
= raid5_size(mddev
, 0, 0)
5782 - conf
->reshape_progress
;
5783 } else if (mddev
->reshape_backwards
&&
5784 conf
->reshape_progress
== MaxSector
) {
5785 /* shouldn't happen, but just in case, finish up.*/
5786 sector_nr
= MaxSector
;
5787 } else if (!mddev
->reshape_backwards
&&
5788 conf
->reshape_progress
> 0)
5789 sector_nr
= conf
->reshape_progress
;
5790 sector_div(sector_nr
, new_data_disks
);
5792 mddev
->curr_resync_completed
= sector_nr
;
5793 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5800 /* We need to process a full chunk at a time.
5801 * If old and new chunk sizes differ, we need to process the
5805 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5807 /* We update the metadata at least every 10 seconds, or when
5808 * the data about to be copied would over-write the source of
5809 * the data at the front of the range. i.e. one new_stripe
5810 * along from reshape_progress new_maps to after where
5811 * reshape_safe old_maps to
5813 writepos
= conf
->reshape_progress
;
5814 sector_div(writepos
, new_data_disks
);
5815 readpos
= conf
->reshape_progress
;
5816 sector_div(readpos
, data_disks
);
5817 safepos
= conf
->reshape_safe
;
5818 sector_div(safepos
, data_disks
);
5819 if (mddev
->reshape_backwards
) {
5820 BUG_ON(writepos
< reshape_sectors
);
5821 writepos
-= reshape_sectors
;
5822 readpos
+= reshape_sectors
;
5823 safepos
+= reshape_sectors
;
5825 writepos
+= reshape_sectors
;
5826 /* readpos and safepos are worst-case calculations.
5827 * A negative number is overly pessimistic, and causes
5828 * obvious problems for unsigned storage. So clip to 0.
5830 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5831 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5834 /* Having calculated the 'writepos' possibly use it
5835 * to set 'stripe_addr' which is where we will write to.
5837 if (mddev
->reshape_backwards
) {
5838 BUG_ON(conf
->reshape_progress
== 0);
5839 stripe_addr
= writepos
;
5840 BUG_ON((mddev
->dev_sectors
&
5841 ~((sector_t
)reshape_sectors
- 1))
5842 - reshape_sectors
- stripe_addr
5845 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5846 stripe_addr
= sector_nr
;
5849 /* 'writepos' is the most advanced device address we might write.
5850 * 'readpos' is the least advanced device address we might read.
5851 * 'safepos' is the least address recorded in the metadata as having
5853 * If there is a min_offset_diff, these are adjusted either by
5854 * increasing the safepos/readpos if diff is negative, or
5855 * increasing writepos if diff is positive.
5856 * If 'readpos' is then behind 'writepos', there is no way that we can
5857 * ensure safety in the face of a crash - that must be done by userspace
5858 * making a backup of the data. So in that case there is no particular
5859 * rush to update metadata.
5860 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5861 * update the metadata to advance 'safepos' to match 'readpos' so that
5862 * we can be safe in the event of a crash.
5863 * So we insist on updating metadata if safepos is behind writepos and
5864 * readpos is beyond writepos.
5865 * In any case, update the metadata every 10 seconds.
5866 * Maybe that number should be configurable, but I'm not sure it is
5867 * worth it.... maybe it could be a multiple of safemode_delay???
5869 if (conf
->min_offset_diff
< 0) {
5870 safepos
+= -conf
->min_offset_diff
;
5871 readpos
+= -conf
->min_offset_diff
;
5873 writepos
+= conf
->min_offset_diff
;
5875 if ((mddev
->reshape_backwards
5876 ? (safepos
> writepos
&& readpos
< writepos
)
5877 : (safepos
< writepos
&& readpos
> writepos
)) ||
5878 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5879 /* Cannot proceed until we've updated the superblock... */
5880 wait_event(conf
->wait_for_overlap
,
5881 atomic_read(&conf
->reshape_stripes
)==0
5882 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5883 if (atomic_read(&conf
->reshape_stripes
) != 0)
5885 mddev
->reshape_position
= conf
->reshape_progress
;
5886 mddev
->curr_resync_completed
= sector_nr
;
5887 if (!mddev
->reshape_backwards
)
5888 /* Can update recovery_offset */
5889 rdev_for_each(rdev
, mddev
)
5890 if (rdev
->raid_disk
>= 0 &&
5891 !test_bit(Journal
, &rdev
->flags
) &&
5892 !test_bit(In_sync
, &rdev
->flags
) &&
5893 rdev
->recovery_offset
< sector_nr
)
5894 rdev
->recovery_offset
= sector_nr
;
5896 conf
->reshape_checkpoint
= jiffies
;
5897 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
5898 md_wakeup_thread(mddev
->thread
);
5899 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
5900 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5901 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5903 spin_lock_irq(&conf
->device_lock
);
5904 conf
->reshape_safe
= mddev
->reshape_position
;
5905 spin_unlock_irq(&conf
->device_lock
);
5906 wake_up(&conf
->wait_for_overlap
);
5907 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5910 INIT_LIST_HEAD(&stripes
);
5911 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5913 int skipped_disk
= 0;
5914 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5915 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5916 atomic_inc(&conf
->reshape_stripes
);
5917 /* If any of this stripe is beyond the end of the old
5918 * array, then we need to zero those blocks
5920 for (j
=sh
->disks
; j
--;) {
5922 if (j
== sh
->pd_idx
)
5924 if (conf
->level
== 6 &&
5927 s
= raid5_compute_blocknr(sh
, j
, 0);
5928 if (s
< raid5_size(mddev
, 0, 0)) {
5932 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5933 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5934 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5936 if (!skipped_disk
) {
5937 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5938 set_bit(STRIPE_HANDLE
, &sh
->state
);
5940 list_add(&sh
->lru
, &stripes
);
5942 spin_lock_irq(&conf
->device_lock
);
5943 if (mddev
->reshape_backwards
)
5944 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5946 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5947 spin_unlock_irq(&conf
->device_lock
);
5948 /* Ok, those stripe are ready. We can start scheduling
5949 * reads on the source stripes.
5950 * The source stripes are determined by mapping the first and last
5951 * block on the destination stripes.
5954 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5957 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5958 * new_data_disks
- 1),
5960 if (last_sector
>= mddev
->dev_sectors
)
5961 last_sector
= mddev
->dev_sectors
- 1;
5962 while (first_sector
<= last_sector
) {
5963 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5964 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5965 set_bit(STRIPE_HANDLE
, &sh
->state
);
5966 raid5_release_stripe(sh
);
5967 first_sector
+= STRIPE_SECTORS
;
5969 /* Now that the sources are clearly marked, we can release
5970 * the destination stripes
5972 while (!list_empty(&stripes
)) {
5973 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5974 list_del_init(&sh
->lru
);
5975 raid5_release_stripe(sh
);
5977 /* If this takes us to the resync_max point where we have to pause,
5978 * then we need to write out the superblock.
5980 sector_nr
+= reshape_sectors
;
5981 retn
= reshape_sectors
;
5983 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5984 (sector_nr
- mddev
->curr_resync_completed
) * 2
5985 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5986 /* Cannot proceed until we've updated the superblock... */
5987 wait_event(conf
->wait_for_overlap
,
5988 atomic_read(&conf
->reshape_stripes
) == 0
5989 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5990 if (atomic_read(&conf
->reshape_stripes
) != 0)
5992 mddev
->reshape_position
= conf
->reshape_progress
;
5993 mddev
->curr_resync_completed
= sector_nr
;
5994 if (!mddev
->reshape_backwards
)
5995 /* Can update recovery_offset */
5996 rdev_for_each(rdev
, mddev
)
5997 if (rdev
->raid_disk
>= 0 &&
5998 !test_bit(Journal
, &rdev
->flags
) &&
5999 !test_bit(In_sync
, &rdev
->flags
) &&
6000 rdev
->recovery_offset
< sector_nr
)
6001 rdev
->recovery_offset
= sector_nr
;
6002 conf
->reshape_checkpoint
= jiffies
;
6003 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
6004 md_wakeup_thread(mddev
->thread
);
6005 wait_event(mddev
->sb_wait
,
6006 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
6007 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6008 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
6010 spin_lock_irq(&conf
->device_lock
);
6011 conf
->reshape_safe
= mddev
->reshape_position
;
6012 spin_unlock_irq(&conf
->device_lock
);
6013 wake_up(&conf
->wait_for_overlap
);
6014 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
6020 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
6023 struct r5conf
*conf
= mddev
->private;
6024 struct stripe_head
*sh
;
6025 sector_t max_sector
= mddev
->dev_sectors
;
6026 sector_t sync_blocks
;
6027 int still_degraded
= 0;
6030 if (sector_nr
>= max_sector
) {
6031 /* just being told to finish up .. nothing much to do */
6033 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
6038 if (mddev
->curr_resync
< max_sector
) /* aborted */
6039 md_bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
6041 else /* completed sync */
6043 md_bitmap_close_sync(mddev
->bitmap
);
6048 /* Allow raid5_quiesce to complete */
6049 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
6051 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6052 return reshape_request(mddev
, sector_nr
, skipped
);
6054 /* No need to check resync_max as we never do more than one
6055 * stripe, and as resync_max will always be on a chunk boundary,
6056 * if the check in md_do_sync didn't fire, there is no chance
6057 * of overstepping resync_max here
6060 /* if there is too many failed drives and we are trying
6061 * to resync, then assert that we are finished, because there is
6062 * nothing we can do.
