2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #include "cx23888-ir.h"
22 #include <linux/kfifo.h>
23 #include <linux/slab.h>
25 #include <media/v4l2-device.h>
26 #include <media/rc-core.h>
28 static unsigned int ir_888_debug
;
29 module_param(ir_888_debug
, int, 0644);
30 MODULE_PARM_DESC(ir_888_debug
, "enable debug messages [CX23888 IR controller]");
32 #define CX23888_IR_REG_BASE 0x170000
34 * These CX23888 register offsets have a straightforward one to one mapping
35 * to the CX23885 register offsets of 0x200 through 0x218
37 #define CX23888_IR_CNTRL_REG 0x170000
38 #define CNTRL_WIN_3_3 0x00000000
39 #define CNTRL_WIN_4_3 0x00000001
40 #define CNTRL_WIN_3_4 0x00000002
41 #define CNTRL_WIN_4_4 0x00000003
42 #define CNTRL_WIN 0x00000003
43 #define CNTRL_EDG_NONE 0x00000000
44 #define CNTRL_EDG_FALL 0x00000004
45 #define CNTRL_EDG_RISE 0x00000008
46 #define CNTRL_EDG_BOTH 0x0000000C
47 #define CNTRL_EDG 0x0000000C
48 #define CNTRL_DMD 0x00000010
49 #define CNTRL_MOD 0x00000020
50 #define CNTRL_RFE 0x00000040
51 #define CNTRL_TFE 0x00000080
52 #define CNTRL_RXE 0x00000100
53 #define CNTRL_TXE 0x00000200
54 #define CNTRL_RIC 0x00000400
55 #define CNTRL_TIC 0x00000800
56 #define CNTRL_CPL 0x00001000
57 #define CNTRL_LBM 0x00002000
58 #define CNTRL_R 0x00004000
59 /* CX23888 specific control flag */
60 #define CNTRL_IVO 0x00008000
62 #define CX23888_IR_TXCLK_REG 0x170004
63 #define TXCLK_TCD 0x0000FFFF
65 #define CX23888_IR_RXCLK_REG 0x170008
66 #define RXCLK_RCD 0x0000FFFF
68 #define CX23888_IR_CDUTY_REG 0x17000C
69 #define CDUTY_CDC 0x0000000F
71 #define CX23888_IR_STATS_REG 0x170010
72 #define STATS_RTO 0x00000001
73 #define STATS_ROR 0x00000002
74 #define STATS_RBY 0x00000004
75 #define STATS_TBY 0x00000008
76 #define STATS_RSR 0x00000010
77 #define STATS_TSR 0x00000020
79 #define CX23888_IR_IRQEN_REG 0x170014
80 #define IRQEN_RTE 0x00000001
81 #define IRQEN_ROE 0x00000002
82 #define IRQEN_RSE 0x00000010
83 #define IRQEN_TSE 0x00000020
85 #define CX23888_IR_FILTR_REG 0x170018
86 #define FILTR_LPF 0x0000FFFF
88 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
89 #define CX23888_IR_FIFO_REG 0x170040
90 #define FIFO_RXTX 0x0000FFFF
91 #define FIFO_RXTX_LVL 0x00010000
92 #define FIFO_RXTX_RTO 0x0001FFFF
93 #define FIFO_RX_NDV 0x00020000
94 #define FIFO_RX_DEPTH 8
95 #define FIFO_TX_DEPTH 8
97 /* CX23888 unique registers */
98 #define CX23888_IR_SEEDP_REG 0x17001C
99 #define CX23888_IR_TIMOL_REG 0x170020
100 #define CX23888_IR_WAKE0_REG 0x170024
101 #define CX23888_IR_WAKE1_REG 0x170028
102 #define CX23888_IR_WAKE2_REG 0x17002C
103 #define CX23888_IR_MASK0_REG 0x170030
104 #define CX23888_IR_MASK1_REG 0x170034
105 #define CX23888_IR_MAKS2_REG 0x170038
106 #define CX23888_IR_DPIPG_REG 0x17003C
107 #define CX23888_IR_LEARN_REG 0x170044
109 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
110 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
113 * We use this union internally for convenience, but callers to tx_write
114 * and rx_read will be expecting records of type struct ir_raw_event.
