Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / platform / mtk-vcodec / venc / venc_vp8_if.c
blob957420dd60de245260e39d5aef04a8efa45c882c
1 /*
2 * Copyright (c) 2016 MediaTek Inc.
3 * Author: Daniel Hsiao <daniel.hsiao@mediatek.com>
4 * PoChun Lin <pochun.lin@mediatek.com>
6 * This program is free software; you can redistribute it and/or
7 * modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
21 #include "../mtk_vcodec_drv.h"
22 #include "../mtk_vcodec_util.h"
23 #include "../mtk_vcodec_intr.h"
24 #include "../mtk_vcodec_enc.h"
25 #include "../mtk_vcodec_enc_pm.h"
26 #include "../venc_drv_base.h"
27 #include "../venc_ipi_msg.h"
28 #include "../venc_vpu_if.h"
29 #include "mtk_vpu.h"
31 #define VENC_BITSTREAM_FRAME_SIZE 0x0098
32 #define VENC_BITSTREAM_HEADER_LEN 0x00e8
34 /* This ac_tag is vp8 frame tag. */
35 #define MAX_AC_TAG_SIZE 10
38 * enum venc_vp8_vpu_work_buf - vp8 encoder buffer index
40 enum venc_vp8_vpu_work_buf {
41 VENC_VP8_VPU_WORK_BUF_LUMA,
42 VENC_VP8_VPU_WORK_BUF_LUMA2,
43 VENC_VP8_VPU_WORK_BUF_LUMA3,
44 VENC_VP8_VPU_WORK_BUF_CHROMA,
45 VENC_VP8_VPU_WORK_BUF_CHROMA2,
46 VENC_VP8_VPU_WORK_BUF_CHROMA3,
47 VENC_VP8_VPU_WORK_BUF_MV_INFO,
48 VENC_VP8_VPU_WORK_BUF_BS_HEADER,
49 VENC_VP8_VPU_WORK_BUF_PROB_BUF,
50 VENC_VP8_VPU_WORK_BUF_RC_INFO,
51 VENC_VP8_VPU_WORK_BUF_RC_CODE,
52 VENC_VP8_VPU_WORK_BUF_RC_CODE2,
53 VENC_VP8_VPU_WORK_BUF_RC_CODE3,
54 VENC_VP8_VPU_WORK_BUF_MAX,
58 * struct venc_vp8_vpu_config - Structure for vp8 encoder configuration
59 * AP-W/R : AP is writer/reader on this item
60 * VPU-W/R: VPU is write/reader on this item
61 * @input_fourcc: input fourcc
62 * @bitrate: target bitrate (in bps)
63 * @pic_w: picture width. Picture size is visible stream resolution, in pixels,
64 * to be used for display purposes; must be smaller or equal to buffer
65 * size.
66 * @pic_h: picture height
67 * @buf_w: buffer width (with 16 alignment). Buffer size is stream resolution
68 * in pixels aligned to hardware requirements.
69 * @buf_h: buffer height (with 16 alignment)
70 * @gop_size: group of picture size (key frame)
71 * @framerate: frame rate in fps
72 * @ts_mode: temporal scalability mode (0: disable, 1: enable)
73 * support three temporal layers - 0: 7.5fps 1: 7.5fps 2: 15fps.
75 struct venc_vp8_vpu_config {
76 u32 input_fourcc;
77 u32 bitrate;
78 u32 pic_w;
79 u32 pic_h;
80 u32 buf_w;
81 u32 buf_h;
82 u32 gop_size;
83 u32 framerate;
84 u32 ts_mode;
88 * struct venc_vp8_vpu_buf - Structure for buffer information
89 * AP-W/R : AP is writer/reader on this item
90 * VPU-W/R: VPU is write/reader on this item
91 * @iova: IO virtual address
92 * @vpua: VPU side memory addr which is used by RC_CODE
93 * @size: buffer size (in bytes)
95 struct venc_vp8_vpu_buf {
96 u32 iova;
97 u32 vpua;
98 u32 size;
102 * struct venc_vp8_vsi - Structure for VPU driver control and info share
103 * AP-W/R : AP is writer/reader on this item
104 * VPU-W/R: VPU is write/reader on this item
105 * This structure is allocated in VPU side and shared to AP side.
106 * @config: vp8 encoder configuration
107 * @work_bufs: working buffer information in VPU side
108 * The work_bufs here is for storing the 'size' info shared to AP side.
109 * The similar item in struct venc_vp8_inst is for memory allocation
110 * in AP side. The AP driver will copy the 'size' from here to the one in
111 * struct mtk_vcodec_mem, then invoke mtk_vcodec_mem_alloc to allocate
112 * the buffer. After that, bypass the 'dma_addr' to the 'iova' field here for
113 * register setting in VPU side.