6064 if (mddev
->degraded
>= conf
->max_degraded
&&
6065 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
6066 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
6070 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
6072 !md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
6073 sync_blocks
>= STRIPE_SECTORS
) {
6074 /* we can skip this block, and probably more */
6075 sync_blocks
/= STRIPE_SECTORS
;
6077 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
6080 md_bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
6082 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
6084 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
6085 /* make sure we don't swamp the stripe cache if someone else
6086 * is trying to get access
6088 schedule_timeout_uninterruptible(1);
6090 /* Need to check if array will still be degraded after recovery/resync
6091 * Note in case of > 1 drive failures it's possible we're rebuilding
6092 * one drive while leaving another faulty drive in array.
6095 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6096 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
6098 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
6103 md_bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
6105 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
6106 set_bit(STRIPE_HANDLE
, &sh
->state
);
6108 raid5_release_stripe(sh
);
6110 return STRIPE_SECTORS
;
6113 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
,
6114 unsigned int offset
)
6116 /* We may not be able to submit a whole bio at once as there
6117 * may not be enough stripe_heads available.
6118 * We cannot pre-allocate enough stripe_heads as we may need
6119 * more than exist in the cache (if we allow ever large chunks).
6120 * So we do one stripe head at a time and record in
6121 * ->bi_hw_segments how many have been done.
6123 * We *know* that this entire raid_bio is in one chunk, so
6124 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6126 struct stripe_head
*sh
;
6128 sector_t sector
, logical_sector
, last_sector
;
6132 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
6133 ~((sector_t
)STRIPE_SECTORS
-1);
6134 sector
= raid5_compute_sector(conf
, logical_sector
,
6136 last_sector
= bio_end_sector(raid_bio
);
6138 for (; logical_sector
< last_sector
;
6139 logical_sector
+= STRIPE_SECTORS
,
6140 sector
+= STRIPE_SECTORS
,
6144 /* already done this stripe */
6147 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
6150 /* failed to get a stripe - must wait */
6151 conf
->retry_read_aligned
= raid_bio
;
6152 conf
->retry_read_offset
= scnt
;
6156 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
6157 raid5_release_stripe(sh
);
6158 conf
->retry_read_aligned
= raid_bio
;
6159 conf
->retry_read_offset
= scnt
;
6163 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
6165 raid5_release_stripe(sh
);
6169 bio_endio(raid_bio
);
6171 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
6172 wake_up(&conf
->wait_for_quiescent
);
6176 static int handle_active_stripes(struct r5conf
*conf
, int group
,
6177 struct r5worker
*worker
,
6178 struct list_head
*temp_inactive_list
)
6180 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
6181 int i
, batch_size
= 0, hash
;
6182 bool release_inactive
= false;
6184 while (batch_size
< MAX_STRIPE_BATCH
&&
6185 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
6186 batch
[batch_size
++] = sh
;
6188 if (batch_size
== 0) {
6189 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6190 if (!list_empty(temp_inactive_list
+ i
))
6192 if (i
== NR_STRIPE_HASH_LOCKS
) {
6193 spin_unlock_irq(&conf
->device_lock
);
6194 log_flush_stripe_to_raid(conf
);
6195 spin_lock_irq(&conf
->device_lock
);
6198 release_inactive
= true;
6200 spin_unlock_irq(&conf
->device_lock
);
6202 release_inactive_stripe_list(conf
, temp_inactive_list
,
6203 NR_STRIPE_HASH_LOCKS
);
6205 r5l_flush_stripe_to_raid(conf
->log
);
6206 if (release_inactive
) {
6207 spin_lock_irq(&conf
->device_lock
);
6211 for (i
= 0; i
< batch_size
; i
++)
6212 handle_stripe(batch
[i
]);
6213 log_write_stripe_run(conf
);
6217 spin_lock_irq(&conf
->device_lock
);
6218 for (i
= 0; i
< batch_size
; i
++) {
6219 hash
= batch
[i
]->hash_lock_index
;
6220 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
6225 static void raid5_do_work(struct work_struct
*work
)
6227 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
6228 struct r5worker_group
*group
= worker
->group
;
6229 struct r5conf
*conf
= group
->conf
;
6230 struct mddev
*mddev
= conf
->mddev
;
6231 int group_id
= group
- conf
->worker_groups
;
6233 struct blk_plug plug
;
6235 pr_debug("+++ raid5worker active\n");
6237 blk_start_plug(&plug
);
6239 spin_lock_irq(&conf
->device_lock
);
6241 int batch_size
, released
;
6243 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
6245 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
6246 worker
->temp_inactive_list
);
6247 worker
->working
= false;
6248 if (!batch_size
&& !released
)
6250 handled
+= batch_size
;
6251 wait_event_lock_irq(mddev
->sb_wait
,
6252 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
),
6255 pr_debug("%d stripes handled\n", handled
);
6257 spin_unlock_irq(&conf
->device_lock
);
6259 flush_deferred_bios(conf
);
6261 r5l_flush_stripe_to_raid(conf
->log
);
6263 async_tx_issue_pending_all();
6264 blk_finish_plug(&plug
);
6266 pr_debug("--- raid5worker inactive\n");
6270 * This is our raid5 kernel thread.
6272 * We scan the hash table for stripes which can be handled now.
6273 * During the scan, completed stripes are saved for us by the interrupt
6274 * handler, so that they will not have to wait for our next wakeup.
6276 static void raid5d(struct md_thread
*thread
)
6278 struct mddev
*mddev
= thread
->mddev
;
6279 struct r5conf
*conf
= mddev
->private;
6281 struct blk_plug plug
;
6283 pr_debug("+++ raid5d active\n");
6285 md_check_recovery(mddev
);
6287 blk_start_plug(&plug
);
6289 spin_lock_irq(&conf
->device_lock
);
6292 int batch_size
, released
;
6293 unsigned int offset
;
6295 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6297 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6300 !list_empty(&conf
->bitmap_list
)) {
6301 /* Now is a good time to flush some bitmap updates */
6303 spin_unlock_irq(&conf
->device_lock
);
6304 md_bitmap_unplug(mddev
->bitmap
);
6305 spin_lock_irq(&conf
->device_lock
);
6306 conf
->seq_write
= conf
->seq_flush
;
6307 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6309 raid5_activate_delayed(conf
);
6311 while ((bio
= remove_bio_from_retry(conf
, &offset
))) {
6313 spin_unlock_irq(&conf
->device_lock
);
6314 ok
= retry_aligned_read(conf
, bio
, offset
);
6315 spin_lock_irq(&conf
->device_lock
);
6321 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6322 conf
->temp_inactive_list
);
6323 if (!batch_size
&& !released
)
6325 handled
+= batch_size
;
6327 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6328 spin_unlock_irq(&conf
->device_lock
);
6329 md_check_recovery(mddev
);
6330 spin_lock_irq(&conf
->device_lock
);
6333 pr_debug("%d stripes handled\n", handled
);
6335 spin_unlock_irq(&conf
->device_lock
);
6336 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6337 mutex_trylock(&conf
->cache_size_mutex
)) {
6338 grow_one_stripe(conf
, __GFP_NOWARN
);
6339 /* Set flag even if allocation failed. This helps
6340 * slow down allocation requests when mem is short
6342 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6343 mutex_unlock(&conf
->cache_size_mutex
);
6346 flush_deferred_bios(conf
);
6348 r5l_flush_stripe_to_raid(conf
->log
);
6350 async_tx_issue_pending_all();
6351 blk_finish_plug(&plug
);
6353 pr_debug("--- raid5d inactive\n");
6357 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6359 struct r5conf
*conf
;
6361 spin_lock(&mddev
->lock
);
6362 conf
= mddev
->private;
6364 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6365 spin_unlock(&mddev
->lock
);
6370 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6373 struct r5conf
*conf
= mddev
->private;
6375 if (size
<= 16 || size
> 32768)
6378 conf
->min_nr_stripes
= size
;
6379 mutex_lock(&conf
->cache_size_mutex
);
6380 while (size
< conf
->max_nr_stripes
&&
6381 drop_one_stripe(conf
))
6383 mutex_unlock(&conf
->cache_size_mutex
);
6385 md_allow_write(mddev
);
6387 mutex_lock(&conf
->cache_size_mutex
);
6388 while (size
> conf
->max_nr_stripes
)
6389 if (!grow_one_stripe(conf
, GFP_KERNEL
)) {
6390 conf
->min_nr_stripes
= conf
->max_nr_stripes
;
6394 mutex_unlock(&conf
->cache_size_mutex
);
6398 EXPORT_SYMBOL(raid5_set_cache_size
);
6401 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6403 struct r5conf
*conf
;
6407 if (len
>= PAGE_SIZE
)
6409 if (kstrtoul(page
, 10, &new))
6411 err
= mddev_lock(mddev
);
6414 conf
= mddev
->private;
6418 err
= raid5_set_cache_size(mddev
, new);
6419 mddev_unlock(mddev
);
6424 static struct md_sysfs_entry
6425 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6426 raid5_show_stripe_cache_size
,
6427 raid5_store_stripe_cache_size
);
6430 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6432 struct r5conf
*conf
= mddev
->private;
6434 return sprintf(page
, "%d\n", conf
->rmw_level
);
6440 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6442 struct r5conf
*conf
= mddev
->private;
6448 if (len
>= PAGE_SIZE
)
6451 if (kstrtoul(page