115 * Always ensure the size of this union is dictated by struct ir_raw_event.
117 union cx23888_ir_fifo_rec
{
119 struct ir_raw_event ir_core_data
;
122 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
123 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
125 struct cx23888_ir_state
{
126 struct v4l2_subdev sd
;
127 struct cx23885_dev
*dev
;
129 struct v4l2_subdev_ir_parameters rx_params
;
130 struct mutex rx_params_lock
;
131 atomic_t rxclk_divider
;
134 struct kfifo rx_kfifo
;
135 spinlock_t rx_kfifo_lock
;
137 struct v4l2_subdev_ir_parameters tx_params
;
138 struct mutex tx_params_lock
;
139 atomic_t txclk_divider
;
142 static inline struct cx23888_ir_state
*to_state(struct v4l2_subdev
*sd
)
144 return v4l2_get_subdevdata(sd
);
148 * IR register block read and write functions
151 inline int cx23888_ir_write4(struct cx23885_dev
*dev
, u32 addr
, u32 value
)
153 cx_write(addr
, value
);
157 static inline u32
cx23888_ir_read4(struct cx23885_dev
*dev
, u32 addr
)
159 return cx_read(addr
);
162 static inline int cx23888_ir_and_or4(struct cx23885_dev
*dev
, u32 addr
,
163 u32 and_mask
, u32 or_value
)
165 cx_andor(addr
, ~and_mask
, or_value
);
170 * Rx and Tx Clock Divider register computations
172 * Note the largest clock divider value of 0xffff corresponds to:
173 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
174 * which fits in 21 bits, so we'll use unsigned int for time arguments.
176 static inline u16
count_to_clock_divider(unsigned int d
)
178 if (d
> RXCLK_RCD
+ 1)
187 static inline u16
ns_to_clock_divider(unsigned int ns
)
189 return count_to_clock_divider(
190 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
193 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
195 /* Period of the Rx or Tx clock in ns */
196 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
197 CX23888_IR_REFCLK_FREQ
/ 1000000);
200 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
202 return count_to_clock_divider(
203 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* 16));
206 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
208 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
211 static inline u16
freq_to_clock_divider(unsigned int freq
,
212 unsigned int rollovers
)
214 return count_to_clock_divider(
215 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* rollovers
));
218 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
219 unsigned int rollovers
)
221 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
,
222 (divider
+ 1) * rollovers
);
226 * Low Pass Filter register calculations
228 * Note the largest count value of 0xffff corresponds to:
229 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
230 * which fits in 21 bits, so we'll use unsigned int for time arguments.
232 static inline u16
count_to_lpf_count(unsigned int d
)
241 static inline u16
ns_to_lpf_count(unsigned int ns
)
243 return count_to_lpf_count(
244 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
247 static inline unsigned int lpf_count_to_ns(unsigned int count
)
249 /* Duration of the Low Pass Filter rejection window in ns */
250 return DIV_ROUND_CLOSEST(count
* 1000,
251 CX23888_IR_REFCLK_FREQ
/ 1000000);
254 static inline unsigned int lpf_count_to_us(unsigned int count
)
256 /* Duration of the Low Pass Filter rejection window in us */
257 return DIV_ROUND_CLOSEST(count
, CX23888_IR_REFCLK_FREQ
/ 1000000);
261 * FIFO register pulse width count computations
263 static u32
clock_divider_to_resolution(u16 divider
)
266 * Resolution is the duration of 1 tick of the readable portion of
267 * of the pulse width counter as read from the FIFO. The two lsb's are
268 * not readable, hence the << 2. This function returns ns.