115 struct venc_vp8_vsi {
116 struct venc_vp8_vpu_config config;
117 struct venc_vp8_vpu_buf work_bufs[VENC_VP8_VPU_WORK_BUF_MAX];
121 * struct venc_vp8_inst - vp8 encoder AP driver instance
122 * @hw_base: vp8 encoder hardware register base
123 * @work_bufs: working buffer
124 * @work_buf_allocated: working buffer allocated flag
125 * @frm_cnt: encoded frame count, it's used for I-frame judgement and
126 * reset when force intra cmd received.
127 * @ts_mode: temporal scalability mode (0: disable, 1: enable)
128 * support three temporal layers - 0: 7.5fps 1: 7.5fps 2: 15fps.
129 * @vpu_inst: VPU instance to exchange information between AP and VPU
130 * @vsi: driver structure allocated by VPU side and shared to AP side for
131 * control and info share
132 * @ctx: context for v4l2 layer integration
134 struct venc_vp8_inst {
135 void __iomem *hw_base;
136 struct mtk_vcodec_mem work_bufs[VENC_VP8_VPU_WORK_BUF_MAX];
137 bool work_buf_allocated;
138 unsigned int frm_cnt;
139 unsigned int ts_mode;
140 struct venc_vpu_inst vpu_inst;
141 struct venc_vp8_vsi *vsi;
142 struct mtk_vcodec_ctx *ctx;
145 static inline u32 vp8_enc_read_reg(struct venc_vp8_inst *inst, u32 addr)
147 return readl(inst->hw_base + addr);
150 static void vp8_enc_free_work_buf(struct venc_vp8_inst *inst)
152 int i;
154 mtk_vcodec_debug_enter(inst);
156 /* Buffers need to be freed by AP. */
157 for (i = 0; i < VENC_VP8_VPU_WORK_BUF_MAX; i++) {
158 if (inst->work_bufs[i].size == 0)
159 continue;
160 mtk_vcodec_mem_free(inst->ctx, &inst->work_bufs[i]);
163 mtk_vcodec_debug_leave(inst);
166 static int vp8_enc_alloc_work_buf(struct venc_vp8_inst *inst)
168 int i;
169 int ret = 0;
170 struct venc_vp8_vpu_buf *wb = inst->vsi->work_bufs;
172 mtk_vcodec_debug_enter(inst);
174 for (i = 0; i < VENC_VP8_VPU_WORK_BUF_MAX; i++) {
175 if (wb[i].size == 0)
176 continue;
178 * This 'wb' structure is set by VPU side and shared to AP for
179 * buffer allocation and IO virtual addr mapping. For most of
180 * the buffers, AP will allocate the buffer according to 'size'
181 * field and store the IO virtual addr in 'iova' field. For the
182 * RC_CODEx buffers, they are pre-allocated in the VPU side
183 * because they are inside VPU SRAM, and save the VPU addr in
184 * the 'vpua' field. The AP will translate the VPU addr to the
185 * corresponding IO virtual addr and store in 'iova' field.
187 inst->work_bufs[i].size = wb[i].size;
188 ret = mtk_vcodec_mem_alloc(inst->ctx, &inst->work_bufs[i]);
189 if (ret) {
190 mtk_vcodec_err(inst,
191 "cannot alloc work_bufs[%d]", i);
192 goto err_alloc;
195 * This RC_CODEx is pre-allocated by VPU and saved in VPU addr.
196 * So we need use memcpy to copy RC_CODEx from VPU addr into IO
197 * virtual addr in 'iova' field for reg setting in VPU side.
199 if (i == VENC_VP8_VPU_WORK_BUF_RC_CODE ||
200 i == VENC_VP8_VPU_WORK_BUF_RC_CODE2 ||
201 i == VENC_VP8_VPU_WORK_BUF_RC_CODE3) {
202 void *tmp_va;
204 tmp_va = vpu_mapping_dm_addr(inst->vpu_inst.dev,
205 wb[i].vpua);
206 memcpy(inst->work_bufs[i].va, tmp_va, wb[i].size);
208 wb[i].iova = inst->work_bufs[i].dma_addr;
210 mtk_vcodec_debug(inst,
211 "work_bufs[%d] va=0x%p,iova=%pad,size=%zu",
212 i, inst->work_bufs[i].va,
213 &inst->work_bufs[i].dma_addr,
214 inst->work_bufs[i].size);
217 mtk_vcodec_debug_leave(inst);
219 return ret;
221 err_alloc:
222 vp8_enc_free_work_buf(inst);
224 return ret;
227 static unsigned int vp8_enc_wait_venc_done(struct venc_vp8_inst *inst)
229 unsigned int irq_status = 0;
230 struct mtk_vcodec_ctx *ctx = (struct mtk_vcodec_ctx *)inst->ctx;
232 if (!mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
233 WAIT_INTR_TIMEOUT_MS)) {
234 irq_status = ctx->irq_status;
235 mtk_vcodec_debug(inst, "isr return %x", irq_status);
237 return irq_status;
241 * Compose ac_tag, bitstream header and bitstream payload into
242 * one bitstream buffer.
