Linux 4.19.133
[linux/fpc-iii.git] / drivers / md / raid5.c
blob01021382131bcf30f3f238ccd0f67b64972a207c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
85 static inline int stripe_hash_locks_hash(sector_t sect)
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 int i;
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 int i;
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
132 static inline int raid6_next_disk(int disk, int raid_disks)
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
146 int slot = *count;
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
159 static void print_raid5_conf (struct r5conf *conf);
161 static int stripe_operations_active(struct stripe_head *sh)
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168 static bool stripe_is_lowprio(struct stripe_head *sh)
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 size--;
350 hash--;
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
388 return count;
391 void raid5_release_stripe(struct stripe_head *sh)
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
399 /* Avoid release_list until the last reference.
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 INIT_LIST_HEAD(&list);
415 hash = sh->hash_lock_index;
416 do_release_stripe(conf, sh, &list);
417 spin_unlock_irqrestore(&conf->device_lock, flags);
418 release_inactive_stripe_list(conf, &list, hash);
422 static inline void remove_hash(struct stripe_head *sh)
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
427 hlist_del_init(&sh->hash);
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
437 hlist_add_head(&sh->hash, hp);
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
446 if (list_empty(conf->inactive_list + hash))
447 goto out;
448 first = (conf->inactive_list + hash)->next;
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
453 BUG_ON(hash != sh->hash_lock_index);
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 return sh;
460 static void shrink_buffers(struct stripe_head *sh)
462 struct page *p;
463 int i;
464 int num = sh->raid_conf->pool_size;
466 for (i = 0; i < num ; i++) {
467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 p = sh->dev[i].page;
469 if (!p)
470 continue;
471 sh->dev[i].page = NULL;
472 put_page(p);
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
478 int i;
479 int num = sh->raid_conf->pool_size;
481 for (i = 0; i < num; i++) {
482 struct page *page;
484 if (!(page = alloc_page(gfp))) {
485 return 1;
487 sh->dev[i].page = page;
488 sh->dev[i].orig_page = page;
491 return 0;
494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
495 struct stripe_head *sh);
497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
499 struct r5conf *conf = sh->raid_conf;
500 int i, seq;
502 BUG_ON(atomic_read(&sh->count) != 0);
503 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
504 BUG_ON(stripe_operations_active(sh));
505 BUG_ON(sh->batch_head);
507 pr_debug("init_stripe called, stripe %llu\n",
508 (unsigned long long)sector);
509 retry:
510 seq = read_seqcount_begin(&conf->gen_lock);
511 sh->generation = conf->generation - previous;
512 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
513 sh->sector = sector;
514 stripe_set_idx(sector, conf, previous, sh);
515 sh->state = 0;
517 for (i = sh->disks; i--; ) {
518 struct r5dev *dev = &sh->dev[i];
520 if (dev->toread || dev->read || dev->towrite || dev->written ||
521 test_bit(R5_LOCKED, &dev->flags)) {
522 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 (unsigned long long)sh->sector, i, dev->toread,
524 dev->read, dev->towrite, dev->written,
525 test_bit(R5_LOCKED, &dev->flags));
526 WARN_ON(1);
528 dev->flags = 0;
529 dev->sector = raid5_compute_blocknr(sh, i, previous);
531 if (read_seqcount_retry(&conf->gen_lock, seq))
532 goto retry;
533 sh->overwrite_disks = 0;
534 insert_hash(conf, sh);
535 sh->cpu = smp_processor_id();
536 set_bit(STRIPE_BATCH_READY, &sh->state);
539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
540 short generation)
542 struct stripe_head *sh;
544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
545 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
546 if (sh->sector == sector && sh->generation == generation)
547 return sh;
548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
549 return NULL;
553 * Need to check if array has failed when deciding whether to:
554 * - start an array
555 * - remove non-faulty devices
556 * - add a spare
557 * - allow a reshape
558 * This determination is simple when no reshape is happening.
559 * However if there is a reshape, we need to carefully check
560 * both the before and after sections.
561 * This is because some failed devices may only affect one
562 * of the two sections, and some non-in_sync devices may
563 * be insync in the section most affected by failed devices.
565 int raid5_calc_degraded(struct r5conf *conf)
567 int degraded, degraded2;
568 int i;
570 rcu_read_lock();
571 degraded = 0;
572 for (i = 0; i < conf->previous_raid_disks; i++) {
573 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
574 if (rdev && test_bit(Faulty, &rdev->flags))
575 rdev = rcu_dereference(conf->disks[i].replacement);
576 if (!rdev || test_bit(Faulty, &rdev->flags))
577 degraded++;
578 else if (test_bit(In_sync, &rdev->flags))
580 else
581 /* not in-sync or faulty.
582 * If the reshape increases the number of devices,
583 * this is being recovered by the reshape, so
584 * this 'previous' section is not in_sync.
585 * If the number of devices is being reduced however,
586 * the device can only be part of the array if
587 * we are reverting a reshape, so this section will
588 * be in-sync.
590 if (conf->raid_disks >= conf->previous_raid_disks)
591 degraded++;
593 rcu_read_unlock();
594 if (conf->raid_disks == conf->previous_raid_disks)
595 return degraded;
596 rcu_read_lock();
597 degraded2 = 0;
598 for (i = 0; i < conf->raid_disks; i++) {
599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
600 if (rdev && test_bit(Faulty, &rdev->flags))
601 rdev = rcu_dereference(conf->disks[i].replacement);
602 if (!rdev || test_bit(Faulty, &rdev->flags))
603 degraded2++;
604 else if (test_bit(In_sync, &rdev->flags))
606 else
607 /* not in-sync or faulty.
608 * If reshape increases the number of devices, this
609 * section has already been recovered, else it
610 * almost certainly hasn't.
612 if (conf->raid_disks <= conf->previous_raid_disks)
613 degraded2++;
615 rcu_read_unlock();
616 if (degraded2 > degraded)
617 return degraded2;
618 return degraded;
621 static int has_failed(struct r5conf *conf)
623 int degraded;
625 if (conf->mddev->reshape_position == MaxSector)
626 return conf->mddev->degraded > conf->max_degraded;
628 degraded = raid5_calc_degraded(conf);
629 if (degraded > conf->max_degraded)
630 return 1;
631 return 0;
634 struct stripe_head *
635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636 int previous, int noblock, int noquiesce)
638 struct stripe_head *sh;
639 int hash = stripe_hash_locks_hash(sector);
640 int inc_empty_inactive_list_flag;
642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
644 spin_lock_irq(conf->hash_locks + hash);
646 do {
647 wait_event_lock_irq(conf->wait_for_quiescent,
648 conf->quiesce == 0 || noquiesce,
649 *(conf->hash_locks + hash));
650 sh = __find_stripe(conf, sector, conf->generation - previous);
651 if (!sh) {
652 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
653 sh = get_free_stripe(conf, hash);
654 if (!sh && !test_bit(R5_DID_ALLOC,
655 &conf->cache_state))
656 set_bit(R5_ALLOC_MORE,
657 &conf->cache_state);
659 if (noblock && sh == NULL)
660 break;
662 r5c_check_stripe_cache_usage(conf);
663 if (!sh) {
664 set_bit(R5_INACTIVE_BLOCKED,
665 &conf->cache_state);
666 r5l_wake_reclaim(conf->log, 0);
667 wait_event_lock_irq(
668 conf->wait_for_stripe,
669 !list_empty(conf->inactive_list + hash) &&
670 (atomic_read(&conf->active_stripes)
671 < (conf->max_nr_stripes * 3 / 4)
672 || !test_bit(R5_INACTIVE_BLOCKED,
673 &conf->cache_state)),
674 *(conf->hash_locks + hash));
675 clear_bit(R5_INACTIVE_BLOCKED,
676 &conf->cache_state);
677 } else {
678 init_stripe(sh, sector, previous);
679 atomic_inc(&sh->count);
681 } else if (!atomic_inc_not_zero(&sh->count)) {
682 spin_lock(&conf->device_lock);
683 if (!atomic_read(&sh->count)) {
684 if (!test_bit(STRIPE_HANDLE, &sh->state))
685 atomic_inc(&conf->active_stripes);
686 BUG_ON(list_empty(&sh->lru) &&
687 !test_bit(STRIPE_EXPANDING, &sh->state));
688 inc_empty_inactive_list_flag = 0;
689 if (!list_empty(conf->inactive_list + hash))
690 inc_empty_inactive_list_flag = 1;
691 list_del_init(&sh->lru);
692 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693 atomic_inc(&conf->empty_inactive_list_nr);
694 if (sh->group) {
695 sh->group->stripes_cnt--;
696 sh->group = NULL;
699 atomic_inc(&sh->count);
700 spin_unlock(&conf->device_lock);
702 } while (sh == NULL);
704 spin_unlock_irq(conf->hash_locks + hash);
705 return sh;
708 static bool is_full_stripe_write(struct stripe_head *sh)
710 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
716 if (sh1 > sh2) {
717 spin_lock_irq(&sh2->stripe_lock);
718 spin_lock_nested(&sh1->stripe_lock, 1);
719 } else {
720 spin_lock_irq(&sh1->stripe_lock);
721 spin_lock_nested(&sh2->stripe_lock, 1);
725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
727 spin_unlock(&sh1->stripe_lock);
728 spin_unlock_irq(&sh2->stripe_lock);
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head *sh)
734 struct r5conf *conf = sh->raid_conf;
736 if (raid5_has_log(conf) || raid5_has_ppl(conf))
737 return false;
738 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
739 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
740 is_full_stripe_write(sh);
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
746 struct stripe_head *head;
747 sector_t head_sector, tmp_sec;
748 int hash;
749 int dd_idx;
750 int inc_empty_inactive_list_flag;
752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 tmp_sec = sh->sector;
754 if (!sector_div(tmp_sec, conf->chunk_sectors))
755 return;
756 head_sector = sh->sector - STRIPE_SECTORS;
758 hash = stripe_hash_locks_hash(head_sector);
759 spin_lock_irq(conf->hash_locks + hash);
760 head = __find_stripe(conf, head_sector, conf->generation);
761 if (head && !atomic_inc_not_zero(&head->count)) {
762 spin_lock(&conf->device_lock);
763 if (!atomic_read(&head->count)) {
764 if (!test_bit(STRIPE_HANDLE, &head->state))
765 atomic_inc(&conf->active_stripes);
766 BUG_ON(list_empty(&head->lru) &&
767 !test_bit(STRIPE_EXPANDING, &head->state));
768 inc_empty_inactive_list_flag = 0;
769 if (!list_empty(conf->inactive_list + hash))
770 inc_empty_inactive_list_flag = 1;
771 list_del_init(&head->lru);
772 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773 atomic_inc(&conf->empty_inactive_list_nr);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
782 spin_unlock_irq(conf->hash_locks + hash);
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
794 if (sh->batch_head)
795 goto unlock_out;
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
801 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
802 goto unlock_out;
804 if (head->batch_head) {
805 spin_lock(&head->batch_head->batch_lock);
806 /* This batch list is already running */
807 if (!stripe_can_batch(head)) {
808 spin_unlock(&head->batch_head->batch_lock);
809 goto unlock_out;
812 * We must assign batch_head of this stripe within the
813 * batch_lock, otherwise clear_batch_ready of batch head
814 * stripe could clear BATCH_READY bit of this stripe and
815 * this stripe->batch_head doesn't get assigned, which
816 * could confuse clear_batch_ready for this stripe
818 sh->batch_head = head->batch_head;
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826 } else {
827 head->batch_head = head;
828 sh->batch_head = head->batch_head;
829 spin_lock(&head->batch_lock);
830 list_add_tail(&sh->batch_list, &head->batch_list);
831 spin_unlock(&head->batch_lock);
834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
835 if (atomic_dec_return(&conf->preread_active_stripes)
836 < IO_THRESHOLD)
837 md_wakeup_thread(conf->mddev->thread);
839 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
840 int seq = sh->bm_seq;
841 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
842 sh->batch_head->bm_seq > seq)
843 seq = sh->batch_head->bm_seq;
844 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
845 sh->batch_head->bm_seq = seq;
848 atomic_inc(&sh->count);
849 unlock_out:
850 unlock_two_stripes(head, sh);
851 out:
852 raid5_release_stripe(head);
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856 * in this stripe_head.
858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
860 sector_t progress = conf->reshape_progress;
861 /* Need a memory barrier to make sure we see the value
862 * of conf->generation, or ->data_offset that was set before
863 * reshape_progress was updated.
865 smp_rmb();
866 if (progress == MaxSector)
867 return 0;
868 if (sh->generation == conf->generation - 1)
869 return 0;
870 /* We are in a reshape, and this is a new-generation stripe,
871 * so use new_data_offset.
873 return 1;
876 static void dispatch_bio_list(struct bio_list *tmp)
878 struct bio *bio;
880 while ((bio = bio_list_pop(tmp)))
881 generic_make_request(bio);
884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
886 const struct r5pending_data *da = list_entry(a,
887 struct r5pending_data, sibling);
888 const struct r5pending_data *db = list_entry(b,
889 struct r5pending_data, sibling);
890 if (da->sector > db->sector)
891 return 1;
892 if (da->sector < db->sector)
893 return -1;
894 return 0;
897 static void dispatch_defer_bios(struct r5conf *conf, int target,
898 struct bio_list *list)
900 struct r5pending_data *data;
901 struct list_head *first, *next = NULL;
902 int cnt = 0;
904 if (conf->pending_data_cnt == 0)
905 return;
907 list_sort(NULL, &conf->pending_list, cmp_stripe);
909 first = conf->pending_list.next;
911 /* temporarily move the head */
912 if (conf->next_pending_data)
913 list_move_tail(&conf->pending_list,
914 &conf->next_pending_data->sibling);
916 while (!list_empty(&conf->pending_list)) {
917 data = list_first_entry(&conf->pending_list,
918 struct r5pending_data, sibling);
919 if (&data->sibling == first)
920 first = data->sibling.next;
921 next = data->sibling.next;
923 bio_list_merge(list, &data->bios);
924 list_move(&data->sibling, &conf->free_list);
925 cnt++;
926 if (cnt >= target)
927 break;
929 conf->pending_data_cnt -= cnt;
930 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
932 if (next != &conf->pending_list)
933 conf->next_pending_data = list_entry(next,
934 struct r5pending_data, sibling);
935 else
936 conf->next_pending_data = NULL;
937 /* list isn't empty */
938 if (first != &conf->pending_list)
939 list_move_tail(&conf->pending_list, first);
942 static void flush_deferred_bios(struct r5conf *conf)
944 struct bio_list tmp = BIO_EMPTY_LIST;
946 if (conf->pending_data_cnt == 0)
947 return;
949 spin_lock(&conf->pending_bios_lock);
950 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
951 BUG_ON(conf->pending_data_cnt != 0);
952 spin_unlock(&conf->pending_bios_lock);
954 dispatch_bio_list(&tmp);
957 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
958 struct bio_list *bios)
960 struct bio_list tmp = BIO_EMPTY_LIST;
961 struct r5pending_data *ent;
963 spin_lock(&conf->pending_bios_lock);
964 ent = list_first_entry(&conf->free_list, struct r5pending_data,
965 sibling);
966 list_move_tail(&ent->sibling, &conf->pending_list);
967 ent->sector = sector;
968 bio_list_init(&ent->bios);
969 bio_list_merge(&ent->bios, bios);
970 conf->pending_data_cnt++;
971 if (conf->pending_data_cnt >= PENDING_IO_MAX)
972 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
974 spin_unlock(&conf->pending_bios_lock);
976 dispatch_bio_list(&tmp);
979 static void
980 raid5_end_read_request(struct bio *bi);
981 static void
982 raid5_end_write_request(struct bio *bi);
984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
986 struct r5conf *conf = sh->raid_conf;
987 int i, disks = sh->disks;
988 struct stripe_head *head_sh = sh;
989 struct bio_list pending_bios = BIO_EMPTY_LIST;
990 bool should_defer;
992 might_sleep();
994 if (log_stripe(sh, s) == 0)
995 return;
997 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
999 for (i = disks; i--; ) {
1000 int op, op_flags = 0;
1001 int replace_only = 0;
1002 struct bio *bi, *rbi;
1003 struct md_rdev *rdev, *rrdev = NULL;
1005 sh = head_sh;
1006 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007 op = REQ_OP_WRITE;
1008 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009 op_flags = REQ_FUA;
1010 if (test_bit(R5_Discard, &sh->dev[i].flags))
1011 op = REQ_OP_DISCARD;
1012 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013 op = REQ_OP_READ;
1014 else if (test_and_clear_bit(R5_WantReplace,
1015 &sh->dev[i].flags)) {
1016 op = REQ_OP_WRITE;
1017 replace_only = 1;
1018 } else
1019 continue;
1020 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021 op_flags |= REQ_SYNC;
1023 again:
1024 bi = &sh->dev[i].req;
1025 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1027 rcu_read_lock();
1028 rrdev = rcu_dereference(conf->disks[i].replacement);
1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 rdev = rcu_dereference(conf->disks[i].rdev);
1031 if (!rdev) {
1032 rdev = rrdev;
1033 rrdev = NULL;
1035 if (op_is_write(op)) {
1036 if (replace_only)
1037 rdev = NULL;
1038 if (rdev == rrdev)
1039 /* We raced and saw duplicates */
1040 rrdev = NULL;
1041 } else {
1042 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043 rdev = rrdev;
1044 rrdev = NULL;
1047 if (rdev && test_bit(Faulty, &rdev->flags))
1048 rdev = NULL;
1049 if (rdev)
1050 atomic_inc(&rdev->nr_pending);
1051 if (rrdev && test_bit(Faulty, &rrdev->flags))
1052 rrdev = NULL;
1053 if (rrdev)
1054 atomic_inc(&rrdev->nr_pending);
1055 rcu_read_unlock();
1057 /* We have already checked bad blocks for reads. Now
1058 * need to check for writes. We never accept write errors
1059 * on the replacement, so we don't to check rrdev.
1061 while (op_is_write(op) && rdev &&
1062 test_bit(WriteErrorSeen, &rdev->flags)) {
1063 sector_t first_bad;
1064 int bad_sectors;
1065 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066 &first_bad, &bad_sectors);
1067 if (!bad)
1068 break;
1070 if (bad < 0) {
1071 set_bit(BlockedBadBlocks, &rdev->flags);
1072 if (!conf->mddev->external &&
1073 conf->mddev->sb_flags) {
1074 /* It is very unlikely, but we might
1075 * still need to write out the
1076 * bad block log - better give it
1077 * a chance*/
1078 md_check_recovery(conf->mddev);
1081 * Because md_wait_for_blocked_rdev
1082 * will dec nr_pending, we must
1083 * increment it first.
1085 atomic_inc(&rdev->nr_pending);
1086 md_wait_for_blocked_rdev(rdev, conf->mddev);
1087 } else {
1088 /* Acknowledged bad block - skip the write */
1089 rdev_dec_pending(rdev, conf->mddev);
1090 rdev = NULL;
1094 if (rdev) {
1095 if (s->syncing || s->expanding || s->expanded
1096 || s->replacing)
1097 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1099 set_bit(STRIPE_IO_STARTED, &sh->state);
1101 bio_set_dev(bi, rdev->bdev);
1102 bio_set_op_attrs(bi, op, op_flags);
1103 bi->bi_end_io = op_is_write(op)
1104 ? raid5_end_write_request
1105 : raid5_end_read_request;
1106 bi->bi_private = sh;
1108 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 __func__, (unsigned long long)sh->sector,
1110 bi->bi_opf, i);
1111 atomic_inc(&sh->count);
1112 if (sh != head_sh)
1113 atomic_inc(&head_sh->count);
1114 if (use_new_offset(conf, sh))
1115 bi->bi_iter.bi_sector = (sh->sector
1116 + rdev->new_data_offset);
1117 else
1118 bi->bi_iter.bi_sector = (sh->sector
1119 + rdev->data_offset);
1120 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121 bi->bi_opf |= REQ_NOMERGE;
1123 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1126 if (!op_is_write(op) &&
1127 test_bit(R5_InJournal, &sh->dev[i].flags))
1129 * issuing read for a page in journal, this
1130 * must be preparing for prexor in rmw; read
1131 * the data into orig_page
1133 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134 else
1135 sh->dev[i].vec.bv_page = sh->dev[i].page;
1136 bi->bi_vcnt = 1;
1137 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138 bi->bi_io_vec[0].bv_offset = 0;
1139 bi->bi_iter.bi_size = STRIPE_SIZE;
1140 bi->bi_write_hint = sh->dev[i].write_hint;
1141 if (!rrdev)
1142 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1144 * If this is discard request, set bi_vcnt 0. We don't
1145 * want to confuse SCSI because SCSI will replace payload
1147 if (op == REQ_OP_DISCARD)
1148 bi->bi_vcnt = 0;
1149 if (rrdev)
1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1152 if (conf->mddev->gendisk)
1153 trace_block_bio_remap(bi->bi_disk->queue,
1154 bi, disk_devt(conf->mddev->gendisk),
1155 sh->dev[i].sector);
1156 if (should_defer && op_is_write(op))
1157 bio_list_add(&pending_bios, bi);
1158 else
1159 generic_make_request(bi);
1161 if (rrdev) {
1162 if (s->syncing || s->expanding || s->expanded
1163 || s->replacing)
1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1166 set_bit(STRIPE_IO_STARTED, &sh->state);
1168 bio_set_dev(rbi, rrdev->bdev);
1169 bio_set_op_attrs(rbi, op, op_flags);
1170 BUG_ON(!op_is_write(op));
1171 rbi->bi_end_io = raid5_end_write_request;
1172 rbi->bi_private = sh;
1174 pr_debug("%s: for %llu schedule op %d on "
1175 "replacement disc %d\n",
1176 __func__, (unsigned long long)sh->sector,
1177 rbi->bi_opf, i);
1178 atomic_inc(&sh->count);
1179 if (sh != head_sh)
1180 atomic_inc(&head_sh->count);
1181 if (use_new_offset(conf, sh))
1182 rbi->bi_iter.bi_sector = (sh->sector
1183 + rrdev->new_data_offset);
1184 else
1185 rbi->bi_iter.bi_sector = (sh->sector
1186 + rrdev->data_offset);
1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190 rbi->bi_vcnt = 1;
1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 rbi->bi_io_vec[0].bv_offset = 0;
1193 rbi->bi_iter.bi_size = STRIPE_SIZE;
1194 rbi->bi_write_hint = sh->dev[i].write_hint;
1195 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1197 * If this is discard request, set bi_vcnt 0. We don't
1198 * want to confuse SCSI because SCSI will replace payload
1200 if (op == REQ_OP_DISCARD)
1201 rbi->bi_vcnt = 0;
1202 if (conf->mddev->gendisk)
1203 trace_block_bio_remap(rbi->bi_disk->queue,
1204 rbi, disk_devt(conf->mddev->gendisk),
1205 sh->dev[i].sector);
1206 if (should_defer && op_is_write(op))
1207 bio_list_add(&pending_bios, rbi);
1208 else
1209 generic_make_request(rbi);
1211 if (!rdev && !rrdev) {
1212 if (op_is_write(op))
1213 set_bit(STRIPE_DEGRADED, &sh->state);
1214 pr_debug("skip op %d on disc %d for sector %llu\n",
1215 bi->bi_opf, i, (unsigned long long)sh->sector);
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
1220 if (!head_sh->batch_head)
1221 continue;
1222 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223 batch_list);
1224 if (sh != head_sh)
1225 goto again;
1228 if (should_defer && !bio_list_empty(&pending_bios))
1229 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1232 static struct dma_async_tx_descriptor *
1233 async_copy_data(int frombio, struct bio *bio, struct page **page,
1234 sector_t sector, struct dma_async_tx_descriptor *tx,
1235 struct stripe_head *sh, int no_skipcopy)
1237 struct bio_vec bvl;
1238 struct bvec_iter iter;
1239 struct page *bio_page;
1240 int page_offset;
1241 struct async_submit_ctl submit;
1242 enum async_tx_flags flags = 0;
1244 if (bio->bi_iter.bi_sector >= sector)
1245 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246 else
1247 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1249 if (frombio)
1250 flags |= ASYNC_TX_FENCE;
1251 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1253 bio_for_each_segment(bvl, bio, iter) {
1254 int len = bvl.bv_len;
1255 int clen;
1256 int b_offset = 0;
1258 if (page_offset < 0) {
1259 b_offset = -page_offset;
1260 page_offset += b_offset;
1261 len -= b_offset;
1264 if (len > 0 && page_offset + len > STRIPE_SIZE)
1265 clen = STRIPE_SIZE - page_offset;
1266 else
1267 clen = len;
1269 if (clen > 0) {
1270 b_offset += bvl.bv_offset;
1271 bio_page = bvl.bv_page;
1272 if (frombio) {
1273 if (sh->raid_conf->skip_copy &&
1274 b_offset == 0 && page_offset == 0 &&
1275 clen == STRIPE_SIZE &&
1276 !no_skipcopy)
1277 *page = bio_page;
1278 else
1279 tx = async_memcpy(*page, bio_page, page_offset,
1280 b_offset, clen, &submit);
1281 } else
1282 tx = async_memcpy(bio_page, *page, b_offset,
1283 page_offset, clen, &submit);
1285 /* chain the operations */
1286 submit.depend_tx = tx;
1288 if (clen < len) /* hit end of page */
1289 break;
1290 page_offset += len;
1293 return tx;
1296 static void ops_complete_biofill(void *stripe_head_ref)
1298 struct stripe_head *sh = stripe_head_ref;
1299 int i;
1301 pr_debug("%s: stripe %llu\n", __func__,
1302 (unsigned long long)sh->sector);
1304 /* clear completed biofills */
1305 for (i = sh->disks; i--; ) {
1306 struct r5dev *dev = &sh->dev[i];
1308 /* acknowledge completion of a biofill operation */
1309 /* and check if we need to reply to a read request,
1310 * new R5_Wantfill requests are held off until
1311 * !STRIPE_BIOFILL_RUN
1313 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314 struct bio *rbi, *rbi2;
1316 BUG_ON(!dev->read);
1317 rbi = dev->read;
1318 dev->read = NULL;
1319 while (rbi && rbi->bi_iter.bi_sector <
1320 dev->sector + STRIPE_SECTORS) {
1321 rbi2 = r5_next_bio(rbi, dev->sector);
1322 bio_endio(rbi);
1323 rbi = rbi2;
1327 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1329 set_bit(STRIPE_HANDLE, &sh->state);
1330 raid5_release_stripe(sh);
1333 static void ops_run_biofill(struct stripe_head *sh)
1335 struct dma_async_tx_descriptor *tx = NULL;
1336 struct async_submit_ctl submit;
1337 int i;
1339 BUG_ON(sh->batch_head);
1340 pr_debug("%s: stripe %llu\n", __func__,
1341 (unsigned long long)sh->sector);
1343 for (i = sh->disks; i--; ) {
1344 struct r5dev *dev = &sh->dev[i];
1345 if (test_bit(R5_Wantfill, &dev->flags)) {
1346 struct bio *rbi;
1347 spin_lock_irq(&sh->stripe_lock);
1348 dev->read = rbi = dev->toread;
1349 dev->toread = NULL;
1350 spin_unlock_irq(&sh->stripe_lock);
1351 while (rbi && rbi->bi_iter.bi_sector <
1352 dev->sector + STRIPE_SECTORS) {
1353 tx = async_copy_data(0, rbi, &dev->page,
1354 dev->sector, tx, sh, 0);
1355 rbi = r5_next_bio(rbi, dev->sector);
1360 atomic_inc(&sh->count);
1361 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362 async_trigger_callback(&submit);
1365 static void mark_target_uptodate(struct stripe_head *sh, int target)
1367 struct r5dev *tgt;
1369 if (target < 0)
1370 return;
1372 tgt = &sh->dev[target];
1373 set_bit(R5_UPTODATE, &tgt->flags);
1374 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375 clear_bit(R5_Wantcompute, &tgt->flags);
1378 static void ops_complete_compute(void *stripe_head_ref)
1380 struct stripe_head *sh = stripe_head_ref;
1382 pr_debug("%s: stripe %llu\n", __func__,
1383 (unsigned long long)sh->sector);
1385 /* mark the computed target(s) as uptodate */
1386 mark_target_uptodate(sh, sh->ops.target);
1387 mark_target_uptodate(sh, sh->ops.target2);
1389 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390 if (sh->check_state == check_state_compute_run)
1391 sh->check_state = check_state_compute_result;
1392 set_bit(STRIPE_HANDLE, &sh->state);
1393 raid5_release_stripe(sh);
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398 struct raid5_percpu *percpu, int i)
1400 void *addr;
1402 addr = flex_array_get(percpu->scribble, i);
1403 return addr + sizeof(struct page *) * (sh->disks + 2);
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1409 void *addr;
1411 addr = flex_array_get(percpu->scribble, i);
1412 return addr;
1415 static struct dma_async_tx_descriptor *
1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1418 int disks = sh->disks;
1419 struct page **xor_srcs = to_addr_page(percpu, 0);
1420 int target = sh->ops.target;
1421 struct r5dev *tgt = &sh->dev[target];
1422 struct page *xor_dest = tgt->page;
1423 int count = 0;
1424 struct dma_async_tx_descriptor *tx;
1425 struct async_submit_ctl submit;
1426 int i;
1428 BUG_ON(sh->batch_head);
1430 pr_debug("%s: stripe %llu block: %d\n",
1431 __func__, (unsigned long long)sh->sector, target);
1432 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1434 for (i = disks; i--; )
1435 if (i != target)
1436 xor_srcs[count++] = sh->dev[i].page;
1438 atomic_inc(&sh->count);
1440 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442 if (unlikely(count == 1))
1443 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444 else
1445 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1447 return tx;
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451 * @srcs - (struct page *) array of size sh->disks
1452 * @sh - stripe_head to parse
1454 * Populates srcs in proper layout order for the stripe and returns the
1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1456 * destination buffer is recorded in srcs[count] and the Q destination
1457 * is recorded in srcs[count+1]].