, 10, &new))
6454 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6457 if (new != PARITY_DISABLE_RMW
&&
6458 new != PARITY_ENABLE_RMW
&&
6459 new != PARITY_PREFER_RMW
)
6462 conf
->rmw_level
= new;
6466 static struct md_sysfs_entry
6467 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6468 raid5_show_rmw_level
,
6469 raid5_store_rmw_level
);
6473 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6475 struct r5conf
*conf
;
6477 spin_lock(&mddev
->lock
);
6478 conf
= mddev
->private;
6480 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6481 spin_unlock(&mddev
->lock
);
6486 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6488 struct r5conf
*conf
;
6492 if (len
>= PAGE_SIZE
)
6494 if (kstrtoul(page
, 10, &new))
6497 err
= mddev_lock(mddev
);
6500 conf
= mddev
->private;
6503 else if (new > conf
->min_nr_stripes
)
6506 conf
->bypass_threshold
= new;
6507 mddev_unlock(mddev
);
6511 static struct md_sysfs_entry
6512 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6514 raid5_show_preread_threshold
,
6515 raid5_store_preread_threshold
);
6518 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6520 struct r5conf
*conf
;
6522 spin_lock(&mddev
->lock
);
6523 conf
= mddev
->private;
6525 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6526 spin_unlock(&mddev
->lock
);
6531 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6533 struct r5conf
*conf
;
6537 if (len
>= PAGE_SIZE
)
6539 if (kstrtoul(page
, 10, &new))
6543 err
= mddev_lock(mddev
);
6546 conf
= mddev
->private;
6549 else if (new != conf
->skip_copy
) {
6550 mddev_suspend(mddev
);
6551 conf
->skip_copy
= new;
6553 mddev
->queue
->backing_dev_info
->capabilities
|=
6554 BDI_CAP_STABLE_WRITES
;
6556 mddev
->queue
->backing_dev_info
->capabilities
&=
6557 ~BDI_CAP_STABLE_WRITES
;
6558 mddev_resume(mddev
);
6560 mddev_unlock(mddev
);
6564 static struct md_sysfs_entry
6565 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6566 raid5_show_skip_copy
,
6567 raid5_store_skip_copy
);
6570 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6572 struct r5conf
*conf
= mddev
->private;
6574 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6579 static struct md_sysfs_entry
6580 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6583 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6585 struct r5conf
*conf
;
6587 spin_lock(&mddev
->lock
);
6588 conf
= mddev
->private;
6590 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6591 spin_unlock(&mddev
->lock
);
6595 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6597 int *worker_cnt_per_group
,
6598 struct r5worker_group
**worker_groups
);
6600 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6602 struct r5conf
*conf
;
6605 struct r5worker_group
*new_groups
, *old_groups
;
6606 int group_cnt
, worker_cnt_per_group
;
6608 if (len
>= PAGE_SIZE
)
6610 if (kstrtouint(page
, 10, &new))
6612 /* 8192 should be big enough */
6616 err
= mddev_lock(mddev
);
6619 conf
= mddev
->private;
6622 else if (new != conf
->worker_cnt_per_group
) {
6623 mddev_suspend(mddev
);
6625 old_groups
= conf
->worker_groups
;
6627 flush_workqueue(raid5_wq
);
6629 err
= alloc_thread_groups(conf
, new,
6630 &group_cnt
, &worker_cnt_per_group
,
6633 spin_lock_irq(&conf
->device_lock
);
6634 conf
->group_cnt
= group_cnt
;
6635 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6636 conf
->worker_groups
= new_groups
;
6637 spin_unlock_irq(&conf
->device_lock
);
6640 kfree(old_groups
[0].workers
);
6643 mddev_resume(mddev
);
6645 mddev_unlock(mddev
);
6650 static struct md_sysfs_entry
6651 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6652 raid5_show_group_thread_cnt
,
6653 raid5_store_group_thread_cnt
);
6655 static struct attribute
*raid5_attrs
[] = {
6656 &raid5_stripecache_size
.attr
,
6657 &raid5_stripecache_active
.attr
,
6658 &raid5_preread_bypass_threshold
.attr
,
6659 &raid5_group_thread_cnt
.attr
,
6660 &raid5_skip_copy
.attr
,
6661 &raid5_rmw_level
.attr
,
6662 &r5c_journal_mode
.attr
,
6665 static struct attribute_group raid5_attrs_group
= {
6667 .attrs
= raid5_attrs
,
6670 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6672 int *worker_cnt_per_group
,
6673 struct r5worker_group
**worker_groups
)
6677 struct r5worker
*workers
;
6679 *worker_cnt_per_group
= cnt
;
6682 *worker_groups
= NULL
;
6685 *group_cnt
= num_possible_nodes();
6686 size
= sizeof(struct r5worker
) * cnt
;
6687 workers
= kcalloc(size
, *group_cnt
, GFP_NOIO
);
6688 *worker_groups
= kcalloc(*group_cnt
, sizeof(struct r5worker_group
),
6690 if (!*worker_groups
|| !workers
) {
6692 kfree(*worker_groups
);
6696 for (i
= 0; i
< *group_cnt
; i
++) {
6697 struct r5worker_group
*group
;
6699 group
= &(*worker_groups
)[i
];
6700 INIT_LIST_HEAD(&group
->handle_list
);
6701 INIT_LIST_HEAD(&group
->loprio_list
);
6703 group
->workers
= workers
+ i
* cnt
;
6705 for (j
= 0; j
< cnt
; j
++) {
6706 struct r5worker
*worker
= group
->workers
+ j
;
6707 worker
->group
= group
;
6708 INIT_WORK(&worker
->work
, raid5_do_work
);
6710 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6711 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6718 static void free_thread_groups(struct r5conf
*conf
)
6720 if (conf
->worker_groups
)
6721 kfree(conf
->worker_groups
[0].workers
);
6722 kfree(conf
->worker_groups
);
6723 conf
->worker_groups
= NULL
;
6727 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6729 struct r5conf
*conf
= mddev
->private;
6732 sectors
= mddev
->dev_sectors
;
6734 /* size is defined by the smallest of previous and new size */
6735 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6737 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6738 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6739 return sectors
* (raid_disks
- conf
->max_degraded
);
6742 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6744 safe_put_page(percpu
->spare_page
);
6745 if (percpu
->scribble
)
6746 flex_array_free(percpu
->scribble
);
6747 percpu
->spare_page
= NULL
;
6748 percpu
->scribble
= NULL
;
6751 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6753 if (conf
->level
== 6 && !percpu
->spare_page
)
6754 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6755 if (!percpu
->scribble
)
6756 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6757 conf
->previous_raid_disks
),
6758 max(conf
->chunk_sectors
,
6759 conf
->prev_chunk_sectors
)
6763 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6764 free_scratch_buffer(conf
, percpu
);
6771 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
6773 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6775 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6779 static void raid5_free_percpu(struct r5conf
*conf
)
6784 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6785 free_percpu(conf
->percpu
);
6788 static void free_conf(struct r5conf
*conf
)
6794 unregister_shrinker(&conf
->shrinker
);
6795 free_thread_groups(conf
);
6796 shrink_stripes(conf
);
6797 raid5_free_percpu(conf
);
6798 for (i
= 0; i
< conf
->pool_size
; i
++)
6799 if (conf
->disks
[i
].extra_page
)
6800 put_page(conf
->disks
[i
].extra_page
);
6802 bioset_exit(&conf
->bio_split
);
6803 kfree(conf
->stripe_hashtbl
);
6804 kfree(conf
->pending_data
);
6808 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
6810 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
6811 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6813 if (alloc_scratch_buffer(conf
, percpu
)) {
6814 pr_warn("%s: failed memory allocation for cpu%u\n",
6821 static int raid5_alloc_percpu(struct r5conf
*conf
)
6825 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6829 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
6831 conf
->scribble_disks
= max(conf
->raid_disks
,
6832 conf
->previous_raid_disks
);
6833 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6834 conf
->prev_chunk_sectors
);
6839 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6840 struct shrink_control
*sc
)
6842 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6843 unsigned long ret
= SHRINK_STOP
;
6845 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6847 while (ret
< sc
->nr_to_scan
&&
6848 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6849 if (drop_one_stripe(conf
) == 0) {
6855 mutex_unlock(&conf
->cache_size_mutex
);
6860 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6861 struct shrink_control
*sc
)
6863 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6865 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6866 /* unlikely, but not impossible */
6868 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6871 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6873 struct r5conf
*conf
;
6874 int raid_disk
, memory
, max_disks
;
6875 struct md_rdev
*rdev
;
6876 struct disk_info
*disk
;
6879 int group_cnt
, worker_cnt_per_group
;
6880 struct r5worker_group
*new_group
;
6883 if (mddev
->new_level
!= 5
6884 && mddev
->new_level
!= 4
6885 && mddev
->new_level
!= 6) {
6886 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6887 mdname(mddev
), mddev
->new_level
);
6888 return ERR_PTR(-EIO
);
6890 if ((mddev
->new_level
== 5
6891 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6892 (mddev
->new_level
== 6
6893 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6894 pr_warn("md/raid:%s: layout %d not supported\n",