270 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
271 CX23888_IR_REFCLK_FREQ
/ 1000000);
274 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
280 * The 2 lsb's of the pulse width timer count are not readable, hence
281 * the (count << 2) | 0x3
283 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
284 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
285 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
290 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
296 * The 2 lsb's of the pulse width timer count are not readable, hence
297 * the (count << 2) | 0x3
299 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
300 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
301 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
303 return (unsigned int) n
;
307 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
309 * The total pulse clock count is an 18 bit pulse width timer count as the most
310 * significant part and (up to) 16 bit clock divider count as a modulus.
311 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
312 * width timer count's least significant bit.
314 static u64
ns_to_pulse_clocks(u32 ns
)
318 clocks
= CX23888_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
319 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
325 static u16
pulse_clocks_to_clock_divider(u64 count
)
327 do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
329 /* net result needs to be rounded down and decremented by 1 */
330 if (count
> RXCLK_RCD
+ 1)
340 * IR Control Register helpers
342 enum tx_fifo_watermark
{
343 TX_FIFO_HALF_EMPTY
= 0,
344 TX_FIFO_EMPTY
= CNTRL_TIC
,
347 enum rx_fifo_watermark
{
348 RX_FIFO_HALF_FULL
= 0,
349 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
352 static inline void control_tx_irq_watermark(struct cx23885_dev
*dev
,
353 enum tx_fifo_watermark level
)
355 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
358 static inline void control_rx_irq_watermark(struct cx23885_dev
*dev
,
359 enum rx_fifo_watermark level
)
361 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
364 static inline void control_tx_enable(struct cx23885_dev
*dev
, bool enable
)
366 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
367 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
370 static inline void control_rx_enable(struct cx23885_dev
*dev
, bool enable
)
372 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
373 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
376 static inline void control_tx_modulation_enable(struct cx23885_dev
*dev
,
379 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_MOD
,
380 enable
? CNTRL_MOD
: 0);
383 static inline void control_rx_demodulation_enable(struct cx23885_dev
*dev
,
386 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_DMD
,
387 enable
? CNTRL_DMD
: 0);
390 static inline void control_rx_s_edge_detection(struct cx23885_dev
*dev
,
393 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
394 edge_types
& CNTRL_EDG_BOTH
);
397 static void control_rx_s_carrier_window(struct cx23885_dev
*dev
,
398 unsigned int carrier
,
399 unsigned int *carrier_range_low
,
400 unsigned int *carrier_range_high
)
403 unsigned int c16
= carrier
* 16;
405 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
407 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
410 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
413 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
415 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
418 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
420 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
423 static inline void control_tx_polarity_invert(struct cx23885_dev
*dev
,
426 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_CPL
,
427 invert
? CNTRL_CPL
: 0);
430 static inline void control_tx_level_invert(struct cx23885_dev
*dev
,
433 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_IVO
,
434 invert
? CNTRL_IVO
: 0);
438 * IR Rx & Tx Clock Register helpers
440 static unsigned int txclk_tx_s_carrier(struct cx23885_dev
*dev
,
444 *divider
= carrier_freq_to_clock_divider(freq
);
445 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
446 return clock_divider_to_carrier_freq(*divider
);
449 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev
*dev
,
453 *divider
= carrier_freq_to_clock_divider(freq