1459 static int set_syndrome_sources(struct page **srcs,
1460 struct stripe_head *sh,
1461 int srctype)
1463 int disks = sh->disks;
1464 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465 int d0_idx = raid6_d0(sh);
1466 int count;
1467 int i;
1469 for (i = 0; i < disks; i++)
1470 srcs[i] = NULL;
1472 count = 0;
1473 i = d0_idx;
1474 do {
1475 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476 struct r5dev *dev = &sh->dev[i];
1478 if (i == sh->qd_idx || i == sh->pd_idx ||
1479 (srctype == SYNDROME_SRC_ALL) ||
1480 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481 (test_bit(R5_Wantdrain, &dev->flags) ||
1482 test_bit(R5_InJournal, &dev->flags))) ||
1483 (srctype == SYNDROME_SRC_WRITTEN &&
1484 (dev->written ||
1485 test_bit(R5_InJournal, &dev->flags)))) {
1486 if (test_bit(R5_InJournal, &dev->flags))
1487 srcs[slot] = sh->dev[i].orig_page;
1488 else
1489 srcs[slot] = sh->dev[i].page;
1491 i = raid6_next_disk(i, disks);
1492 } while (i != d0_idx);
1494 return syndrome_disks;
1497 static struct dma_async_tx_descriptor *
1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1500 int disks = sh->disks;
1501 struct page **blocks = to_addr_page(percpu, 0);
1502 int target;
1503 int qd_idx = sh->qd_idx;
1504 struct dma_async_tx_descriptor *tx;
1505 struct async_submit_ctl submit;
1506 struct r5dev *tgt;
1507 struct page *dest;
1508 int i;
1509 int count;
1511 BUG_ON(sh->batch_head);
1512 if (sh->ops.target < 0)
1513 target = sh->ops.target2;
1514 else if (sh->ops.target2 < 0)
1515 target = sh->ops.target;
1516 else
1517 /* we should only have one valid target */
1518 BUG();
1519 BUG_ON(target < 0);
1520 pr_debug("%s: stripe %llu block: %d\n",
1521 __func__, (unsigned long long)sh->sector, target);
1523 tgt = &sh->dev[target];
1524 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525 dest = tgt->page;
1527 atomic_inc(&sh->count);
1529 if (target == qd_idx) {
1530 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531 blocks[count] = NULL; /* regenerating p is not necessary */
1532 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534 ops_complete_compute, sh,
1535 to_addr_conv(sh, percpu, 0));
1536 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537 } else {
1538 /* Compute any data- or p-drive using XOR */
1539 count = 0;
1540 for (i = disks; i-- ; ) {
1541 if (i == target || i == qd_idx)
1542 continue;
1543 blocks[count++] = sh->dev[i].page;
1546 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547 NULL, ops_complete_compute, sh,
1548 to_addr_conv(sh, percpu, 0));
1549 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1552 return tx;
1555 static struct dma_async_tx_descriptor *
1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1558 int i, count, disks = sh->disks;
1559 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560 int d0_idx = raid6_d0(sh);
1561 int faila = -1, failb = -1;
1562 int target = sh->ops.target;
1563 int target2 = sh->ops.target2;
1564 struct r5dev *tgt = &sh->dev[target];
1565 struct r5dev *tgt2 = &sh->dev[target2];
1566 struct dma_async_tx_descriptor *tx;
1567 struct page **blocks = to_addr_page(percpu, 0);
1568 struct async_submit_ctl submit;
1570 BUG_ON(sh->batch_head);
1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 __func__, (unsigned long long)sh->sector, target, target2);
1573 BUG_ON(target < 0 || target2 < 0);
1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1577 /* we need to open-code set_syndrome_sources to handle the
1578 * slot number conversion for 'faila' and 'failb'
1580 for (i = 0; i < disks ; i++)
1581 blocks[i] = NULL;
1582 count = 0;
1583 i = d0_idx;
1584 do {
1585 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1587 blocks[slot] = sh->dev[i].page;
1589 if (i == target)
1590 faila = slot;
1591 if (i == target2)
1592 failb = slot;
1593 i = raid6_next_disk(i, disks);
1594 } while (i != d0_idx);
1596 BUG_ON(faila == failb);
1597 if (failb < faila)
1598 swap(faila, failb);
1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 __func__, (unsigned long long)sh->sector, faila, failb);
1602 atomic_inc(&sh->count);
1604 if (failb == syndrome_disks+1) {
1605 /* Q disk is one of the missing disks */
1606 if (faila == syndrome_disks) {
1607 /* Missing P+Q, just recompute */
1608 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609 ops_complete_compute, sh,
1610 to_addr_conv(sh, percpu, 0));
1611 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612 STRIPE_SIZE, &submit);
1613 } else {
1614 struct page *dest;
1615 int data_target;
1616 int qd_idx = sh->qd_idx;
1618 /* Missing D+Q: recompute D from P, then recompute Q */
1619 if (target == qd_idx)
1620 data_target = target2;
1621 else
1622 data_target = target;
1624 count = 0;
1625 for (i = disks; i-- ; ) {
1626 if (i == data_target || i == qd_idx)
1627 continue;
1628 blocks[count++] = sh->dev[i].page;
1630 dest = sh->dev[data_target].page;
1631 init_async_submit(&submit,
1632 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633 NULL, NULL, NULL,
1634 to_addr_conv(sh, percpu, 0));
1635 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636 &submit);
1638 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640 ops_complete_compute, sh,
1641 to_addr_conv(sh, percpu, 0));
1642 return async_gen_syndrome(blocks, 0, count+2,
1643 STRIPE_SIZE, &submit);
1645 } else {
1646 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647 ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 if (failb == syndrome_disks) {
1650 /* We're missing D+P. */
1651 return async_raid6_datap_recov(syndrome_disks+2,
1652 STRIPE_SIZE, faila,
1653 blocks, &submit);
1654 } else {
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks+2,
1657 STRIPE_SIZE, faila, failb,
1658 blocks, &submit);
1663 static void ops_complete_prexor(void *stripe_head_ref)
1665 struct stripe_head *sh = stripe_head_ref;
1667 pr_debug("%s: stripe %llu\n", __func__,
1668 (unsigned long long)sh->sector);
1670 if (r5c_is_writeback(sh->raid_conf->log))
1672 * raid5-cache write back uses orig_page during prexor.
1673 * After prexor, it is time to free orig_page
1675 r5c_release_extra_page(sh);
1678 static struct dma_async_tx_descriptor *
1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680 struct dma_async_tx_descriptor *tx)
1682 int disks = sh->disks;
1683 struct page **xor_srcs = to_addr_page(percpu, 0);
1684 int count = 0, pd_idx = sh->pd_idx, i;
1685 struct async_submit_ctl submit;
1687 /* existing parity data subtracted */
1688 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690 BUG_ON(sh->batch_head);
1691 pr_debug("%s: stripe %llu\n", __func__,
1692 (unsigned long long)sh->sector);
1694 for (i = disks; i--; ) {
1695 struct r5dev *dev = &sh->dev[i];
1696 /* Only process blocks that are known to be uptodate */
1697 if (test_bit(R5_InJournal, &dev->flags))
1698 xor_srcs[count++] = dev->orig_page;
1699 else if (test_bit(R5_Wantdrain, &dev->flags))
1700 xor_srcs[count++] = dev->page;
1703 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1707 return tx;
1710 static struct dma_async_tx_descriptor *
1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712 struct dma_async_tx_descriptor *tx)
1714 struct page **blocks = to_addr_page(percpu, 0);
1715 int count;
1716 struct async_submit_ctl submit;
1718 pr_debug("%s: stripe %llu\n", __func__,
1719 (unsigned long long)sh->sector);
1721 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1727 return tx;
1730 static struct dma_async_tx_descriptor *
1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1733 struct r5conf *conf = sh->raid_conf;
1734 int disks = sh->disks;
1735 int i;
1736 struct stripe_head *head_sh = sh;
1738 pr_debug("%s: stripe %llu\n", __func__,
1739 (unsigned long long)sh->sector);
1741 for (i = disks; i--; ) {
1742 struct r5dev *dev;
1743 struct bio *chosen;
1745 sh = head_sh;
1746 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747 struct bio *wbi;
1749 again:
1750 dev = &sh->dev[i];
1752 * clear R5_InJournal, so when rewriting a page in
1753 * journal, it is not skipped by r5l_log_stripe()
1755 clear_bit(R5_InJournal, &dev->flags);
1756 spin_lock_irq(&sh->stripe_lock);
1757 chosen = dev->towrite;
1758 dev->towrite = NULL;
1759 sh->overwrite_disks = 0;
1760 BUG_ON(dev->written);
1761 wbi = dev->written = chosen;
1762 spin_unlock_irq(&sh->stripe_lock);
1763 WARN_ON(dev->page != dev->orig_page);
1765 while (wbi && wbi->bi_iter.bi_sector <
1766 dev->sector + STRIPE_SECTORS) {
1767 if (wbi->bi_opf & REQ_FUA)
1768 set_bit(R5_WantFUA, &dev->flags);
1769 if (wbi->bi_opf & REQ_SYNC)
1770 set_bit(R5_SyncIO, &dev->flags);
1771 if (bio_op(wbi) == REQ_OP_DISCARD)
1772 set_bit(R5_Discard, &dev->flags);
1773 else {
1774 tx = async_copy_data(1, wbi, &dev->page,
1775 dev->sector, tx, sh,
1776 r5c_is_writeback(conf->log));
1777 if (dev->page != dev->orig_page &&
1778 !r5c_is_writeback(conf->log)) {
1779 set_bit(R5_SkipCopy, &dev->flags);
1780 clear_bit(R5_UPTODATE, &dev->flags);
1781 clear_bit(R5_OVERWRITE, &dev->flags);
1784 wbi = r5_next_bio(wbi, dev->sector);
1787 if (head_sh->batch_head) {
1788 sh = list_first_entry(&sh->batch_list,
1789 struct stripe_head,
1790 batch_list);
1791 if (sh == head_sh)
1792 continue;
1793 goto again;
1798 return tx;
1801 static void ops_complete_reconstruct(void *stripe_head_ref)
1803 struct stripe_head *sh = stripe_head_ref;
1804 int disks = sh->disks;
1805 int pd_idx = sh->pd_idx;
1806 int qd_idx = sh->qd_idx;
1807 int i;
1808 bool fua = false, sync = false, discard = false;
1810 pr_debug("%s: stripe %llu\n", __func__,
1811 (unsigned long long)sh->sector);
1813 for (i = disks; i--; ) {
1814 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1819 for (i = disks; i--; ) {
1820 struct r5dev *dev = &sh->dev[i];
1822 if (dev->written || i == pd_idx || i == qd_idx) {
1823 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824 set_bit(R5_UPTODATE, &dev->flags);
1825 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826 set_bit(R5_Expanded, &dev->flags);
1828 if (fua)
1829 set_bit(R5_WantFUA, &dev->flags);
1830 if (sync)
1831 set_bit(R5_SyncIO, &dev->flags);
1835 if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 sh->reconstruct_state = reconstruct_state_drain_result;
1837 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 else {
1840 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 sh->reconstruct_state = reconstruct_state_result;
1844 set_bit(STRIPE_HANDLE, &sh->state);
1845 raid5_release_stripe(sh);
1848 static void
1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 struct dma_async_tx_descriptor *tx)
1852 int disks = sh->disks;
1853 struct page **xor_srcs;
1854 struct async_submit_ctl submit;
1855 int count, pd_idx = sh->pd_idx, i;
1856 struct page *xor_dest;
1857 int prexor = 0;
1858 unsigned long flags;
1859 int j = 0;
1860 struct stripe_head *head_sh = sh;
1861 int last_stripe;
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1866 for (i = 0; i < sh->disks; i++) {
1867 if (pd_idx == i)
1868 continue;
1869 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 break;
1872 if (i >= sh->disks) {
1873 atomic_inc(&sh->count);
1874 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 ops_complete_reconstruct(sh);
1876 return;
1878 again:
1879 count = 0;
1880 xor_srcs = to_addr_page(percpu, j);
1881 /* check if prexor is active which means only process blocks
1882 * that are part of a read-modify-write (written)
1884 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885 prexor = 1;
1886 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 for (i = disks; i--; ) {
1888 struct r5dev *dev = &sh->dev[i];
1889 if (head_sh->dev[i].written ||
1890 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891 xor_srcs[count++] = dev->page;
1893 } else {
1894 xor_dest = sh->dev[pd_idx].page;
1895 for (i = disks; i--; ) {
1896 struct r5dev *dev = &sh->dev[i];
1897 if (i != pd_idx)
1898 xor_srcs[count++] = dev->page;
1902 /* 1/ if we prexor'd then the dest is reused as a source
1903 * 2/ if we did not prexor then we are redoing the parity
1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 * for the synchronous xor case
1907 last_stripe = !head_sh->batch_head ||
1908 list_first_entry(&sh->batch_list,
1909 struct stripe_head, batch_list) == head_sh;
1910 if (last_stripe) {
1911 flags = ASYNC_TX_ACK |
1912 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1914 atomic_inc(&head_sh->count);
1915 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 to_addr_conv(sh, percpu, j));
1917 } else {
1918 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 init_async_submit(&submit, flags, tx, NULL, NULL,
1920 to_addr_conv(sh, percpu, j));
1923 if (unlikely(count == 1))
1924 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 else
1926 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927 if (!last_stripe) {
1928 j++;
1929 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 batch_list);
1931 goto again;
1935 static void
1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 struct dma_async_tx_descriptor *tx)
1939 struct async_submit_ctl submit;
1940 struct page **blocks;
1941 int count, i, j = 0;
1942 struct stripe_head *head_sh = sh;
1943 int last_stripe;
1944 int synflags;
1945 unsigned long txflags;
1947 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1949 for (i = 0; i < sh->disks; i++) {
1950 if (sh->pd_idx == i || sh->qd_idx == i)
1951 continue;
1952 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 break;
1955 if (i >= sh->disks) {
1956 atomic_inc(&sh->count);
1957 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 ops_complete_reconstruct(sh);
1960 return;
1963 again:
1964 blocks = to_addr_page(percpu, j);
1966 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 synflags = SYNDROME_SRC_WRITTEN;
1968 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 } else {
1970 synflags = SYNDROME_SRC_ALL;
1971 txflags = ASYNC_TX_ACK;
1974 count = set_syndrome_sources(blocks, sh, synflags);
1975 last_stripe = !head_sh->batch_head ||
1976 list_first_entry(&sh->batch_list,
1977 struct stripe_head, batch_list) == head_sh;
1979 if (last_stripe) {
1980 atomic_inc(&head_sh->count);
1981 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982 head_sh, to_addr_conv(sh, percpu, j));
1983 } else
1984 init_async_submit(&submit, 0, tx, NULL, NULL,
1985 to_addr_conv(sh, percpu, j));
1986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1987 if (!last_stripe) {
1988 j++;
1989 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 batch_list);
1991 goto again;
1995 static void ops_complete_check(void *stripe_head_ref)
1997 struct stripe_head *sh = stripe_head_ref;
1999 pr_debug("%s: stripe %llu\n", __func__,
2000 (unsigned long long)sh->sector);
2002 sh->check_state = check_state_check_result;
2003 set_bit(STRIPE_HANDLE, &sh->state);
2004 raid5_release_stripe(sh);
2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2009 int disks = sh->disks;
2010 int pd_idx = sh->pd_idx;
2011 int qd_idx = sh->qd_idx;
2012 struct page *xor_dest;
2013 struct page **xor_srcs = to_addr_page(percpu, 0);
2014 struct dma_async_tx_descriptor *tx;
2015 struct async_submit_ctl submit;
2016 int count;
2017 int i;
2019 pr_debug("%s: stripe %llu\n", __func__,
2020 (unsigned long long)sh->sector);
2022 BUG_ON(sh->batch_head);
2023 count = 0;
2024 xor_dest = sh->dev[pd_idx].page;
2025 xor_srcs[count++] = xor_dest;
2026 for (i = disks; i--; ) {
2027 if (i == pd_idx || i == qd_idx)
2028 continue;
2029 xor_srcs[count++] = sh->dev[i].page;
2032 init_async_submit(&submit, 0, NULL, NULL, NULL,
2033 to_addr_conv(sh, percpu, 0));
2034 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035 &sh->ops.zero_sum_result, &submit);
2037 atomic_inc(&sh->count);
2038 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 tx = async_trigger_callback(&submit);
2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2044 struct page **srcs = to_addr_page(percpu, 0);
2045 struct async_submit_ctl submit;
2046 int count;
2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 (unsigned long long)sh->sector, checkp);
2051 BUG_ON(sh->batch_head);
2052 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 if (!checkp)
2054 srcs[count] = NULL;
2056 atomic_inc(&sh->count);
2057 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058 sh, to_addr_conv(sh, percpu, 0));
2059 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2065 int overlap_clear = 0, i, disks = sh->disks;
2066 struct dma_async_tx_descriptor *tx = NULL;
2067 struct r5conf *conf = sh->raid_conf;
2068 int level = conf->level;
2069 struct raid5_percpu *percpu;
2070 unsigned long cpu;
2072 cpu = get_cpu();
2073 percpu = per_cpu_ptr(conf->percpu, cpu);
2074 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075 ops_run_biofill(sh);
2076 overlap_clear++;
2079 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080 if (level < 6)
2081 tx = ops_run_compute5(sh, percpu);
2082 else {
2083 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 tx = ops_run_compute6_1(sh, percpu);
2085 else
2086 tx = ops_run_compute6_2(sh, percpu);
2088 /* terminate the chain if reconstruct is not set to be run */
2089 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 async_tx_ack(tx);
2093 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094 if (level < 6)
2095 tx = ops_run_prexor5(sh, percpu, tx);
2096 else
2097 tx = ops_run_prexor6(sh, percpu, tx);
2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101 tx = ops_run_partial_parity(sh, percpu, tx);
2103 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104 tx = ops_run_biodrain(sh, tx);
2105 overlap_clear++;
2108 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 if (level < 6)
2110 ops_run_reconstruct5(sh, percpu, tx);
2111 else
2112 ops_run_reconstruct6(sh, percpu, tx);
2115 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 if (sh->check_state == check_state_run)
2117 ops_run_check_p(sh, percpu);
2118 else if (sh->check_state == check_state_run_q)
2119 ops_run_check_pq(sh, percpu, 0);
2120 else if (sh->check_state == check_state_run_pq)
2121 ops_run_check_pq(sh, percpu, 1);
2122 else
2123 BUG();
2126 if (overlap_clear && !sh->batch_head)
2127 for (i = disks; i--; ) {
2128 struct r5dev *dev = &sh->dev[i];
2129 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 wake_up(&sh->raid_conf->wait_for_overlap);
2132 put_cpu();
2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2137 if (sh->ppl_page)
2138 __free_page(sh->ppl_page);
2139 kmem_cache_free(sc, sh);
2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143 int disks, struct r5conf *conf)
2145 struct stripe_head *sh;
2146 int i;
2148 sh = kmem_cache_zalloc(sc, gfp);
2149 if (sh) {
2150 spin_lock_init(&sh->stripe_lock);
2151 spin_lock_init(&sh->batch_lock);
2152 INIT_LIST_HEAD(&sh->batch_list);
2153 INIT_LIST_HEAD(&sh->lru);
2154 INIT_LIST_HEAD(&sh->r5c);
2155 INIT_LIST_HEAD(&sh->log_list);
2156 atomic_set(&sh->count, 1);
2157 sh->raid_conf = conf;
2158 sh->log_start = MaxSector;
2159 for (i = 0; i < disks; i++) {
2160 struct r5dev *dev = &sh->dev[i];
2162 bio_init(&dev->req, &dev->vec, 1);
2163 bio_init(&dev->rreq, &dev->rvec, 1);
2166 if (raid5_has_ppl(conf)) {
2167 sh->ppl_page = alloc_page(gfp);
2168 if (!sh->ppl_page) {
2169 free_stripe(sc, sh);
2170 sh = NULL;
2174 return sh;
2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2178 struct stripe_head *sh;
2180 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181 if (!sh)
2182 return 0;
2184 if (grow_buffers(sh, gfp)) {
2185 shrink_buffers(sh);
2186 free_stripe(conf->slab_cache, sh);
2187 return 0;
2189 sh->hash_lock_index =
2190 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191 /* we just created an active stripe so... */
2192 atomic_inc(&conf->active_stripes);
2194 raid5_release_stripe(sh);
2195 conf->max_nr_stripes++;
2196 return 1;
2199 static int grow_stripes(struct r5conf *conf, int num)
2201 struct kmem_cache *sc;
2202 size_t namelen = sizeof(conf->cache_name[0]);
2203 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2205 if (conf->mddev->gendisk)
2206 snprintf(conf->cache_name[0], namelen,
2207 "raid%d-%s", conf->level, mdname(conf->mddev));
2208 else
2209 snprintf(conf->cache_name[0], namelen,
2210 "raid%d-%p", conf->level, conf->mddev);
2211 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2213 conf->active_name = 0;
2214 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216 0, 0, NULL);
2217 if (!sc)
2218 return 1;
2219 conf->slab_cache = sc;
2220 conf->pool_size = devs;
2221 while (num--)
2222 if (!grow_one_stripe(conf, GFP_KERNEL))
2223 return 1;
2225 return 0;
2229 * scribble_len - return the required size of the scribble region
2230 * @num - total number of disks in the array
2232 * The size must be enough to contain:
2233 * 1/ a struct page pointer for each device in the array +2
2234 * 2/ room to convert each entry in (1) to its corresponding dma
2235 * (dma_map_page()) or page (page_address()) address.
2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238 * calculate over all devices (not just the data blocks), using zeros in place
2239 * of the P and Q blocks.
2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2243 struct flex_array *ret;
2244 size_t len;
2246 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247 ret = flex_array_alloc(len, cnt, flags);
2248 if (!ret)
2249 return NULL;
2250 /* always prealloc all elements, so no locking is required */
2251 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252 flex_array_free(ret);
2253 return NULL;
2255 return ret;
2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2260 unsigned long cpu;
2261 int err = 0;
2264 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 * should equal to new_disks and new_sectors
2268 if (conf->scribble_disks >= new_disks &&
2269 conf->scribble_sectors >= new_sectors)
2270 return 0;
2271 mddev_suspend(conf->mddev);
2272 get_online_cpus();
2273 for_each_present_cpu(cpu) {
2274 struct raid5_percpu *percpu;
2275 struct flex_array *scribble;
2277 percpu = per_cpu_ptr(conf->percpu, cpu);
2278 scribble = scribble_alloc(new_disks,
2279 new_sectors / STRIPE_SECTORS,
2280 GFP_NOIO);
2282 if (scribble) {
2283 flex_array_free(percpu->scribble);
2284 percpu->scribble = scribble;
2285 } else {
2286 err = -ENOMEM;
2287 break;
2290 put_online_cpus();
2291 mddev_resume(conf->mddev);
2292 if (!err) {
2293 conf->scribble_disks = new_disks;
2294 conf->scribble_sectors = new_sectors;
2296 return err;
2299 static int resize_stripes(struct r5conf *conf, int newsize)
2301 /* Make all the stripes able to hold 'newsize' devices.
2302 * New slots in each stripe get 'page' set to a new page.
2304 * This happens in stages:
2305 * 1/ create a new kmem_cache and allocate the required number of
2306 * stripe_heads.
2307 * 2/ gather all the old stripe_heads and transfer the pages across
2308 * to the new stripe_heads. This will have the side effect of
2309 * freezing the array as once all stripe_heads have been collected,
2310 * no IO will be possible. Old stripe heads are freed once their
2311 * pages have been transferred over, and the old kmem_cache is
2312 * freed when all stripes are done.
2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2314 * we simple return a failure status - no need to clean anything up.
2315 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 * If this fails, we don't bother trying the shrink the
2317 * stripe_heads down again, we just leave them as they are.
2318 * As each stripe_head is processed the new one is released into
2319 * active service.
2321 * Once step2 is started, we cannot afford to wait for a write,
2322 * so we use GFP_NOIO allocations.
2324 struct stripe_head *osh, *nsh;
2325 LIST_HEAD(newstripes);
2326 struct disk_info *ndisks;
2327 int err = 0;
2328 struct kmem_cache *sc;
2329 int i;
2330 int hash, cnt;
2332 md_allow_write(conf->mddev);
2334 /* Step 1 */
2335 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337 0, 0, NULL);
2338 if (!sc)
2339 return -ENOMEM;
2341 /* Need to ensure auto-resizing doesn't interfere */
2342 mutex_lock(&conf->cache_size_mutex);
2344 for (i = conf->max_nr_stripes; i; i--) {
2345 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346 if (!nsh)
2347 break;
2349 list_add(&nsh->lru, &newstripes);
2351 if (i) {
2352 /* didn't get enough, give up */
2353 while (!list_empty(&newstripes)) {
2354 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355 list_del(&nsh->lru);
2356 free_stripe(sc, nsh);
2358 kmem_cache_destroy(sc);
2359 mutex_unlock(&conf->cache_size_mutex);
2360 return -ENOMEM;
2362 /* Step 2 - Must use GFP_NOIO now.
2363 * OK, we have enough stripes, start collecting inactive
2364 * stripes and copying them over
2366 hash = 0;
2367 cnt = 0;
2368 list_for_each_entry(nsh, &newstripes, lru) {
2369 lock_device_hash_lock(conf, hash);
2370 wait_event_cmd(conf->wait_for_stripe,
2371 !list_empty(conf->inactive_list + hash),
2372 unlock_device_hash_lock(conf, hash),
2373 lock_device_hash_lock(conf, hash));
2374 osh = get_free_stripe(conf, hash);
2375 unlock_device_hash_lock(conf, hash);
2377 for(i=0; i<conf->pool_size; i++) {
2378 nsh->dev[i].page = osh->dev[i].page;
2379 nsh->dev[i].orig_page = osh->dev[i].page;
2381 nsh->hash_lock_index = hash;
2382 free_stripe(conf->slab_cache, osh);
2383 cnt++;
2384 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386 hash++;
2387 cnt = 0;
2390 kmem_cache_destroy(conf->slab_cache);
2392 /* Step 3.
2393 * At this point, we are holding all the stripes so the array
2394 * is completely stalled, so now is a good time to resize
2395 * conf->disks and the scribble region
2397 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398 if (ndisks) {
2399 for (i = 0; i < conf->pool_size; i++)
2400 ndisks[i] = conf->disks[i];
2402 for (i = conf->pool_size; i < newsize; i++) {
2403 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404 if (!ndisks[i].extra_page)
2405 err = -ENOMEM;
2408 if (err) {
2409 for (i = conf->pool_size; i < newsize; i++)
2410 if (ndisks[i].extra_page)
2411 put_page(ndisks[i].extra_page);
2412 kfree(ndisks);
2413 } else {
2414 kfree(conf->disks);
2415 conf->disks = ndisks;
2417 } else
2418 err = -ENOMEM;
2420 mutex_unlock(&conf->cache_size_mutex);
2422 conf->slab_cache = sc;
2423 conf->active_name = 1-conf->active_name;
2425 /* Step 4, return new stripes to service */
2426 while(!list_empty(&newstripes)) {
2427 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428 list_del_init(&nsh->lru);
2430 for (i=conf->raid_disks; i < newsize; i++)
2431 if (nsh->dev[i].page == NULL) {
2432 struct page *p = alloc_page(GFP_NOIO);
2433 nsh->dev[i].page = p;
2434 nsh->dev[i].orig_page = p;
2435 if (!p)
2436 err = -ENOMEM;
2438 raid5_release_stripe(nsh);
2440 /* critical section pass, GFP_NOIO no longer needed */
2442 if (!err)
2443 conf->pool_size = newsize;
2444 return err;
2447 static int drop_one_stripe(struct r5conf *conf)
2449 struct stripe_head *sh;
2450 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2452 spin_lock_irq(conf->hash_locks + hash);
2453 sh = get_free_stripe(conf, hash);
2454 spin_unlock_irq(conf->hash_locks + hash);
2455 if (!sh)
2456 return 0;
2457 BUG_ON(atomic_read(&sh->count));
2458 shrink_buffers(sh);
2459 free_stripe(conf->slab_cache, sh);
2460 atomic_dec(&conf->active_stripes);
2461 conf->max_nr_stripes--;
2462 return 1;
2465 static void shrink_stripes(struct r5conf *conf)
2467 while (conf->max_nr_stripes &&
2468 drop_one_stripe(conf))
2471 kmem_cache_destroy(conf->slab_cache);
2472 conf->slab_cache = NULL;
2475 static void raid5_end_read_request(struct bio * bi)
2477 struct stripe_head *sh = bi->bi_private;
2478 struct r5conf *conf = sh->raid_conf;
2479 int disks = sh->disks, i;
2480 char b[BDEVNAME_SIZE];
2481 struct md_rdev *rdev = NULL;
2482 sector_t s;
2484 for (i=0 ; i<disks; i++)
2485 if (bi == &sh->dev[i].req)
2486 break;
2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490 bi->bi_status);
2491 if (i == disks) {
2492 bio_reset(bi);
2493 BUG();
2494 return;
2496 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497 /* If replacement finished while this request was outstanding,
2498 * 'replacement' might be NULL already.
2499 * In that case it moved down to 'rdev'.
2500 * rdev is not removed until all requests are finished.