6895 mdname(mddev
), mddev
->new_layout
);
6896 return ERR_PTR(-EIO
);
6898 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6899 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6900 mdname(mddev
), mddev
->raid_disks
);
6901 return ERR_PTR(-EINVAL
);
6904 if (!mddev
->new_chunk_sectors
||
6905 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6906 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6907 pr_warn("md/raid:%s: invalid chunk size %d\n",
6908 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6909 return ERR_PTR(-EINVAL
);
6912 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6915 INIT_LIST_HEAD(&conf
->free_list
);
6916 INIT_LIST_HEAD(&conf
->pending_list
);
6917 conf
->pending_data
= kcalloc(PENDING_IO_MAX
,
6918 sizeof(struct r5pending_data
),
6920 if (!conf
->pending_data
)
6922 for (i
= 0; i
< PENDING_IO_MAX
; i
++)
6923 list_add(&conf
->pending_data
[i
].sibling
, &conf
->free_list
);
6924 /* Don't enable multi-threading by default*/
6925 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6927 conf
->group_cnt
= group_cnt
;
6928 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6929 conf
->worker_groups
= new_group
;
6932 spin_lock_init(&conf
->device_lock
);
6933 seqcount_init(&conf
->gen_lock
);
6934 mutex_init(&conf
->cache_size_mutex
);
6935 init_waitqueue_head(&conf
->wait_for_quiescent
);
6936 init_waitqueue_head(&conf
->wait_for_stripe
);
6937 init_waitqueue_head(&conf
->wait_for_overlap
);
6938 INIT_LIST_HEAD(&conf
->handle_list
);
6939 INIT_LIST_HEAD(&conf
->loprio_list
);
6940 INIT_LIST_HEAD(&conf
->hold_list
);
6941 INIT_LIST_HEAD(&conf
->delayed_list
);
6942 INIT_LIST_HEAD(&conf
->bitmap_list
);
6943 init_llist_head(&conf
->released_stripes
);
6944 atomic_set(&conf
->active_stripes
, 0);
6945 atomic_set(&conf
->preread_active_stripes
, 0);
6946 atomic_set(&conf
->active_aligned_reads
, 0);
6947 spin_lock_init(&conf
->pending_bios_lock
);
6948 conf
->batch_bio_dispatch
= true;
6949 rdev_for_each(rdev
, mddev
) {
6950 if (test_bit(Journal
, &rdev
->flags
))
6952 if (blk_queue_nonrot(bdev_get_queue(rdev
->bdev
))) {
6953 conf
->batch_bio_dispatch
= false;
6958 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6959 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6961 conf
->raid_disks
= mddev
->raid_disks
;
6962 if (mddev
->reshape_position
== MaxSector
)
6963 conf
->previous_raid_disks
= mddev
->raid_disks
;
6965 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6966 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6968 conf
->disks
= kcalloc(max_disks
, sizeof(struct disk_info
),
6974 for (i
= 0; i
< max_disks
; i
++) {
6975 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
6976 if (!conf
->disks
[i
].extra_page
)
6980 ret
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
6983 conf
->mddev
= mddev
;
6985 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6988 /* We init hash_locks[0] separately to that it can be used
6989 * as the reference lock in the spin_lock_nest_lock() call
6990 * in lock_all_device_hash_locks_irq in order to convince
6991 * lockdep that we know what we are doing.
6993 spin_lock_init(conf
->hash_locks
);
6994 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6995 spin_lock_init(conf
->hash_locks
+ i
);
6997 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6998 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
7000 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
7001 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
7003 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
7004 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
7005 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
7006 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
7007 atomic_set(&conf
->r5c_flushing_full_stripes
, 0);
7008 atomic_set(&conf
->r5c_flushing_partial_stripes
, 0);
7010 conf
->level
= mddev
->new_level
;
7011 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7012 if (raid5_alloc_percpu(conf
) != 0)
7015 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
7017 rdev_for_each(rdev
, mddev
) {
7018 raid_disk
= rdev
->raid_disk
;
7019 if (raid_disk
>= max_disks
7020 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
7022 disk
= conf
->disks
+ raid_disk
;
7024 if (test_bit(Replacement
, &rdev
->flags
)) {
7025 if (disk
->replacement
)
7027 disk
->replacement
= rdev
;
7034 if (test_bit(In_sync
, &rdev
->flags
)) {
7035 char b
[BDEVNAME_SIZE
];
7036 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7037 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
7038 } else if (rdev
->saved_raid_disk
!= raid_disk
)
7039 /* Cannot rely on bitmap to complete recovery */
7043 conf
->level
= mddev
->new_level
;
7044 if (conf
->level
== 6) {
7045 conf
->max_degraded
= 2;
7046 if (raid6_call
.xor_syndrome
)
7047 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7049 conf
->rmw_level
= PARITY_DISABLE_RMW
;
7051 conf
->max_degraded
= 1;
7052 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7054 conf
->algorithm
= mddev
->new_layout
;
7055 conf
->reshape_progress
= mddev
->reshape_position
;
7056 if (conf
->reshape_progress
!= MaxSector
) {
7057 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
7058 conf
->prev_algo
= mddev
->layout
;
7060 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7061 conf
->prev_algo
= conf
->algorithm
;
7064 conf
->min_nr_stripes
= NR_STRIPES
;
7065 if (mddev
->reshape_position
!= MaxSector
) {
7066 int stripes
= max_t(int,
7067 ((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4,
7068 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4);
7069 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
7070 if (conf
->min_nr_stripes
!= NR_STRIPES
)
7071 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7072 mdname(mddev
), conf
->min_nr_stripes
);
7074 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
7075 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
7076 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
7077 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
7078 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7079 mdname(mddev
), memory
);
7082 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
7084 * Losing a stripe head costs more than the time to refill it,
7085 * it reduces the queue depth and so can hurt throughput.
7086 * So set it rather large, scaled by number of devices.
7088 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
7089 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
7090 conf
->shrinker
.count_objects
= raid5_cache_count
;
7091 conf
->shrinker
.batch
= 128;
7092 conf
->shrinker
.flags
= 0;
7093 if (register_shrinker(&conf
->shrinker
)) {
7094 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7099 sprintf(pers_name
, "raid%d", mddev
->new_level
);
7100 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
7101 if (!conf
->thread
) {
7102 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7112 return ERR_PTR(-EIO
);
7114 return ERR_PTR(-ENOMEM
);
7117 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
7120 case ALGORITHM_PARITY_0
:
7121 if (raid_disk
< max_degraded
)
7124 case ALGORITHM_PARITY_N
:
7125 if (raid_disk
>= raid_disks
- max_degraded
)
7128 case ALGORITHM_PARITY_0_6
:
7129 if (raid_disk
== 0 ||
7130 raid_disk
== raid_disks
- 1)
7133 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7134 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7135 case ALGORITHM_LEFT_SYMMETRIC_6
:
7136 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7137 if (raid_disk
== raid_disks
- 1)
7143 static int raid5_run(struct mddev
*mddev
)
7145 struct r5conf
*conf
;
7146 int working_disks
= 0;
7147 int dirty_parity_disks
= 0;
7148 struct md_rdev
*rdev
;
7149 struct md_rdev
*journal_dev
= NULL
;
7150 sector_t reshape_offset
= 0;
7152 long long min_offset_diff
= 0;
7155 if (mddev_init_writes_pending(mddev
) < 0)
7158 if (mddev
->recovery_cp
!= MaxSector
)
7159 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7162 rdev_for_each(rdev
, mddev
) {
7165 if (test_bit(Journal
, &rdev
->flags
)) {
7169 if (rdev
->raid_disk
< 0)
7171 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
7173 min_offset_diff
= diff
;
7175 } else if (mddev
->reshape_backwards
&&
7176 diff
< min_offset_diff
)
7177 min_offset_diff
= diff
;
7178 else if (!mddev
->reshape_backwards
&&
7179 diff
> min_offset_diff
)
7180 min_offset_diff
= diff
;
7183 if ((test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) || journal_dev
) &&
7184 (mddev
->bitmap_info
.offset
|| mddev
->bitmap_info
.file
)) {
7185 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7190 if (mddev
->reshape_position
!= MaxSector
) {
7191 /* Check that we can continue the reshape.
7192 * Difficulties arise if the stripe we would write to
7193 * next is at or after the stripe we would read from next.
7194 * For a reshape that changes the number of devices, this
7195 * is only possible for a very short time, and mdadm makes
7196 * sure that time appears to have past before assembling
7197 * the array. So we fail if that time hasn't passed.
7198 * For a reshape that keeps the number of devices the same
7199 * mdadm must be monitoring the reshape can keeping the
7200 * critical areas read-only and backed up. It will start
7201 * the array in read-only mode, so we check for that.