);
454 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
455 return clock_divider_to_carrier_freq(*divider
);
458 static u32
txclk_tx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
463 if (ns
> IR_MAX_DURATION
)
464 ns
= IR_MAX_DURATION
;
465 pulse_clocks
= ns_to_pulse_clocks(ns
);
466 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
467 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
468 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
471 static u32
rxclk_rx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
476 if (ns
> IR_MAX_DURATION
)
477 ns
= IR_MAX_DURATION
;
478 pulse_clocks
= ns_to_pulse_clocks(ns
);
479 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
480 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
481 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
485 * IR Tx Carrier Duty Cycle register helpers
487 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev
*dev
,
488 unsigned int duty_cycle
)
491 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
496 cx23888_ir_write4(dev
, CX23888_IR_CDUTY_REG
, n
);
497 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
501 * IR Filter Register helpers
503 static u32
filter_rx_s_min_width(struct cx23885_dev
*dev
, u32 min_width_ns
)
505 u32 count
= ns_to_lpf_count(min_width_ns
);
506 cx23888_ir_write4(dev
, CX23888_IR_FILTR_REG
, count
);
507 return lpf_count_to_ns(count
);
511 * IR IRQ Enable Register helpers
513 static inline void irqenable_rx(struct cx23885_dev
*dev
, u32 mask
)
515 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
516 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
,
517 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
520 static inline void irqenable_tx(struct cx23885_dev
*dev
, u32 mask
)
523 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
527 * V4L2 Subdevice IR Ops
529 static int cx23888_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
,
532 struct cx23888_ir_state
*state
= to_state(sd
);
533 struct cx23885_dev
*dev
= state
->dev
;
536 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
537 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
538 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
540 union cx23888_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
541 unsigned int i
, j
, k
;
543 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
545 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
546 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
547 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
548 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
550 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
551 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
552 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
553 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
556 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Status: %s %s %s %s %s %s\n",
557 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
558 rto
? "rto" : " ", ror
? "ror" : " ",
559 stats
& STATS_TBY
? "tby" : " ",
560 stats
& STATS_RBY
? "rby" : " ");
562 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Enables: %s %s %s %s\n",
563 tse
? "tse" : " ", rse
? "rse" : " ",
564 rte
? "rte" : " ", roe
? "roe" : " ");
567 * Transmitter interrupt service
572 * Check the watermark threshold setting
573 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
574 * Push the data to the hardware FIFO.
575 * If there was nothing more to send in the tx_kfifo, disable
576 * the TSR IRQ and notify the v4l2_device.
577 * If there was something in the tx_kfifo, check the tx_kfifo
578 * level and notify the v4l2_device, if it is low.
580 /* For now, inhibit TSR interrupt until Tx is implemented */
581 irqenable_tx(dev
, 0);
582 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
583 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
588 * Receiver interrupt service
591 if ((rse
&& rsr
) || (rte
&& rto
)) {
593 * Receive data on RSR to clear the STATS_RSR.
594 * Receive data on RTO, since we may not have yet hit the RSR
595 * watermark when we receive the RTO.
597 for (i
= 0, v
= FIFO_RX_NDV
;
598 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
600 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
601 v
= cx23888_ir_read4(dev
, CX23888_IR_FIFO_REG
);