2502 rdev = conf->disks[i].replacement;
2503 if (!rdev)
2504 rdev = conf->disks[i].rdev;
2506 if (use_new_offset(conf, sh))
2507 s = sh->sector + rdev->new_data_offset;
2508 else
2509 s = sh->sector + rdev->data_offset;
2510 if (!bi->bi_status) {
2511 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513 /* Note that this cannot happen on a
2514 * replacement device. We just fail those on
2515 * any error
2517 pr_info_ratelimited(
2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 mdname(conf->mddev), STRIPE_SECTORS,
2520 (unsigned long long)s,
2521 bdevname(rdev->bdev, b));
2522 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523 clear_bit(R5_ReadError, &sh->dev[i].flags);
2524 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2528 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2530 * end read for a page in journal, this
2531 * must be preparing for prexor in rmw
2533 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2535 if (atomic_read(&rdev->read_errors))
2536 atomic_set(&rdev->read_errors, 0);
2537 } else {
2538 const char *bdn = bdevname(rdev->bdev, b);
2539 int retry = 0;
2540 int set_bad = 0;
2542 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543 if (!(bi->bi_status == BLK_STS_PROTECTION))
2544 atomic_inc(&rdev->read_errors);
2545 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2548 mdname(conf->mddev),
2549 (unsigned long long)s,
2550 bdn);
2551 else if (conf->mddev->degraded >= conf->max_degraded) {
2552 set_bad = 1;
2553 pr_warn_ratelimited(
2554 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2555 mdname(conf->mddev),
2556 (unsigned long long)s,
2557 bdn);
2558 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2559 /* Oh, no!!! */
2560 set_bad = 1;
2561 pr_warn_ratelimited(
2562 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2563 mdname(conf->mddev),
2564 (unsigned long long)s,
2565 bdn);
2566 } else if (atomic_read(&rdev->read_errors)
2567 > conf->max_nr_stripes)
2568 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2569 mdname(conf->mddev), bdn);
2570 else
2571 retry = 1;
2572 if (set_bad && test_bit(In_sync, &rdev->flags)
2573 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2574 retry = 1;
2575 if (retry)
2576 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2577 set_bit(R5_ReadError, &sh->dev[i].flags);
2578 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2579 set_bit(R5_ReadError, &sh->dev[i].flags);
2580 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2581 } else
2582 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2583 else {
2584 clear_bit(R5_ReadError, &sh->dev[i].flags);
2585 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2586 if (!(set_bad
2587 && test_bit(In_sync, &rdev->flags)
2588 && rdev_set_badblocks(
2589 rdev, sh->sector, STRIPE_SECTORS, 0)))
2590 md_error(conf->mddev, rdev);
2593 rdev_dec_pending(rdev, conf->mddev);
2594 bio_reset(bi);
2595 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2596 set_bit(STRIPE_HANDLE, &sh->state);
2597 raid5_release_stripe(sh);
2600 static void raid5_end_write_request(struct bio *bi)
2602 struct stripe_head *sh = bi->bi_private;
2603 struct r5conf *conf = sh->raid_conf;
2604 int disks = sh->disks, i;
2605 struct md_rdev *uninitialized_var(rdev);
2606 sector_t first_bad;
2607 int bad_sectors;
2608 int replacement = 0;
2610 for (i = 0 ; i < disks; i++) {
2611 if (bi == &sh->dev[i].req) {
2612 rdev = conf->disks[i].rdev;
2613 break;
2615 if (bi == &sh->dev[i].rreq) {
2616 rdev = conf->disks[i].replacement;
2617 if (rdev)
2618 replacement = 1;
2619 else
2620 /* rdev was removed and 'replacement'
2621 * replaced it. rdev is not removed
2622 * until all requests are finished.
2624 rdev = conf->disks[i].rdev;
2625 break;
2628 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2629 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2630 bi->bi_status);
2631 if (i == disks) {
2632 bio_reset(bi);
2633 BUG();
2634 return;
2637 if (replacement) {
2638 if (bi->bi_status)
2639 md_error(conf->mddev, rdev);
2640 else if (is_badblock(rdev, sh->sector,
2641 STRIPE_SECTORS,
2642 &first_bad, &bad_sectors))
2643 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2644 } else {
2645 if (bi->bi_status) {
2646 set_bit(STRIPE_DEGRADED, &sh->state);
2647 set_bit(WriteErrorSeen, &rdev->flags);
2648 set_bit(R5_WriteError, &sh->dev[i].flags);
2649 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2650 set_bit(MD_RECOVERY_NEEDED,
2651 &rdev->mddev->recovery);
2652 } else if (is_badblock(rdev, sh->sector,
2653 STRIPE_SECTORS,
2654 &first_bad, &bad_sectors)) {
2655 set_bit(R5_MadeGood, &sh->dev[i].flags);
2656 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2657 /* That was a successful write so make
2658 * sure it looks like we already did
2659 * a re-write.
2661 set_bit(R5_ReWrite, &sh->dev[i].flags);
2664 rdev_dec_pending(rdev, conf->mddev);
2666 if (sh->batch_head && bi->bi_status && !replacement)
2667 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2669 bio_reset(bi);
2670 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2671 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2672 set_bit(STRIPE_HANDLE, &sh->state);
2673 raid5_release_stripe(sh);
2675 if (sh->batch_head && sh != sh->batch_head)
2676 raid5_release_stripe(sh->batch_head);
2679 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2681 char b[BDEVNAME_SIZE];
2682 struct r5conf *conf = mddev->private;
2683 unsigned long flags;
2684 pr_debug("raid456: error called\n");
2686 spin_lock_irqsave(&conf->device_lock, flags);
2687 set_bit(Faulty, &rdev->flags);
2688 clear_bit(In_sync, &rdev->flags);
2689 mddev->degraded = raid5_calc_degraded(conf);
2690 spin_unlock_irqrestore(&conf->device_lock, flags);
2691 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2693 set_bit(Blocked, &rdev->flags);
2694 set_mask_bits(&mddev->sb_flags, 0,
2695 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2696 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2697 "md/raid:%s: Operation continuing on %d devices.\n",
2698 mdname(mddev),
2699 bdevname(rdev->bdev, b),
2700 mdname(mddev),
2701 conf->raid_disks - mddev->degraded);
2702 r5c_update_on_rdev_error(mddev, rdev);
2706 * Input: a 'big' sector number,
2707 * Output: index of the data and parity disk, and the sector # in them.
2709 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2710 int previous, int *dd_idx,
2711 struct stripe_head *sh)
2713 sector_t stripe, stripe2;
2714 sector_t chunk_number;
2715 unsigned int chunk_offset;
2716 int pd_idx, qd_idx;
2717 int ddf_layout = 0;
2718 sector_t new_sector;
2719 int algorithm = previous ? conf->prev_algo
2720 : conf->algorithm;
2721 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2722 : conf->chunk_sectors;
2723 int raid_disks = previous ? conf->previous_raid_disks
2724 : conf->raid_disks;
2725 int data_disks = raid_disks - conf->max_degraded;
2727 /* First compute the information on this sector */
2730 * Compute the chunk number and the sector offset inside the chunk
2732 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2733 chunk_number = r_sector;
2736 * Compute the stripe number
2738 stripe = chunk_number;
2739 *dd_idx = sector_div(stripe, data_disks);
2740 stripe2 = stripe;
2742 * Select the parity disk based on the user selected algorithm.
2744 pd_idx = qd_idx = -1;
2745 switch(conf->level) {
2746 case 4:
2747 pd_idx = data_disks;
2748 break;
2749 case 5:
2750 switch (algorithm) {
2751 case ALGORITHM_LEFT_ASYMMETRIC:
2752 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2753 if (*dd_idx >= pd_idx)
2754 (*dd_idx)++;
2755 break;
2756 case ALGORITHM_RIGHT_ASYMMETRIC:
2757 pd_idx = sector_div(stripe2, raid_disks);
2758 if (*dd_idx >= pd_idx)
2759 (*dd_idx)++;
2760 break;
2761 case ALGORITHM_LEFT_SYMMETRIC:
2762 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2763 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2764 break;
2765 case ALGORITHM_RIGHT_SYMMETRIC:
2766 pd_idx = sector_div(stripe2, raid_disks);
2767 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2768 break;
2769 case ALGORITHM_PARITY_0:
2770 pd_idx = 0;
2771 (*dd_idx)++;
2772 break;
2773 case ALGORITHM_PARITY_N:
2774 pd_idx = data_disks;
2775 break;
2776 default:
2777 BUG();
2779 break;
2780 case 6:
2782 switch (algorithm) {
2783 case ALGORITHM_LEFT_ASYMMETRIC:
2784 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2785 qd_idx = pd_idx + 1;
2786 if (pd_idx == raid_disks-1) {
2787 (*dd_idx)++; /* Q D D D P */
2788 qd_idx = 0;
2789 } else if (*dd_idx >= pd_idx)
2790 (*dd_idx) += 2; /* D D P Q D */
2791 break;
2792 case ALGORITHM_RIGHT_ASYMMETRIC:
2793 pd_idx = sector_div(stripe2, raid_disks);
2794 qd_idx = pd_idx + 1;
2795 if (pd_idx == raid_disks-1) {
2796 (*dd_idx)++; /* Q D D D P */
2797 qd_idx = 0;
2798 } else if (*dd_idx >= pd_idx)
2799 (*dd_idx) += 2; /* D D P Q D */
2800 break;
2801 case ALGORITHM_LEFT_SYMMETRIC:
2802 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2803 qd_idx = (pd_idx + 1) % raid_disks;
2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 break;
2806 case ALGORITHM_RIGHT_SYMMETRIC:
2807 pd_idx = sector_div(stripe2, raid_disks);
2808 qd_idx = (pd_idx + 1) % raid_disks;
2809 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2810 break;
2812 case ALGORITHM_PARITY_0:
2813 pd_idx = 0;
2814 qd_idx = 1;
2815 (*dd_idx) += 2;
2816 break;
2817 case ALGORITHM_PARITY_N:
2818 pd_idx = data_disks;
2819 qd_idx = data_disks + 1;
2820 break;
2822 case ALGORITHM_ROTATING_ZERO_RESTART:
2823 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2824 * of blocks for computing Q is different.
2826 pd_idx = sector_div(stripe2, raid_disks);
2827 qd_idx = pd_idx + 1;
2828 if (pd_idx == raid_disks-1) {
2829 (*dd_idx)++; /* Q D D D P */
2830 qd_idx = 0;
2831 } else if (*dd_idx >= pd_idx)
2832 (*dd_idx) += 2; /* D D P Q D */
2833 ddf_layout = 1;
2834 break;
2836 case ALGORITHM_ROTATING_N_RESTART:
2837 /* Same a left_asymmetric, by first stripe is
2838 * D D D P Q rather than
2839 * Q D D D P
2841 stripe2 += 1;
2842 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2843 qd_idx = pd_idx + 1;
2844 if (pd_idx == raid_disks-1) {
2845 (*dd_idx)++; /* Q D D D P */
2846 qd_idx = 0;
2847 } else if (*dd_idx >= pd_idx)
2848 (*dd_idx) += 2; /* D D P Q D */
2849 ddf_layout = 1;
2850 break;
2852 case ALGORITHM_ROTATING_N_CONTINUE:
2853 /* Same as left_symmetric but Q is before P */
2854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2855 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2856 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2857 ddf_layout = 1;
2858 break;
2860 case ALGORITHM_LEFT_ASYMMETRIC_6:
2861 /* RAID5 left_asymmetric, with Q on last device */
2862 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2863 if (*dd_idx >= pd_idx)
2864 (*dd_idx)++;
2865 qd_idx = raid_disks - 1;
2866 break;
2868 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2869 pd_idx = sector_div(stripe2, raid_disks-1);
2870 if (*dd_idx >= pd_idx)
2871 (*dd_idx)++;
2872 qd_idx = raid_disks - 1;
2873 break;
2875 case ALGORITHM_LEFT_SYMMETRIC_6:
2876 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2877 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 qd_idx = raid_disks - 1;
2879 break;
2881 case ALGORITHM_RIGHT_SYMMETRIC_6:
2882 pd_idx = sector_div(stripe2, raid_disks-1);
2883 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2884 qd_idx = raid_disks - 1;
2885 break;
2887 case ALGORITHM_PARITY_0_6:
2888 pd_idx = 0;
2889 (*dd_idx)++;
2890 qd_idx = raid_disks - 1;
2891 break;
2893 default:
2894 BUG();
2896 break;
2899 if (sh) {
2900 sh->pd_idx = pd_idx;
2901 sh->qd_idx = qd_idx;
2902 sh->ddf_layout = ddf_layout;
2905 * Finally, compute the new sector number
2907 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2908 return new_sector;
2911 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2913 struct r5conf *conf = sh->raid_conf;
2914 int raid_disks = sh->disks;
2915 int data_disks = raid_disks - conf->max_degraded;
2916 sector_t new_sector = sh->sector, check;
2917 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2918 : conf->chunk_sectors;
2919 int algorithm = previous ? conf->prev_algo
2920 : conf->algorithm;
2921 sector_t stripe;
2922 int chunk_offset;
2923 sector_t chunk_number;
2924 int dummy1, dd_idx = i;
2925 sector_t r_sector;
2926 struct stripe_head sh2;
2928 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2929 stripe = new_sector;
2931 if (i == sh->pd_idx)
2932 return 0;
2933 switch(conf->level) {
2934 case 4: break;
2935 case 5:
2936 switch (algorithm) {
2937 case ALGORITHM_LEFT_ASYMMETRIC:
2938 case ALGORITHM_RIGHT_ASYMMETRIC:
2939 if (i > sh->pd_idx)
2940 i--;
2941 break;
2942 case ALGORITHM_LEFT_SYMMETRIC:
2943 case ALGORITHM_RIGHT_SYMMETRIC:
2944 if (i < sh->pd_idx)
2945 i += raid_disks;
2946 i -= (sh->pd_idx + 1);
2947 break;
2948 case ALGORITHM_PARITY_0:
2949 i -= 1;
2950 break;
2951 case ALGORITHM_PARITY_N:
2952 break;
2953 default:
2954 BUG();
2956 break;
2957 case 6:
2958 if (i == sh->qd_idx)
2959 return 0; /* It is the Q disk */
2960 switch (algorithm) {
2961 case ALGORITHM_LEFT_ASYMMETRIC:
2962 case ALGORITHM_RIGHT_ASYMMETRIC:
2963 case ALGORITHM_ROTATING_ZERO_RESTART:
2964 case ALGORITHM_ROTATING_N_RESTART:
2965 if (sh->pd_idx == raid_disks-1)
2966 i--; /* Q D D D P */
2967 else if (i > sh->pd_idx)
2968 i -= 2; /* D D P Q D */
2969 break;
2970 case ALGORITHM_LEFT_SYMMETRIC:
2971 case ALGORITHM_RIGHT_SYMMETRIC:
2972 if (sh->pd_idx == raid_disks-1)
2973 i--; /* Q D D D P */
2974 else {
2975 /* D D P Q D */
2976 if (i < sh->pd_idx)
2977 i += raid_disks;
2978 i -= (sh->pd_idx + 2);
2980 break;
2981 case ALGORITHM_PARITY_0:
2982 i -= 2;
2983 break;
2984 case ALGORITHM_PARITY_N:
2985 break;
2986 case ALGORITHM_ROTATING_N_CONTINUE:
2987 /* Like left_symmetric, but P is before Q */
2988 if (sh->pd_idx == 0)
2989 i--; /* P D D D Q */
2990 else {
2991 /* D D Q P D */
2992 if (i < sh->pd_idx)
2993 i += raid_disks;
2994 i -= (sh->pd_idx + 1);
2996 break;
2997 case ALGORITHM_LEFT_ASYMMETRIC_6:
2998 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2999 if (i > sh->pd_idx)
3000 i--;
3001 break;
3002 case ALGORITHM_LEFT_SYMMETRIC_6:
3003 case ALGORITHM_RIGHT_SYMMETRIC_6:
3004 if (i < sh->pd_idx)
3005 i += data_disks + 1;
3006 i -= (sh->pd_idx + 1);
3007 break;
3008 case ALGORITHM_PARITY_0_6:
3009 i -= 1;
3010 break;
3011 default:
3012 BUG();
3014 break;
3017 chunk_number = stripe * data_disks + i;
3018 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3020 check = raid5_compute_sector(conf, r_sector,
3021 previous, &dummy1, &sh2);
3022 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3023 || sh2.qd_idx != sh->qd_idx) {
3024 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3025 mdname(conf->mddev));
3026 return 0;
3028 return r_sector;
3032 * There are cases where we want handle_stripe_dirtying() and
3033 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3035 * This function checks whether we want to delay the towrite. Specifically,
3036 * we delay the towrite when:
3038 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3039 * stripe has data in journal (for other devices).
3041 * In this case, when reading data for the non-overwrite dev, it is
3042 * necessary to handle complex rmw of write back cache (prexor with
3043 * orig_page, and xor with page). To keep read path simple, we would
3044 * like to flush data in journal to RAID disks first, so complex rmw
3045 * is handled in the write patch (handle_stripe_dirtying).
3047 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3049 * It is important to be able to flush all stripes in raid5-cache.
3050 * Therefore, we need reserve some space on the journal device for
3051 * these flushes. If flush operation includes pending writes to the
3052 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3053 * for the flush out. If we exclude these pending writes from flush
3054 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3055 * Therefore, excluding pending writes in these cases enables more
3056 * efficient use of the journal device.
3058 * Note: To make sure the stripe makes progress, we only delay
3059 * towrite for stripes with data already in journal (injournal > 0).
3060 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3061 * no_space_stripes list.
3063 * 3. during journal failure
3064 * In journal failure, we try to flush all cached data to raid disks
3065 * based on data in stripe cache. The array is read-only to upper
3066 * layers, so we would skip all pending writes.
3069 static inline bool delay_towrite(struct r5conf *conf,
3070 struct r5dev *dev,
3071 struct stripe_head_state *s)
3073 /* case 1 above */
3074 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3075 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3076 return true;
3077 /* case 2 above */
3078 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3079 s->injournal > 0)
3080 return true;
3081 /* case 3 above */
3082 if (s->log_failed && s->injournal)
3083 return true;
3084 return false;
3087 static void
3088 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3089 int rcw, int expand)
3091 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3092 struct r5conf *conf = sh->raid_conf;
3093 int level = conf->level;
3095 if (rcw) {
3097 * In some cases, handle_stripe_dirtying initially decided to
3098 * run rmw and allocates extra page for prexor. However, rcw is
3099 * cheaper later on. We need to free the extra page now,
3100 * because we won't be able to do that in ops_complete_prexor().
3102 r5c_release_extra_page(sh);
3104 for (i = disks; i--; ) {
3105 struct r5dev *dev = &sh->dev[i];
3107 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3108 set_bit(R5_LOCKED, &dev->flags);
3109 set_bit(R5_Wantdrain, &dev->flags);
3110 if (!expand)
3111 clear_bit(R5_UPTODATE, &dev->flags);
3112 s->locked++;
3113 } else if (test_bit(R5_InJournal, &dev->flags)) {
3114 set_bit(R5_LOCKED, &dev->flags);
3115 s->locked++;
3118 /* if we are not expanding this is a proper write request, and
3119 * there will be bios with new data to be drained into the
3120 * stripe cache
3122 if (!expand) {
3123 if (!s->locked)
3124 /* False alarm, nothing to do */
3125 return;
3126 sh->reconstruct_state = reconstruct_state_drain_run;
3127 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3128 } else
3129 sh->reconstruct_state = reconstruct_state_run;
3131 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3133 if (s->locked + conf->max_degraded == disks)
3134 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3135 atomic_inc(&conf->pending_full_writes);
3136 } else {
3137 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3138 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3139 BUG_ON(level == 6 &&
3140 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3141 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3143 for (i = disks; i--; ) {
3144 struct r5dev *dev = &sh->dev[i];
3145 if (i == pd_idx || i == qd_idx)
3146 continue;
3148 if (dev->towrite &&
3149 (test_bit(R5_UPTODATE, &dev->flags) ||
3150 test_bit(R5_Wantcompute, &dev->flags))) {
3151 set_bit(R5_Wantdrain, &dev->flags);
3152 set_bit(R5_LOCKED, &dev->flags);
3153 clear_bit(R5_UPTODATE, &dev->flags);
3154 s->locked++;
3155 } else if (test_bit(R5_InJournal, &dev->flags)) {
3156 set_bit(R5_LOCKED, &dev->flags);
3157 s->locked++;
3160 if (!s->locked)
3161 /* False alarm - nothing to do */
3162 return;
3163 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3164 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3165 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3166 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3169 /* keep the parity disk(s) locked while asynchronous operations
3170 * are in flight
3172 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3173 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3174 s->locked++;
3176 if (level == 6) {
3177 int qd_idx = sh->qd_idx;
3178 struct r5dev *dev = &sh->dev[qd_idx];
3180 set_bit(R5_LOCKED, &dev->flags);
3181 clear_bit(R5_UPTODATE, &dev->flags);
3182 s->locked++;
3185 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3186 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3187 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3188 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3189 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3191 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3192 __func__, (unsigned long long)sh->sector,
3193 s->locked, s->ops_request);
3197 * Each stripe/dev can have one or more bion attached.
3198 * toread/towrite point to the first in a chain.
3199 * The bi_next chain must be in order.
3201 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3202 int forwrite, int previous)
3204 struct bio **bip;
3205 struct r5conf *conf = sh->raid_conf;
3206 int firstwrite=0;
3208 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3209 (unsigned long long)bi->bi_iter.bi_sector,
3210 (unsigned long long)sh->sector);
3212 spin_lock_irq(&sh->stripe_lock);
3213 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3214 /* Don't allow new IO added to stripes in batch list */
3215 if (sh->batch_head)
3216 goto overlap;
3217 if (forwrite) {
3218 bip = &sh->dev[dd_idx].towrite;
3219 if (*bip == NULL)
3220 firstwrite = 1;
3221 } else
3222 bip = &sh->dev[dd_idx].toread;
3223 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3224 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3225 goto overlap;
3226 bip = & (*bip)->bi_next;
3228 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3229 goto overlap;
3231 if (forwrite && raid5_has_ppl(conf)) {
3233 * With PPL only writes to consecutive data chunks within a
3234 * stripe are allowed because for a single stripe_head we can
3235 * only have one PPL entry at a time, which describes one data
3236 * range. Not really an overlap, but wait_for_overlap can be
3237 * used to handle this.
3239 sector_t sector;
3240 sector_t first = 0;
3241 sector_t last = 0;
3242 int count = 0;
3243 int i;
3245 for (i = 0; i < sh->disks; i++) {
3246 if (i != sh->pd_idx &&
3247 (i == dd_idx || sh->dev[i].towrite)) {
3248 sector = sh->dev[i].sector;
3249 if (count == 0 || sector < first)
3250 first = sector;
3251 if (sector > last)
3252 last = sector;
3253 count++;
3257 if (first + conf->chunk_sectors * (count - 1) != last)
3258 goto overlap;
3261 if (!forwrite || previous)
3262 clear_bit(STRIPE_BATCH_READY, &sh->state);
3264 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3265 if (*bip)
3266 bi->bi_next = *bip;
3267 *bip = bi;
3268 bio_inc_remaining(bi);
3269 md_write_inc(conf->mddev, bi);
3271 if (forwrite) {
3272 /* check if page is covered */
3273 sector_t sector = sh->dev[dd_idx].sector;
3274 for (bi=sh->dev[dd_idx].towrite;
3275 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3276 bi && bi->bi_iter.bi_sector <= sector;
3277 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3278 if (bio_end_sector(bi) >= sector)
3279 sector = bio_end_sector(bi);
3281 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3282 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3283 sh->overwrite_disks++;
3286 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3287 (unsigned long long)(*bip)->bi_iter.bi_sector,
3288 (unsigned long long)sh->sector, dd_idx);
3290 if (conf->mddev->bitmap && firstwrite) {
3291 /* Cannot hold spinlock over bitmap_startwrite,
3292 * but must ensure this isn't added to a batch until
3293 * we have added to the bitmap and set bm_seq.
3294 * So set STRIPE_BITMAP_PENDING to prevent
3295 * batching.
3296 * If multiple add_stripe_bio() calls race here they
3297 * much all set STRIPE_BITMAP_PENDING. So only the first one
3298 * to complete "bitmap_startwrite" gets to set
3299 * STRIPE_BIT_DELAY. This is important as once a stripe
3300 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3301 * any more.
3303 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3304 spin_unlock_irq(&sh->stripe_lock);
3305 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3306 STRIPE_SECTORS, 0);
3307 spin_lock_irq(&sh->stripe_lock);
3308 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3309 if (!sh->batch_head) {
3310 sh->bm_seq = conf->seq_flush+1;
3311 set_bit(STRIPE_BIT_DELAY, &sh->state);
3314 spin_unlock_irq(&sh->stripe_lock);
3316 if (stripe_can_batch(sh))
3317 stripe_add_to_batch_list(conf, sh);
3318 return 1;
3320 overlap:
3321 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3322 spin_unlock_irq(&sh->stripe_lock);
3323 return 0;
3326 static void end_reshape(struct r5conf *conf);
3328 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3329 struct stripe_head *sh)
3331 int sectors_per_chunk =
3332 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3333 int dd_idx;
3334 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3335 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3337 raid5_compute_sector(conf,
3338 stripe * (disks - conf->max_degraded)
3339 *sectors_per_chunk + chunk_offset,
3340 previous,
3341 &dd_idx, sh);
3344 static void
3345 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3346 struct stripe_head_state *s, int disks)
3348 int i;
3349 BUG_ON(sh->batch_head);
3350 for (i = disks; i--; ) {
3351 struct bio *bi;
3352 int bitmap_end = 0;
3354 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3355 struct md_rdev *rdev;
3356 rcu_read_lock();
3357 rdev = rcu_dereference(conf->disks[i].rdev);
3358 if (rdev && test_bit(In_sync, &rdev->flags) &&
3359 !test_bit(Faulty, &rdev->flags))
3360 atomic_inc(&rdev->nr_pending);
3361 else
3362 rdev = NULL;
3363 rcu_read_unlock();
3364 if (rdev) {
3365 if (!rdev_set_badblocks(
3366 rdev,
3367 sh->sector,
3368 STRIPE_SECTORS, 0))
3369 md_error(conf->mddev, rdev);
3370 rdev_dec_pending(rdev, conf->mddev);
3373 spin_lock_irq(&sh->stripe_lock);
3374 /* fail all writes first */
3375 bi = sh->dev[i].towrite;
3376 sh->dev[i].towrite = NULL;
3377 sh->overwrite_disks = 0;
3378 spin_unlock_irq(&sh->stripe_lock);
3379 if (bi)
3380 bitmap_end = 1;
3382 log_stripe_write_finished(sh);
3384 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3385 wake_up(&conf->wait_for_overlap);
3387 while (bi && bi->bi_iter.bi_sector <
3388 sh->dev[i].sector + STRIPE_SECTORS) {
3389 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3391 md_write_end(conf->mddev);
3392 bio_io_error(bi);
3393 bi = nextbi;
3395 if (bitmap_end)
3396 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3397 STRIPE_SECTORS, 0, 0);
3398 bitmap_end = 0;
3399 /* and fail all 'written' */
3400 bi = sh->dev[i].written;
3401 sh->dev[i].written = NULL;
3402 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3403 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3404 sh->dev[i].page = sh->dev[i].orig_page;
3407 if (bi) bitmap_end = 1;
3408 while (bi && bi->bi_iter.bi_sector <
3409 sh->dev[i].sector + STRIPE_SECTORS) {
3410 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3412 md_write_end(conf->mddev);
3413 bio_io_error(bi);
3414 bi = bi2;
3417 /* fail any reads if this device is non-operational and
3418 * the data has not reached the cache yet.
3420 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3421 s->failed > conf->max_degraded &&
3422 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3423 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3424 spin_lock_irq(&sh->stripe_lock);
3425 bi = sh->dev[i].toread;
3426 sh->dev[i].toread = NULL;
3427 spin_unlock_irq(&sh->stripe_lock);
3428 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3429 wake_up(&conf->wait_for_overlap);
3430 if (bi)
3431 s->to_read--;
3432 while (bi && bi->bi_iter.bi_sector <
3433 sh->dev[i].sector + STRIPE_SECTORS) {
3434 struct bio *nextbi =
3435 r5_next_bio(bi, sh->dev[i].sector);
3437 bio_io_error(bi);
3438 bi = nextbi;
3441 if (bitmap_end)
3442 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3443 STRIPE_SECTORS, 0, 0);
3444 /* If we were in the middle of a write the parity block might
3445 * still be locked - so just clear all R5_LOCKED flags
3447 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3449 s->to_write = 0;
3450 s->written = 0;
3452 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3453 if (atomic_dec_and_test(&conf->pending_full_writes))
3454 md_wakeup_thread(conf->mddev->thread);
3457 static void
3458 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3459 struct stripe_head_state *s)
3461 int abort = 0;
3462 int i;
3464 BUG_ON(sh->batch_head);
3465 clear_bit(STRIPE_SYNCING, &sh->state);
3466 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3467 wake_up(&conf->wait_for_overlap);
3468 s->syncing = 0;
3469 s->replacing = 0;
3470 /* There is nothing more to do for sync/check/repair.
3471 * Don't even need to abort as that is handled elsewhere
3472 * if needed, and not always wanted e.g. if there is a known
3473 * bad block here.
3474 * For recover/replace we need to record a bad block on all
3475 * non-sync devices, or abort the recovery
3477 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3478 /* During recovery devices cannot be removed, so
3479 * locking and refcounting of rdevs is not needed
3481 rcu_read_lock();
3482 for (i = 0; i < conf->raid_disks; i++) {
3483 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3484 if (rdev
3485 && !test_bit(Faulty, &rdev->flags)
3486 && !test_bit(In_sync, &rdev->flags)
3487 && !rdev_set_badblocks(rdev, sh->sector,
3488 STRIPE_SECTORS, 0))
3489 abort = 1;
3490 rdev = rcu_dereference(conf->disks[i].replacement);
3491 if (rdev
3492 && !test_bit(Faulty, &rdev->flags)
3493 && !test_bit(In_sync, &rdev->flags)
3494 && !rdev_set_badblocks(rdev, sh->sector,
3495 STRIPE_SECTORS, 0))
3496 abort = 1;
3498 rcu_read_unlock();
3499 if (abort)
3500 conf->recovery_disabled =
3501 conf->mddev->recovery_disabled;
3503 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3506 static int want_replace(struct stripe_head *sh, int disk_idx)
3508 struct md_rdev *rdev;
3509 int rv = 0;
3511 rcu_read_lock();
3512 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3513 if (rdev
3514 && !test_bit(Faulty, &rdev->flags)
3515 && !test_bit(In_sync, &rdev->flags)
3516 && (rdev->recovery_offset <= sh->sector
3517 || rdev->mddev->recovery_cp <= sh->sector))
3518 rv = 1;
3519 rcu_read_unlock();
3520 return rv;
3523 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3524 int disk_idx, int disks)
3526 struct r5dev *dev = &sh->dev[disk_idx];
3527 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3528 &sh->dev[s->failed_num[1]] };
3529 int i;
3532 if (test_bit(R5_LOCKED, &dev->flags) ||
3533 test_bit(R5_UPTODATE, &dev->flags))
3534 /* No point reading this as we already have it or have
3535 * decided to get it.
3537 return 0;
3539 if (dev->toread ||
3540 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3541 /* We need this block to directly satisfy a request */
3542 return 1;
3544 if (s->syncing || s->expanding ||
3545 (s->replacing && want_replace(sh, disk_idx)))
3546 /* When syncing, or expanding we read everything.
3547 * When replacing, we need the replaced block.
3549 return 1;
3551 if ((s->failed >= 1 && fdev[0]->toread) ||
3552 (s->failed >= 2 && fdev[1]->toread))
3553 /* If we want to read from a failed device, then
3554 * we need to actually read every other device.
3556 return 1;
3558 /* Sometimes neither read-modify-write nor reconstruct-write
3559 * cycles can work. In those cases we read every block we
3560 * can. Then the parity-update is certain to have enough to
3561 * work with.