7203 sector_t here_new
, here_old
;
7205 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
7210 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7215 if (mddev
->new_level
!= mddev
->level
) {
7216 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7220 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7221 /* reshape_position must be on a new-stripe boundary, and one
7222 * further up in new geometry must map after here in old
7224 * If the chunk sizes are different, then as we perform reshape
7225 * in units of the largest of the two, reshape_position needs
7226 * be a multiple of the largest chunk size times new data disks.
7228 here_new
= mddev
->reshape_position
;
7229 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
7230 new_data_disks
= mddev
->raid_disks
- max_degraded
;
7231 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
7232 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7236 reshape_offset
= here_new
* chunk_sectors
;
7237 /* here_new is the stripe we will write to */
7238 here_old
= mddev
->reshape_position
;
7239 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
7240 /* here_old is the first stripe that we might need to read
7242 if (mddev
->delta_disks
== 0) {
7243 /* We cannot be sure it is safe to start an in-place
7244 * reshape. It is only safe if user-space is monitoring
7245 * and taking constant backups.
7246 * mdadm always starts a situation like this in
7247 * readonly mode so it can take control before
7248 * allowing any writes. So just check for that.
7250 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
7251 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
7252 /* not really in-place - so OK */;
7253 else if (mddev
->ro
== 0) {
7254 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7258 } else if (mddev
->reshape_backwards
7259 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
7260 here_old
* chunk_sectors
)
7261 : (here_new
* chunk_sectors
>=
7262 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
7263 /* Reading from the same stripe as writing to - bad */
7264 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7268 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
7269 /* OK, we should be able to continue; */
7271 BUG_ON(mddev
->level
!= mddev
->new_level
);
7272 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
7273 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
7274 BUG_ON(mddev
->delta_disks
!= 0);
7277 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) &&
7278 test_bit(MD_HAS_PPL
, &mddev
->flags
)) {
7279 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7281 clear_bit(MD_HAS_PPL
, &mddev
->flags
);
7282 clear_bit(MD_HAS_MULTIPLE_PPLS
, &mddev
->flags
);
7285 if (mddev
->private == NULL
)
7286 conf
= setup_conf(mddev
);
7288 conf
= mddev
->private;
7291 return PTR_ERR(conf
);
7293 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
7295 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7298 set_disk_ro(mddev
->gendisk
, 1);
7299 } else if (mddev
->recovery_cp
== MaxSector
)
7300 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
7303 conf
->min_offset_diff
= min_offset_diff
;
7304 mddev
->thread
= conf
->thread
;
7305 conf
->thread
= NULL
;
7306 mddev
->private = conf
;
7308 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
7310 rdev
= conf
->disks
[i
].rdev
;
7311 if (!rdev
&& conf
->disks
[i
].replacement
) {
7312 /* The replacement is all we have yet */
7313 rdev
= conf
->disks
[i
].replacement
;
7314 conf
->disks
[i
].replacement
= NULL
;
7315 clear_bit(Replacement
, &rdev
->flags
);
7316 conf
->disks
[i
].rdev
= rdev
;
7320 if (conf
->disks
[i
].replacement
&&
7321 conf
->reshape_progress
!= MaxSector
) {
7322 /* replacements and reshape simply do not mix. */
7323 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7326 if (test_bit(In_sync
, &rdev
->flags
)) {
7330 /* This disc is not fully in-sync. However if it
7331 * just stored parity (beyond the recovery_offset),
7332 * when we don't need to be concerned about the
7333 * array being dirty.
7334 * When reshape goes 'backwards', we never have
7335 * partially completed devices, so we only need
7336 * to worry about reshape going forwards.
7338 /* Hack because v0.91 doesn't store recovery_offset properly. */
7339 if (mddev
->major_version
== 0 &&
7340 mddev
->minor_version
> 90)
7341 rdev
->recovery_offset
= reshape_offset
;
7343 if (rdev
->recovery_offset
< reshape_offset
) {
7344 /* We need to check old and new layout */
7345 if (!only_parity(rdev
->raid_disk
,
7348 conf
->max_degraded
))
7351 if (!only_parity(rdev
->raid_disk
,
7353 conf
->previous_raid_disks
,
7354 conf
->max_degraded
))
7356 dirty_parity_disks
++;
7360 * 0 for a fully functional array, 1 or 2 for a degraded array.
7362 mddev
->degraded
= raid5_calc_degraded(conf
);
7364 if (has_failed(conf
)) {
7365 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7366 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7370 /* device size must be a multiple of chunk size */
7371 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
7372 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7374 if (mddev
->degraded
> dirty_parity_disks
&&
7375 mddev
->recovery_cp
!= MaxSector
) {
7376 if (test_bit(MD_HAS_PPL
, &mddev
->flags
))
7377 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7379 else if (mddev
->ok_start_degraded
)
7380 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7383 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7389 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7390 mdname(mddev
), conf
->level
,
7391 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
7394 print_raid5_conf(conf
);
7396 if (conf
->reshape_progress
!= MaxSector
) {
7397 conf
->reshape_safe
= conf
->reshape_progress
;
7398 atomic_set(&conf
->reshape_stripes
, 0);
7399 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7400 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7401 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7402 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7403 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7405 if (!mddev
->sync_thread
)
7409 /* Ok, everything is just fine now */
7410 if (mddev
->to_remove
== &raid5_attrs_group
)
7411 mddev
->to_remove
= NULL
;
7412 else if (mddev
->kobj
.sd
&&
7413 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
7414 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7416 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7420 /* read-ahead size must cover two whole stripes, which
7421 * is 2 * (datadisks) * chunksize where 'n' is the
7422 * number of raid devices
7424 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7425 int stripe
= data_disks
*
7426 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
7427 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
7428 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
7430 chunk_size
= mddev
->chunk_sectors
<< 9;
7431 blk_queue_io_min(mddev
->queue
, chunk_size
);
7432 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7433 (conf
->raid_disks
- conf
->max_degraded
));
7434 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7436 * We can only discard a whole stripe. It doesn't make sense to
7437 * discard data disk but write parity disk
7439 stripe
= stripe
* PAGE_SIZE
;
7440 /* Round up to power of 2, as discard handling
7441 * currently assumes that */
7442 while ((stripe
-1) & stripe
)
7443 stripe
= (stripe
| (stripe
-1)) + 1;
7444 mddev
->queue
->limits
.discard_alignment
= stripe
;
7445 mddev
->queue
->limits
.discard_granularity
= stripe
;
7447 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7448 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
7450 rdev_for_each(rdev
, mddev
) {
7451 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7452 rdev
->data_offset
<< 9);
7453 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7454 rdev
->new_data_offset
<< 9);
7458 * zeroing is required, otherwise data
7459 * could be lost. Consider a scenario: discard a stripe
7460 * (the stripe could be inconsistent if
7461 * discard_zeroes_data is 0); write one disk of the
7462 * stripe (the stripe could be inconsistent again
7463 * depending on which disks are used to calculate
7464 * parity); the disk is broken; The stripe data of this
7467 * We only allow DISCARD if the sysadmin has confirmed that
7468 * only safe devices are in use by setting a module parameter.
7469 * A better idea might be to turn DISCARD into WRITE_ZEROES
7470 * requests, as that is required to be safe.
7472 if (devices_handle_discard_safely
&&
7473 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7474 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7475 blk_queue_flag_set(QUEUE_FLAG_DISCARD
,
7478 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
,
7481 blk_queue_max_hw_sectors(mddev
->queue
, UINT_MAX
);
7484 if (log_init(conf
, journal_dev
, raid5_has_ppl(conf
)))
7489 md_unregister_thread(&mddev
->thread
);
7490 print_raid5_conf(conf
);
7492 mddev
->private = NULL
;
7493 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7497 static void raid5_free(struct mddev
*mddev
, void *priv
)
7499 struct r5conf
*conf
= priv
;
7502 mddev
->to_remove
= &raid5_attrs_group
;
7505 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
7507 struct r5conf
*conf
= mddev
->private;
7510 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7511 conf
->chunk_sectors
/ 2, mddev
->layout
);
7512 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7514 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7515 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
7516 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
7519 seq_printf (seq
, "]");
7522 static void print_raid5_conf (struct r5conf
*conf
)
7525 struct disk_info
*tmp
;
7527 pr_debug("RAID conf printout:\n");
7529 pr_debug("(conf==NULL)\n");
7532 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
7534 conf
->raid_disks
- conf
->mddev
->degraded
);
7536 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7537 char b
[BDEVNAME_SIZE
];
7538 tmp
= conf
->disks
+ i
;
7540 pr_debug(" disk %d, o:%d, dev:%s\n",
7541 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7542 bdevname(tmp
->rdev
->bdev
, b
));
7546 static int raid5_spare_active(struct mddev
*mddev
)
7549 struct r5conf
*conf
= mddev
->private;
7550 struct disk_info
*tmp
;
7552 unsigned long flags
;
7554 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7555 tmp
= conf
->disks
+ i
;
7556 if (tmp
->replacement
7557 && tmp
->replacement
->recovery_offset
== MaxSector
7558 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7559 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7560 /* Replacement has just become active. */
7562 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7565 /* Replaced device not technically faulty,
7566 * but we need to be sure it gets removed
7567 * and never re-added.