244 static int vp8_enc_compose_one_frame(struct venc_vp8_inst *inst,
245 struct mtk_vcodec_mem *bs_buf,
246 unsigned int *bs_size)
248 unsigned int not_key;
249 u32 bs_frm_size;
250 u32 bs_hdr_len;
251 unsigned int ac_tag_size;
252 u8 ac_tag[MAX_AC_TAG_SIZE];
253 u32 tag;
255 bs_frm_size = vp8_enc_read_reg(inst, VENC_BITSTREAM_FRAME_SIZE);
256 bs_hdr_len = vp8_enc_read_reg(inst, VENC_BITSTREAM_HEADER_LEN);
258 /* if a frame is key frame, not_key is 0 */
259 not_key = !inst->vpu_inst.is_key_frm;
260 tag = (bs_hdr_len << 5) | 0x10 | not_key;
261 ac_tag[0] = tag & 0xff;
262 ac_tag[1] = (tag >> 8) & 0xff;
263 ac_tag[2] = (tag >> 16) & 0xff;
265 /* key frame */
266 if (not_key == 0) {
267 ac_tag_size = MAX_AC_TAG_SIZE;
268 ac_tag[3] = 0x9d;
269 ac_tag[4] = 0x01;
270 ac_tag[5] = 0x2a;
271 ac_tag[6] = inst->vsi->config.pic_w;
272 ac_tag[7] = inst->vsi->config.pic_w >> 8;
273 ac_tag[8] = inst->vsi->config.pic_h;
274 ac_tag[9] = inst->vsi->config.pic_h >> 8;
275 } else {
276 ac_tag_size = 3;
279 if (bs_buf->size < bs_hdr_len + bs_frm_size + ac_tag_size) {
280 mtk_vcodec_err(inst, "bitstream buf size is too small(%zu)",
281 bs_buf->size);
282 return -EINVAL;
286 * (1) The vp8 bitstream header and body are generated by the HW vp8
287 * encoder separately at the same time. We cannot know the bitstream
288 * header length in advance.
289 * (2) From the vp8 spec, there is no stuffing byte allowed between the
290 * ac tag, bitstream header and bitstream body.
292 memmove(bs_buf->va + bs_hdr_len + ac_tag_size,
293 bs_buf->va, bs_frm_size);
294 memcpy(bs_buf->va + ac_tag_size,
295 inst->work_bufs[VENC_VP8_VPU_WORK_BUF_BS_HEADER].va,
296 bs_hdr_len);
297 memcpy(bs_buf->va, ac_tag, ac_tag_size);
298 *bs_size = bs_frm_size + bs_hdr_len + ac_tag_size;
300 return 0;
303 static int vp8_enc_encode_frame(struct venc_vp8_inst *inst,
304 struct venc_frm_buf *frm_buf,
305 struct mtk_vcodec_mem *bs_buf,
306 unsigned int *bs_size)
308 int ret = 0;
309 unsigned int irq_status;
311 mtk_vcodec_debug(inst, "->frm_cnt=%d", inst->frm_cnt);
313 ret = vpu_enc_encode(&inst->vpu_inst, 0, frm_buf, bs_buf, bs_size);
314 if (ret)
315 return ret;
317 irq_status = vp8_enc_wait_venc_done(inst);
318 if (irq_status != MTK_VENC_IRQ_STATUS_FRM) {
319 mtk_vcodec_err(inst, "irq_status=%d failed", irq_status);
320 return -EIO;
323 if (vp8_enc_compose_one_frame(inst, bs_buf, bs_size)) {
324 mtk_vcodec_err(inst, "vp8_enc_compose_one_frame failed");
325 return -EINVAL;
328 inst->frm_cnt++;
329 mtk_vcodec_debug(inst, "<-size=%d key_frm=%d", *bs_size,
330 inst->vpu_inst.is_key_frm);
332 return ret;
335 static int vp8_enc_init(struct mtk_vcodec_ctx *ctx, unsigned long *handle)
337 int ret = 0;
338 struct venc_vp8_inst *inst;
340 inst = kzalloc(sizeof(*inst), GFP_KERNEL);
341 if (!inst)
342 return -ENOMEM;
344 inst->ctx = ctx;
345 inst->vpu_inst.ctx = ctx;
346 inst->vpu_inst.dev = ctx->dev->vpu_plat_dev;
347 inst->vpu_inst.id = IPI_VENC_VP8;
348 inst->hw_base = mtk_vcodec_get_reg_addr(inst->ctx, VENC_LT_SYS);
350 mtk_vcodec_debug_enter(inst);
352 ret = vpu_enc_init(&inst->vpu_inst);