3562 * This can only be a problem when we need to write something,
3563 * and some device has failed. If either of those tests
3564 * fail we need look no further.
3566 if (!s->failed || !s->to_write)
3567 return 0;
3569 if (test_bit(R5_Insync, &dev->flags) &&
3570 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3571 /* Pre-reads at not permitted until after short delay
3572 * to gather multiple requests. However if this
3573 * device is no Insync, the block could only be computed
3574 * and there is no need to delay that.
3576 return 0;
3578 for (i = 0; i < s->failed && i < 2; i++) {
3579 if (fdev[i]->towrite &&
3580 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3581 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3582 /* If we have a partial write to a failed
3583 * device, then we will need to reconstruct
3584 * the content of that device, so all other
3585 * devices must be read.
3587 return 1;
3590 /* If we are forced to do a reconstruct-write, either because
3591 * the current RAID6 implementation only supports that, or
3592 * because parity cannot be trusted and we are currently
3593 * recovering it, there is extra need to be careful.
3594 * If one of the devices that we would need to read, because
3595 * it is not being overwritten (and maybe not written at all)
3596 * is missing/faulty, then we need to read everything we can.
3598 if (sh->raid_conf->level != 6 &&
3599 sh->sector < sh->raid_conf->mddev->recovery_cp)
3600 /* reconstruct-write isn't being forced */
3601 return 0;
3602 for (i = 0; i < s->failed && i < 2; i++) {
3603 if (s->failed_num[i] != sh->pd_idx &&
3604 s->failed_num[i] != sh->qd_idx &&
3605 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3606 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3607 return 1;
3610 return 0;
3613 /* fetch_block - checks the given member device to see if its data needs
3614 * to be read or computed to satisfy a request.
3616 * Returns 1 when no more member devices need to be checked, otherwise returns
3617 * 0 to tell the loop in handle_stripe_fill to continue
3619 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3620 int disk_idx, int disks)
3622 struct r5dev *dev = &sh->dev[disk_idx];
3624 /* is the data in this block needed, and can we get it? */
3625 if (need_this_block(sh, s, disk_idx, disks)) {
3626 /* we would like to get this block, possibly by computing it,
3627 * otherwise read it if the backing disk is insync
3629 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3630 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3631 BUG_ON(sh->batch_head);
3634 * In the raid6 case if the only non-uptodate disk is P
3635 * then we already trusted P to compute the other failed
3636 * drives. It is safe to compute rather than re-read P.
3637 * In other cases we only compute blocks from failed
3638 * devices, otherwise check/repair might fail to detect
3639 * a real inconsistency.
3642 if ((s->uptodate == disks - 1) &&
3643 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3644 (s->failed && (disk_idx == s->failed_num[0] ||
3645 disk_idx == s->failed_num[1])))) {
3646 /* have disk failed, and we're requested to fetch it;
3647 * do compute it
3649 pr_debug("Computing stripe %llu block %d\n",
3650 (unsigned long long)sh->sector, disk_idx);
3651 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3652 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3653 set_bit(R5_Wantcompute, &dev->flags);
3654 sh->ops.target = disk_idx;
3655 sh->ops.target2 = -1; /* no 2nd target */
3656 s->req_compute = 1;
3657 /* Careful: from this point on 'uptodate' is in the eye
3658 * of raid_run_ops which services 'compute' operations
3659 * before writes. R5_Wantcompute flags a block that will
3660 * be R5_UPTODATE by the time it is needed for a
3661 * subsequent operation.
3663 s->uptodate++;
3664 return 1;
3665 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3666 /* Computing 2-failure is *very* expensive; only
3667 * do it if failed >= 2
3669 int other;
3670 for (other = disks; other--; ) {
3671 if (other == disk_idx)
3672 continue;
3673 if (!test_bit(R5_UPTODATE,
3674 &sh->dev[other].flags))
3675 break;
3677 BUG_ON(other < 0);
3678 pr_debug("Computing stripe %llu blocks %d,%d\n",
3679 (unsigned long long)sh->sector,
3680 disk_idx, other);
3681 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3682 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3683 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3684 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3685 sh->ops.target = disk_idx;
3686 sh->ops.target2 = other;
3687 s->uptodate += 2;
3688 s->req_compute = 1;
3689 return 1;
3690 } else if (test_bit(R5_Insync, &dev->flags)) {
3691 set_bit(R5_LOCKED, &dev->flags);
3692 set_bit(R5_Wantread, &dev->flags);
3693 s->locked++;
3694 pr_debug("Reading block %d (sync=%d)\n",
3695 disk_idx, s->syncing);
3699 return 0;
3703 * handle_stripe_fill - read or compute data to satisfy pending requests.
3705 static void handle_stripe_fill(struct stripe_head *sh,
3706 struct stripe_head_state *s,
3707 int disks)
3709 int i;
3711 /* look for blocks to read/compute, skip this if a compute
3712 * is already in flight, or if the stripe contents are in the
3713 * midst of changing due to a write
3715 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3716 !sh->reconstruct_state) {
3719 * For degraded stripe with data in journal, do not handle
3720 * read requests yet, instead, flush the stripe to raid
3721 * disks first, this avoids handling complex rmw of write
3722 * back cache (prexor with orig_page, and then xor with
3723 * page) in the read path
3725 if (s->injournal && s->failed) {
3726 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3727 r5c_make_stripe_write_out(sh);
3728 goto out;
3731 for (i = disks; i--; )
3732 if (fetch_block(sh, s, i, disks))
3733 break;
3735 out:
3736 set_bit(STRIPE_HANDLE, &sh->state);
3739 static void break_stripe_batch_list(struct stripe_head *head_sh,
3740 unsigned long handle_flags);
3741 /* handle_stripe_clean_event
3742 * any written block on an uptodate or failed drive can be returned.
3743 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3744 * never LOCKED, so we don't need to test 'failed' directly.
3746 static void handle_stripe_clean_event(struct r5conf *conf,
3747 struct stripe_head *sh, int disks)
3749 int i;
3750 struct r5dev *dev;
3751 int discard_pending = 0;
3752 struct stripe_head *head_sh = sh;
3753 bool do_endio = false;
3755 for (i = disks; i--; )
3756 if (sh->dev[i].written) {
3757 dev = &sh->dev[i];
3758 if (!test_bit(R5_LOCKED, &dev->flags) &&
3759 (test_bit(R5_UPTODATE, &dev->flags) ||
3760 test_bit(R5_Discard, &dev->flags) ||
3761 test_bit(R5_SkipCopy, &dev->flags))) {
3762 /* We can return any write requests */
3763 struct bio *wbi, *wbi2;
3764 pr_debug("Return write for disc %d\n", i);
3765 if (test_and_clear_bit(R5_Discard, &dev->flags))
3766 clear_bit(R5_UPTODATE, &dev->flags);
3767 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3768 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3770 do_endio = true;
3772 returnbi:
3773 dev->page = dev->orig_page;
3774 wbi = dev->written;
3775 dev->written = NULL;
3776 while (wbi && wbi->bi_iter.bi_sector <
3777 dev->sector + STRIPE_SECTORS) {
3778 wbi2 = r5_next_bio(wbi, dev->sector);
3779 md_write_end(conf->mddev);
3780 bio_endio(wbi);
3781 wbi = wbi2;
3783 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3784 STRIPE_SECTORS,
3785 !test_bit(STRIPE_DEGRADED, &sh->state),
3787 if (head_sh->batch_head) {
3788 sh = list_first_entry(&sh->batch_list,
3789 struct stripe_head,
3790 batch_list);
3791 if (sh != head_sh) {
3792 dev = &sh->dev[i];
3793 goto returnbi;
3796 sh = head_sh;
3797 dev = &sh->dev[i];
3798 } else if (test_bit(R5_Discard, &dev->flags))
3799 discard_pending = 1;
3802 log_stripe_write_finished(sh);
3804 if (!discard_pending &&
3805 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3806 int hash;
3807 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3808 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3809 if (sh->qd_idx >= 0) {
3810 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3811 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3813 /* now that discard is done we can proceed with any sync */
3814 clear_bit(STRIPE_DISCARD, &sh->state);
3816 * SCSI discard will change some bio fields and the stripe has
3817 * no updated data, so remove it from hash list and the stripe
3818 * will be reinitialized
3820 unhash:
3821 hash = sh->hash_lock_index;
3822 spin_lock_irq(conf->hash_locks + hash);
3823 remove_hash(sh);
3824 spin_unlock_irq(conf->hash_locks + hash);
3825 if (head_sh->batch_head) {
3826 sh = list_first_entry(&sh->batch_list,
3827 struct stripe_head, batch_list);
3828 if (sh != head_sh)
3829 goto unhash;
3831 sh = head_sh;
3833 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3834 set_bit(STRIPE_HANDLE, &sh->state);
3838 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3839 if (atomic_dec_and_test(&conf->pending_full_writes))
3840 md_wakeup_thread(conf->mddev->thread);
3842 if (head_sh->batch_head && do_endio)
3843 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3847 * For RMW in write back cache, we need extra page in prexor to store the
3848 * old data. This page is stored in dev->orig_page.
3850 * This function checks whether we have data for prexor. The exact logic
3851 * is:
3852 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3854 static inline bool uptodate_for_rmw(struct r5dev *dev)
3856 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3857 (!test_bit(R5_InJournal, &dev->flags) ||
3858 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3861 static int handle_stripe_dirtying(struct r5conf *conf,
3862 struct stripe_head *sh,
3863 struct stripe_head_state *s,
3864 int disks)
3866 int rmw = 0, rcw = 0, i;
3867 sector_t recovery_cp = conf->mddev->recovery_cp;
3869 /* Check whether resync is now happening or should start.
3870 * If yes, then the array is dirty (after unclean shutdown or
3871 * initial creation), so parity in some stripes might be inconsistent.
3872 * In this case, we need to always do reconstruct-write, to ensure
3873 * that in case of drive failure or read-error correction, we
3874 * generate correct data from the parity.
3876 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3877 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3878 s->failed == 0)) {
3879 /* Calculate the real rcw later - for now make it
3880 * look like rcw is cheaper
3882 rcw = 1; rmw = 2;
3883 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3884 conf->rmw_level, (unsigned long long)recovery_cp,
3885 (unsigned long long)sh->sector);
3886 } else for (i = disks; i--; ) {
3887 /* would I have to read this buffer for read_modify_write */
3888 struct r5dev *dev = &sh->dev[i];
3889 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3890 i == sh->pd_idx || i == sh->qd_idx ||
3891 test_bit(R5_InJournal, &dev->flags)) &&
3892 !test_bit(R5_LOCKED, &dev->flags) &&
3893 !(uptodate_for_rmw(dev) ||
3894 test_bit(R5_Wantcompute, &dev->flags))) {
3895 if (test_bit(R5_Insync, &dev->flags))
3896 rmw++;
3897 else
3898 rmw += 2*disks; /* cannot read it */
3900 /* Would I have to read this buffer for reconstruct_write */
3901 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3902 i != sh->pd_idx && i != sh->qd_idx &&
3903 !test_bit(R5_LOCKED, &dev->flags) &&
3904 !(test_bit(R5_UPTODATE, &dev->flags) ||
3905 test_bit(R5_Wantcompute, &dev->flags))) {
3906 if (test_bit(R5_Insync, &dev->flags))
3907 rcw++;
3908 else
3909 rcw += 2*disks;
3913 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3914 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3915 set_bit(STRIPE_HANDLE, &sh->state);
3916 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3917 /* prefer read-modify-write, but need to get some data */
3918 if (conf->mddev->queue)
3919 blk_add_trace_msg(conf->mddev->queue,
3920 "raid5 rmw %llu %d",
3921 (unsigned long long)sh->sector, rmw);
3922 for (i = disks; i--; ) {
3923 struct r5dev *dev = &sh->dev[i];
3924 if (test_bit(R5_InJournal, &dev->flags) &&
3925 dev->page == dev->orig_page &&
3926 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3927 /* alloc page for prexor */
3928 struct page *p = alloc_page(GFP_NOIO);
3930 if (p) {
3931 dev->orig_page = p;
3932 continue;
3936 * alloc_page() failed, try use
3937 * disk_info->extra_page
3939 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3940 &conf->cache_state)) {
3941 r5c_use_extra_page(sh);
3942 break;
3945 /* extra_page in use, add to delayed_list */
3946 set_bit(STRIPE_DELAYED, &sh->state);
3947 s->waiting_extra_page = 1;
3948 return -EAGAIN;
3952 for (i = disks; i--; ) {
3953 struct r5dev *dev = &sh->dev[i];
3954 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3955 i == sh->pd_idx || i == sh->qd_idx ||
3956 test_bit(R5_InJournal, &dev->flags)) &&
3957 !test_bit(R5_LOCKED, &dev->flags) &&
3958 !(uptodate_for_rmw(dev) ||
3959 test_bit(R5_Wantcompute, &dev->flags)) &&
3960 test_bit(R5_Insync, &dev->flags)) {
3961 if (test_bit(STRIPE_PREREAD_ACTIVE,
3962 &sh->state)) {
3963 pr_debug("Read_old block %d for r-m-w\n",
3965 set_bit(R5_LOCKED, &dev->flags);
3966 set_bit(R5_Wantread, &dev->flags);
3967 s->locked++;
3968 } else {
3969 set_bit(STRIPE_DELAYED, &sh->state);
3970 set_bit(STRIPE_HANDLE, &sh->state);
3975 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3976 /* want reconstruct write, but need to get some data */
3977 int qread =0;
3978 rcw = 0;
3979 for (i = disks; i--; ) {
3980 struct r5dev *dev = &sh->dev[i];
3981 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3982 i != sh->pd_idx && i != sh->qd_idx &&
3983 !test_bit(R5_LOCKED, &dev->flags) &&
3984 !(test_bit(R5_UPTODATE, &dev->flags) ||
3985 test_bit(R5_Wantcompute, &dev->flags))) {
3986 rcw++;
3987 if (test_bit(R5_Insync, &dev->flags) &&
3988 test_bit(STRIPE_PREREAD_ACTIVE,
3989 &sh->state)) {
3990 pr_debug("Read_old block "
3991 "%d for Reconstruct\n", i);
3992 set_bit(R5_LOCKED, &dev->flags);
3993 set_bit(R5_Wantread, &dev->flags);
3994 s->locked++;
3995 qread++;
3996 } else {
3997 set_bit(STRIPE_DELAYED, &sh->state);
3998 set_bit(STRIPE_HANDLE, &sh->state);
4002 if (rcw && conf->mddev->queue)
4003 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4004 (unsigned long long)sh->sector,
4005 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4008 if (rcw > disks && rmw > disks &&
4009 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4010 set_bit(STRIPE_DELAYED, &sh->state);
4012 /* now if nothing is locked, and if we have enough data,
4013 * we can start a write request
4015 /* since handle_stripe can be called at any time we need to handle the
4016 * case where a compute block operation has been submitted and then a
4017 * subsequent call wants to start a write request. raid_run_ops only
4018 * handles the case where compute block and reconstruct are requested
4019 * simultaneously. If this is not the case then new writes need to be
4020 * held off until the compute completes.
4022 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4023 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4024 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4025 schedule_reconstruction(sh, s, rcw == 0, 0);
4026 return 0;
4029 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4030 struct stripe_head_state *s, int disks)
4032 struct r5dev *dev = NULL;
4034 BUG_ON(sh->batch_head);
4035 set_bit(STRIPE_HANDLE, &sh->state);
4037 switch (sh->check_state) {
4038 case check_state_idle:
4039 /* start a new check operation if there are no failures */
4040 if (s->failed == 0) {
4041 BUG_ON(s->uptodate != disks);
4042 sh->check_state = check_state_run;
4043 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4044 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4045 s->uptodate--;
4046 break;
4048 dev = &sh->dev[s->failed_num[0]];
4049 /* fall through */
4050 case check_state_compute_result:
4051 sh->check_state = check_state_idle;
4052 if (!dev)
4053 dev = &sh->dev[sh->pd_idx];
4055 /* check that a write has not made the stripe insync */
4056 if (test_bit(STRIPE_INSYNC, &sh->state))
4057 break;
4059 /* either failed parity check, or recovery is happening */
4060 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4061 BUG_ON(s->uptodate != disks);
4063 set_bit(R5_LOCKED, &dev->flags);
4064 s->locked++;
4065 set_bit(R5_Wantwrite, &dev->flags);
4067 clear_bit(STRIPE_DEGRADED, &sh->state);
4068 set_bit(STRIPE_INSYNC, &sh->state);
4069 break;
4070 case check_state_run:
4071 break; /* we will be called again upon completion */
4072 case check_state_check_result:
4073 sh->check_state = check_state_idle;
4075 /* if a failure occurred during the check operation, leave
4076 * STRIPE_INSYNC not set and let the stripe be handled again
4078 if (s->failed)
4079 break;
4081 /* handle a successful check operation, if parity is correct
4082 * we are done. Otherwise update the mismatch count and repair
4083 * parity if !MD_RECOVERY_CHECK
4085 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4086 /* parity is correct (on disc,
4087 * not in buffer any more)
4089 set_bit(STRIPE_INSYNC, &sh->state);
4090 else {
4091 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4092 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4093 /* don't try to repair!! */
4094 set_bit(STRIPE_INSYNC, &sh->state);
4095 pr_warn_ratelimited("%s: mismatch sector in range "
4096 "%llu-%llu\n", mdname(conf->mddev),
4097 (unsigned long long) sh->sector,
4098 (unsigned long long) sh->sector +
4099 STRIPE_SECTORS);
4100 } else {
4101 sh->check_state = check_state_compute_run;
4102 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4103 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4104 set_bit(R5_Wantcompute,
4105 &sh->dev[sh->pd_idx].flags);
4106 sh->ops.target = sh->pd_idx;
4107 sh->ops.target2 = -1;
4108 s->uptodate++;
4111 break;
4112 case check_state_compute_run:
4113 break;
4114 default:
4115 pr_err("%s: unknown check_state: %d sector: %llu\n",
4116 __func__, sh->check_state,
4117 (unsigned long long) sh->sector);
4118 BUG();
4122 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4123 struct stripe_head_state *s,
4124 int disks)
4126 int pd_idx = sh->pd_idx;
4127 int qd_idx = sh->qd_idx;
4128 struct r5dev *dev;
4130 BUG_ON(sh->batch_head);
4131 set_bit(STRIPE_HANDLE, &sh->state);
4133 BUG_ON(s->failed > 2);
4135 /* Want to check and possibly repair P and Q.
4136 * However there could be one 'failed' device, in which
4137 * case we can only check one of them, possibly using the
4138 * other to generate missing data
4141 switch (sh->check_state) {
4142 case check_state_idle:
4143 /* start a new check operation if there are < 2 failures */
4144 if (s->failed == s->q_failed) {
4145 /* The only possible failed device holds Q, so it
4146 * makes sense to check P (If anything else were failed,
4147 * we would have used P to recreate it).
4149 sh->check_state = check_state_run;
4151 if (!s->q_failed && s->failed < 2) {
4152 /* Q is not failed, and we didn't use it to generate
4153 * anything, so it makes sense to check it
4155 if (sh->check_state == check_state_run)
4156 sh->check_state = check_state_run_pq;
4157 else
4158 sh->check_state = check_state_run_q;
4161 /* discard potentially stale zero_sum_result */
4162 sh->ops.zero_sum_result = 0;
4164 if (sh->check_state == check_state_run) {
4165 /* async_xor_zero_sum destroys the contents of P */
4166 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4167 s->uptodate--;
4169 if (sh->check_state >= check_state_run &&
4170 sh->check_state <= check_state_run_pq) {
4171 /* async_syndrome_zero_sum preserves P and Q, so
4172 * no need to mark them !uptodate here
4174 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4175 break;
4178 /* we have 2-disk failure */
4179 BUG_ON(s->failed != 2);
4180 /* fall through */
4181 case check_state_compute_result:
4182 sh->check_state = check_state_idle;
4184 /* check that a write has not made the stripe insync */
4185 if (test_bit(STRIPE_INSYNC, &sh->state))
4186 break;
4188 /* now write out any block on a failed drive,
4189 * or P or Q if they were recomputed
4191 dev = NULL;
4192 if (s->failed == 2) {
4193 dev = &sh->dev[s->failed_num[1]];
4194 s->locked++;
4195 set_bit(R5_LOCKED, &dev->flags);
4196 set_bit(R5_Wantwrite, &dev->flags);
4198 if (s->failed >= 1) {
4199 dev = &sh->dev[s->failed_num[0]];
4200 s->locked++;
4201 set_bit(R5_LOCKED, &dev->flags);
4202 set_bit(R5_Wantwrite, &dev->flags);
4204 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4205 dev = &sh->dev[pd_idx];
4206 s->locked++;
4207 set_bit(R5_LOCKED, &dev->flags);
4208 set_bit(R5_Wantwrite, &dev->flags);
4210 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4211 dev = &sh->dev[qd_idx];
4212 s->locked++;
4213 set_bit(R5_LOCKED, &dev->flags);
4214 set_bit(R5_Wantwrite, &dev->flags);
4216 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4217 "%s: disk%td not up to date\n",
4218 mdname(conf->mddev),
4219 dev - (struct r5dev *) &sh->dev)) {
4220 clear_bit(R5_LOCKED, &dev->flags);
4221 clear_bit(R5_Wantwrite, &dev->flags);
4222 s->locked--;
4224 clear_bit(STRIPE_DEGRADED, &sh->state);
4226 set_bit(STRIPE_INSYNC, &sh->state);
4227 break;
4228 case check_state_run:
4229 case check_state_run_q:
4230 case check_state_run_pq:
4231 break; /* we will be called again upon completion */
4232 case check_state_check_result:
4233 sh->check_state = check_state_idle;
4235 /* handle a successful check operation, if parity is correct
4236 * we are done. Otherwise update the mismatch count and repair
4237 * parity if !MD_RECOVERY_CHECK
4239 if (sh->ops.zero_sum_result == 0) {
4240 /* both parities are correct */
4241 if (!s->failed)
4242 set_bit(STRIPE_INSYNC, &sh->state);
4243 else {
4244 /* in contrast to the raid5 case we can validate
4245 * parity, but still have a failure to write
4246 * back
4248 sh->check_state = check_state_compute_result;
4249 /* Returning at this point means that we may go
4250 * off and bring p and/or q uptodate again so
4251 * we make sure to check zero_sum_result again
4252 * to verify if p or q need writeback
4255 } else {
4256 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4257 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4258 /* don't try to repair!! */
4259 set_bit(STRIPE_INSYNC, &sh->state);
4260 pr_warn_ratelimited("%s: mismatch sector in range "
4261 "%llu-%llu\n", mdname(conf->mddev),
4262 (unsigned long long) sh->sector,
4263 (unsigned long long) sh->sector +
4264 STRIPE_SECTORS);
4265 } else {
4266 int *target = &sh->ops.target;
4268 sh->ops.target = -1;
4269 sh->ops.target2 = -1;
4270 sh->check_state = check_state_compute_run;
4271 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4272 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4273 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4274 set_bit(R5_Wantcompute,
4275 &sh->dev[pd_idx].flags);
4276 *target = pd_idx;
4277 target = &sh->ops.target2;
4278 s->uptodate++;
4280 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4281 set_bit(R5_Wantcompute,
4282 &sh->dev[qd_idx].flags);
4283 *target = qd_idx;
4284 s->uptodate++;
4288 break;
4289 case check_state_compute_run:
4290 break;
4291 default:
4292 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4293 __func__, sh->check_state,
4294 (unsigned long long) sh->sector);
4295 BUG();
4299 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4301 int i;
4303 /* We have read all the blocks in this stripe and now we need to
4304 * copy some of them into a target stripe for expand.
4306 struct dma_async_tx_descriptor *tx = NULL;
4307 BUG_ON(sh->batch_head);
4308 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4309 for (i = 0; i < sh->disks; i++)
4310 if (i != sh->pd_idx && i != sh->qd_idx) {
4311 int dd_idx, j;
4312 struct stripe_head *sh2;
4313 struct async_submit_ctl submit;
4315 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4316 sector_t s = raid5_compute_sector(conf, bn, 0,
4317 &dd_idx, NULL);
4318 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4319 if (sh2 == NULL)
4320 /* so far only the early blocks of this stripe
4321 * have been requested. When later blocks
4322 * get requested, we will try again
4324 continue;
4325 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4326 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4327 /* must have already done this block */
4328 raid5_release_stripe(sh2);
4329 continue;
4332 /* place all the copies on one channel */
4333 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4334 tx = async_memcpy(sh2->dev[dd_idx].page,
4335 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4336 &submit);
4338 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4339 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4340 for (j = 0; j < conf->raid_disks; j++)
4341 if (j != sh2->pd_idx &&
4342 j != sh2->qd_idx &&
4343 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4344 break;
4345 if (j == conf->raid_disks) {
4346 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4347 set_bit(STRIPE_HANDLE, &sh2->state);
4349 raid5_release_stripe(sh2);
4352 /* done submitting copies, wait for them to complete */
4353 async_tx_quiesce(&tx);
4357 * handle_stripe - do things to a stripe.
4359 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4360 * state of various bits to see what needs to be done.
4361 * Possible results:
4362 * return some read requests which now have data
4363 * return some write requests which are safely on storage
4364 * schedule a read on some buffers
4365 * schedule a write of some buffers
4366 * return confirmation of parity correctness
4370 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4372 struct r5conf *conf = sh->raid_conf;
4373 int disks = sh->disks;
4374 struct r5dev *dev;
4375 int i;
4376 int do_recovery = 0;
4378 memset(s, 0, sizeof(*s));
4380 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4381 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4382 s->failed_num[0] = -1;
4383 s->failed_num[1] = -1;
4384 s->log_failed = r5l_log_disk_error(conf);
4386 /* Now to look around and see what can be done */
4387 rcu_read_lock();
4388 for (i=disks; i--; ) {
4389 struct md_rdev *rdev;
4390 sector_t first_bad;
4391 int bad_sectors;
4392 int is_bad = 0;
4394 dev = &sh->dev[i];
4396 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4397 i, dev->flags,
4398 dev->toread, dev->towrite, dev->written);
4399 /* maybe we can reply to a read
4401 * new wantfill requests are only permitted while
4402 * ops_complete_biofill is guaranteed to be inactive
4404 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4405 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4406 set_bit(R5_Wantfill, &dev->flags);
4408 /* now count some things */
4409 if (test_bit(R5_LOCKED, &dev->flags))
4410 s->locked++;
4411 if (test_bit(R5_UPTODATE, &dev->flags))
4412 s->uptodate++;
4413 if (test_bit(R5_Wantcompute, &dev->flags)) {
4414 s->compute++;
4415 BUG_ON(s->compute > 2);
4418 if (test_bit(R5_Wantfill, &dev->flags))
4419 s->to_fill++;
4420 else if (dev->toread)
4421 s->to_read++;
4422 if (dev->towrite) {
4423 s->to_write++;
4424 if (!test_bit(R5_OVERWRITE, &dev->flags))
4425 s->non_overwrite++;
4427 if (dev->written)
4428 s->written++;
4429 /* Prefer to use the replacement for reads, but only
4430 * if it is recovered enough and has no bad blocks.
4432 rdev = rcu_dereference(conf->disks[i].replacement);
4433 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4434 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4435 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4436 &first_bad, &bad_sectors))
4437 set_bit(R5_ReadRepl, &dev->flags);
4438 else {
4439 if (rdev && !test_bit(Faulty, &rdev->flags))
4440 set_bit(R5_NeedReplace, &dev->flags);
4441 else
4442 clear_bit(R5_NeedReplace, &dev->flags);
4443 rdev = rcu_dereference(conf->disks[i].rdev);
4444 clear_bit(R5_ReadRepl, &dev->flags);
4446 if (rdev && test_bit(Faulty, &rdev->flags))
4447 rdev = NULL;
4448 if (rdev) {
4449 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4450 &first_bad, &bad_sectors);
4451 if (s->blocked_rdev == NULL
4452 && (test_bit(Blocked, &rdev->flags)
4453 || is_bad < 0)) {
4454 if (is_bad < 0)
4455 set_bit(BlockedBadBlocks,
4456 &rdev->flags);
4457 s->blocked_rdev = rdev;
4458 atomic_inc(&rdev->nr_pending);
4461 clear_bit(R5_Insync, &dev->flags);
4462 if (!rdev)
4463 /* Not in-sync */;
4464 else if (is_bad) {
4465 /* also not in-sync */
4466 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4467 test_bit(R5_UPTODATE, &dev->flags)) {
4468 /* treat as in-sync, but with a read error
4469 * which we can now try to correct
4471 set_bit(R5_Insync, &dev->flags);
4472 set_bit(R5_ReadError, &dev->flags);
4474 } else if (test_bit(In_sync, &rdev->flags))
4475 set_bit(R5_Insync, &dev->flags);
4476 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4477 /* in sync if before recovery_offset */
4478 set_bit(R5_Insync, &dev->flags);
4479 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4480 test_bit(R5_Expanded, &dev->flags))
4481 /* If we've reshaped into here, we assume it is Insync.
4482 * We will shortly update recovery_offset to make
4483 * it official.
4485 set_bit(R5_Insync, &dev->flags);
4487 if (test_bit(R5_WriteError, &dev->flags)) {
4488 /* This flag does not apply to '.replacement'
4489 * only to .rdev, so make sure to check that*/
4490 struct md_rdev *rdev2 = rcu_dereference(
4491 conf->disks[i].rdev);
4492 if (rdev2 == rdev)
4493 clear_bit(R5_Insync, &dev->flags);
4494 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4495 s->handle_bad_blocks = 1;
4496 atomic_inc(&rdev2->nr_pending);
4497 } else
4498 clear_bit(R5_WriteError, &dev->flags);
4500 if (test_bit(R5_MadeGood, &dev->flags)) {
4501 /* This flag does not apply to '.replacement'
4502 * only to .rdev, so make sure to check that*/
4503 struct md_rdev *rdev2 = rcu_dereference(
4504 conf->disks[i].rdev);
4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 s->handle_bad_blocks = 1;
4507 atomic_inc(&rdev2->nr_pending);
4508 } else
4509 clear_bit(R5_MadeGood, &dev->flags);
4511 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4512 struct md_rdev *rdev2 = rcu_dereference(
4513 conf->disks[i].replacement);
4514 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4515 s->handle_bad_blocks = 1;
4516 atomic_inc(&rdev2->nr_pending);
4517 } else
4518 clear_bit(R5_MadeGoodRepl, &dev->flags);
4520 if (!test_bit(R5_Insync, &dev->flags)) {
4521 /* The ReadError flag will just be confusing now */
4522 clear_bit(R5_ReadError, &dev->flags);
4523 clear_bit(R5_ReWrite, &dev->flags);
4525 if (test_bit(R5_ReadError, &dev->flags))
4526 clear_bit(R5_Insync, &dev->flags);
4527 if (!test_bit(R5_Insync, &dev->flags)) {
4528 if (s->failed < 2)
4529 s->failed_num[s->failed] = i;
4530 s->failed++;
4531 if (rdev && !test_bit(Faulty, &rdev->flags))
4532 do_recovery = 1;
4533 else if (!rdev) {
4534 rdev = rcu_dereference(
4535 conf->disks[i].replacement);
4536 if (rdev && !test_bit(Faulty, &rdev->flags))
4537 do_recovery = 1;
4541 if (test_bit(R5_InJournal, &dev->flags))
4542 s->injournal++;
4543 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4544 s->just_cached++;
4546 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4547 /* If there is a failed device being replaced,
4548 * we must be recovering.