7569 set_bit(Faulty
, &tmp
->rdev
->flags
);
7570 sysfs_notify_dirent_safe(
7571 tmp
->rdev
->sysfs_state
);
7573 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7574 } else if (tmp
->rdev
7575 && tmp
->rdev
->recovery_offset
== MaxSector
7576 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7577 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7579 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7582 spin_lock_irqsave(&conf
->device_lock
, flags
);
7583 mddev
->degraded
= raid5_calc_degraded(conf
);
7584 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7585 print_raid5_conf(conf
);
7589 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7591 struct r5conf
*conf
= mddev
->private;
7593 int number
= rdev
->raid_disk
;
7594 struct md_rdev
**rdevp
;
7595 struct disk_info
*p
= conf
->disks
+ number
;
7597 print_raid5_conf(conf
);
7598 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
7600 * we can't wait pending write here, as this is called in
7601 * raid5d, wait will deadlock.
7602 * neilb: there is no locking about new writes here,
7603 * so this cannot be safe.
7605 if (atomic_read(&conf
->active_stripes
) ||
7606 atomic_read(&conf
->r5c_cached_full_stripes
) ||
7607 atomic_read(&conf
->r5c_cached_partial_stripes
)) {
7613 if (rdev
== p
->rdev
)
7615 else if (rdev
== p
->replacement
)
7616 rdevp
= &p
->replacement
;
7620 if (number
>= conf
->raid_disks
&&
7621 conf
->reshape_progress
== MaxSector
)
7622 clear_bit(In_sync
, &rdev
->flags
);
7624 if (test_bit(In_sync
, &rdev
->flags
) ||
7625 atomic_read(&rdev
->nr_pending
)) {
7629 /* Only remove non-faulty devices if recovery
7632 if (!test_bit(Faulty
, &rdev
->flags
) &&
7633 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7634 !has_failed(conf
) &&
7635 (!p
->replacement
|| p
->replacement
== rdev
) &&
7636 number
< conf
->raid_disks
) {
7641 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
7643 if (atomic_read(&rdev
->nr_pending
)) {
7644 /* lost the race, try later */
7650 err
= log_modify(conf
, rdev
, false);
7654 if (p
->replacement
) {
7655 /* We must have just cleared 'rdev' */
7656 p
->rdev
= p
->replacement
;
7657 clear_bit(Replacement
, &p
->replacement
->flags
);
7658 smp_mb(); /* Make sure other CPUs may see both as identical
7659 * but will never see neither - if they are careful
7661 p
->replacement
= NULL
;
7664 err
= log_modify(conf
, p
->rdev
, true);
7667 clear_bit(WantReplacement
, &rdev
->flags
);
7670 print_raid5_conf(conf
);
7674 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7676 struct r5conf
*conf
= mddev
->private;
7677 int ret
, err
= -EEXIST
;
7679 struct disk_info
*p
;
7681 int last
= conf
->raid_disks
- 1;
7683 if (test_bit(Journal
, &rdev
->flags
)) {
7687 rdev
->raid_disk
= 0;
7689 * The array is in readonly mode if journal is missing, so no
7690 * write requests running. We should be safe
7692 ret
= log_init(conf
, rdev
, false);
7696 ret
= r5l_start(conf
->log
);
7702 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7705 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7706 /* no point adding a device */
7709 if (rdev
->raid_disk
>= 0)
7710 first
= last
= rdev
->raid_disk
;
7713 * find the disk ... but prefer rdev->saved_raid_disk
7716 if (rdev
->saved_raid_disk
>= 0 &&
7717 rdev
->saved_raid_disk
>= first
&&
7718 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7719 first
= rdev
->saved_raid_disk
;
7721 for (disk
= first
; disk
<= last
; disk
++) {
7722 p
= conf
->disks
+ disk
;
7723 if (p
->rdev
== NULL
) {
7724 clear_bit(In_sync
, &rdev
->flags
);
7725 rdev
->raid_disk
= disk
;
7726 if (rdev
->saved_raid_disk
!= disk
)
7728 rcu_assign_pointer(p
->rdev
, rdev
);
7730 err
= log_modify(conf
, rdev
, true);
7735 for (disk
= first
; disk
<= last
; disk
++) {
7736 p
= conf
->disks
+ disk
;
7737 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7738 p
->replacement
== NULL
) {
7739 clear_bit(In_sync
, &rdev
->flags
);
7740 set_bit(Replacement
, &rdev
->flags
);
7741 rdev
->raid_disk
= disk
;
7744 rcu_assign_pointer(p
->replacement
, rdev
);
7749 print_raid5_conf(conf
);
7753 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7755 /* no resync is happening, and there is enough space
7756 * on all devices, so we can resize.
7757 * We need to make sure resync covers any new space.
7758 * If the array is shrinking we should possibly wait until
7759 * any io in the removed space completes, but it hardly seems
7763 struct r5conf
*conf
= mddev
->private;
7765 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7767 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7768 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7769 if (mddev
->external_size
&&
7770 mddev
->array_sectors
> newsize
)
7772 if (mddev
->bitmap
) {
7773 int ret
= md_bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7777 md_set_array_sectors(mddev
, newsize
);
7778 if (sectors
> mddev
->dev_sectors
&&
7779 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7780 mddev
->recovery_cp
= mddev
->dev_sectors
;
7781 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7783 mddev
->dev_sectors
= sectors
;
7784 mddev
->resync_max_sectors
= sectors
;
7788 static int check_stripe_cache(struct mddev
*mddev
)
7790 /* Can only proceed if there are plenty of stripe_heads.
7791 * We need a minimum of one full stripe,, and for sensible progress
7792 * it is best to have about 4 times that.
7793 * If we require 4 times, then the default 256 4K stripe_heads will
7794 * allow for chunk sizes up to 256K, which is probably OK.
7795 * If the chunk size is greater, user-space should request more
7796 * stripe_heads first.
7798 struct r5conf
*conf
= mddev
->private;
7799 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7800 > conf
->min_nr_stripes
||
7801 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7802 > conf
->min_nr_stripes
) {
7803 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7805 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7812 static int check_reshape(struct mddev
*mddev
)
7814 struct r5conf
*conf
= mddev
->private;
7816 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
7818 if (mddev
->delta_disks
== 0 &&
7819 mddev
->new_layout
== mddev
->layout
&&
7820 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7821 return 0; /* nothing to do */
7822 if (has_failed(conf
))
7824 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7825 /* We might be able to shrink, but the devices must
7826 * be made bigger first.
7827 * For raid6, 4 is the minimum size.
7828 * Otherwise 2 is the minimum
7831 if (mddev
->level
== 6)
7833 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7837 if (!check_stripe_cache(mddev
))
7840 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7841 mddev
->delta_disks
> 0)
7842 if (resize_chunks(conf
,
7843 conf
->previous_raid_disks
7844 + max(0, mddev
->delta_disks
),
7845 max(mddev
->new_chunk_sectors
,
7846 mddev
->chunk_sectors
)
7850 if (conf
->previous_raid_disks
+ mddev
->delta_disks
<= conf
->pool_size
)
7851 return 0; /* never bother to shrink */
7852 return resize_stripes(conf
, (conf
->previous_raid_disks
7853 + mddev
->delta_disks
));
7856 static int raid5_start_reshape(struct mddev
*mddev
)
7858 struct r5conf
*conf
= mddev
->private;
7859 struct md_rdev
*rdev
;
7861 unsigned long flags
;
7863 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7866 if (!check_stripe_cache(mddev
))
7869 if (has_failed(conf
))
7872 rdev_for_each(rdev
, mddev
) {
7873 if (!test_bit(In_sync
, &rdev
->flags
)
7874 && !test_bit(Faulty
, &rdev
->flags
))
7878 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7879 /* Not enough devices even to make a degraded array
7884 /* Refuse to reduce size of the array. Any reductions in
7885 * array size must be through explicit setting of array_size
7888 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7889 < mddev
->array_sectors
) {
7890 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7895 atomic_set(&conf
->reshape_stripes
, 0);
7896 spin_lock_irq(&conf
->device_lock
);
7897 write_seqcount_begin(&conf
->gen_lock
);
7898 conf
->previous_raid_disks
= conf
->raid_disks
;
7899 conf
->raid_disks
+= mddev
->delta_disks
;
7900 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7901 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7902 conf
->prev_algo
= conf
->algorithm
;
7903 conf
->algorithm
= mddev
->new_layout
;
7905 /* Code that selects data_offset needs to see the generation update
7906 * if reshape_progress has been set - so a memory barrier needed.
7909 if (mddev
->reshape_backwards
)
7910 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7912 conf
->reshape_progress
= 0;
7913 conf
->reshape_safe
= conf
->reshape_progress
;
7914 write_seqcount_end(&conf
->gen_lock
);
7915 spin_unlock_irq(&conf
->device_lock
);
7917 /* Now make sure any requests that proceeded on the assumption
7918 * the reshape wasn't running - like Discard or Read - have
7921 mddev_suspend(mddev
);
7922 mddev_resume(mddev
);
7924 /* Add some new drives, as many as will fit.
7925 * We know there are enough to make the newly sized array work.