602 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
607 j
= i
* sizeof(union cx23888_ir_fifo_rec
);
608 k
= kfifo_in_locked(&state
->rx_kfifo
,
609 (unsigned char *) rx_data
, j
,
610 &state
->rx_kfifo_lock
);
612 kror
++; /* rx_kfifo over run */
620 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
621 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
625 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
626 * the Rx FIFO Over Run status (STATS_ROR)
629 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
630 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
634 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
635 * the Rx Pulse Width Timer Time Out (STATS_RTO)
638 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
641 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
642 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
& ~v
);
643 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
);
647 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
648 if (kfifo_len(&state
->rx_kfifo
) >= CX23888_IR_RX_KFIFO_SIZE
/ 2)
649 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
650 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
653 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
658 static int cx23888_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
661 struct cx23888_ir_state
*state
= to_state(sd
);
662 bool invert
= (bool) atomic_read(&state
->rx_invert
);
663 u16 divider
= (u16
) atomic_read(&state
->rxclk_divider
);
666 union cx23888_ir_fifo_rec
*p
;
669 n
= count
/ sizeof(union cx23888_ir_fifo_rec
)
670 * sizeof(union cx23888_ir_fifo_rec
);
676 n
= kfifo_out_locked(&state
->rx_kfifo
, buf
, n
, &state
->rx_kfifo_lock
);
678 n
/= sizeof(union cx23888_ir_fifo_rec
);
679 *num
= n
* sizeof(union cx23888_ir_fifo_rec
);
681 for (p
= (union cx23888_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
683 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
684 /* Assume RTO was because of no IR light input */
688 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
694 v
= (unsigned) pulse_width_count_to_ns(
695 (u16
) (p
->hw_fifo_data
& FIFO_RXTX
), divider
);
696 if (v
> IR_MAX_DURATION
)
699 init_ir_raw_event(&p
->ir_core_data
);
700 p
->ir_core_data
.pulse
= u
;
701 p
->ir_core_data
.duration
= v
;
702 p
->ir_core_data
.timeout
= w
;
704 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: %10u ns %s %s\n",
705 v
, u
? "mark" : "space", w
? "(timed out)" : "");
707 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: end of rx\n");
712 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
713 struct v4l2_subdev_ir_parameters
*p
)
715 struct cx23888_ir_state
*state
= to_state(sd
);
716 mutex_lock(&state
->rx_params_lock
);
717 memcpy(p
, &state
->rx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
718 mutex_unlock(&state
->rx_params_lock
);
722 static int cx23888_ir_rx_shutdown(struct v4l2_subdev
*sd
)
724 struct cx23888_ir_state
*state
= to_state(sd
);
725 struct cx23885_dev
*dev
= state
->dev
;
727 mutex_lock(&state
->rx_params_lock
);
729 /* Disable or slow down all IR Rx circuits and counters */
730 irqenable_rx(dev
, 0);
731 control_rx_enable(dev
, false);
732 control_rx_demodulation_enable(dev
, false);
733 control_rx_s_edge_detection(dev
, CNTRL_EDG_NONE
);
734 filter_rx_s_min_width(dev
, 0);
735 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, RXCLK_RCD
);
737 state
->rx_params
.shutdown
= true;
739 mutex_unlock(&state
->rx_params_lock
);
743 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
744 struct v4l2_subdev_ir_parameters
*p
)
746 struct cx23888_ir_state
*state
= to_state(sd
);
747 struct cx23885_dev
*dev
= state
->dev
;
748 struct v4l2_subdev_ir_parameters
*o
= &state
->rx_params
;
752 return cx23888_ir_rx_shutdown(sd
);
754 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
757 mutex_lock(&state
->rx_params_lock
);
759 o
->shutdown
= p
->shutdown
;
761 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
763 o
->bytes_per_data_element
= p
->bytes_per_data_element
764 = sizeof(union cx23888_ir_fifo_rec
);
766 /* Before we tweak the hardware, we have to disable the receiver */
767 irqenable_rx(dev
, 0);
768 control_rx_enable(dev
, false);
770 control_rx_demodulation_enable(dev
, p
->modulation
);
771 o
->modulation
= p
->modulation
;
774 p
->carrier_freq
= rxclk_rx_s_carrier(dev
, p