4549 * else if we are after recovery_cp, we must be syncing
4550 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4551 * else we can only be replacing
4552 * sync and recovery both need to read all devices, and so
4553 * use the same flag.
4555 if (do_recovery ||
4556 sh->sector >= conf->mddev->recovery_cp ||
4557 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4558 s->syncing = 1;
4559 else
4560 s->replacing = 1;
4562 rcu_read_unlock();
4565 static int clear_batch_ready(struct stripe_head *sh)
4567 /* Return '1' if this is a member of batch, or
4568 * '0' if it is a lone stripe or a head which can now be
4569 * handled.
4571 struct stripe_head *tmp;
4572 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4573 return (sh->batch_head && sh->batch_head != sh);
4574 spin_lock(&sh->stripe_lock);
4575 if (!sh->batch_head) {
4576 spin_unlock(&sh->stripe_lock);
4577 return 0;
4581 * this stripe could be added to a batch list before we check
4582 * BATCH_READY, skips it
4584 if (sh->batch_head != sh) {
4585 spin_unlock(&sh->stripe_lock);
4586 return 1;
4588 spin_lock(&sh->batch_lock);
4589 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4590 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4591 spin_unlock(&sh->batch_lock);
4592 spin_unlock(&sh->stripe_lock);
4595 * BATCH_READY is cleared, no new stripes can be added.
4596 * batch_list can be accessed without lock
4598 return 0;
4601 static void break_stripe_batch_list(struct stripe_head *head_sh,
4602 unsigned long handle_flags)
4604 struct stripe_head *sh, *next;
4605 int i;
4606 int do_wakeup = 0;
4608 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4610 list_del_init(&sh->batch_list);
4612 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4613 (1 << STRIPE_SYNCING) |
4614 (1 << STRIPE_REPLACED) |
4615 (1 << STRIPE_DELAYED) |
4616 (1 << STRIPE_BIT_DELAY) |
4617 (1 << STRIPE_FULL_WRITE) |
4618 (1 << STRIPE_BIOFILL_RUN) |
4619 (1 << STRIPE_COMPUTE_RUN) |
4620 (1 << STRIPE_OPS_REQ_PENDING) |
4621 (1 << STRIPE_DISCARD) |
4622 (1 << STRIPE_BATCH_READY) |
4623 (1 << STRIPE_BATCH_ERR) |
4624 (1 << STRIPE_BITMAP_PENDING)),
4625 "stripe state: %lx\n", sh->state);
4626 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4627 (1 << STRIPE_REPLACED)),
4628 "head stripe state: %lx\n", head_sh->state);
4630 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4631 (1 << STRIPE_PREREAD_ACTIVE) |
4632 (1 << STRIPE_DEGRADED) |
4633 (1 << STRIPE_ON_UNPLUG_LIST)),
4634 head_sh->state & (1 << STRIPE_INSYNC));
4636 sh->check_state = head_sh->check_state;
4637 sh->reconstruct_state = head_sh->reconstruct_state;
4638 spin_lock_irq(&sh->stripe_lock);
4639 sh->batch_head = NULL;
4640 spin_unlock_irq(&sh->stripe_lock);
4641 for (i = 0; i < sh->disks; i++) {
4642 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4643 do_wakeup = 1;
4644 sh->dev[i].flags = head_sh->dev[i].flags &
4645 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4647 if (handle_flags == 0 ||
4648 sh->state & handle_flags)
4649 set_bit(STRIPE_HANDLE, &sh->state);
4650 raid5_release_stripe(sh);
4652 spin_lock_irq(&head_sh->stripe_lock);
4653 head_sh->batch_head = NULL;
4654 spin_unlock_irq(&head_sh->stripe_lock);
4655 for (i = 0; i < head_sh->disks; i++)
4656 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4657 do_wakeup = 1;
4658 if (head_sh->state & handle_flags)
4659 set_bit(STRIPE_HANDLE, &head_sh->state);
4661 if (do_wakeup)
4662 wake_up(&head_sh->raid_conf->wait_for_overlap);
4665 static void handle_stripe(struct stripe_head *sh)
4667 struct stripe_head_state s;
4668 struct r5conf *conf = sh->raid_conf;
4669 int i;
4670 int prexor;
4671 int disks = sh->disks;
4672 struct r5dev *pdev, *qdev;
4674 clear_bit(STRIPE_HANDLE, &sh->state);
4675 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4676 /* already being handled, ensure it gets handled
4677 * again when current action finishes */
4678 set_bit(STRIPE_HANDLE, &sh->state);
4679 return;
4682 if (clear_batch_ready(sh) ) {
4683 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4684 return;
4687 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4688 break_stripe_batch_list(sh, 0);
4690 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4691 spin_lock(&sh->stripe_lock);
4693 * Cannot process 'sync' concurrently with 'discard'.
4694 * Flush data in r5cache before 'sync'.
4696 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4697 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4698 !test_bit(STRIPE_DISCARD, &sh->state) &&
4699 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4700 set_bit(STRIPE_SYNCING, &sh->state);
4701 clear_bit(STRIPE_INSYNC, &sh->state);
4702 clear_bit(STRIPE_REPLACED, &sh->state);
4704 spin_unlock(&sh->stripe_lock);
4706 clear_bit(STRIPE_DELAYED, &sh->state);
4708 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4709 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4710 (unsigned long long)sh->sector, sh->state,
4711 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4712 sh->check_state, sh->reconstruct_state);
4714 analyse_stripe(sh, &s);
4716 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4717 goto finish;
4719 if (s.handle_bad_blocks ||
4720 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4721 set_bit(STRIPE_HANDLE, &sh->state);
4722 goto finish;
4725 if (unlikely(s.blocked_rdev)) {
4726 if (s.syncing || s.expanding || s.expanded ||
4727 s.replacing || s.to_write || s.written) {
4728 set_bit(STRIPE_HANDLE, &sh->state);
4729 goto finish;
4731 /* There is nothing for the blocked_rdev to block */
4732 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4733 s.blocked_rdev = NULL;
4736 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4737 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4738 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4741 pr_debug("locked=%d uptodate=%d to_read=%d"
4742 " to_write=%d failed=%d failed_num=%d,%d\n",
4743 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4744 s.failed_num[0], s.failed_num[1]);
4746 * check if the array has lost more than max_degraded devices and,
4747 * if so, some requests might need to be failed.
4749 * When journal device failed (log_failed), we will only process
4750 * the stripe if there is data need write to raid disks
4752 if (s.failed > conf->max_degraded ||
4753 (s.log_failed && s.injournal == 0)) {
4754 sh->check_state = 0;
4755 sh->reconstruct_state = 0;
4756 break_stripe_batch_list(sh, 0);
4757 if (s.to_read+s.to_write+s.written)
4758 handle_failed_stripe(conf, sh, &s, disks);
4759 if (s.syncing + s.replacing)
4760 handle_failed_sync(conf, sh, &s);
4763 /* Now we check to see if any write operations have recently
4764 * completed
4766 prexor = 0;
4767 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4768 prexor = 1;
4769 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4770 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4771 sh->reconstruct_state = reconstruct_state_idle;
4773 /* All the 'written' buffers and the parity block are ready to
4774 * be written back to disk
4776 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4777 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4778 BUG_ON(sh->qd_idx >= 0 &&
4779 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4780 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4781 for (i = disks; i--; ) {
4782 struct r5dev *dev = &sh->dev[i];
4783 if (test_bit(R5_LOCKED, &dev->flags) &&
4784 (i == sh->pd_idx || i == sh->qd_idx ||
4785 dev->written || test_bit(R5_InJournal,
4786 &dev->flags))) {
4787 pr_debug("Writing block %d\n", i);
4788 set_bit(R5_Wantwrite, &dev->flags);
4789 if (prexor)
4790 continue;
4791 if (s.failed > 1)
4792 continue;
4793 if (!test_bit(R5_Insync, &dev->flags) ||
4794 ((i == sh->pd_idx || i == sh->qd_idx) &&
4795 s.failed == 0))
4796 set_bit(STRIPE_INSYNC, &sh->state);
4799 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4800 s.dec_preread_active = 1;
4804 * might be able to return some write requests if the parity blocks
4805 * are safe, or on a failed drive
4807 pdev = &sh->dev[sh->pd_idx];
4808 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4809 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4810 qdev = &sh->dev[sh->qd_idx];
4811 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4812 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4813 || conf->level < 6;
4815 if (s.written &&
4816 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4817 && !test_bit(R5_LOCKED, &pdev->flags)
4818 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4819 test_bit(R5_Discard, &pdev->flags))))) &&
4820 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4821 && !test_bit(R5_LOCKED, &qdev->flags)
4822 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4823 test_bit(R5_Discard, &qdev->flags))))))
4824 handle_stripe_clean_event(conf, sh, disks);
4826 if (s.just_cached)
4827 r5c_handle_cached_data_endio(conf, sh, disks);
4828 log_stripe_write_finished(sh);
4830 /* Now we might consider reading some blocks, either to check/generate
4831 * parity, or to satisfy requests
4832 * or to load a block that is being partially written.
4834 if (s.to_read || s.non_overwrite
4835 || (conf->level == 6 && s.to_write && s.failed)
4836 || (s.syncing && (s.uptodate + s.compute < disks))
4837 || s.replacing
4838 || s.expanding)
4839 handle_stripe_fill(sh, &s, disks);
4842 * When the stripe finishes full journal write cycle (write to journal
4843 * and raid disk), this is the clean up procedure so it is ready for
4844 * next operation.
4846 r5c_finish_stripe_write_out(conf, sh, &s);
4849 * Now to consider new write requests, cache write back and what else,
4850 * if anything should be read. We do not handle new writes when:
4851 * 1/ A 'write' operation (copy+xor) is already in flight.
4852 * 2/ A 'check' operation is in flight, as it may clobber the parity
4853 * block.
4854 * 3/ A r5c cache log write is in flight.
4857 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4858 if (!r5c_is_writeback(conf->log)) {
4859 if (s.to_write)
4860 handle_stripe_dirtying(conf, sh, &s, disks);
4861 } else { /* write back cache */
4862 int ret = 0;
4864 /* First, try handle writes in caching phase */
4865 if (s.to_write)
4866 ret = r5c_try_caching_write(conf, sh, &s,
4867 disks);
4869 * If caching phase failed: ret == -EAGAIN
4870 * OR
4871 * stripe under reclaim: !caching && injournal
4873 * fall back to handle_stripe_dirtying()
4875 if (ret == -EAGAIN ||
4876 /* stripe under reclaim: !caching && injournal */
4877 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4878 s.injournal > 0)) {
4879 ret = handle_stripe_dirtying(conf, sh, &s,
4880 disks);
4881 if (ret == -EAGAIN)
4882 goto finish;
4887 /* maybe we need to check and possibly fix the parity for this stripe
4888 * Any reads will already have been scheduled, so we just see if enough
4889 * data is available. The parity check is held off while parity
4890 * dependent operations are in flight.
4892 if (sh->check_state ||
4893 (s.syncing && s.locked == 0 &&
4894 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4895 !test_bit(STRIPE_INSYNC, &sh->state))) {
4896 if (conf->level == 6)
4897 handle_parity_checks6(conf, sh, &s, disks);
4898 else
4899 handle_parity_checks5(conf, sh, &s, disks);
4902 if ((s.replacing || s.syncing) && s.locked == 0
4903 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4904 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4905 /* Write out to replacement devices where possible */
4906 for (i = 0; i < conf->raid_disks; i++)
4907 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4908 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4909 set_bit(R5_WantReplace, &sh->dev[i].flags);
4910 set_bit(R5_LOCKED, &sh->dev[i].flags);
4911 s.locked++;
4913 if (s.replacing)
4914 set_bit(STRIPE_INSYNC, &sh->state);
4915 set_bit(STRIPE_REPLACED, &sh->state);
4917 if ((s.syncing || s.replacing) && s.locked == 0 &&
4918 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4919 test_bit(STRIPE_INSYNC, &sh->state)) {
4920 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4921 clear_bit(STRIPE_SYNCING, &sh->state);
4922 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4923 wake_up(&conf->wait_for_overlap);
4926 /* If the failed drives are just a ReadError, then we might need
4927 * to progress the repair/check process
4929 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4930 for (i = 0; i < s.failed; i++) {
4931 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4932 if (test_bit(R5_ReadError, &dev->flags)
4933 && !test_bit(R5_LOCKED, &dev->flags)
4934 && test_bit(R5_UPTODATE, &dev->flags)
4936 if (!test_bit(R5_ReWrite, &dev->flags)) {
4937 set_bit(R5_Wantwrite, &dev->flags);
4938 set_bit(R5_ReWrite, &dev->flags);
4939 set_bit(R5_LOCKED, &dev->flags);
4940 s.locked++;
4941 } else {
4942 /* let's read it back */
4943 set_bit(R5_Wantread, &dev->flags);
4944 set_bit(R5_LOCKED, &dev->flags);
4945 s.locked++;
4950 /* Finish reconstruct operations initiated by the expansion process */
4951 if (sh->reconstruct_state == reconstruct_state_result) {
4952 struct stripe_head *sh_src
4953 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4954 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4955 /* sh cannot be written until sh_src has been read.
4956 * so arrange for sh to be delayed a little
4958 set_bit(STRIPE_DELAYED, &sh->state);
4959 set_bit(STRIPE_HANDLE, &sh->state);
4960 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4961 &sh_src->state))
4962 atomic_inc(&conf->preread_active_stripes);
4963 raid5_release_stripe(sh_src);
4964 goto finish;
4966 if (sh_src)
4967 raid5_release_stripe(sh_src);
4969 sh->reconstruct_state = reconstruct_state_idle;
4970 clear_bit(STRIPE_EXPANDING, &sh->state);
4971 for (i = conf->raid_disks; i--; ) {
4972 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4973 set_bit(R5_LOCKED, &sh->dev[i].flags);
4974 s.locked++;
4978 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4979 !sh->reconstruct_state) {
4980 /* Need to write out all blocks after computing parity */
4981 sh->disks = conf->raid_disks;
4982 stripe_set_idx(sh->sector, conf, 0, sh);
4983 schedule_reconstruction(sh, &s, 1, 1);
4984 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4985 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4986 atomic_dec(&conf->reshape_stripes);
4987 wake_up(&conf->wait_for_overlap);
4988 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4991 if (s.expanding && s.locked == 0 &&
4992 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4993 handle_stripe_expansion(conf, sh);
4995 finish:
4996 /* wait for this device to become unblocked */
4997 if (unlikely(s.blocked_rdev)) {
4998 if (conf->mddev->external)
4999 md_wait_for_blocked_rdev(s.blocked_rdev,
5000 conf->mddev);
5001 else
5002 /* Internal metadata will immediately
5003 * be written by raid5d, so we don't
5004 * need to wait here.
5006 rdev_dec_pending(s.blocked_rdev,
5007 conf->mddev);
5010 if (s.handle_bad_blocks)
5011 for (i = disks; i--; ) {
5012 struct md_rdev *rdev;
5013 struct r5dev *dev = &sh->dev[i];
5014 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5015 /* We own a safe reference to the rdev */
5016 rdev = conf->disks[i].rdev;
5017 if (!rdev_set_badblocks(rdev, sh->sector,
5018 STRIPE_SECTORS, 0))
5019 md_error(conf->mddev, rdev);
5020 rdev_dec_pending(rdev, conf->mddev);
5022 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5023 rdev = conf->disks[i].rdev;
5024 rdev_clear_badblocks(rdev, sh->sector,
5025 STRIPE_SECTORS, 0);
5026 rdev_dec_pending(rdev, conf->mddev);
5028 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5029 rdev = conf->disks[i].replacement;
5030 if (!rdev)
5031 /* rdev have been moved down */
5032 rdev = conf->disks[i].rdev;
5033 rdev_clear_badblocks(rdev, sh->sector,
5034 STRIPE_SECTORS, 0);
5035 rdev_dec_pending(rdev, conf->mddev);
5039 if (s.ops_request)
5040 raid_run_ops(sh, s.ops_request);
5042 ops_run_io(sh, &s);
5044 if (s.dec_preread_active) {
5045 /* We delay this until after ops_run_io so that if make_request
5046 * is waiting on a flush, it won't continue until the writes
5047 * have actually been submitted.
5049 atomic_dec(&conf->preread_active_stripes);
5050 if (atomic_read(&conf->preread_active_stripes) <
5051 IO_THRESHOLD)
5052 md_wakeup_thread(conf->mddev->thread);
5055 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5058 static void raid5_activate_delayed(struct r5conf *conf)
5060 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5061 while (!list_empty(&conf->delayed_list)) {
5062 struct list_head *l = conf->delayed_list.next;
5063 struct stripe_head *sh;
5064 sh = list_entry(l, struct stripe_head, lru);
5065 list_del_init(l);
5066 clear_bit(STRIPE_DELAYED, &sh->state);
5067 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5068 atomic_inc(&conf->preread_active_stripes);
5069 list_add_tail(&sh->lru, &conf->hold_list);
5070 raid5_wakeup_stripe_thread(sh);
5075 static void activate_bit_delay(struct r5conf *conf,
5076 struct list_head *temp_inactive_list)
5078 /* device_lock is held */
5079 struct list_head head;
5080 list_add(&head, &conf->bitmap_list);
5081 list_del_init(&conf->bitmap_list);
5082 while (!list_empty(&head)) {
5083 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5084 int hash;
5085 list_del_init(&sh->lru);
5086 atomic_inc(&sh->count);
5087 hash = sh->hash_lock_index;
5088 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5092 static int raid5_congested(struct mddev *mddev, int bits)
5094 struct r5conf *conf = mddev->private;
5096 /* No difference between reads and writes. Just check
5097 * how busy the stripe_cache is
5100 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5101 return 1;
5103 /* Also checks whether there is pressure on r5cache log space */
5104 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5105 return 1;
5106 if (conf->quiesce)
5107 return 1;
5108 if (atomic_read(&conf->empty_inactive_list_nr))
5109 return 1;
5111 return 0;
5114 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5116 struct r5conf *conf = mddev->private;
5117 sector_t sector = bio->bi_iter.bi_sector;
5118 unsigned int chunk_sectors;
5119 unsigned int bio_sectors = bio_sectors(bio);
5121 WARN_ON_ONCE(bio->bi_partno);
5123 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5124 return chunk_sectors >=
5125 ((sector & (chunk_sectors - 1)) + bio_sectors);
5129 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5130 * later sampled by raid5d.
5132 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5134 unsigned long flags;
5136 spin_lock_irqsave(&conf->device_lock, flags);
5138 bi->bi_next = conf->retry_read_aligned_list;
5139 conf->retry_read_aligned_list = bi;
5141 spin_unlock_irqrestore(&conf->device_lock, flags);
5142 md_wakeup_thread(conf->mddev->thread);
5145 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5146 unsigned int *offset)
5148 struct bio *bi;
5150 bi = conf->retry_read_aligned;
5151 if (bi) {
5152 *offset = conf->retry_read_offset;
5153 conf->retry_read_aligned = NULL;
5154 return bi;
5156 bi = conf->retry_read_aligned_list;
5157 if(bi) {
5158 conf->retry_read_aligned_list = bi->bi_next;
5159 bi->bi_next = NULL;
5160 *offset = 0;
5163 return bi;
5167 * The "raid5_align_endio" should check if the read succeeded and if it
5168 * did, call bio_endio on the original bio (having bio_put the new bio
5169 * first).
5170 * If the read failed..
5172 static void raid5_align_endio(struct bio *bi)
5174 struct bio* raid_bi = bi->bi_private;
5175 struct mddev *mddev;
5176 struct r5conf *conf;
5177 struct md_rdev *rdev;
5178 blk_status_t error = bi->bi_status;
5180 bio_put(bi);
5182 rdev = (void*)raid_bi->bi_next;
5183 raid_bi->bi_next = NULL;
5184 mddev = rdev->mddev;
5185 conf = mddev->private;
5187 rdev_dec_pending(rdev, conf->mddev);
5189 if (!error) {
5190 bio_endio(raid_bi);
5191 if (atomic_dec_and_test(&conf->active_aligned_reads))
5192 wake_up(&conf->wait_for_quiescent);
5193 return;
5196 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5198 add_bio_to_retry(raid_bi, conf);
5201 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5203 struct r5conf *conf = mddev->private;
5204 int dd_idx;
5205 struct bio* align_bi;
5206 struct md_rdev *rdev;
5207 sector_t end_sector;
5209 if (!in_chunk_boundary(mddev, raid_bio)) {
5210 pr_debug("%s: non aligned\n", __func__);
5211 return 0;
5214 * use bio_clone_fast to make a copy of the bio
5216 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5217 if (!align_bi)
5218 return 0;
5220 * set bi_end_io to a new function, and set bi_private to the
5221 * original bio.
5223 align_bi->bi_end_io = raid5_align_endio;
5224 align_bi->bi_private = raid_bio;
5226 * compute position
5228 align_bi->bi_iter.bi_sector =
5229 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5230 0, &dd_idx, NULL);
5232 end_sector = bio_end_sector(align_bi);
5233 rcu_read_lock();
5234 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5235 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5236 rdev->recovery_offset < end_sector) {
5237 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5238 if (rdev &&
5239 (test_bit(Faulty, &rdev->flags) ||
5240 !(test_bit(In_sync, &rdev->flags) ||
5241 rdev->recovery_offset >= end_sector)))
5242 rdev = NULL;
5245 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5246 rcu_read_unlock();
5247 bio_put(align_bi);
5248 return 0;
5251 if (rdev) {
5252 sector_t first_bad;
5253 int bad_sectors;
5255 atomic_inc(&rdev->nr_pending);
5256 rcu_read_unlock();
5257 raid_bio->bi_next = (void*)rdev;
5258 bio_set_dev(align_bi, rdev->bdev);
5259 bio_clear_flag(align_bi, BIO_SEG_VALID);
5261 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5262 bio_sectors(align_bi),
5263 &first_bad, &bad_sectors)) {
5264 bio_put(align_bi);
5265 rdev_dec_pending(rdev, mddev);
5266 return 0;
5269 /* No reshape active, so we can trust rdev->data_offset */
5270 align_bi->bi_iter.bi_sector += rdev->data_offset;
5272 spin_lock_irq(&conf->device_lock);
5273 wait_event_lock_irq(conf->wait_for_quiescent,
5274 conf->quiesce == 0,
5275 conf->device_lock);
5276 atomic_inc(&conf->active_aligned_reads);
5277 spin_unlock_irq(&conf->device_lock);
5279 if (mddev->gendisk)
5280 trace_block_bio_remap(align_bi->bi_disk->queue,
5281 align_bi, disk_devt(mddev->gendisk),
5282 raid_bio->bi_iter.bi_sector);
5283 generic_make_request(align_bi);
5284 return 1;
5285 } else {
5286 rcu_read_unlock();
5287 bio_put(align_bi);
5288 return 0;
5292 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5294 struct bio *split;
5295 sector_t sector = raid_bio->bi_iter.bi_sector;
5296 unsigned chunk_sects = mddev->chunk_sectors;
5297 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5299 if (sectors < bio_sectors(raid_bio)) {
5300 struct r5conf *conf = mddev->private;
5301 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5302 bio_chain(split, raid_bio);
5303 generic_make_request(raid_bio);
5304 raid_bio = split;
5307 if (!raid5_read_one_chunk(mddev, raid_bio))
5308 return raid_bio;
5310 return NULL;
5313 /* __get_priority_stripe - get the next stripe to process
5315 * Full stripe writes are allowed to pass preread active stripes up until
5316 * the bypass_threshold is exceeded. In general the bypass_count
5317 * increments when the handle_list is handled before the hold_list; however, it
5318 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5319 * stripe with in flight i/o. The bypass_count will be reset when the
5320 * head of the hold_list has changed, i.e. the head was promoted to the
5321 * handle_list.
5323 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5325 struct stripe_head *sh, *tmp;
5326 struct list_head *handle_list = NULL;
5327 struct r5worker_group *wg;
5328 bool second_try = !r5c_is_writeback(conf->log) &&
5329 !r5l_log_disk_error(conf);
5330 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5331 r5l_log_disk_error(conf);
5333 again:
5334 wg = NULL;
5335 sh = NULL;
5336 if (conf->worker_cnt_per_group == 0) {
5337 handle_list = try_loprio ? &conf->loprio_list :
5338 &conf->handle_list;
5339 } else if (group != ANY_GROUP) {
5340 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5341 &conf->worker_groups[group].handle_list;
5342 wg = &conf->worker_groups[group];
5343 } else {
5344 int i;
5345 for (i = 0; i < conf->group_cnt; i++) {
5346 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5347 &conf->worker_groups[i].handle_list;
5348 wg = &conf->worker_groups[i];
5349 if (!list_empty(handle_list))
5350 break;
5354 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5355 __func__,
5356 list_empty(handle_list) ? "empty" : "busy",
5357 list_empty(&conf->hold_list) ? "empty" : "busy",
5358 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5360 if (!list_empty(handle_list)) {
5361 sh = list_entry(handle_list->next, typeof(*sh), lru);
5363 if (list_empty(&conf->hold_list))
5364 conf->bypass_count = 0;
5365 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5366 if (conf->hold_list.next == conf->last_hold)
5367 conf->bypass_count++;
5368 else {
5369 conf->last_hold = conf->hold_list.next;
5370 conf->bypass_count -= conf->bypass_threshold;
5371 if (conf->bypass_count < 0)
5372 conf->bypass_count = 0;
5375 } else if (!list_empty(&conf->hold_list) &&
5376 ((conf->bypass_threshold &&
5377 conf->bypass_count > conf->bypass_threshold) ||
5378 atomic_read(&conf->pending_full_writes) == 0)) {
5380 list_for_each_entry(tmp, &conf->hold_list, lru) {
5381 if (conf->worker_cnt_per_group == 0 ||
5382 group == ANY_GROUP ||
5383 !cpu_online(tmp->cpu) ||
5384 cpu_to_group(tmp->cpu) == group) {
5385 sh = tmp;
5386 break;
5390 if (sh) {
5391 conf->bypass_count -= conf->bypass_threshold;
5392 if (conf->bypass_count < 0)
5393 conf->bypass_count = 0;
5395 wg = NULL;
5398 if (!sh) {
5399 if (second_try)
5400 return NULL;
5401 second_try = true;
5402 try_loprio = !try_loprio;
5403 goto again;
5406 if (wg) {
5407 wg->stripes_cnt--;
5408 sh->group = NULL;
5410 list_del_init(&sh->lru);
5411 BUG_ON(atomic_inc_return(&sh->count) != 1);
5412 return sh;
5415 struct raid5_plug_cb {
5416 struct blk_plug_cb cb;
5417 struct list_head list;
5418 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5421 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5423 struct raid5_plug_cb *cb = container_of(
5424 blk_cb, struct raid5_plug_cb, cb);
5425 struct stripe_head *sh;
5426 struct mddev *mddev = cb->cb.data;
5427 struct r5conf *conf = mddev->private;
5428 int cnt = 0;
5429 int hash;
5431 if (cb->list.next && !list_empty(&cb->list)) {
5432 spin_lock_irq(&conf->device_lock);
5433 while (!list_empty(&cb->list)) {
5434 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5435 list_del_init(&sh->lru);
5437 * avoid race release_stripe_plug() sees
5438 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5439 * is still in our list
5441 smp_mb__before_atomic();
5442 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5444 * STRIPE_ON_RELEASE_LIST could be set here. In that
5445 * case, the count is always > 1 here
5447 hash = sh->hash_lock_index;
5448 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5449 cnt++;
5451 spin_unlock_irq(&conf->device_lock);
5453 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5454 NR_STRIPE_HASH_LOCKS);
5455 if (mddev->queue)
5456 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5457 kfree(cb);
5460 static void release_stripe_plug(struct mddev *mddev,
5461 struct stripe_head *sh)
5463 struct blk_plug_cb *blk_cb = blk_check_plugged(
5464 raid5_unplug, mddev,
5465 sizeof(struct raid5_plug_cb));
5466 struct raid5_plug_cb *cb;
5468 if (!blk_cb) {
5469 raid5_release_stripe(sh);
5470 return;
5473 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5475 if (cb->list.next == NULL) {
5476 int i;
5477 INIT_LIST_HEAD(&cb->list);
5478 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5479 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5482 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5483 list_add_tail(&sh->lru, &cb->list);
5484 else
5485 raid5_release_stripe(sh);
5488 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5490 struct r5conf *conf = mddev->private;
5491 sector_t logical_sector, last_sector;
5492 struct stripe_head *sh;
5493 int stripe_sectors;
5495 if (mddev->reshape_position != MaxSector)
5496 /* Skip discard while reshape is happening */
5497 return;
5499 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5500 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5502 bi->bi_next = NULL;
5504 stripe_sectors = conf->chunk_sectors *
5505 (conf->raid_disks - conf->max_degraded);
5506 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5507 stripe_sectors);
5508 sector_div(last_sector, stripe_sectors);
5510 logical_sector *= conf->chunk_sectors;
5511 last_sector *= conf->chunk_sectors;
5513 for (; logical_sector < last_sector;
5514 logical_sector += STRIPE_SECTORS) {
5515 DEFINE_WAIT(w);
5516 int d;
5517 again:
5518 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5519 prepare_to_wait(&conf->wait_for_overlap, &w,
5520 TASK_UNINTERRUPTIBLE);
5521 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5522 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5523 raid5_release_stripe(sh);
5524 schedule();
5525 goto again;
5527 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5528 spin_lock_irq(&sh->stripe_lock);
5529 for (d = 0; d < conf->raid_disks; d++) {
5530 if (d == sh->pd_idx || d == sh->qd_idx)
5531 continue;
5532 if (sh->dev[d].towrite || sh->dev[d].toread) {
5533 set_bit(R5_Overlap, &sh->dev[d].flags);
5534 spin_unlock_irq(&sh->stripe_lock);
5535 raid5_release_stripe(sh);
5536 schedule();
5537 goto again;
5540 set_bit(STRIPE_DISCARD, &sh->state);
5541 finish_wait(&conf->wait_for_overlap, &w);
5542 sh->overwrite_disks = 0;
5543 for (d = 0; d < conf->raid_disks; d++) {
5544 if (d == sh->pd_idx || d == sh->qd_idx)
5545 continue;
5546 sh->dev[d].towrite = bi;
5547 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5548 bio_inc_remaining(bi);
5549 md_write_inc(mddev, bi);
5550 sh->overwrite_disks++;
5552 spin_unlock_irq(&sh->stripe_lock);
5553 if (conf->mddev->bitmap) {
5554 for (d = 0;
5555 d < conf->raid_disks - conf->max_degraded;
5556 d++)
5557 md_bitmap_startwrite(mddev->bitmap,
5558 sh->sector,
5559 STRIPE_SECTORS,
5561 sh->bm_seq = conf->seq_flush + 1;
5562 set_bit(STRIPE_BIT_DELAY, &sh->state);
5565 set_bit(STRIPE_HANDLE, &sh->state);
5566 clear_bit(STRIPE_DELAYED, &sh->state);
5567 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5568 atomic_inc(&conf->preread_active_stripes);
5569 release_stripe_plug(mddev, sh);
5572 bio_endio(bi);
5575 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5577 struct r5conf *conf = mddev->private;
5578 int dd_idx;
5579 sector_t new_sector;
5580 sector_t logical_sector, last_sector;
5581 struct stripe_head *sh;
5582 const int rw = bio_data_dir(bi);
5583 DEFINE_WAIT(w);
5584 bool do_prepare;
5585 bool do_flush = false;
5587 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5588 int ret = log_handle_flush_request(conf, bi);
5590 if (ret == 0)
5591 return true;
5592 if (ret == -ENODEV) {
5593 if (md_flush_request(mddev, bi))
5594 return true;
5596 /* ret == -EAGAIN, fallback */
5598 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5599 * we need to flush journal device
5601 do_flush = bi->bi_opf & REQ_PREFLUSH;
5604 if (!md_write_start(mddev, bi))
5605 return false;
5607 * If array is degraded, better not do chunk aligned read because
5608 * later we might have to read it again in order to reconstruct
5609 * data on failed drives.