354 inst->vsi = (struct venc_vp8_vsi *)inst->vpu_inst.vsi;
356 mtk_vcodec_debug_leave(inst);
358 if (ret)
359 kfree(inst);
360 else
361 (*handle) = (unsigned long)inst;
363 return ret;
366 static int vp8_enc_encode(unsigned long handle,
367 enum venc_start_opt opt,
368 struct venc_frm_buf *frm_buf,
369 struct mtk_vcodec_mem *bs_buf,
370 struct venc_done_result *result)
372 int ret = 0;
373 struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
374 struct mtk_vcodec_ctx *ctx = inst->ctx;
376 mtk_vcodec_debug_enter(inst);
378 enable_irq(ctx->dev->enc_lt_irq);
380 switch (opt) {
381 case VENC_START_OPT_ENCODE_FRAME:
382 ret = vp8_enc_encode_frame(inst, frm_buf, bs_buf,
383 &result->bs_size);
384 if (ret)
385 goto encode_err;
386 result->is_key_frm = inst->vpu_inst.is_key_frm;
387 break;
389 default:
390 mtk_vcodec_err(inst, "opt not support:%d", opt);
391 ret = -EINVAL;
392 break;
395 encode_err:
397 disable_irq(ctx->dev->enc_lt_irq);
398 mtk_vcodec_debug_leave(inst);
400 return ret;
403 static int vp8_enc_set_param(unsigned long handle,
404 enum venc_set_param_type type,
405 struct venc_enc_param *enc_prm)
407 int ret = 0;
408 struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
410 mtk_vcodec_debug(inst, "->type=%d", type);
412 switch (type) {
413 case VENC_SET_PARAM_ENC:
414 inst->vsi->config.input_fourcc = enc_prm->input_yuv_fmt;
415 inst->vsi->config.bitrate = enc_prm->bitrate;
416 inst->vsi->config.pic_w = enc_prm->width;
417 inst->vsi->config.pic_h = enc_prm->height;
418 inst->vsi->config.buf_w = enc_prm->buf_width;
419 inst->vsi->config.buf_h = enc_prm->buf_height;
420 inst->vsi->config.gop_size = enc_prm->gop_size;
421 inst->vsi->config.framerate = enc_prm->frm_rate;
422 inst->vsi->config.ts_mode = inst->ts_mode;
423 ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm);
424 if (ret)
425 break;
426 if (inst->work_buf_allocated) {
427 vp8_enc_free_work_buf(inst);
428 inst->work_buf_allocated = false;
430 ret = vp8_enc_alloc_work_buf(inst);
431 if (ret)
432 break;
433 inst->work_buf_allocated = true;
434 break;
437 * VENC_SET_PARAM_TS_MODE must be called before VENC_SET_PARAM_ENC
439 case VENC_SET_PARAM_TS_MODE:
440 inst->ts_mode = 1;
441 mtk_vcodec_debug(inst, "set ts_mode");
442 break;
444 default:
445 ret = vpu_enc_set_param(&inst->vpu_inst, type, enc_prm);
446 break;
449 mtk_vcodec_debug_leave(inst);
451 return ret;
454 static int vp8_enc_deinit(unsigned long handle)
456 int ret = 0;
457 struct venc_vp8_inst *inst = (struct venc_vp8_inst *)handle;
459 mtk_vcodec_debug_enter(inst);
461 ret = vpu_enc_deinit(&inst->vpu_inst);
463 if (inst->work_buf_allocated)
464 vp8_enc_free_work_buf(inst);
466 mtk_vcodec_debug_leave(inst);
467 kfree(inst);
469 return ret;
472 static const struct venc_common_if venc_vp8_if = {
473 .init = vp8_enc_init,
474 .encode = vp8_enc_encode,
475 .set_param = vp8_enc_set_param,
476 .deinit = vp8_enc_deinit,
479 const struct venc_common_if *get_vp8_enc_comm_if(void);
481 const struct venc_common_if *get_vp8_enc_comm_if(void)
483 return &venc_vp8_if;