->carrier_freq
,
777 o
->carrier_freq
= p
->carrier_freq
;
779 o
->duty_cycle
= p
->duty_cycle
= 50;
781 control_rx_s_carrier_window(dev
, p
->carrier_freq
,
782 &p
->carrier_range_lower
,
783 &p
->carrier_range_upper
);
784 o
->carrier_range_lower
= p
->carrier_range_lower
;
785 o
->carrier_range_upper
= p
->carrier_range_upper
;
788 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
791 rxclk_rx_s_max_pulse_width(dev
, p
->max_pulse_width
,
794 o
->max_pulse_width
= p
->max_pulse_width
;
795 atomic_set(&state
->rxclk_divider
, rxclk_divider
);
797 p
->noise_filter_min_width
=
798 filter_rx_s_min_width(dev
, p
->noise_filter_min_width
);
799 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
801 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
802 o
->resolution
= p
->resolution
;
804 /* FIXME - make this dependent on resolution for better performance */
805 control_rx_irq_watermark(dev
, RX_FIFO_HALF_FULL
);
807 control_rx_s_edge_detection(dev
, CNTRL_EDG_BOTH
);
809 o
->invert_level
= p
->invert_level
;
810 atomic_set(&state
->rx_invert
, p
->invert_level
);
812 o
->interrupt_enable
= p
->interrupt_enable
;
813 o
->enable
= p
->enable
;
817 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
818 kfifo_reset(&state
->rx_kfifo
);
819 /* reset tx_fifo too if there is one... */
820 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
821 if (p
->interrupt_enable
)
822 irqenable_rx(dev
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
823 control_rx_enable(dev
, p
->enable
);
826 mutex_unlock(&state
->rx_params_lock
);
831 static int cx23888_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
834 struct cx23888_ir_state
*state
= to_state(sd
);
835 struct cx23885_dev
*dev
= state
->dev
;
836 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
837 irqenable_tx(dev
, IRQEN_TSE
);
842 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
843 struct v4l2_subdev_ir_parameters
*p
)
845 struct cx23888_ir_state
*state
= to_state(sd
);
846 mutex_lock(&state
->tx_params_lock
);
847 memcpy(p
, &state
->tx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
848 mutex_unlock(&state
->tx_params_lock
);
852 static int cx23888_ir_tx_shutdown(struct v4l2_subdev
*sd
)
854 struct cx23888_ir_state
*state
= to_state(sd
);
855 struct cx23885_dev
*dev
= state
->dev
;
857 mutex_lock(&state
->tx_params_lock
);
859 /* Disable or slow down all IR Tx circuits and counters */
860 irqenable_tx(dev
, 0);
861 control_tx_enable(dev
, false);
862 control_tx_modulation_enable(dev
, false);
863 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, TXCLK_TCD
);
865 state
->tx_params
.shutdown
= true;
867 mutex_unlock(&state
->tx_params_lock
);
871 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
872 struct v4l2_subdev_ir_parameters
*p
)
874 struct cx23888_ir_state
*state
= to_state(sd
);
875 struct cx23885_dev
*dev
= state
->dev
;
876 struct v4l2_subdev_ir_parameters
*o
= &state
->tx_params
;
880 return cx23888_ir_tx_shutdown(sd
);
882 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
885 mutex_lock(&state
->tx_params_lock
);
887 o
->shutdown
= p
->shutdown
;
889 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
891 o
->bytes_per_data_element
= p
->bytes_per_data_element
892 = sizeof(union cx23888_ir_fifo_rec
);
894 /* Before we tweak the hardware, we have to disable the transmitter */
895 irqenable_tx(dev
, 0);
896 control_tx_enable(dev
, false);
898 control_tx_modulation_enable(dev
, p
->modulation
);
899 o
->modulation
= p
->modulation
;
902 p
->carrier_freq
= txclk_tx_s_carrier(dev
, p
->carrier_freq
,
904 o
->carrier_freq
= p
->carrier_freq
;
906 p
->duty_cycle
= cduty_tx_s_duty_cycle(dev
, p
->duty_cycle
);
907 o
->duty_cycle
= p
->duty_cycle
;
910 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
913 txclk_tx_s_max_pulse_width(dev
, p
->max_pulse_width
,
916 o
->max_pulse_width
= p
->max_pulse_width
;
917 atomic_set(&state
->txclk_divider
, txclk_divider
);
919 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
920 o
->resolution
= p
->resolution
;
922 /* FIXME - make this dependent on resolution for better performance */
923 control_tx_irq_watermark(dev
, TX_FIFO_HALF_EMPTY
);
925 control_tx_polarity_invert(dev
, p
->invert_carrier_sense
);
926 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
928 control_tx_level_invert(dev
, p