5611 if (rw == READ && mddev->degraded == 0 &&
5612 mddev->reshape_position == MaxSector) {
5613 bi = chunk_aligned_read(mddev, bi);
5614 if (!bi)
5615 return true;
5618 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5619 make_discard_request(mddev, bi);
5620 md_write_end(mddev);
5621 return true;
5624 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5625 last_sector = bio_end_sector(bi);
5626 bi->bi_next = NULL;
5628 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5629 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5630 int previous;
5631 int seq;
5633 do_prepare = false;
5634 retry:
5635 seq = read_seqcount_begin(&conf->gen_lock);
5636 previous = 0;
5637 if (do_prepare)
5638 prepare_to_wait(&conf->wait_for_overlap, &w,
5639 TASK_UNINTERRUPTIBLE);
5640 if (unlikely(conf->reshape_progress != MaxSector)) {
5641 /* spinlock is needed as reshape_progress may be
5642 * 64bit on a 32bit platform, and so it might be
5643 * possible to see a half-updated value
5644 * Of course reshape_progress could change after
5645 * the lock is dropped, so once we get a reference
5646 * to the stripe that we think it is, we will have
5647 * to check again.
5649 spin_lock_irq(&conf->device_lock);
5650 if (mddev->reshape_backwards
5651 ? logical_sector < conf->reshape_progress
5652 : logical_sector >= conf->reshape_progress) {
5653 previous = 1;
5654 } else {
5655 if (mddev->reshape_backwards
5656 ? logical_sector < conf->reshape_safe
5657 : logical_sector >= conf->reshape_safe) {
5658 spin_unlock_irq(&conf->device_lock);
5659 schedule();
5660 do_prepare = true;
5661 goto retry;
5664 spin_unlock_irq(&conf->device_lock);
5667 new_sector = raid5_compute_sector(conf, logical_sector,
5668 previous,
5669 &dd_idx, NULL);
5670 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5671 (unsigned long long)new_sector,
5672 (unsigned long long)logical_sector);
5674 sh = raid5_get_active_stripe(conf, new_sector, previous,
5675 (bi->bi_opf & REQ_RAHEAD), 0);
5676 if (sh) {
5677 if (unlikely(previous)) {
5678 /* expansion might have moved on while waiting for a
5679 * stripe, so we must do the range check again.
5680 * Expansion could still move past after this
5681 * test, but as we are holding a reference to
5682 * 'sh', we know that if that happens,
5683 * STRIPE_EXPANDING will get set and the expansion
5684 * won't proceed until we finish with the stripe.
5686 int must_retry = 0;
5687 spin_lock_irq(&conf->device_lock);
5688 if (mddev->reshape_backwards
5689 ? logical_sector >= conf->reshape_progress
5690 : logical_sector < conf->reshape_progress)
5691 /* mismatch, need to try again */
5692 must_retry = 1;
5693 spin_unlock_irq(&conf->device_lock);
5694 if (must_retry) {
5695 raid5_release_stripe(sh);
5696 schedule();
5697 do_prepare = true;
5698 goto retry;
5701 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5702 /* Might have got the wrong stripe_head
5703 * by accident
5705 raid5_release_stripe(sh);
5706 goto retry;
5709 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5710 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5711 /* Stripe is busy expanding or
5712 * add failed due to overlap. Flush everything
5713 * and wait a while
5715 md_wakeup_thread(mddev->thread);
5716 raid5_release_stripe(sh);
5717 schedule();
5718 do_prepare = true;
5719 goto retry;
5721 if (do_flush) {
5722 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5723 /* we only need flush for one stripe */
5724 do_flush = false;
5727 if (!sh->batch_head || sh == sh->batch_head)
5728 set_bit(STRIPE_HANDLE, &sh->state);
5729 clear_bit(STRIPE_DELAYED, &sh->state);
5730 if ((!sh->batch_head || sh == sh->batch_head) &&
5731 (bi->bi_opf & REQ_SYNC) &&
5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733 atomic_inc(&conf->preread_active_stripes);
5734 release_stripe_plug(mddev, sh);
5735 } else {
5736 /* cannot get stripe for read-ahead, just give-up */
5737 bi->bi_status = BLK_STS_IOERR;
5738 break;
5741 finish_wait(&conf->wait_for_overlap, &w);
5743 if (rw == WRITE)
5744 md_write_end(mddev);
5745 bio_endio(bi);
5746 return true;
5749 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5753 /* reshaping is quite different to recovery/resync so it is
5754 * handled quite separately ... here.
5756 * On each call to sync_request, we gather one chunk worth of
5757 * destination stripes and flag them as expanding.
5758 * Then we find all the source stripes and request reads.
5759 * As the reads complete, handle_stripe will copy the data
5760 * into the destination stripe and release that stripe.
5762 struct r5conf *conf = mddev->private;
5763 struct stripe_head *sh;
5764 struct md_rdev *rdev;
5765 sector_t first_sector, last_sector;
5766 int raid_disks = conf->previous_raid_disks;
5767 int data_disks = raid_disks - conf->max_degraded;
5768 int new_data_disks = conf->raid_disks - conf->max_degraded;
5769 int i;
5770 int dd_idx;
5771 sector_t writepos, readpos, safepos;
5772 sector_t stripe_addr;
5773 int reshape_sectors;
5774 struct list_head stripes;
5775 sector_t retn;
5777 if (sector_nr == 0) {
5778 /* If restarting in the middle, skip the initial sectors */
5779 if (mddev->reshape_backwards &&
5780 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5781 sector_nr = raid5_size(mddev, 0, 0)
5782 - conf->reshape_progress;
5783 } else if (mddev->reshape_backwards &&
5784 conf->reshape_progress == MaxSector) {
5785 /* shouldn't happen, but just in case, finish up.*/
5786 sector_nr = MaxSector;
5787 } else if (!mddev->reshape_backwards &&
5788 conf->reshape_progress > 0)
5789 sector_nr = conf->reshape_progress;
5790 sector_div(sector_nr, new_data_disks);
5791 if (sector_nr) {
5792 mddev->curr_resync_completed = sector_nr;
5793 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5794 *skipped = 1;
5795 retn = sector_nr;
5796 goto finish;
5800 /* We need to process a full chunk at a time.
5801 * If old and new chunk sizes differ, we need to process the
5802 * largest of these
5805 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5807 /* We update the metadata at least every 10 seconds, or when
5808 * the data about to be copied would over-write the source of
5809 * the data at the front of the range. i.e. one new_stripe
5810 * along from reshape_progress new_maps to after where
5811 * reshape_safe old_maps to
5813 writepos = conf->reshape_progress;
5814 sector_div(writepos, new_data_disks);
5815 readpos = conf->reshape_progress;
5816 sector_div(readpos, data_disks);
5817 safepos = conf->reshape_safe;
5818 sector_div(safepos, data_disks);
5819 if (mddev->reshape_backwards) {
5820 BUG_ON(writepos < reshape_sectors);
5821 writepos -= reshape_sectors;
5822 readpos += reshape_sectors;
5823 safepos += reshape_sectors;
5824 } else {
5825 writepos += reshape_sectors;
5826 /* readpos and safepos are worst-case calculations.
5827 * A negative number is overly pessimistic, and causes
5828 * obvious problems for unsigned storage. So clip to 0.
5830 readpos -= min_t(sector_t, reshape_sectors, readpos);
5831 safepos -= min_t(sector_t, reshape_sectors, safepos);
5834 /* Having calculated the 'writepos' possibly use it
5835 * to set 'stripe_addr' which is where we will write to.
5837 if (mddev->reshape_backwards) {
5838 BUG_ON(conf->reshape_progress == 0);
5839 stripe_addr = writepos;
5840 BUG_ON((mddev->dev_sectors &
5841 ~((sector_t)reshape_sectors - 1))
5842 - reshape_sectors - stripe_addr
5843 != sector_nr);
5844 } else {
5845 BUG_ON(writepos != sector_nr + reshape_sectors);
5846 stripe_addr = sector_nr;
5849 /* 'writepos' is the most advanced device address we might write.
5850 * 'readpos' is the least advanced device address we might read.
5851 * 'safepos' is the least address recorded in the metadata as having
5852 * been reshaped.
5853 * If there is a min_offset_diff, these are adjusted either by
5854 * increasing the safepos/readpos if diff is negative, or
5855 * increasing writepos if diff is positive.
5856 * If 'readpos' is then behind 'writepos', there is no way that we can
5857 * ensure safety in the face of a crash - that must be done by userspace
5858 * making a backup of the data. So in that case there is no particular
5859 * rush to update metadata.
5860 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5861 * update the metadata to advance 'safepos' to match 'readpos' so that
5862 * we can be safe in the event of a crash.
5863 * So we insist on updating metadata if safepos is behind writepos and
5864 * readpos is beyond writepos.
5865 * In any case, update the metadata every 10 seconds.
5866 * Maybe that number should be configurable, but I'm not sure it is
5867 * worth it.... maybe it could be a multiple of safemode_delay???
5869 if (conf->min_offset_diff < 0) {
5870 safepos += -conf->min_offset_diff;
5871 readpos += -conf->min_offset_diff;
5872 } else
5873 writepos += conf->min_offset_diff;
5875 if ((mddev->reshape_backwards
5876 ? (safepos > writepos && readpos < writepos)
5877 : (safepos < writepos && readpos > writepos)) ||
5878 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5879 /* Cannot proceed until we've updated the superblock... */
5880 wait_event(conf->wait_for_overlap,
5881 atomic_read(&conf->reshape_stripes)==0
5882 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5883 if (atomic_read(&conf->reshape_stripes) != 0)
5884 return 0;
5885 mddev->reshape_position = conf->reshape_progress;
5886 mddev->curr_resync_completed = sector_nr;
5887 if (!mddev->reshape_backwards)
5888 /* Can update recovery_offset */
5889 rdev_for_each(rdev, mddev)
5890 if (rdev->raid_disk >= 0 &&
5891 !test_bit(Journal, &rdev->flags) &&
5892 !test_bit(In_sync, &rdev->flags) &&
5893 rdev->recovery_offset < sector_nr)
5894 rdev->recovery_offset = sector_nr;
5896 conf->reshape_checkpoint = jiffies;
5897 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5898 md_wakeup_thread(mddev->thread);
5899 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5900 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5901 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5902 return 0;
5903 spin_lock_irq(&conf->device_lock);
5904 conf->reshape_safe = mddev->reshape_position;
5905 spin_unlock_irq(&conf->device_lock);
5906 wake_up(&conf->wait_for_overlap);
5907 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5910 INIT_LIST_HEAD(&stripes);
5911 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5912 int j;
5913 int skipped_disk = 0;
5914 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5915 set_bit(STRIPE_EXPANDING, &sh->state);
5916 atomic_inc(&conf->reshape_stripes);
5917 /* If any of this stripe is beyond the end of the old
5918 * array, then we need to zero those blocks
5920 for (j=sh->disks; j--;) {
5921 sector_t s;
5922 if (j == sh->pd_idx)
5923 continue;
5924 if (conf->level == 6 &&
5925 j == sh->qd_idx)
5926 continue;
5927 s = raid5_compute_blocknr(sh, j, 0);
5928 if (s < raid5_size(mddev, 0, 0)) {
5929 skipped_disk = 1;
5930 continue;
5932 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5933 set_bit(R5_Expanded, &sh->dev[j].flags);
5934 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5936 if (!skipped_disk) {
5937 set_bit(STRIPE_EXPAND_READY, &sh->state);
5938 set_bit(STRIPE_HANDLE, &sh->state);
5940 list_add(&sh->lru, &stripes);
5942 spin_lock_irq(&conf->device_lock);
5943 if (mddev->reshape_backwards)
5944 conf->reshape_progress -= reshape_sectors * new_data_disks;
5945 else
5946 conf->reshape_progress += reshape_sectors * new_data_disks;
5947 spin_unlock_irq(&conf->device_lock);
5948 /* Ok, those stripe are ready. We can start scheduling
5949 * reads on the source stripes.
5950 * The source stripes are determined by mapping the first and last
5951 * block on the destination stripes.
5953 first_sector =
5954 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5955 1, &dd_idx, NULL);
5956 last_sector =
5957 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5958 * new_data_disks - 1),
5959 1, &dd_idx, NULL);
5960 if (last_sector >= mddev->dev_sectors)
5961 last_sector = mddev->dev_sectors - 1;
5962 while (first_sector <= last_sector) {
5963 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5964 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5965 set_bit(STRIPE_HANDLE, &sh->state);
5966 raid5_release_stripe(sh);
5967 first_sector += STRIPE_SECTORS;
5969 /* Now that the sources are clearly marked, we can release
5970 * the destination stripes
5972 while (!list_empty(&stripes)) {
5973 sh = list_entry(stripes.next, struct stripe_head, lru);
5974 list_del_init(&sh->lru);
5975 raid5_release_stripe(sh);
5977 /* If this takes us to the resync_max point where we have to pause,
5978 * then we need to write out the superblock.
5980 sector_nr += reshape_sectors;
5981 retn = reshape_sectors;
5982 finish:
5983 if (mddev->curr_resync_completed > mddev->resync_max ||
5984 (sector_nr - mddev->curr_resync_completed) * 2
5985 >= mddev->resync_max - mddev->curr_resync_completed) {
5986 /* Cannot proceed until we've updated the superblock... */
5987 wait_event(conf->wait_for_overlap,
5988 atomic_read(&conf->reshape_stripes) == 0
5989 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990 if (atomic_read(&conf->reshape_stripes) != 0)
5991 goto ret;
5992 mddev->reshape_position = conf->reshape_progress;
5993 mddev->curr_resync_completed = sector_nr;
5994 if (!mddev->reshape_backwards)
5995 /* Can update recovery_offset */
5996 rdev_for_each(rdev, mddev)
5997 if (rdev->raid_disk >= 0 &&
5998 !test_bit(Journal, &rdev->flags) &&
5999 !test_bit(In_sync, &rdev->flags) &&
6000 rdev->recovery_offset < sector_nr)
6001 rdev->recovery_offset = sector_nr;
6002 conf->reshape_checkpoint = jiffies;
6003 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6004 md_wakeup_thread(mddev->thread);
6005 wait_event(mddev->sb_wait,
6006 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6007 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6009 goto ret;
6010 spin_lock_irq(&conf->device_lock);
6011 conf->reshape_safe = mddev->reshape_position;
6012 spin_unlock_irq(&conf->device_lock);
6013 wake_up(&conf->wait_for_overlap);
6014 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6016 ret:
6017 return retn;
6020 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6021 int *skipped)
6023 struct r5conf *conf = mddev->private;
6024 struct stripe_head *sh;
6025 sector_t max_sector = mddev->dev_sectors;
6026 sector_t sync_blocks;
6027 int still_degraded = 0;
6028 int i;
6030 if (sector_nr >= max_sector) {
6031 /* just being told to finish up .. nothing much to do */
6033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6034 end_reshape(conf);
6035 return 0;
6038 if (mddev->curr_resync < max_sector) /* aborted */
6039 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6040 &sync_blocks, 1);
6041 else /* completed sync */
6042 conf->fullsync = 0;
6043 md_bitmap_close_sync(mddev->bitmap);
6045 return 0;
6048 /* Allow raid5_quiesce to complete */
6049 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6051 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6052 return reshape_request(mddev, sector_nr, skipped);
6054 /* No need to check resync_max as we never do more than one
6055 * stripe, and as resync_max will always be on a chunk boundary,
6056 * if the check in md_do_sync didn't fire, there is no chance
6057 * of overstepping resync_max here
6060 /* if there is too many failed drives and we are trying
6061 * to resync, then assert that we are finished, because there is
6062 * nothing we can do.
6064 if (mddev->degraded >= conf->max_degraded &&
6065 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6066 sector_t rv = mddev->dev_sectors - sector_nr;
6067 *skipped = 1;
6068 return rv;
6070 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6071 !conf->fullsync &&
6072 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6073 sync_blocks >= STRIPE_SECTORS) {
6074 /* we can skip this block, and probably more */
6075 sync_blocks /= STRIPE_SECTORS;
6076 *skipped = 1;
6077 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6080 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6082 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6083 if (sh == NULL) {
6084 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6085 /* make sure we don't swamp the stripe cache if someone else
6086 * is trying to get access
6088 schedule_timeout_uninterruptible(1);
6090 /* Need to check if array will still be degraded after recovery/resync
6091 * Note in case of > 1 drive failures it's possible we're rebuilding
6092 * one drive while leaving another faulty drive in array.
6094 rcu_read_lock();
6095 for (i = 0; i < conf->raid_disks; i++) {
6096 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6098 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6099 still_degraded = 1;
6101 rcu_read_unlock();
6103 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6105 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6106 set_bit(STRIPE_HANDLE, &sh->state);
6108 raid5_release_stripe(sh);
6110 return STRIPE_SECTORS;
6113 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6114 unsigned int offset)
6116 /* We may not be able to submit a whole bio at once as there
6117 * may not be enough stripe_heads available.
6118 * We cannot pre-allocate enough stripe_heads as we may need
6119 * more than exist in the cache (if we allow ever large chunks).
6120 * So we do one stripe head at a time and record in
6121 * ->bi_hw_segments how many have been done.
6123 * We *know* that this entire raid_bio is in one chunk, so
6124 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6126 struct stripe_head *sh;
6127 int dd_idx;
6128 sector_t sector, logical_sector, last_sector;
6129 int scnt = 0;
6130 int handled = 0;
6132 logical_sector = raid_bio->bi_iter.bi_sector &
6133 ~((sector_t)STRIPE_SECTORS-1);
6134 sector = raid5_compute_sector(conf, logical_sector,
6135 0, &dd_idx, NULL);
6136 last_sector = bio_end_sector(raid_bio);
6138 for (; logical_sector < last_sector;
6139 logical_sector += STRIPE_SECTORS,
6140 sector += STRIPE_SECTORS,
6141 scnt++) {
6143 if (scnt < offset)
6144 /* already done this stripe */
6145 continue;
6147 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6149 if (!sh) {
6150 /* failed to get a stripe - must wait */
6151 conf->retry_read_aligned = raid_bio;
6152 conf->retry_read_offset = scnt;
6153 return handled;
6156 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6157 raid5_release_stripe(sh);
6158 conf->retry_read_aligned = raid_bio;
6159 conf->retry_read_offset = scnt;
6160 return handled;
6163 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6164 handle_stripe(sh);
6165 raid5_release_stripe(sh);
6166 handled++;
6169 bio_endio(raid_bio);
6171 if (atomic_dec_and_test(&conf->active_aligned_reads))
6172 wake_up(&conf->wait_for_quiescent);
6173 return handled;
6176 static int handle_active_stripes(struct r5conf *conf, int group,
6177 struct r5worker *worker,
6178 struct list_head *temp_inactive_list)
6180 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6181 int i, batch_size = 0, hash;
6182 bool release_inactive = false;
6184 while (batch_size < MAX_STRIPE_BATCH &&
6185 (sh = __get_priority_stripe(conf, group)) != NULL)
6186 batch[batch_size++] = sh;
6188 if (batch_size == 0) {
6189 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6190 if (!list_empty(temp_inactive_list + i))
6191 break;
6192 if (i == NR_STRIPE_HASH_LOCKS) {
6193 spin_unlock_irq(&conf->device_lock);
6194 log_flush_stripe_to_raid(conf);
6195 spin_lock_irq(&conf->device_lock);
6196 return batch_size;
6198 release_inactive = true;
6200 spin_unlock_irq(&conf->device_lock);
6202 release_inactive_stripe_list(conf, temp_inactive_list,
6203 NR_STRIPE_HASH_LOCKS);
6205 r5l_flush_stripe_to_raid(conf->log);
6206 if (release_inactive) {
6207 spin_lock_irq(&conf->device_lock);
6208 return 0;
6211 for (i = 0; i < batch_size; i++)
6212 handle_stripe(batch[i]);
6213 log_write_stripe_run(conf);
6215 cond_resched();
6217 spin_lock_irq(&conf->device_lock);
6218 for (i = 0; i < batch_size; i++) {
6219 hash = batch[i]->hash_lock_index;
6220 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6222 return batch_size;
6225 static void raid5_do_work(struct work_struct *work)
6227 struct r5worker *worker = container_of(work, struct r5worker, work);
6228 struct r5worker_group *group = worker->group;
6229 struct r5conf *conf = group->conf;
6230 struct mddev *mddev = conf->mddev;
6231 int group_id = group - conf->worker_groups;
6232 int handled;
6233 struct blk_plug plug;
6235 pr_debug("+++ raid5worker active\n");
6237 blk_start_plug(&plug);
6238 handled = 0;
6239 spin_lock_irq(&conf->device_lock);
6240 while (1) {
6241 int batch_size, released;
6243 released = release_stripe_list(conf, worker->temp_inactive_list);
6245 batch_size = handle_active_stripes(conf, group_id, worker,
6246 worker->temp_inactive_list);
6247 worker->working = false;
6248 if (!batch_size && !released)
6249 break;
6250 handled += batch_size;
6251 wait_event_lock_irq(mddev->sb_wait,
6252 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6253 conf->device_lock);
6255 pr_debug("%d stripes handled\n", handled);
6257 spin_unlock_irq(&conf->device_lock);
6259 flush_deferred_bios(conf);
6261 r5l_flush_stripe_to_raid(conf->log);
6263 async_tx_issue_pending_all();
6264 blk_finish_plug(&plug);
6266 pr_debug("--- raid5worker inactive\n");
6270 * This is our raid5 kernel thread.
6272 * We scan the hash table for stripes which can be handled now.
6273 * During the scan, completed stripes are saved for us by the interrupt
6274 * handler, so that they will not have to wait for our next wakeup.