7926 * Don't add devices if we are reducing the number of
7927 * devices in the array. This is because it is not possible
7928 * to correctly record the "partially reconstructed" state of
7929 * such devices during the reshape and confusion could result.
7931 if (mddev
->delta_disks
>= 0) {
7932 rdev_for_each(rdev
, mddev
)
7933 if (rdev
->raid_disk
< 0 &&
7934 !test_bit(Faulty
, &rdev
->flags
)) {
7935 if (raid5_add_disk(mddev
, rdev
) == 0) {
7937 >= conf
->previous_raid_disks
)
7938 set_bit(In_sync
, &rdev
->flags
);
7940 rdev
->recovery_offset
= 0;
7942 if (sysfs_link_rdev(mddev
, rdev
))
7943 /* Failure here is OK */;
7945 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7946 && !test_bit(Faulty
, &rdev
->flags
)) {
7947 /* This is a spare that was manually added */
7948 set_bit(In_sync
, &rdev
->flags
);
7951 /* When a reshape changes the number of devices,
7952 * ->degraded is measured against the larger of the
7953 * pre and post number of devices.
7955 spin_lock_irqsave(&conf
->device_lock
, flags
);
7956 mddev
->degraded
= raid5_calc_degraded(conf
);
7957 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7959 mddev
->raid_disks
= conf
->raid_disks
;
7960 mddev
->reshape_position
= conf
->reshape_progress
;
7961 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
7963 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7964 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7965 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7966 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7967 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7968 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7970 if (!mddev
->sync_thread
) {
7971 mddev
->recovery
= 0;
7972 spin_lock_irq(&conf
->device_lock
);
7973 write_seqcount_begin(&conf
->gen_lock
);
7974 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7975 mddev
->new_chunk_sectors
=
7976 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7977 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7978 rdev_for_each(rdev
, mddev
)
7979 rdev
->new_data_offset
= rdev
->data_offset
;
7981 conf
->generation
--;
7982 conf
->reshape_progress
= MaxSector
;
7983 mddev
->reshape_position
= MaxSector
;
7984 write_seqcount_end(&conf
->gen_lock
);
7985 spin_unlock_irq(&conf
->device_lock
);
7988 conf
->reshape_checkpoint
= jiffies
;
7989 md_wakeup_thread(mddev
->sync_thread
);
7990 md_new_event(mddev
);
7994 /* This is called from the reshape thread and should make any
7995 * changes needed in 'conf'
7997 static void end_reshape(struct r5conf
*conf
)
8000 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
8001 struct md_rdev
*rdev
;
8003 spin_lock_irq(&conf
->device_lock
);
8004 conf
->previous_raid_disks
= conf
->raid_disks
;
8005 md_finish_reshape(conf
->mddev
);
8007 conf
->reshape_progress
= MaxSector
;
8008 conf
->mddev
->reshape_position
= MaxSector
;
8009 rdev_for_each(rdev
, conf
->mddev
)
8010 if (rdev
->raid_disk
>= 0 &&
8011 !test_bit(Journal
, &rdev
->flags
) &&
8012 !test_bit(In_sync
, &rdev
->flags
))
8013 rdev
->recovery_offset
= MaxSector
;
8014 spin_unlock_irq(&conf
->device_lock
);
8015 wake_up(&conf
->wait_for_overlap
);
8017 /* read-ahead size must cover two whole stripes, which is
8018 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8020 if (conf
->mddev
->queue
) {
8021 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
8022 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
8024 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
8025 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
8030 /* This is called from the raid5d thread with mddev_lock held.
8031 * It makes config changes to the device.
8033 static void raid5_finish_reshape(struct mddev
*mddev
)
8035 struct r5conf
*conf
= mddev
->private;
8037 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
8039 if (mddev
->delta_disks
<= 0) {
8041 spin_lock_irq(&conf
->device_lock
);
8042 mddev
->degraded
= raid5_calc_degraded(conf
);
8043 spin_unlock_irq(&conf
->device_lock
);
8044 for (d
= conf
->raid_disks
;
8045 d
< conf
->raid_disks
- mddev
->delta_disks
;
8047 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
8049 clear_bit(In_sync
, &rdev
->flags
);
8050 rdev
= conf
->disks
[d
].replacement
;
8052 clear_bit(In_sync
, &rdev
->flags
);
8055 mddev
->layout
= conf
->algorithm
;
8056 mddev
->chunk_sectors
= conf
->chunk_sectors
;
8057 mddev
->reshape_position
= MaxSector
;
8058 mddev
->delta_disks
= 0;
8059 mddev
->reshape_backwards
= 0;
8063 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
)
8065 struct r5conf
*conf
= mddev
->private;
8068 /* stop all writes */
8069 lock_all_device_hash_locks_irq(conf
);
8070 /* '2' tells resync/reshape to pause so that all
8071 * active stripes can drain
8073 r5c_flush_cache(conf
, INT_MAX
);
8075 wait_event_cmd(conf
->wait_for_quiescent
,
8076 atomic_read(&conf
->active_stripes
) == 0 &&
8077 atomic_read(&conf
->active_aligned_reads
) == 0,
8078 unlock_all_device_hash_locks_irq(conf
),
8079 lock_all_device_hash_locks_irq(conf
));
8081 unlock_all_device_hash_locks_irq(conf
);
8082 /* allow reshape to continue */
8083 wake_up(&conf
->wait_for_overlap
);
8085 /* re-enable writes */
8086 lock_all_device_hash_locks_irq(conf
);
8088 wake_up(&conf
->wait_for_quiescent
);
8089 wake_up(&conf
->wait_for_overlap
);
8090 unlock_all_device_hash_locks_irq(conf
);
8092 log_quiesce(conf
, quiesce
);
8095 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
8097 struct r0conf
*raid0_conf
= mddev
->private;
8100 /* for raid0 takeover only one zone is supported */
8101 if (raid0_conf
->nr_strip_zones
> 1) {
8102 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8104 return ERR_PTR(-EINVAL
);
8107 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
8108 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
8109 mddev
->dev_sectors
= sectors
;
8110 mddev
->new_level
= level
;
8111 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8112 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
8113 mddev
->raid_disks
+= 1;
8114 mddev
->delta_disks
= 1;
8115 /* make sure it will be not marked as dirty */
8116 mddev
->recovery_cp
= MaxSector
;
8118 return setup_conf(mddev
);
8121 static void *raid5_takeover_raid1(struct mddev
*mddev
)
8126 if (mddev
->raid_disks
!= 2 ||
8127 mddev
->degraded
> 1)
8128 return ERR_PTR(-EINVAL
);
8130 /* Should check if there are write-behind devices? */
8132 chunksect
= 64*2; /* 64K by default */
8134 /* The array must be an exact multiple of chunksize */
8135 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
8138 if ((chunksect
<<9) < STRIPE_SIZE
)
8139 /* array size does not allow a suitable chunk size */
8140 return ERR_PTR(-EINVAL
);
8142 mddev
->new_level
= 5;
8143 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8144 mddev
->new_chunk_sectors
= chunksect
;
8146 ret
= setup_conf(mddev
);
8148 mddev_clear_unsupported_flags(mddev
,
8149 UNSUPPORTED_MDDEV_FLAGS
);
8153 static void *raid5_takeover_raid6(struct mddev
*mddev
)
8157 switch (mddev
->layout
) {
8158 case ALGORITHM_LEFT_ASYMMETRIC_6
:
8159 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
8161 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
8162 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
8164 case ALGORITHM_LEFT_SYMMETRIC_6
:
8165 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8167 case ALGORITHM_RIGHT_SYMMETRIC_6
:
8168 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
8170 case ALGORITHM_PARITY_0_6
:
8171 new_layout
= ALGORITHM_PARITY_0
;
8173 case ALGORITHM_PARITY_N
:
8174 new_layout
= ALGORITHM_PARITY_N
;
8177 return ERR_PTR(-EINVAL
);
8179 mddev
->new_level
= 5;
8180 mddev
->new_layout
= new_layout
;
8181 mddev
->delta_disks
= -1;
8182 mddev
->raid_disks
-= 1;
8183 return setup_conf(mddev
);
8186 static int raid5_check_reshape(struct mddev
*mddev
)
8188 /* For a 2-drive array, the layout and chunk size can be changed
8189 * immediately as not restriping is needed.
8190 * For larger arrays we record the new value - after validation
8191 * to be used by a reshape pass.
8193 struct r5conf
*conf
= mddev
->private;
8194 int new_chunk
= mddev
->new_chunk_sectors
;
8196 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
8198 if (new_chunk
> 0) {
8199 if (!is_power_of_2(new_chunk
))
8201 if (new_chunk
< (PAGE_SIZE
>>9))
8203 if (mddev
->array_sectors
& (new_chunk
-1))
8204 /* not factor of array size */
8208 /* They look valid */
8210 if (mddev
->raid_disks
== 2) {
8211 /* can make the change immediately */
8212 if (mddev
->new_layout
>= 0) {
8213 conf
->algorithm
= mddev
->new_layout
;
8214 mddev
->layout
= mddev
->new_layout
;
8216 if (new_chunk
> 0) {
8217 conf
->chunk_sectors
= new_chunk
;
8218 mddev
->chunk_sectors
= new_chunk
;
8220 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8221 md_wakeup_thread(mddev
->thread
);
8223 return check_reshape(mddev
);
8226 static int raid6_check_reshape(struct mddev
*mddev
)
8228 int new_chunk
= mddev
->new_chunk_sectors
;
8230 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
8232 if (new_chunk
> 0) {
8233 if (!is_power_of_2(new_chunk
))
8235 if (new_chunk
< (PAGE_SIZE
>> 9))
8237 if (mddev
->array_sectors
& (new_chunk
-1))
8238 /* not factor of array size */
8242 /* They look valid */
8243 return check_reshape(mddev
);
8246 static void *raid5_takeover(struct mddev
*mddev
)
8248 /* raid5 can take over:
8249 * raid0 - if there is only one strip zone - make it a raid4 layout
8250 * raid1 - if there are two drives. We need to know the chunk size
8251 * raid4 - trivial - just use a raid4 layout.