->invert_level
);
929 o
->invert_level
= p
->invert_level
;
931 o
->interrupt_enable
= p
->interrupt_enable
;
932 o
->enable
= p
->enable
;
934 if (p
->interrupt_enable
)
935 irqenable_tx(dev
, IRQEN_TSE
);
936 control_tx_enable(dev
, p
->enable
);
939 mutex_unlock(&state
->tx_params_lock
);
945 * V4L2 Subdevice Core Ops
947 static int cx23888_ir_log_status(struct v4l2_subdev
*sd
)
949 struct cx23888_ir_state
*state
= to_state(sd
);
950 struct cx23885_dev
*dev
= state
->dev
;
954 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
955 u32 txclk
= cx23888_ir_read4(dev
, CX23888_IR_TXCLK_REG
) & TXCLK_TCD
;
956 u32 rxclk
= cx23888_ir_read4(dev
, CX23888_IR_RXCLK_REG
) & RXCLK_RCD
;
957 u32 cduty
= cx23888_ir_read4(dev
, CX23888_IR_CDUTY_REG
) & CDUTY_CDC
;
958 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
959 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
960 u32 filtr
= cx23888_ir_read4(dev
, CX23888_IR_FILTR_REG
) & FILTR_LPF
;
962 v4l2_info(sd
, "IR Receiver:\n");
963 v4l2_info(sd
, "\tEnabled: %s\n",
964 cntrl
& CNTRL_RXE
? "yes" : "no");
965 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
966 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
967 v4l2_info(sd
, "\tFIFO: %s\n",
968 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
969 switch (cntrl
& CNTRL_EDG
) {
980 s
= "rising & falling edges";
986 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
987 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
988 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
989 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
990 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
991 v4l2_info(sd
, "\tLoopback mode: %s\n",
992 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
993 if (cntrl
& CNTRL_DMD
) {
994 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
995 clock_divider_to_carrier_freq(rxclk
));
996 switch (cntrl
& CNTRL_WIN
) {
1018 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1020 clock_divider_to_freq(rxclk
, 16 + j
),
1021 clock_divider_to_freq(rxclk
, 16 - i
));
1023 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1024 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1025 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1026 v4l2_info(sd
, "\tLow pass filter: %s\n",
1027 filtr
? "enabled" : "disabled");
1029 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1030 lpf_count_to_us(filtr
),
1031 lpf_count_to_ns(filtr
));
1032 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1033 stats
& STATS_RTO
? "yes" : "no");
1034 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1035 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1036 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1037 stats
& STATS_ROR
? "yes" : "no");
1038 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1039 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1040 v4l2_info(sd
, "\tBusy: %s\n",
1041 stats
& STATS_RBY
? "yes" : "no");
1042 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1043 stats
& STATS_RSR
? "yes" : "no");
1044 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1045 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1047 v4l2_info(sd
, "IR Transmitter:\n");
1048 v4l2_info(sd
, "\tEnabled: %s\n",
1049 cntrl
& CNTRL_TXE
? "yes" : "no");
1050 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1051 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1052 v4l2_info(sd
, "\tFIFO: %s\n",
1053 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1054 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1055 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1056 v4l2_info(sd
, "\tOutput pin level inversion %s\n",
1057 cntrl
& CNTRL_IVO
? "yes" : "no");
1058 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1059 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1060 : "space:noburst mark:burst");
1061 if (cntrl
& CNTRL_MOD
) {
1062 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1063 clock_divider_to_carrier_freq(txclk
));
1064 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1067 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1068 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1069 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1070 v4l2_info(sd
, "\tBusy: %s\n",
1071 stats
& STATS_TBY
? "yes" : "no");
1072 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1073 stats