6276 static void raid5d(struct md_thread *thread)
6278 struct mddev *mddev = thread->mddev;
6279 struct r5conf *conf = mddev->private;
6280 int handled;
6281 struct blk_plug plug;
6283 pr_debug("+++ raid5d active\n");
6285 md_check_recovery(mddev);
6287 blk_start_plug(&plug);
6288 handled = 0;
6289 spin_lock_irq(&conf->device_lock);
6290 while (1) {
6291 struct bio *bio;
6292 int batch_size, released;
6293 unsigned int offset;
6295 released = release_stripe_list(conf, conf->temp_inactive_list);
6296 if (released)
6297 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6299 if (
6300 !list_empty(&conf->bitmap_list)) {
6301 /* Now is a good time to flush some bitmap updates */
6302 conf->seq_flush++;
6303 spin_unlock_irq(&conf->device_lock);
6304 md_bitmap_unplug(mddev->bitmap);
6305 spin_lock_irq(&conf->device_lock);
6306 conf->seq_write = conf->seq_flush;
6307 activate_bit_delay(conf, conf->temp_inactive_list);
6309 raid5_activate_delayed(conf);
6311 while ((bio = remove_bio_from_retry(conf, &offset))) {
6312 int ok;
6313 spin_unlock_irq(&conf->device_lock);
6314 ok = retry_aligned_read(conf, bio, offset);
6315 spin_lock_irq(&conf->device_lock);
6316 if (!ok)
6317 break;
6318 handled++;
6321 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6322 conf->temp_inactive_list);
6323 if (!batch_size && !released)
6324 break;
6325 handled += batch_size;
6327 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6328 spin_unlock_irq(&conf->device_lock);
6329 md_check_recovery(mddev);
6330 spin_lock_irq(&conf->device_lock);
6333 pr_debug("%d stripes handled\n", handled);
6335 spin_unlock_irq(&conf->device_lock);
6336 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6337 mutex_trylock(&conf->cache_size_mutex)) {
6338 grow_one_stripe(conf, __GFP_NOWARN);
6339 /* Set flag even if allocation failed. This helps
6340 * slow down allocation requests when mem is short
6342 set_bit(R5_DID_ALLOC, &conf->cache_state);
6343 mutex_unlock(&conf->cache_size_mutex);
6346 flush_deferred_bios(conf);
6348 r5l_flush_stripe_to_raid(conf->log);
6350 async_tx_issue_pending_all();
6351 blk_finish_plug(&plug);
6353 pr_debug("--- raid5d inactive\n");
6356 static ssize_t
6357 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6359 struct r5conf *conf;
6360 int ret = 0;
6361 spin_lock(&mddev->lock);
6362 conf = mddev->private;
6363 if (conf)
6364 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6365 spin_unlock(&mddev->lock);
6366 return ret;
6370 raid5_set_cache_size(struct mddev *mddev, int size)
6372 int result = 0;
6373 struct r5conf *conf = mddev->private;
6375 if (size <= 16 || size > 32768)
6376 return -EINVAL;
6378 conf->min_nr_stripes = size;
6379 mutex_lock(&conf->cache_size_mutex);
6380 while (size < conf->max_nr_stripes &&
6381 drop_one_stripe(conf))
6383 mutex_unlock(&conf->cache_size_mutex);
6385 md_allow_write(mddev);
6387 mutex_lock(&conf->cache_size_mutex);
6388 while (size > conf->max_nr_stripes)
6389 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6390 conf->min_nr_stripes = conf->max_nr_stripes;
6391 result = -ENOMEM;
6392 break;
6394 mutex_unlock(&conf->cache_size_mutex);
6396 return result;
6398 EXPORT_SYMBOL(raid5_set_cache_size);
6400 static ssize_t
6401 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6403 struct r5conf *conf;
6404 unsigned long new;
6405 int err;
6407 if (len >= PAGE_SIZE)
6408 return -EINVAL;
6409 if (kstrtoul(page, 10, &new))
6410 return -EINVAL;
6411 err = mddev_lock(mddev);
6412 if (err)
6413 return err;
6414 conf = mddev->private;
6415 if (!conf)
6416 err = -ENODEV;
6417 else
6418 err = raid5_set_cache_size(mddev, new);
6419 mddev_unlock(mddev);
6421 return err ?: len;
6424 static struct md_sysfs_entry
6425 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6426 raid5_show_stripe_cache_size,
6427 raid5_store_stripe_cache_size);
6429 static ssize_t
6430 raid5_show_rmw_level(struct mddev *mddev, char *page)
6432 struct r5conf *conf = mddev->private;
6433 if (conf)
6434 return sprintf(page, "%d\n", conf->rmw_level);
6435 else
6436 return 0;
6439 static ssize_t
6440 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6442 struct r5conf *conf = mddev->private;
6443 unsigned long new;
6445 if (!conf)
6446 return -ENODEV;
6448 if (len >= PAGE_SIZE)
6449 return -EINVAL;
6451 if (kstrtoul(page, 10, &new))
6452 return -EINVAL;
6454 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6455 return -EINVAL;
6457 if (new != PARITY_DISABLE_RMW &&
6458 new != PARITY_ENABLE_RMW &&
6459 new != PARITY_PREFER_RMW)
6460 return -EINVAL;
6462 conf->rmw_level = new;
6463 return len;
6466 static struct md_sysfs_entry
6467 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6468 raid5_show_rmw_level,
6469 raid5_store_rmw_level);
6472 static ssize_t
6473 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6475 struct r5conf *conf;
6476 int ret = 0;
6477 spin_lock(&mddev->lock);
6478 conf = mddev->private;
6479 if (conf)
6480 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6481 spin_unlock(&mddev->lock);
6482 return ret;
6485 static ssize_t
6486 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6488 struct r5conf *conf;
6489 unsigned long new;
6490 int err;
6492 if (len >= PAGE_SIZE)
6493 return -EINVAL;
6494 if (kstrtoul(page, 10, &new))
6495 return -EINVAL;
6497 err = mddev_lock(mddev);
6498 if (err)
6499 return err;
6500 conf = mddev->private;
6501 if (!conf)
6502 err = -ENODEV;
6503 else if (new > conf->min_nr_stripes)
6504 err = -EINVAL;
6505 else
6506 conf->bypass_threshold = new;
6507 mddev_unlock(mddev);
6508 return err ?: len;
6511 static struct md_sysfs_entry
6512 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6513 S_IRUGO | S_IWUSR,
6514 raid5_show_preread_threshold,
6515 raid5_store_preread_threshold);
6517 static ssize_t
6518 raid5_show_skip_copy(struct mddev *mddev, char *page)
6520 struct r5conf *conf;
6521 int ret = 0;
6522 spin_lock(&mddev->lock);
6523 conf = mddev->private;
6524 if (conf)
6525 ret = sprintf(page, "%d\n", conf->skip_copy);
6526 spin_unlock(&mddev->lock);
6527 return ret;
6530 static ssize_t
6531 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6533 struct r5conf *conf;
6534 unsigned long new;
6535 int err;
6537 if (len >= PAGE_SIZE)
6538 return -EINVAL;
6539 if (kstrtoul(page, 10, &new))
6540 return -EINVAL;
6541 new = !!new;
6543 err = mddev_lock(mddev);
6544 if (err)
6545 return err;
6546 conf = mddev->private;
6547 if (!conf)
6548 err = -ENODEV;
6549 else if (new != conf->skip_copy) {
6550 mddev_suspend(mddev);
6551 conf->skip_copy = new;
6552 if (new)
6553 mddev->queue->backing_dev_info->capabilities |=
6554 BDI_CAP_STABLE_WRITES;
6555 else
6556 mddev->queue->backing_dev_info->capabilities &=
6557 ~BDI_CAP_STABLE_WRITES;
6558 mddev_resume(mddev);
6560 mddev_unlock(mddev);
6561 return err ?: len;
6564 static struct md_sysfs_entry
6565 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6566 raid5_show_skip_copy,
6567 raid5_store_skip_copy);
6569 static ssize_t
6570 stripe_cache_active_show(struct mddev *mddev, char *page)
6572 struct r5conf *conf = mddev->private;
6573 if (conf)
6574 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6575 else
6576 return 0;
6579 static struct md_sysfs_entry
6580 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6582 static ssize_t
6583 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6585 struct r5conf *conf;
6586 int ret = 0;
6587 spin_lock(&mddev->lock);
6588 conf = mddev->private;
6589 if (conf)
6590 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6591 spin_unlock(&mddev->lock);
6592 return ret;
6595 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6596 int *group_cnt,
6597 int *worker_cnt_per_group,
6598 struct r5worker_group **worker_groups);
6599 static ssize_t
6600 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6602 struct r5conf *conf;
6603 unsigned int new;
6604 int err;
6605 struct r5worker_group *new_groups, *old_groups;
6606 int group_cnt, worker_cnt_per_group;
6608 if (len >= PAGE_SIZE)
6609 return -EINVAL;
6610 if (kstrtouint(page, 10, &new))
6611 return -EINVAL;
6612 /* 8192 should be big enough */
6613 if (new > 8192)
6614 return -EINVAL;
6616 err = mddev_lock(mddev);
6617 if (err)
6618 return err;
6619 conf = mddev->private;
6620 if (!conf)
6621 err = -ENODEV;
6622 else if (new != conf->worker_cnt_per_group) {
6623 mddev_suspend(mddev);
6625 old_groups = conf->worker_groups;
6626 if (old_groups)
6627 flush_workqueue(raid5_wq);
6629 err = alloc_thread_groups(conf, new,
6630 &group_cnt, &worker_cnt_per_group,
6631 &new_groups);
6632 if (!err) {
6633 spin_lock_irq(&conf->device_lock);
6634 conf->group_cnt = group_cnt;
6635 conf->worker_cnt_per_group = worker_cnt_per_group;
6636 conf->worker_groups = new_groups;
6637 spin_unlock_irq(&conf->device_lock);
6639 if (old_groups)
6640 kfree(old_groups[0].workers);
6641 kfree(old_groups);
6643 mddev_resume(mddev);
6645 mddev_unlock(mddev);
6647 return err ?: len;
6650 static struct md_sysfs_entry
6651 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6652 raid5_show_group_thread_cnt,
6653 raid5_store_group_thread_cnt);
6655 static struct attribute *raid5_attrs[] = {
6656 &raid5_stripecache_size.attr,
6657 &raid5_stripecache_active.attr,
6658 &raid5_preread_bypass_threshold.attr,
6659 &raid5_group_thread_cnt.attr,
6660 &raid5_skip_copy.attr,
6661 &raid5_rmw_level.attr,
6662 &r5c_journal_mode.attr,
6663 NULL,
6665 static struct attribute_group raid5_attrs_group = {
6666 .name = NULL,
6667 .attrs = raid5_attrs,
6670 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6671 int *group_cnt,
6672 int *worker_cnt_per_group,
6673 struct r5worker_group **worker_groups)
6675 int i, j, k;
6676 ssize_t size;
6677 struct r5worker *workers;
6679 *worker_cnt_per_group = cnt;
6680 if (cnt == 0) {
6681 *group_cnt = 0;
6682 *worker_groups = NULL;
6683 return 0;
6685 *group_cnt = num_possible_nodes();
6686 size = sizeof(struct r5worker) * cnt;
6687 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6688 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6689 GFP_NOIO);
6690 if (!*worker_groups || !workers) {
6691 kfree(workers);
6692 kfree(*worker_groups);
6693 return -ENOMEM;
6696 for (i = 0; i < *group_cnt; i++) {
6697 struct r5worker_group *group;
6699 group = &(*worker_groups)[i];
6700 INIT_LIST_HEAD(&group->handle_list);
6701 INIT_LIST_HEAD(&group->loprio_list);
6702 group->conf = conf;
6703 group->workers = workers + i * cnt;
6705 for (j = 0; j < cnt; j++) {
6706 struct r5worker *worker = group->workers + j;
6707 worker->group = group;
6708 INIT_WORK(&worker->work, raid5_do_work);
6710 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6711 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6715 return 0;
6718 static void free_thread_groups(struct r5conf *conf)
6720 if (conf->worker_groups)
6721 kfree(conf->worker_groups[0].workers);
6722 kfree(conf->worker_groups);
6723 conf->worker_groups = NULL;
6726 static sector_t
6727 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6729 struct r5conf *conf = mddev->private;
6731 if (!sectors)
6732 sectors = mddev->dev_sectors;
6733 if (!raid_disks)
6734 /* size is defined by the smallest of previous and new size */
6735 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6737 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6738 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6739 return sectors * (raid_disks - conf->max_degraded);
6742 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6744 safe_put_page(percpu->spare_page);
6745 if (percpu->scribble)
6746 flex_array_free(percpu->scribble);
6747 percpu->spare_page = NULL;
6748 percpu->scribble = NULL;
6751 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6753 if (conf->level == 6 && !percpu->spare_page)
6754 percpu->spare_page = alloc_page(GFP_KERNEL);
6755 if (!percpu->scribble)
6756 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6757 conf->previous_raid_disks),
6758 max(conf->chunk_sectors,
6759 conf->prev_chunk_sectors)
6760 / STRIPE_SECTORS,
6761 GFP_KERNEL);
6763 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6764 free_scratch_buffer(conf, percpu);
6765 return -ENOMEM;
6768 return 0;
6771 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6773 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6775 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6776 return 0;
6779 static void raid5_free_percpu(struct r5conf *conf)
6781 if (!conf->percpu)
6782 return;
6784 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6785 free_percpu(conf->percpu);
6788 static void free_conf(struct r5conf *conf)
6790 int i;
6792 log_exit(conf);
6794 unregister_shrinker(&conf->shrinker);
6795 free_thread_groups(conf);
6796 shrink_stripes(conf);
6797 raid5_free_percpu(conf);
6798 for (i = 0; i < conf->pool_size; i++)
6799 if (conf->disks[i].extra_page)
6800 put_page(conf->disks[i].extra_page);
6801 kfree(conf->disks);
6802 bioset_exit(&conf->bio_split);
6803 kfree(conf->stripe_hashtbl);
6804 kfree(conf->pending_data);
6805 kfree(conf);
6808 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6810 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6811 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6813 if (alloc_scratch_buffer(conf, percpu)) {
6814 pr_warn("%s: failed memory allocation for cpu%u\n",
6815 __func__, cpu);
6816 return -ENOMEM;
6818 return 0;
6821 static int raid5_alloc_percpu(struct r5conf *conf)
6823 int err = 0;
6825 conf->percpu = alloc_percpu(struct raid5_percpu);
6826 if (!conf->percpu)
6827 return -ENOMEM;
6829 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6830 if (!err) {
6831 conf->scribble_disks = max(conf->raid_disks,
6832 conf->previous_raid_disks);
6833 conf->scribble_sectors = max(conf->chunk_sectors,
6834 conf->prev_chunk_sectors);
6836 return err;
6839 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6840 struct shrink_control *sc)
6842 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6843 unsigned long ret = SHRINK_STOP;
6845 if (mutex_trylock(&conf->cache_size_mutex)) {
6846 ret= 0;
6847 while (ret < sc->nr_to_scan &&
6848 conf->max_nr_stripes > conf->min_nr_stripes) {
6849 if (drop_one_stripe(conf) == 0) {
6850 ret = SHRINK_STOP;
6851 break;
6853 ret++;
6855 mutex_unlock(&conf->cache_size_mutex);
6857 return ret;
6860 static unsigned long raid5_cache_count(struct shrinker *shrink,
6861 struct shrink_control *sc)
6863 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6865 if (conf->max_nr_stripes < conf->min_nr_stripes)
6866 /* unlikely, but not impossible */
6867 return 0;
6868 return conf->max_nr_stripes - conf->min_nr_stripes;
6871 static struct r5conf *setup_conf(struct mddev *mddev)
6873 struct r5conf *conf;
6874 int raid_disk, memory, max_disks;
6875 struct md_rdev *rdev;
6876 struct disk_info *disk;
6877 char pers_name[6];
6878 int i;
6879 int group_cnt, worker_cnt_per_group;
6880 struct r5worker_group *new_group;
6881 int ret;
6883 if (mddev->new_level != 5
6884 && mddev->new_level != 4
6885 && mddev->new_level != 6) {
6886 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6887 mdname(mddev), mddev->new_level);
6888 return ERR_PTR(-EIO);
6890 if ((mddev->new_level == 5
6891 && !algorithm_valid_raid5(mddev->new_layout)) ||
6892 (mddev->new_level == 6
6893 && !algorithm_valid_raid6(mddev->new_layout))) {
6894 pr_warn("md/raid:%s: layout %d not supported\n",
6895 mdname(mddev), mddev->new_layout);
6896 return ERR_PTR(-EIO);
6898 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6899 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6900 mdname(mddev), mddev->raid_disks);
6901 return ERR_PTR(-EINVAL);
6904 if (!mddev->new_chunk_sectors ||
6905 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6906 !is_power_of_2(mddev->new_chunk_sectors)) {
6907 pr_warn("md/raid:%s: invalid chunk size %d\n",
6908 mdname(mddev), mddev->new_chunk_sectors << 9);
6909 return ERR_PTR(-EINVAL);
6912 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6913 if (conf == NULL)
6914 goto abort;
6915 INIT_LIST_HEAD(&conf->free_list);
6916 INIT_LIST_HEAD(&conf->pending_list);
6917 conf->pending_data = kcalloc(PENDING_IO_MAX,
6918 sizeof(struct r5pending_data),
6919 GFP_KERNEL);
6920 if (!conf->pending_data)
6921 goto abort;
6922 for (i = 0; i < PENDING_IO_MAX; i++)
6923 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6924 /* Don't enable multi-threading by default*/
6925 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6926 &new_group)) {
6927 conf->group_cnt = group_cnt;
6928 conf->worker_cnt_per_group = worker_cnt_per_group;
6929 conf->worker_groups = new_group;
6930 } else
6931 goto abort;
6932 spin_lock_init(&conf->device_lock);
6933 seqcount_init(&conf->gen_lock);
6934 mutex_init(&conf->cache_size_mutex);
6935 init_waitqueue_head(&conf->wait_for_quiescent);
6936 init_waitqueue_head(&conf->wait_for_stripe);
6937 init_waitqueue_head(&conf->wait_for_overlap);
6938 INIT_LIST_HEAD(&conf->handle_list);
6939 INIT_LIST_HEAD(&conf->loprio_list);
6940 INIT_LIST_HEAD(&conf->hold_list);
6941 INIT_LIST_HEAD(&conf->delayed_list);
6942 INIT_LIST_HEAD(&conf->bitmap_list);
6943 init_llist_head(&conf->released_stripes);
6944 atomic_set(&conf->active_stripes, 0);
6945 atomic_set(&conf->preread_active_stripes, 0);
6946 atomic_set(&conf->active_aligned_reads, 0);
6947 spin_lock_init(&conf->pending_bios_lock);
6948 conf->batch_bio_dispatch = true;
6949 rdev_for_each(rdev, mddev) {
6950 if (test_bit(Journal, &rdev->flags))
6951 continue;
6952 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6953 conf->batch_bio_dispatch = false;
6954 break;
6958 conf->bypass_threshold = BYPASS_THRESHOLD;
6959 conf->recovery_disabled = mddev->recovery_disabled - 1;
6961 conf->raid_disks = mddev->raid_disks;
6962 if (mddev->reshape_position == MaxSector)
6963 conf->previous_raid_disks = mddev->raid_disks;
6964 else
6965 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6966 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6968 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6969 GFP_KERNEL);
6971 if (!conf->disks)
6972 goto abort;
6974 for (i = 0; i < max_disks; i++) {
6975 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6976 if (!conf->disks[i].extra_page)
6977 goto abort;
6980 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6981 if (ret)
6982 goto abort;
6983 conf->mddev = mddev;
6985 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6986 goto abort;
6988 /* We init hash_locks[0] separately to that it can be used
6989 * as the reference lock in the spin_lock_nest_lock() call
6990 * in lock_all_device_hash_locks_irq in order to convince
6991 * lockdep that we know what we are doing.
6993 spin_lock_init(conf->hash_locks);
6994 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6995 spin_lock_init(conf->hash_locks + i);
6997 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6998 INIT_LIST_HEAD(conf->inactive_list + i);
7000 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7001 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7003 atomic_set(&conf->r5c_cached_full_stripes, 0);
7004 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7005 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7006 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7007 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7008 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7010 conf->level = mddev->new_level;
7011 conf->chunk_sectors = mddev->new_chunk_sectors;
7012 if (raid5_alloc_percpu(conf) != 0)
7013 goto abort;
7015 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7017 rdev_for_each(rdev, mddev) {
7018 raid_disk = rdev->raid_disk;
7019 if (raid_disk >= max_disks
7020 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7021 continue;
7022 disk = conf->disks + raid_disk;
7024 if (test_bit(Replacement, &rdev->flags)) {
7025 if (disk->replacement)
7026 goto abort;
7027 disk->replacement = rdev;
7028 } else {
7029 if (disk->rdev)
7030 goto abort;
7031 disk->rdev = rdev;
7034 if (test_bit(In_sync, &rdev->flags)) {
7035 char b[BDEVNAME_SIZE];
7036 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7037 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7038 } else if (rdev->saved_raid_disk != raid_disk)
7039 /* Cannot rely on bitmap to complete recovery */
7040 conf->fullsync = 1;
7043 conf->level = mddev->new_level;
7044 if (conf->level == 6) {
7045 conf->max_degraded = 2;
7046 if (raid6_call.xor_syndrome)
7047 conf->rmw_level = PARITY_ENABLE_RMW;
7048 else
7049 conf->rmw_level = PARITY_DISABLE_RMW;
7050 } else {
7051 conf->max_degraded = 1;
7052 conf->rmw_level = PARITY_ENABLE_RMW;
7054 conf->algorithm = mddev->new_layout;
7055 conf->reshape_progress = mddev->reshape_position;
7056 if (conf->reshape_progress != MaxSector) {
7057 conf->prev_chunk_sectors = mddev->chunk_sectors;
7058 conf->prev_algo = mddev->layout;
7059 } else {
7060 conf->prev_chunk_sectors = conf->chunk_sectors;
7061 conf->prev_algo = conf->algorithm;
7064 conf->min_nr_stripes = NR_STRIPES;
7065 if (mddev->reshape_position != MaxSector) {
7066 int stripes = max_t(int,
7067 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7068 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7069 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7070 if (conf->min_nr_stripes != NR_STRIPES)
7071 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7072 mdname(mddev), conf->min_nr_stripes);
7074 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7075 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7076 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7077 if (grow_stripes(conf, conf->min_nr_stripes)) {
7078 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7079 mdname(mddev), memory);
7080 goto abort;
7081 } else
7082 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7084 * Losing a stripe head costs more than the time to refill it,
7085 * it reduces the queue depth and so can hurt throughput.
7086 * So set it rather large, scaled by number of devices.
7088 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7089 conf->shrinker.scan_objects = raid5_cache_scan;
7090 conf->shrinker.count_objects = raid5_cache_count;
7091 conf->shrinker.batch = 128;
7092 conf->shrinker.flags = 0;
7093 if (register_shrinker(&conf->shrinker)) {
7094 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7095 mdname(mddev));
7096 goto abort;
7099 sprintf(pers_name, "raid%d", mddev->new_level);
7100 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7101 if (!conf->thread) {
7102 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7103 mdname(mddev));
7104 goto abort;
7107 return conf;
7109 abort:
7110 if (conf) {
7111 free_conf(conf);
7112 return ERR_PTR(-EIO);
7113 } else
7114 return ERR_PTR(-ENOMEM);
7117 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7119 switch (algo) {
7120 case ALGORITHM_PARITY_0:
7121 if (raid_disk < max_degraded)
7122 return 1;
7123 break;
7124 case ALGORITHM_PARITY_N:
7125 if (raid_disk >= raid_disks - max_degraded)
7126 return 1;
7127 break;
7128 case ALGORITHM_PARITY_0_6:
7129 if (raid_disk == 0 ||
7130 raid_disk == raid_disks - 1)
7131 return 1;
7132 break;
7133 case ALGORITHM_LEFT_ASYMMETRIC_6:
7134 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7135 case ALGORITHM_LEFT_SYMMETRIC_6:
7136 case ALGORITHM_RIGHT_SYMMETRIC_6:
7137 if (raid_disk == raid_disks - 1)
7138 return 1;
7140 return 0;
7143 static int raid5_run(struct mddev *mddev)
7145 struct r5conf *conf;
7146 int working_disks = 0;
7147 int dirty_parity_disks = 0;
7148 struct md_rdev *rdev;
7149 struct md_rdev *journal_dev = NULL;
7150 sector_t reshape_offset = 0;
7151 int i;
7152 long long min_offset_diff = 0;
7153 int first = 1;
7155 if (mddev_init_writes_pending(mddev) < 0)
7156 return -ENOMEM;
7158 if (mddev->recovery_cp != MaxSector)
7159 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7160 mdname(mddev));
7162 rdev_for_each(rdev, mddev) {
7163 long long diff;
7165 if (test_bit(Journal, &rdev->flags)) {
7166 journal_dev = rdev;
7167 continue;
7169 if (rdev->raid_disk < 0)
7170 continue;
7171 diff = (rdev->new_data_offset - rdev->data_offset);
7172 if (first) {
7173 min_offset_diff = diff;
7174 first = 0;
7175 } else if (mddev->reshape_backwards &&
7176 diff < min_offset_diff)
7177 min_offset_diff = diff;
7178 else if (!mddev->reshape_backwards &&
7179 diff > min_offset_diff)
7180 min_offset_diff = diff;
7183 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7184 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7185 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7186 mdname(mddev));
7187 return -EINVAL;
7190 if (mddev->reshape_position != MaxSector) {
7191 /* Check that we can continue the reshape.
7192 * Difficulties arise if the stripe we would write to
7193 * next is at or after the stripe we would read from next.
7194 * For a reshape that changes the number of devices, this
7195 * is only possible for a very short time, and mdadm makes
7196 * sure that time appears to have past before assembling
7197 * the array. So we fail if that time hasn't passed.
7198 * For a reshape that keeps the number of devices the same
7199 * mdadm must be monitoring the reshape can keeping the
7200 * critical areas read-only and backed up. It will start
7201 * the array in read-only mode, so we check for that.
7203 sector_t here_new, here_old;
7204 int old_disks;
7205 int max_degraded = (mddev->level == 6 ? 2 : 1);
7206 int chunk_sectors;
7207 int new_data_disks;
7209 if (journal_dev) {
7210 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7211 mdname(mddev));
7212 return -EINVAL;
7215 if (mddev->new_level != mddev->level) {
7216 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7217 mdname(mddev));
7218 return -EINVAL;
7220 old_disks = mddev->raid_disks - mddev->delta_disks;
7221 /* reshape_position must be on a new-stripe boundary, and one
7222 * further up in new geometry must map after here in old
7223 * geometry.
7224 * If the chunk sizes are different, then as we perform reshape
7225 * in units of the largest of the two, reshape_position needs
7226 * be a multiple of the largest chunk size times new data disks.
7228 here_new = mddev->reshape_position;
7229 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7230 new_data_disks = mddev->raid_disks - max_degraded;
7231 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7232 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7233 mdname(mddev));
7234 return -EINVAL;
7236 reshape_offset = here_new * chunk_sectors;
7237 /* here_new is the stripe we will write to */
7238 here_old = mddev->reshape_position;
7239 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7240 /* here_old is the first stripe that we might need to read
7241 * from */
7242 if (mddev->delta_disks == 0) {
7243 /* We cannot be sure it is safe to start an in-place
7244 * reshape. It is only safe if user-space is monitoring
7245 * and taking constant backups.
7246 * mdadm always starts a situation like this in
7247 * readonly mode so it can take control before
7248 * allowing any writes. So just check for that.
7250 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7251 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7252 /* not really in-place - so OK */;
7253 else if (mddev->ro == 0) {
7254 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7255 mdname(mddev));
7256 return -EINVAL;
7258 } else if (mddev->reshape_backwards
7259 ? (here_new * chunk_sectors + min_offset_diff <=
7260 here_old * chunk_sectors)
7261 : (here_new * chunk_sectors >=
7262 here_old * chunk_sectors + (-min_offset_diff))) {
7263 /* Reading from the same stripe as writing to - bad */
7264 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7265 mdname(mddev));
7266 return -EINVAL;
7268 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7269 /* OK, we should be able to continue; */
7270 } else {
7271 BUG_ON(mddev->level != mddev->new_level);
7272 BUG_ON(mddev->layout != mddev->new_layout);
7273 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7274 BUG_ON(mddev->delta_disks != 0);
7277 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7278 test_bit(MD_HAS_PPL, &mddev->flags)) {
7279 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7280 mdname(mddev));
7281 clear_bit(MD_HAS_PPL, &mddev->flags);
7282 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7285 if (mddev->private == NULL)
7286 conf = setup_conf(mddev);
7287 else
7288 conf = mddev->private;
7290 if (IS_ERR(conf))
7291 return PTR_ERR(conf);
7293 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7294 if (!journal_dev) {
7295 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7296 mdname(mddev));
7297 mddev->ro = 1;
7298 set_disk_ro(mddev->gendisk, 1);
7299 } else if (mddev->recovery_cp == MaxSector)
7300 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7303 conf->min_offset_diff = min_offset_diff;
7304 mddev->thread = conf->thread;
7305 conf->thread = NULL;
7306 mddev->private = conf;
7308 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7309 i++) {
7310 rdev = conf->disks[i].rdev;
7311 if (!rdev && conf->disks[i].replacement) {
7312 /* The replacement is all we have yet */
7313 rdev = conf->disks[i].replacement;
7314 conf->disks[i].replacement = NULL;
7315 clear_bit(Replacement, &rdev->flags);
7316 conf->disks[i].rdev = rdev;
7318 if (!rdev)
7319 continue;
7320 if (conf->disks[i].replacement &&
7321 conf->reshape_progress != MaxSector) {
7322 /* replacements and reshape simply do not mix. */
7323 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7324 goto abort;
7326 if (test_bit(In_sync, &rdev->flags)) {
7327 working_disks++;
7328 continue;
7330 /* This disc is not fully in-sync. However if it
7331 * just stored parity (beyond the recovery_offset),
7332 * when we don't need to be concerned about the
7333 * array being dirty.
7334 * When reshape goes 'backwards', we never have
7335 * partially completed devices, so we only need
7336 * to worry about reshape going forwards.
7338 /* Hack because v0.91 doesn't store recovery_offset properly. */
7339 if (mddev->major_version == 0 &&
7340 mddev->minor_version > 90)
7341 rdev->recovery_offset = reshape_offset;
7343 if (rdev->recovery_offset < reshape_offset) {
7344 /* We need to check old and new layout */
7345 if (!only_parity(rdev->raid_disk,
7346 conf->algorithm,
7347 conf->raid_disks,
7348 conf->max_degraded))
7349 continue;
7351 if (!only_parity(rdev->raid_disk,
7352 conf->prev_algo,
7353 conf->previous_raid_disks,
7354 conf->max_degraded))
7355 continue;
7356 dirty_parity_disks++;
7360 * 0 for a fully functional array, 1 or 2 for a degraded array.
7362 mddev->degraded = raid5_calc_degraded(conf);
7364 if (has_failed(conf)) {
7365 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7366 mdname(mddev), mddev->degraded, conf->raid_disks);
7367 goto abort;
7370 /* device size must be a multiple of chunk size */
7371 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7372 mddev->resync_max_sectors = mddev->dev_sectors;
7374 if (mddev->degraded > dirty_parity_disks &&
7375 mddev->recovery_cp != MaxSector) {
7376 if (test_bit(MD_HAS_PPL, &mddev->flags))
7377 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7378 mdname(mddev));
7379 else if (mddev->ok_start_degraded)
7380 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7381 mdname(mddev));
7382 else {
7383 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7384 mdname(mddev));
7385 goto abort;
7389 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7390 mdname(mddev), conf->level,
7391 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7392 mddev->new_layout);
7394 print_raid5_conf(conf);
7396 if (conf->reshape_progress != MaxSector) {
7397 conf->reshape_safe = conf->reshape_progress;
7398 atomic_set(&conf->reshape_stripes, 0);
7399 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7400 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7401 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7402 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7403 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7404 "reshape");
7405 if (!mddev->sync_thread)
7406 goto abort;
7409 /* Ok, everything is just fine now */
7410 if (mddev->to_remove == &raid5_attrs_group)
7411 mddev->to_remove = NULL;
7412 else if (mddev->kobj.sd &&
7413 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7414 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7415 mdname(mddev));
7416 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7418 if (mddev->queue) {
7419 int chunk_size;
7420 /* read-ahead size must cover two whole stripes, which
7421 * is 2 * (datadisks) * chunksize where 'n' is the
7422 * number of raid devices
7424 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7425 int stripe = data_disks *
7426 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7427 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7428 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7430 chunk_size = mddev->chunk_sectors << 9;
7431 blk_queue_io_min(mddev->queue, chunk_size);
7432 blk_queue_io_opt(mddev->queue, chunk_size *
7433 (conf->raid_disks - conf->max_degraded));
7434 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7436 * We can only discard a whole stripe. It doesn't make sense to
7437 * discard data disk but write parity disk
7439 stripe = stripe * PAGE_SIZE;
7440 /* Round up to power of 2, as discard handling
7441 * currently assumes that */
7442 while ((stripe-1) & stripe)
7443 stripe = (stripe | (stripe-1)) + 1;
7444 mddev->queue->limits.discard_alignment = stripe;
7445 mddev->queue->limits.discard_granularity = stripe;
7447 blk_queue_max_write_same_sectors(mddev->queue, 0);
7448 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7450 rdev_for_each(rdev, mddev) {
7451 disk_stack_limits(mddev->gendisk, rdev->bdev,
7452 rdev->data_offset << 9);
7453 disk_stack_limits(mddev->gendisk, rdev->bdev,
7454 rdev->new_data_offset << 9);
7458 * zeroing is required, otherwise data
7459 * could be lost. Consider a scenario: discard a stripe
7460 * (the stripe could be inconsistent if
7461 * discard_zeroes_data is 0); write one disk of the
7462 * stripe (the stripe could be inconsistent again
7463 * depending on which disks are used to calculate
7464 * parity); the disk is broken; The stripe data of this
7465 * disk is lost.
7467 * We only allow DISCARD if the sysadmin has confirmed that
7468 * only safe devices are in use by setting a module parameter.
7469 * A better idea might be to turn DISCARD into WRITE_ZEROES
7470 * requests, as that is required to be safe.
7472 if (devices_handle_discard_safely &&
7473 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7474 mddev->queue->limits.discard_granularity >= stripe)
7475 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7476 mddev->queue);
7477 else
7478 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7479 mddev->queue);
7481 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7484 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7485 goto abort;
7487 return 0;
7488 abort:
7489 md_unregister_thread(&mddev->thread);
7490 print_raid5_conf(conf);
7491 free_conf(conf);
7492 mddev->private = NULL;
7493 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7494 return -EIO;
7497 static void raid5_free(struct mddev *mddev, void *priv)
7499 struct r5conf *conf = priv;
7501 free_conf(conf);
7502 mddev->to_remove = &raid5_attrs_group;
7505 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7507 struct r5conf *conf = mddev->private;
7508 int i;
7510 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7511 conf->chunk_sectors / 2, mddev->layout);
7512 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7513 rcu_read_lock();
7514 for (i = 0; i < conf->raid_disks; i++) {
7515 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7516 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7518 rcu_read_unlock();
7519 seq_printf (seq, "]");
7522 static void print_raid5_conf (struct r5conf *conf)
7524 int i;
7525 struct disk_info *tmp;
7527 pr_debug("RAID conf printout:\n");
7528 if (!conf) {
7529 pr_debug("(conf==NULL)\n");
7530 return;
7532 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7533 conf->raid_disks,
7534 conf->raid_disks - conf->mddev->degraded);
7536 for (i = 0; i < conf->raid_disks; i++) {
7537 char b[BDEVNAME_SIZE];
7538 tmp = conf->disks + i;
7539 if (tmp->rdev)
7540 pr_debug(" disk %d, o:%d, dev:%s\n",
7541 i, !test_bit(Faulty, &tmp->rdev->flags),
7542 bdevname(tmp->rdev->bdev, b));
7546 static int raid5_spare_active(struct mddev *mddev)
7548 int i;
7549 struct r5conf *conf = mddev->private;
7550 struct disk_info *tmp;
7551 int count = 0;
7552 unsigned long flags;
7554 for (i = 0; i < conf->raid_disks; i++) {
7555 tmp = conf->disks + i;
7556 if (tmp->replacement
7557 && tmp->replacement->recovery_offset == MaxSector
7558 && !test_bit(Faulty, &tmp->replacement->flags)
7559 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7560 /* Replacement has just become active. */
7561 if (!tmp->rdev
7562 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7563 count++;
7564 if (tmp->rdev) {
7565 /* Replaced device not technically faulty,
7566 * but we need to be sure it gets removed
7567 * and never re-added.