8252 * raid6 - Providing it is a *_6 layout
8254 if (mddev
->level
== 0)
8255 return raid45_takeover_raid0(mddev
, 5);
8256 if (mddev
->level
== 1)
8257 return raid5_takeover_raid1(mddev
);
8258 if (mddev
->level
== 4) {
8259 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8260 mddev
->new_level
= 5;
8261 return setup_conf(mddev
);
8263 if (mddev
->level
== 6)
8264 return raid5_takeover_raid6(mddev
);
8266 return ERR_PTR(-EINVAL
);
8269 static void *raid4_takeover(struct mddev
*mddev
)
8271 /* raid4 can take over:
8272 * raid0 - if there is only one strip zone
8273 * raid5 - if layout is right
8275 if (mddev
->level
== 0)
8276 return raid45_takeover_raid0(mddev
, 4);
8277 if (mddev
->level
== 5 &&
8278 mddev
->layout
== ALGORITHM_PARITY_N
) {
8279 mddev
->new_layout
= 0;
8280 mddev
->new_level
= 4;
8281 return setup_conf(mddev
);
8283 return ERR_PTR(-EINVAL
);
8286 static struct md_personality raid5_personality
;
8288 static void *raid6_takeover(struct mddev
*mddev
)
8290 /* Currently can only take over a raid5. We map the
8291 * personality to an equivalent raid6 personality
8292 * with the Q block at the end.
8296 if (mddev
->pers
!= &raid5_personality
)
8297 return ERR_PTR(-EINVAL
);
8298 if (mddev
->degraded
> 1)
8299 return ERR_PTR(-EINVAL
);
8300 if (mddev
->raid_disks
> 253)
8301 return ERR_PTR(-EINVAL
);
8302 if (mddev
->raid_disks
< 3)
8303 return ERR_PTR(-EINVAL
);
8305 switch (mddev
->layout
) {
8306 case ALGORITHM_LEFT_ASYMMETRIC
:
8307 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
8309 case ALGORITHM_RIGHT_ASYMMETRIC
:
8310 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
8312 case ALGORITHM_LEFT_SYMMETRIC
:
8313 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
8315 case ALGORITHM_RIGHT_SYMMETRIC
:
8316 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8318 case ALGORITHM_PARITY_0
:
8319 new_layout
= ALGORITHM_PARITY_0_6
;
8321 case ALGORITHM_PARITY_N
:
8322 new_layout
= ALGORITHM_PARITY_N
;
8325 return ERR_PTR(-EINVAL
);
8327 mddev
->new_level
= 6;
8328 mddev
->new_layout
= new_layout
;
8329 mddev
->delta_disks
= 1;
8330 mddev
->raid_disks
+= 1;
8331 return setup_conf(mddev
);
8334 static int raid5_change_consistency_policy(struct mddev
*mddev
, const char *buf
)
8336 struct r5conf
*conf
;
8339 err
= mddev_lock(mddev
);
8342 conf
= mddev
->private;
8344 mddev_unlock(mddev
);
8348 if (strncmp(buf
, "ppl", 3) == 0) {
8349 /* ppl only works with RAID 5 */
8350 if (!raid5_has_ppl(conf
) && conf
->level
== 5) {
8351 err
= log_init(conf
, NULL
, true);
8353 err
= resize_stripes(conf
, conf
->pool_size
);
8359 } else if (strncmp(buf
, "resync", 6) == 0) {
8360 if (raid5_has_ppl(conf
)) {
8361 mddev_suspend(mddev
);
8363 mddev_resume(mddev
);
8364 err
= resize_stripes(conf
, conf
->pool_size
);
8365 } else if (test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
) &&
8366 r5l_log_disk_error(conf
)) {
8367 bool journal_dev_exists
= false;
8368 struct md_rdev
*rdev
;
8370 rdev_for_each(rdev
, mddev
)
8371 if (test_bit(Journal
, &rdev
->flags
)) {
8372 journal_dev_exists
= true;
8376 if (!journal_dev_exists
) {
8377 mddev_suspend(mddev
);
8378 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
8379 mddev_resume(mddev
);
8380 } else /* need remove journal device first */
8389 md_update_sb(mddev
, 1);
8391 mddev_unlock(mddev
);
8396 static int raid5_start(struct mddev
*mddev
)
8398 struct r5conf
*conf
= mddev
->private;
8400 return r5l_start(conf
->log
);
8403 static struct md_personality raid6_personality
=
8407 .owner
= THIS_MODULE
,
8408 .make_request
= raid5_make_request
,
8410 .start
= raid5_start
,
8412 .status
= raid5_status
,
8413 .error_handler
= raid5_error
,
8414 .hot_add_disk
= raid5_add_disk
,
8415 .hot_remove_disk
= raid5_remove_disk
,
8416 .spare_active
= raid5_spare_active
,
8417 .sync_request
= raid5_sync_request
,
8418 .resize
= raid5_resize
,
8420 .check_reshape
= raid6_check_reshape
,
8421 .start_reshape
= raid5_start_reshape
,
8422 .finish_reshape
= raid5_finish_reshape
,
8423 .quiesce
= raid5_quiesce
,
8424 .takeover
= raid6_takeover
,
8425 .congested
= raid5_congested
,
8426 .change_consistency_policy
= raid5_change_consistency_policy
,
8428 static struct md_personality raid5_personality
=
8432 .owner
= THIS_MODULE
,
8433 .make_request
= raid5_make_request
,
8435 .start
= raid5_start
,
8437 .status
= raid5_status
,
8438 .error_handler
= raid5_error
,
8439 .hot_add_disk
= raid5_add_disk
,
8440 .hot_remove_disk
= raid5_remove_disk
,
8441 .spare_active
= raid5_spare_active
,
8442 .sync_request
= raid5_sync_request
,
8443 .resize
= raid5_resize
,
8445 .check_reshape
= raid5_check_reshape
,
8446 .start_reshape
= raid5_start_reshape
,
8447 .finish_reshape
= raid5_finish_reshape
,
8448 .quiesce
= raid5_quiesce
,
8449 .takeover
= raid5_takeover
,
8450 .congested
= raid5_congested
,
8451 .change_consistency_policy
= raid5_change_consistency_policy
,
8454 static struct md_personality raid4_personality
=
8458 .owner
= THIS_MODULE
,
8459 .make_request
= raid5_make_request
,
8461 .start
= raid5_start
,
8463 .status
= raid5_status
,
8464 .error_handler
= raid5_error
,
8465 .hot_add_disk
= raid5_add_disk
,
8466 .hot_remove_disk
= raid5_remove_disk
,
8467 .spare_active
= raid5_spare_active
,
8468 .sync_request
= raid5_sync_request
,
8469 .resize
= raid5_resize
,
8471 .check_reshape
= raid5_check_reshape
,
8472 .start_reshape
= raid5_start_reshape
,
8473 .finish_reshape
= raid5_finish_reshape
,
8474 .quiesce
= raid5_quiesce
,
8475 .takeover
= raid4_takeover
,
8476 .congested
= raid5_congested
,
8477 .change_consistency_policy
= raid5_change_consistency_policy
,
8480 static int __init
raid5_init(void)
8484 raid5_wq
= alloc_workqueue("raid5wq",
8485 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
8489 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
8491 raid456_cpu_up_prepare
,
8494 destroy_workqueue(raid5_wq
);
8497 register_md_personality(&raid6_personality
);
8498 register_md_personality(&raid5_personality
);
8499 register_md_personality(&raid4_personality
);
8503 static void raid5_exit(void)
8505 unregister_md_personality(&raid6_personality
);
8506 unregister_md_personality(&raid5_personality
);
8507 unregister_md_personality(&raid4_personality
);
8508 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
8509 destroy_workqueue(raid5_wq
);
8512 module_init(raid5_init
);
8513 module_exit(raid5_exit
);
8514 MODULE_LICENSE("GPL");
8515 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8516 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8517 MODULE_ALIAS("md-raid5");
8518 MODULE_ALIAS("md-raid4");
8519 MODULE_ALIAS("md-level-5");
8520 MODULE_ALIAS("md-level-4");
8521 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8522 MODULE_ALIAS("md-raid6");
8523 MODULE_ALIAS("md-level-6");
8525 /* This used to be two separate modules, they were: */
8526 MODULE_ALIAS("raid5");
8527 MODULE_ALIAS("raid6");