& STATS_TSR
? "yes" : "no");
1074 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1075 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1080 #ifdef CONFIG_VIDEO_ADV_DEBUG
1081 static int cx23888_ir_g_register(struct v4l2_subdev
*sd
,
1082 struct v4l2_dbg_register
*reg
)
1084 struct cx23888_ir_state
*state
= to_state(sd
);
1085 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1087 if ((addr
& 0x3) != 0)
1089 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1092 reg
->val
= cx23888_ir_read4(state
->dev
, addr
);
1096 static int cx23888_ir_s_register(struct v4l2_subdev
*sd
,
1097 const struct v4l2_dbg_register
*reg
)
1099 struct cx23888_ir_state
*state
= to_state(sd
);
1100 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1102 if ((addr
& 0x3) != 0)
1104 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1106 cx23888_ir_write4(state
->dev
, addr
, reg
->val
);
1111 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops
= {
1112 .log_status
= cx23888_ir_log_status
,
1113 #ifdef CONFIG_VIDEO_ADV_DEBUG
1114 .g_register
= cx23888_ir_g_register
,
1115 .s_register
= cx23888_ir_s_register
,
1117 .interrupt_service_routine
= cx23888_ir_irq_handler
,
1120 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops
= {
1121 .rx_read
= cx23888_ir_rx_read
,
1122 .rx_g_parameters
= cx23888_ir_rx_g_parameters
,
1123 .rx_s_parameters
= cx23888_ir_rx_s_parameters
,
1125 .tx_write
= cx23888_ir_tx_write
,
1126 .tx_g_parameters
= cx23888_ir_tx_g_parameters
,
1127 .tx_s_parameters
= cx23888_ir_tx_s_parameters
,
1130 static const struct v4l2_subdev_ops cx23888_ir_controller_ops
= {
1131 .core
= &cx23888_ir_core_ops
,
1132 .ir
= &cx23888_ir_ir_ops
,
1135 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1136 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1137 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1140 .interrupt_enable
= false,
1144 .carrier_freq
= 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1146 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1147 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1148 .noise_filter_min_width
= 333333, /* ns */
1149 .carrier_range_lower
= 35000,
1150 .carrier_range_upper
= 37000,
1151 .invert_level
= false,
1154 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1155 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1156 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1159 .interrupt_enable
= false,
1163 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1164 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1165 .invert_level
= false,
1166 .invert_carrier_sense
= false,
1169 int cx23888_ir_probe(struct cx23885_dev
*dev
)
1171 struct cx23888_ir_state
*state
;
1172 struct v4l2_subdev
*sd
;
1173 struct v4l2_subdev_ir_parameters default_params
;
1176 state
= kzalloc(sizeof(struct cx23888_ir_state
), GFP_KERNEL
);
1180 spin_lock_init(&state
->rx_kfifo_lock
);
1181 if (kfifo_alloc(&state
->rx_kfifo
, CX23888_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1187 v4l2_subdev_init(sd
, &cx23888_ir_controller_ops
);
1188 v4l2_set_subdevdata(sd
, state
);
1189 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1190 snprintf(sd
->name
, sizeof(sd
->name
), "%s/888-ir", dev
->name
);
1191 sd
->grp_id
= CX23885_HW_888_IR
;
1193 ret
= v4l2_device_register_subdev(&dev
->v4l2_dev
, sd
);
1196 * Ensure no interrupts arrive from '888 specific conditions,
1197 * since we ignore them in this driver to have commonality with
1198 * similar IR controller cores.
1200 cx23888_ir_write4(dev
, CX23888_IR_IRQEN_REG
, 0);
1202 mutex_init(&state
->rx_params_lock
);
1203 default_params
= default_rx_params
;
1204 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1206 mutex_init(&state
->tx_params_lock
);
1207 default_params
= default_tx_params
;
1208 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1210 kfifo_free(&state
->rx_kfifo
);
1215 int cx23888_ir_remove(struct cx23885_dev
*dev
)
1217 struct v4l2_subdev
*sd
;
1218 struct cx23888_ir_state
*state
;
1220 sd
= cx23885_find_hw(dev
, CX23885_HW_888_IR
);
1224 cx23888_ir_rx_shutdown(sd
);
1225 cx23888_ir_tx_shutdown(sd
);
1227 state
= to_state(sd
);
1228 v4l2_device_unregister_subdev(sd
);
1229 kfifo_free(&state
->rx_kfifo
);
1231 /* Nothing more to free() as state held the actual v4l2_subdev object */