7569 set_bit(Faulty, &tmp->rdev->flags);
7570 sysfs_notify_dirent_safe(
7571 tmp->rdev->sysfs_state);
7573 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7574 } else if (tmp->rdev
7575 && tmp->rdev->recovery_offset == MaxSector
7576 && !test_bit(Faulty, &tmp->rdev->flags)
7577 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7578 count++;
7579 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7582 spin_lock_irqsave(&conf->device_lock, flags);
7583 mddev->degraded = raid5_calc_degraded(conf);
7584 spin_unlock_irqrestore(&conf->device_lock, flags);
7585 print_raid5_conf(conf);
7586 return count;
7589 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7591 struct r5conf *conf = mddev->private;
7592 int err = 0;
7593 int number = rdev->raid_disk;
7594 struct md_rdev **rdevp;
7595 struct disk_info *p = conf->disks + number;
7597 print_raid5_conf(conf);
7598 if (test_bit(Journal, &rdev->flags) && conf->log) {
7600 * we can't wait pending write here, as this is called in
7601 * raid5d, wait will deadlock.
7602 * neilb: there is no locking about new writes here,
7603 * so this cannot be safe.
7605 if (atomic_read(&conf->active_stripes) ||
7606 atomic_read(&conf->r5c_cached_full_stripes) ||
7607 atomic_read(&conf->r5c_cached_partial_stripes)) {
7608 return -EBUSY;
7610 log_exit(conf);
7611 return 0;
7613 if (rdev == p->rdev)
7614 rdevp = &p->rdev;
7615 else if (rdev == p->replacement)
7616 rdevp = &p->replacement;
7617 else
7618 return 0;
7620 if (number >= conf->raid_disks &&
7621 conf->reshape_progress == MaxSector)
7622 clear_bit(In_sync, &rdev->flags);
7624 if (test_bit(In_sync, &rdev->flags) ||
7625 atomic_read(&rdev->nr_pending)) {
7626 err = -EBUSY;
7627 goto abort;
7629 /* Only remove non-faulty devices if recovery
7630 * isn't possible.
7632 if (!test_bit(Faulty, &rdev->flags) &&
7633 mddev->recovery_disabled != conf->recovery_disabled &&
7634 !has_failed(conf) &&
7635 (!p->replacement || p->replacement == rdev) &&
7636 number < conf->raid_disks) {
7637 err = -EBUSY;
7638 goto abort;
7640 *rdevp = NULL;
7641 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7642 synchronize_rcu();
7643 if (atomic_read(&rdev->nr_pending)) {
7644 /* lost the race, try later */
7645 err = -EBUSY;
7646 *rdevp = rdev;
7649 if (!err) {
7650 err = log_modify(conf, rdev, false);
7651 if (err)
7652 goto abort;
7654 if (p->replacement) {
7655 /* We must have just cleared 'rdev' */
7656 p->rdev = p->replacement;
7657 clear_bit(Replacement, &p->replacement->flags);
7658 smp_mb(); /* Make sure other CPUs may see both as identical
7659 * but will never see neither - if they are careful
7661 p->replacement = NULL;
7663 if (!err)
7664 err = log_modify(conf, p->rdev, true);
7667 clear_bit(WantReplacement, &rdev->flags);
7668 abort:
7670 print_raid5_conf(conf);
7671 return err;
7674 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7676 struct r5conf *conf = mddev->private;
7677 int ret, err = -EEXIST;
7678 int disk;
7679 struct disk_info *p;
7680 int first = 0;
7681 int last = conf->raid_disks - 1;
7683 if (test_bit(Journal, &rdev->flags)) {
7684 if (conf->log)
7685 return -EBUSY;
7687 rdev->raid_disk = 0;
7689 * The array is in readonly mode if journal is missing, so no
7690 * write requests running. We should be safe
7692 ret = log_init(conf, rdev, false);
7693 if (ret)
7694 return ret;
7696 ret = r5l_start(conf->log);
7697 if (ret)
7698 return ret;
7700 return 0;
7702 if (mddev->recovery_disabled == conf->recovery_disabled)
7703 return -EBUSY;
7705 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7706 /* no point adding a device */
7707 return -EINVAL;
7709 if (rdev->raid_disk >= 0)
7710 first = last = rdev->raid_disk;
7713 * find the disk ... but prefer rdev->saved_raid_disk
7714 * if possible.
7716 if (rdev->saved_raid_disk >= 0 &&
7717 rdev->saved_raid_disk >= first &&
7718 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7719 first = rdev->saved_raid_disk;
7721 for (disk = first; disk <= last; disk++) {
7722 p = conf->disks + disk;
7723 if (p->rdev == NULL) {
7724 clear_bit(In_sync, &rdev->flags);
7725 rdev->raid_disk = disk;
7726 if (rdev->saved_raid_disk != disk)
7727 conf->fullsync = 1;
7728 rcu_assign_pointer(p->rdev, rdev);
7730 err = log_modify(conf, rdev, true);
7732 goto out;
7735 for (disk = first; disk <= last; disk++) {
7736 p = conf->disks + disk;
7737 if (test_bit(WantReplacement, &p->rdev->flags) &&
7738 p->replacement == NULL) {
7739 clear_bit(In_sync, &rdev->flags);
7740 set_bit(Replacement, &rdev->flags);
7741 rdev->raid_disk = disk;
7742 err = 0;
7743 conf->fullsync = 1;
7744 rcu_assign_pointer(p->replacement, rdev);
7745 break;
7748 out:
7749 print_raid5_conf(conf);
7750 return err;
7753 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7755 /* no resync is happening, and there is enough space
7756 * on all devices, so we can resize.
7757 * We need to make sure resync covers any new space.
7758 * If the array is shrinking we should possibly wait until
7759 * any io in the removed space completes, but it hardly seems
7760 * worth it.
7762 sector_t newsize;
7763 struct r5conf *conf = mddev->private;
7765 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7766 return -EINVAL;
7767 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7768 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7769 if (mddev->external_size &&
7770 mddev->array_sectors > newsize)
7771 return -EINVAL;
7772 if (mddev->bitmap) {
7773 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7774 if (ret)
7775 return ret;
7777 md_set_array_sectors(mddev, newsize);
7778 if (sectors > mddev->dev_sectors &&
7779 mddev->recovery_cp > mddev->dev_sectors) {
7780 mddev->recovery_cp = mddev->dev_sectors;
7781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7783 mddev->dev_sectors = sectors;
7784 mddev->resync_max_sectors = sectors;
7785 return 0;
7788 static int check_stripe_cache(struct mddev *mddev)
7790 /* Can only proceed if there are plenty of stripe_heads.
7791 * We need a minimum of one full stripe,, and for sensible progress
7792 * it is best to have about 4 times that.
7793 * If we require 4 times, then the default 256 4K stripe_heads will
7794 * allow for chunk sizes up to 256K, which is probably OK.
7795 * If the chunk size is greater, user-space should request more
7796 * stripe_heads first.
7798 struct r5conf *conf = mddev->private;
7799 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7800 > conf->min_nr_stripes ||
7801 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7802 > conf->min_nr_stripes) {
7803 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7804 mdname(mddev),
7805 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7806 / STRIPE_SIZE)*4);
7807 return 0;
7809 return 1;
7812 static int check_reshape(struct mddev *mddev)
7814 struct r5conf *conf = mddev->private;
7816 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7817 return -EINVAL;
7818 if (mddev->delta_disks == 0 &&
7819 mddev->new_layout == mddev->layout &&
7820 mddev->new_chunk_sectors == mddev->chunk_sectors)
7821 return 0; /* nothing to do */
7822 if (has_failed(conf))
7823 return -EINVAL;
7824 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7825 /* We might be able to shrink, but the devices must
7826 * be made bigger first.
7827 * For raid6, 4 is the minimum size.
7828 * Otherwise 2 is the minimum
7830 int min = 2;
7831 if (mddev->level == 6)
7832 min = 4;
7833 if (mddev->raid_disks + mddev->delta_disks < min)
7834 return -EINVAL;
7837 if (!check_stripe_cache(mddev))
7838 return -ENOSPC;
7840 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7841 mddev->delta_disks > 0)
7842 if (resize_chunks(conf,
7843 conf->previous_raid_disks
7844 + max(0, mddev->delta_disks),
7845 max(mddev->new_chunk_sectors,
7846 mddev->chunk_sectors)
7847 ) < 0)
7848 return -ENOMEM;
7850 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7851 return 0; /* never bother to shrink */
7852 return resize_stripes(conf, (conf->previous_raid_disks
7853 + mddev->delta_disks));
7856 static int raid5_start_reshape(struct mddev *mddev)
7858 struct r5conf *conf = mddev->private;
7859 struct md_rdev *rdev;
7860 int spares = 0;
7861 unsigned long flags;
7863 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7864 return -EBUSY;
7866 if (!check_stripe_cache(mddev))
7867 return -ENOSPC;
7869 if (has_failed(conf))
7870 return -EINVAL;
7872 rdev_for_each(rdev, mddev) {
7873 if (!test_bit(In_sync, &rdev->flags)
7874 && !test_bit(Faulty, &rdev->flags))
7875 spares++;
7878 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7879 /* Not enough devices even to make a degraded array
7880 * of that size
7882 return -EINVAL;
7884 /* Refuse to reduce size of the array. Any reductions in
7885 * array size must be through explicit setting of array_size
7886 * attribute.
7888 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7889 < mddev->array_sectors) {
7890 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7891 mdname(mddev));
7892 return -EINVAL;
7895 atomic_set(&conf->reshape_stripes, 0);
7896 spin_lock_irq(&conf->device_lock);
7897 write_seqcount_begin(&conf->gen_lock);
7898 conf->previous_raid_disks = conf->raid_disks;
7899 conf->raid_disks += mddev->delta_disks;
7900 conf->prev_chunk_sectors = conf->chunk_sectors;
7901 conf->chunk_sectors = mddev->new_chunk_sectors;
7902 conf->prev_algo = conf->algorithm;
7903 conf->algorithm = mddev->new_layout;
7904 conf->generation++;
7905 /* Code that selects data_offset needs to see the generation update
7906 * if reshape_progress has been set - so a memory barrier needed.
7908 smp_mb();
7909 if (mddev->reshape_backwards)
7910 conf->reshape_progress = raid5_size(mddev, 0, 0);
7911 else
7912 conf->reshape_progress = 0;
7913 conf->reshape_safe = conf->reshape_progress;
7914 write_seqcount_end(&conf->gen_lock);
7915 spin_unlock_irq(&conf->device_lock);
7917 /* Now make sure any requests that proceeded on the assumption
7918 * the reshape wasn't running - like Discard or Read - have
7919 * completed.
7921 mddev_suspend(mddev);
7922 mddev_resume(mddev);
7924 /* Add some new drives, as many as will fit.
7925 * We know there are enough to make the newly sized array work.
7926 * Don't add devices if we are reducing the number of
7927 * devices in the array. This is because it is not possible
7928 * to correctly record the "partially reconstructed" state of
7929 * such devices during the reshape and confusion could result.
7931 if (mddev->delta_disks >= 0) {
7932 rdev_for_each(rdev, mddev)
7933 if (rdev->raid_disk < 0 &&
7934 !test_bit(Faulty, &rdev->flags)) {
7935 if (raid5_add_disk(mddev, rdev) == 0) {
7936 if (rdev->raid_disk
7937 >= conf->previous_raid_disks)
7938 set_bit(In_sync, &rdev->flags);
7939 else
7940 rdev->recovery_offset = 0;
7942 if (sysfs_link_rdev(mddev, rdev))
7943 /* Failure here is OK */;
7945 } else if (rdev->raid_disk >= conf->previous_raid_disks
7946 && !test_bit(Faulty, &rdev->flags)) {
7947 /* This is a spare that was manually added */
7948 set_bit(In_sync, &rdev->flags);
7951 /* When a reshape changes the number of devices,
7952 * ->degraded is measured against the larger of the
7953 * pre and post number of devices.
7955 spin_lock_irqsave(&conf->device_lock, flags);
7956 mddev->degraded = raid5_calc_degraded(conf);
7957 spin_unlock_irqrestore(&conf->device_lock, flags);
7959 mddev->raid_disks = conf->raid_disks;
7960 mddev->reshape_position = conf->reshape_progress;
7961 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7963 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7964 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7965 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7966 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7967 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7968 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7969 "reshape");
7970 if (!mddev->sync_thread) {
7971 mddev->recovery = 0;
7972 spin_lock_irq(&conf->device_lock);
7973 write_seqcount_begin(&conf->gen_lock);
7974 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7975 mddev->new_chunk_sectors =
7976 conf->chunk_sectors = conf->prev_chunk_sectors;
7977 mddev->new_layout = conf->algorithm = conf->prev_algo;
7978 rdev_for_each(rdev, mddev)
7979 rdev->new_data_offset = rdev->data_offset;
7980 smp_wmb();
7981 conf->generation --;
7982 conf->reshape_progress = MaxSector;
7983 mddev->reshape_position = MaxSector;
7984 write_seqcount_end(&conf->gen_lock);
7985 spin_unlock_irq(&conf->device_lock);
7986 return -EAGAIN;
7988 conf->reshape_checkpoint = jiffies;
7989 md_wakeup_thread(mddev->sync_thread);
7990 md_new_event(mddev);
7991 return 0;
7994 /* This is called from the reshape thread and should make any
7995 * changes needed in 'conf'
7997 static void end_reshape(struct r5conf *conf)
8000 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8001 struct md_rdev *rdev;
8003 spin_lock_irq(&conf->device_lock);
8004 conf->previous_raid_disks = conf->raid_disks;
8005 md_finish_reshape(conf->mddev);
8006 smp_wmb();
8007 conf->reshape_progress = MaxSector;
8008 conf->mddev->reshape_position = MaxSector;
8009 rdev_for_each(rdev, conf->mddev)
8010 if (rdev->raid_disk >= 0 &&
8011 !test_bit(Journal, &rdev->flags) &&
8012 !test_bit(In_sync, &rdev->flags))
8013 rdev->recovery_offset = MaxSector;
8014 spin_unlock_irq(&conf->device_lock);
8015 wake_up(&conf->wait_for_overlap);
8017 /* read-ahead size must cover two whole stripes, which is
8018 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8020 if (conf->mddev->queue) {
8021 int data_disks = conf->raid_disks - conf->max_degraded;
8022 int stripe = data_disks * ((conf->chunk_sectors << 9)
8023 / PAGE_SIZE);
8024 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8025 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8030 /* This is called from the raid5d thread with mddev_lock held.
8031 * It makes config changes to the device.
8033 static void raid5_finish_reshape(struct mddev *mddev)
8035 struct r5conf *conf = mddev->private;
8037 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8039 if (mddev->delta_disks <= 0) {
8040 int d;
8041 spin_lock_irq(&conf->device_lock);
8042 mddev->degraded = raid5_calc_degraded(conf);
8043 spin_unlock_irq(&conf->device_lock);
8044 for (d = conf->raid_disks ;
8045 d < conf->raid_disks - mddev->delta_disks;
8046 d++) {
8047 struct md_rdev *rdev = conf->disks[d].rdev;
8048 if (rdev)
8049 clear_bit(In_sync, &rdev->flags);
8050 rdev = conf->disks[d].replacement;
8051 if (rdev)
8052 clear_bit(In_sync, &rdev->flags);
8055 mddev->layout = conf->algorithm;
8056 mddev->chunk_sectors = conf->chunk_sectors;
8057 mddev->reshape_position = MaxSector;
8058 mddev->delta_disks = 0;
8059 mddev->reshape_backwards = 0;
8063 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8065 struct r5conf *conf = mddev->private;
8067 if (quiesce) {
8068 /* stop all writes */
8069 lock_all_device_hash_locks_irq(conf);
8070 /* '2' tells resync/reshape to pause so that all
8071 * active stripes can drain
8073 r5c_flush_cache(conf, INT_MAX);
8074 conf->quiesce = 2;
8075 wait_event_cmd(conf->wait_for_quiescent,
8076 atomic_read(&conf->active_stripes) == 0 &&
8077 atomic_read(&conf->active_aligned_reads) == 0,
8078 unlock_all_device_hash_locks_irq(conf),
8079 lock_all_device_hash_locks_irq(conf));
8080 conf->quiesce = 1;
8081 unlock_all_device_hash_locks_irq(conf);
8082 /* allow reshape to continue */
8083 wake_up(&conf->wait_for_overlap);
8084 } else {
8085 /* re-enable writes */
8086 lock_all_device_hash_locks_irq(conf);
8087 conf->quiesce = 0;
8088 wake_up(&conf->wait_for_quiescent);
8089 wake_up(&conf->wait_for_overlap);
8090 unlock_all_device_hash_locks_irq(conf);
8092 log_quiesce(conf, quiesce);
8095 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8097 struct r0conf *raid0_conf = mddev->private;
8098 sector_t sectors;
8100 /* for raid0 takeover only one zone is supported */
8101 if (raid0_conf->nr_strip_zones > 1) {
8102 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8103 mdname(mddev));
8104 return ERR_PTR(-EINVAL);
8107 sectors = raid0_conf->strip_zone[0].zone_end;
8108 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8109 mddev->dev_sectors = sectors;
8110 mddev->new_level = level;
8111 mddev->new_layout = ALGORITHM_PARITY_N;
8112 mddev->new_chunk_sectors = mddev->chunk_sectors;
8113 mddev->raid_disks += 1;
8114 mddev->delta_disks = 1;
8115 /* make sure it will be not marked as dirty */
8116 mddev->recovery_cp = MaxSector;
8118 return setup_conf(mddev);
8121 static void *raid5_takeover_raid1(struct mddev *mddev)
8123 int chunksect;
8124 void *ret;
8126 if (mddev->raid_disks != 2 ||
8127 mddev->degraded > 1)
8128 return ERR_PTR(-EINVAL);
8130 /* Should check if there are write-behind devices? */
8132 chunksect = 64*2; /* 64K by default */
8134 /* The array must be an exact multiple of chunksize */
8135 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8136 chunksect >>= 1;
8138 if ((chunksect<<9) < STRIPE_SIZE)
8139 /* array size does not allow a suitable chunk size */
8140 return ERR_PTR(-EINVAL);
8142 mddev->new_level = 5;
8143 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8144 mddev->new_chunk_sectors = chunksect;
8146 ret = setup_conf(mddev);
8147 if (!IS_ERR(ret))
8148 mddev_clear_unsupported_flags(mddev,
8149 UNSUPPORTED_MDDEV_FLAGS);
8150 return ret;
8153 static void *raid5_takeover_raid6(struct mddev *mddev)
8155 int new_layout;
8157 switch (mddev->layout) {
8158 case ALGORITHM_LEFT_ASYMMETRIC_6:
8159 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8160 break;
8161 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8162 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8163 break;
8164 case ALGORITHM_LEFT_SYMMETRIC_6:
8165 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8166 break;
8167 case ALGORITHM_RIGHT_SYMMETRIC_6:
8168 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8169 break;
8170 case ALGORITHM_PARITY_0_6:
8171 new_layout = ALGORITHM_PARITY_0;
8172 break;
8173 case ALGORITHM_PARITY_N:
8174 new_layout = ALGORITHM_PARITY_N;
8175 break;
8176 default:
8177 return ERR_PTR(-EINVAL);
8179 mddev->new_level = 5;
8180 mddev->new_layout = new_layout;
8181 mddev->delta_disks = -1;
8182 mddev->raid_disks -= 1;
8183 return setup_conf(mddev);
8186 static int raid5_check_reshape(struct mddev *mddev)
8188 /* For a 2-drive array, the layout and chunk size can be changed
8189 * immediately as not restriping is needed.
8190 * For larger arrays we record the new value - after validation
8191 * to be used by a reshape pass.
8193 struct r5conf *conf = mddev->private;
8194 int new_chunk = mddev->new_chunk_sectors;
8196 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8197 return -EINVAL;
8198 if (new_chunk > 0) {
8199 if (!is_power_of_2(new_chunk))
8200 return -EINVAL;
8201 if (new_chunk < (PAGE_SIZE>>9))
8202 return -EINVAL;
8203 if (mddev->array_sectors & (new_chunk-1))
8204 /* not factor of array size */
8205 return -EINVAL;
8208 /* They look valid */
8210 if (mddev->raid_disks == 2) {
8211 /* can make the change immediately */
8212 if (mddev->new_layout >= 0) {
8213 conf->algorithm = mddev->new_layout;
8214 mddev->layout = mddev->new_layout;
8216 if (new_chunk > 0) {
8217 conf->chunk_sectors = new_chunk ;
8218 mddev->chunk_sectors = new_chunk;
8220 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8221 md_wakeup_thread(mddev->thread);
8223 return check_reshape(mddev);
8226 static int raid6_check_reshape(struct mddev *mddev)
8228 int new_chunk = mddev->new_chunk_sectors;
8230 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8231 return -EINVAL;
8232 if (new_chunk > 0) {
8233 if (!is_power_of_2(new_chunk))
8234 return -EINVAL;
8235 if (new_chunk < (PAGE_SIZE >> 9))
8236 return -EINVAL;
8237 if (mddev->array_sectors & (new_chunk-1))
8238 /* not factor of array size */
8239 return -EINVAL;
8242 /* They look valid */
8243 return check_reshape(mddev);
8246 static void *raid5_takeover(struct mddev *mddev)
8248 /* raid5 can take over:
8249 * raid0 - if there is only one strip zone - make it a raid4 layout
8250 * raid1 - if there are two drives. We need to know the chunk size
8251 * raid4 - trivial - just use a raid4 layout.
8252 * raid6 - Providing it is a *_6 layout
8254 if (mddev->level == 0)
8255 return raid45_takeover_raid0(mddev, 5);
8256 if (mddev->level == 1)
8257 return raid5_takeover_raid1(mddev);
8258 if (mddev->level == 4) {
8259 mddev->new_layout = ALGORITHM_PARITY_N;
8260 mddev->new_level = 5;
8261 return setup_conf(mddev);
8263 if (mddev->level == 6)
8264 return raid5_takeover_raid6(mddev);
8266 return ERR_PTR(-EINVAL);
8269 static void *raid4_takeover(struct mddev *mddev)
8271 /* raid4 can take over:
8272 * raid0 - if there is only one strip zone
8273 * raid5 - if layout is right
8275 if (mddev->level == 0)
8276 return raid45_takeover_raid0(mddev, 4);
8277 if (mddev->level == 5 &&
8278 mddev->layout == ALGORITHM_PARITY_N) {
8279 mddev->new_layout = 0;
8280 mddev->new_level = 4;
8281 return setup_conf(mddev);
8283 return ERR_PTR(-EINVAL);
8286 static struct md_personality raid5_personality;
8288 static void *raid6_takeover(struct mddev *mddev)
8290 /* Currently can only take over a raid5. We map the
8291 * personality to an equivalent raid6 personality
8292 * with the Q block at the end.
8294 int new_layout;
8296 if (mddev->pers != &raid5_personality)
8297 return ERR_PTR(-EINVAL);
8298 if (mddev->degraded > 1)
8299 return ERR_PTR(-EINVAL);
8300 if (mddev->raid_disks > 253)
8301 return ERR_PTR(-EINVAL);
8302 if (mddev->raid_disks < 3)
8303 return ERR_PTR(-EINVAL);
8305 switch (mddev->layout) {
8306 case ALGORITHM_LEFT_ASYMMETRIC:
8307 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8308 break;
8309 case ALGORITHM_RIGHT_ASYMMETRIC:
8310 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8311 break;
8312 case ALGORITHM_LEFT_SYMMETRIC:
8313 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8314 break;
8315 case ALGORITHM_RIGHT_SYMMETRIC:
8316 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8317 break;
8318 case ALGORITHM_PARITY_0:
8319 new_layout = ALGORITHM_PARITY_0_6;
8320 break;
8321 case ALGORITHM_PARITY_N:
8322 new_layout = ALGORITHM_PARITY_N;
8323 break;
8324 default:
8325 return ERR_PTR(-EINVAL);
8327 mddev->new_level = 6;
8328 mddev->new_layout = new_layout;
8329 mddev->delta_disks = 1;
8330 mddev->raid_disks += 1;
8331 return setup_conf(mddev);
8334 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8336 struct r5conf *conf;
8337 int err;
8339 err = mddev_lock(mddev);
8340 if (err)
8341 return err;
8342 conf = mddev->private;
8343 if (!conf) {
8344 mddev_unlock(mddev);
8345 return -ENODEV;
8348 if (strncmp(buf, "ppl", 3) == 0) {
8349 /* ppl only works with RAID 5 */
8350 if (!raid5_has_ppl(conf) && conf->level == 5) {
8351 err = log_init(conf, NULL, true);
8352 if (!err) {
8353 err = resize_stripes(conf, conf->pool_size);
8354 if (err)
8355 log_exit(conf);
8357 } else
8358 err = -EINVAL;
8359 } else if (strncmp(buf, "resync", 6) == 0) {
8360 if (raid5_has_ppl(conf)) {
8361 mddev_suspend(mddev);
8362 log_exit(conf);
8363 mddev_resume(mddev);
8364 err = resize_stripes(conf, conf->pool_size);
8365 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8366 r5l_log_disk_error(conf)) {
8367 bool journal_dev_exists = false;
8368 struct md_rdev *rdev;
8370 rdev_for_each(rdev, mddev)
8371 if (test_bit(Journal, &rdev->flags)) {
8372 journal_dev_exists = true;
8373 break;
8376 if (!journal_dev_exists) {
8377 mddev_suspend(mddev);
8378 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8379 mddev_resume(mddev);
8380 } else /* need remove journal device first */
8381 err = -EBUSY;
8382 } else
8383 err = -EINVAL;
8384 } else {
8385 err = -EINVAL;
8388 if (!err)
8389 md_update_sb(mddev, 1);
8391 mddev_unlock(mddev);
8393 return err;
8396 static int raid5_start(struct mddev *mddev)
8398 struct r5conf *conf = mddev->private;
8400 return r5l_start(conf->log);
8403 static struct md_personality raid6_personality =
8405 .name = "raid6",
8406 .level = 6,
8407 .owner = THIS_MODULE,
8408 .make_request = raid5_make_request,
8409 .run = raid5_run,
8410 .start = raid5_start,
8411 .free = raid5_free,
8412 .status = raid5_status,
8413 .error_handler = raid5_error,
8414 .hot_add_disk = raid5_add_disk,
8415 .hot_remove_disk= raid5_remove_disk,
8416 .spare_active = raid5_spare_active,
8417 .sync_request = raid5_sync_request,
8418 .resize = raid5_resize,
8419 .size = raid5_size,
8420 .check_reshape = raid6_check_reshape,
8421 .start_reshape = raid5_start_reshape,
8422 .finish_reshape = raid5_finish_reshape,
8423 .quiesce = raid5_quiesce,
8424 .takeover = raid6_takeover,
8425 .congested = raid5_congested,
8426 .change_consistency_policy = raid5_change_consistency_policy,
8428 static struct md_personality raid5_personality =
8430 .name = "raid5",
8431 .level = 5,
8432 .owner = THIS_MODULE,
8433 .make_request = raid5_make_request,
8434 .run = raid5_run,
8435 .start = raid5_start,
8436 .free = raid5_free,
8437 .status = raid5_status,
8438 .error_handler = raid5_error,
8439 .hot_add_disk = raid5_add_disk,
8440 .hot_remove_disk= raid5_remove_disk,
8441 .spare_active = raid5_spare_active,
8442 .sync_request = raid5_sync_request,
8443 .resize = raid5_resize,
8444 .size = raid5_size,
8445 .check_reshape = raid5_check_reshape,
8446 .start_reshape = raid5_start_reshape,
8447 .finish_reshape = raid5_finish_reshape,
8448 .quiesce = raid5_quiesce,
8449 .takeover = raid5_takeover,
8450 .congested = raid5_congested,
8451 .change_consistency_policy = raid5_change_consistency_policy,
8454 static struct md_personality raid4_personality =
8456 .name = "raid4",
8457 .level = 4,
8458 .owner = THIS_MODULE,
8459 .make_request = raid5_make_request,
8460 .run = raid5_run,
8461 .start = raid5_start,
8462 .free = raid5_free,
8463 .status = raid5_status,
8464 .error_handler = raid5_error,
8465 .hot_add_disk = raid5_add_disk,
8466 .hot_remove_disk= raid5_remove_disk,
8467 .spare_active = raid5_spare_active,
8468 .sync_request = raid5_sync_request,
8469 .resize = raid5_resize,
8470 .size = raid5_size,
8471 .check_reshape = raid5_check_reshape,
8472 .start_reshape = raid5_start_reshape,
8473 .finish_reshape = raid5_finish_reshape,
8474 .quiesce = raid5_quiesce,
8475 .takeover = raid4_takeover,
8476 .congested = raid5_congested,
8477 .change_consistency_policy = raid5_change_consistency_policy,
8480 static int __init raid5_init(void)
8482 int ret;
8484 raid5_wq = alloc_workqueue("raid5wq",
8485 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8486 if (!raid5_wq)
8487 return -ENOMEM;
8489 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8490 "md/raid5:prepare",
8491 raid456_cpu_up_prepare,
8492 raid456_cpu_dead);
8493 if (ret) {
8494 destroy_workqueue(raid5_wq);
8495 return ret;
8497 register_md_personality(&raid6_personality);
8498 register_md_personality(&raid5_personality);
8499 register_md_personality(&raid4_personality);
8500 return 0;
8503 static void raid5_exit(void)
8505 unregister_md_personality(&raid6_personality);
8506 unregister_md_personality(&raid5_personality);
8507 unregister_md_personality(&raid4_personality);
8508 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8509 destroy_workqueue(raid5_wq);
8512 module_init(raid5_init);
8513 module_exit(raid5_exit);
8514 MODULE_LICENSE("GPL");
8515 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8516 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8517 MODULE_ALIAS("md-raid5");
8518 MODULE_ALIAS("md-raid4");
8519 MODULE_ALIAS("md-level-5");
8520 MODULE_ALIAS("md-level-4");
8521 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8522 MODULE_ALIAS("md-raid6");
8523 MODULE_ALIAS("md-level-6");
8525 /* This used to be two separate modules, they were: */
8526 MODULE_ALIAS("raid5");
8527 MODULE_ALIAS("raid6");