Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / platform / omap / omap_vout_vrfb.c
blob11ec048929e80109e6702249aea0b345e79378d3
1 /*
2 * omap_vout_vrfb.c
4 * Copyright (C) 2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15 #include <linux/slab.h>
17 #include <media/videobuf-dma-contig.h>
18 #include <media/v4l2-device.h>
20 #include <video/omapvrfb.h>
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 #include "omap_vout_vrfb.h"
26 #define OMAP_DMA_NO_DEVICE 0
29 * Function for allocating video buffers
31 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
32 unsigned int *count, int startindex)
34 int i, j;
36 for (i = 0; i < *count; i++) {
37 if (!vout->smsshado_virt_addr[i]) {
38 vout->smsshado_virt_addr[i] =
39 omap_vout_alloc_buffer(vout->smsshado_size,
40 &vout->smsshado_phy_addr[i]);
42 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
43 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
44 break;
46 if (!vout->smsshado_virt_addr[i]) {
47 for (j = 0; j < i; j++) {
48 omap_vout_free_buffer(
49 vout->smsshado_virt_addr[j],
50 vout->smsshado_size);
51 vout->smsshado_virt_addr[j] = 0;
52 vout->smsshado_phy_addr[j] = 0;
54 *count = 0;
55 return -ENOMEM;
57 memset((void *)(long)vout->smsshado_virt_addr[i], 0,
58 vout->smsshado_size);
60 return 0;
64 * Wakes up the application once the DMA transfer to VRFB space is completed.
66 static void omap_vout_vrfb_dma_tx_callback(void *data)
68 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
70 t->tx_status = 1;
71 wake_up_interruptible(&t->wait);
75 * Free VRFB buffers
77 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
79 int j;
81 for (j = 0; j < VRFB_NUM_BUFS; j++) {
82 if (vout->smsshado_virt_addr[j]) {
83 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
84 vout->smsshado_size);
85 vout->smsshado_virt_addr[j] = 0;
86 vout->smsshado_phy_addr[j] = 0;
91 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
92 bool static_vrfb_allocation)
94 int ret = 0, i, j;
95 struct omap_vout_device *vout;
96 struct video_device *vfd;
97 dma_cap_mask_t mask;
98 int image_width, image_height;
99 int vrfb_num_bufs = VRFB_NUM_BUFS;
100 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
101 struct omap2video_device *vid_dev =
102 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
104 vout = vid_dev->vouts[vid_num];
105 vfd = vout->vfd;
107 for (i = 0; i < VRFB_NUM_BUFS; i++) {
108 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
109 dev_info(&pdev->dev, ": VRFB allocation failed\n");
110 for (j = 0; j < i; j++)
111 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
112 ret = -ENOMEM;
113 goto free_buffers;
117 /* Calculate VRFB memory size */
118 /* allocate for worst case size */
119 image_width = VID_MAX_WIDTH / TILE_SIZE;
120 if (VID_MAX_WIDTH % TILE_SIZE)
121 image_width++;
123 image_width = image_width * TILE_SIZE;
124 image_height = VID_MAX_HEIGHT / TILE_SIZE;
126 if (VID_MAX_HEIGHT % TILE_SIZE)
127 image_height++;
129 image_height = image_height * TILE_SIZE;
130 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
133 * Request and Initialize DMA, for DMA based VRFB transfer
135 dma_cap_zero(mask);
136 dma_cap_set(DMA_INTERLEAVE, mask);
137 vout->vrfb_dma_tx.chan = dma_request_chan_by_mask(&mask);
138 if (IS_ERR(vout->vrfb_dma_tx.chan)) {
139 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
140 } else {
141 size_t xt_size = sizeof(struct dma_interleaved_template) +
142 sizeof(struct data_chunk);
144 vout->vrfb_dma_tx.xt = kzalloc(xt_size, GFP_KERNEL);
145 if (!vout->vrfb_dma_tx.xt) {
146 dma_release_channel(vout->vrfb_dma_tx.chan);
147 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
151 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED)
152 dev_info(&pdev->dev,
153 ": failed to allocate DMA Channel for video%d\n",
154 vfd->minor);
156 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
158 /* statically allocated the VRFB buffer is done through
159 commands line aruments */
160 if (static_vrfb_allocation) {
161 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
162 ret = -ENOMEM;
163 goto release_vrfb_ctx;
165 vout->vrfb_static_allocation = true;
167 return 0;
169 release_vrfb_ctx:
170 for (j = 0; j < VRFB_NUM_BUFS; j++)
171 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
172 free_buffers:
173 omap_vout_free_buffers(vout);
175 return ret;
179 * Release the VRFB context once the module exits
181 void omap_vout_release_vrfb(struct omap_vout_device *vout)
183 int i;
185 for (i = 0; i < VRFB_NUM_BUFS; i++)
186 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
188 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
189 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
190 kfree(vout->vrfb_dma_tx.xt);
191 dmaengine_terminate_sync(vout->vrfb_dma_tx.chan);
192 dma_release_channel(vout->vrfb_dma_tx.chan);
197 * Allocate the buffers for the VRFB space. Data is copied from V4L2
198 * buffers to the VRFB buffers using the DMA engine.
200 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
201 unsigned int *count, unsigned int startindex)
203 int i;
204 bool yuv_mode;
206 if (!is_rotation_enabled(vout))
207 return 0;
209 /* If rotation is enabled, allocate memory for VRFB space also */
210 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
212 /* Allocate the VRFB buffers only if the buffers are not
213 * allocated during init time.
215 if (!vout->vrfb_static_allocation)
216 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
217 return -ENOMEM;
219 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
220 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
221 yuv_mode = true;
222 else
223 yuv_mode = false;
225 for (i = 0; i < *count; i++)
226 omap_vrfb_setup(&vout->vrfb_context[i],
227 vout->smsshado_phy_addr[i], vout->pix.width,
228 vout->pix.height, vout->bpp, yuv_mode);
230 return 0;
233 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
234 struct videobuf_buffer *vb)
236 struct dma_async_tx_descriptor *tx;
237 enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
238 struct dma_chan *chan = vout->vrfb_dma_tx.chan;
239 struct dma_interleaved_template *xt = vout->vrfb_dma_tx.xt;
240 dma_cookie_t cookie;
241 enum dma_status status;
242 enum dss_rotation rotation;
243 size_t dst_icg;
244 u32 pixsize;
246 if (!is_rotation_enabled(vout))
247 return 0;
249 /* If rotation is enabled, copy input buffer into VRFB
250 * memory space using DMA. We are copying input buffer
251 * into VRFB memory space of desired angle and DSS will
252 * read image VRFB memory for 0 degree angle
255 pixsize = vout->bpp * vout->vrfb_bpp;
256 dst_icg = MAX_PIXELS_PER_LINE * pixsize - vout->pix.width * vout->bpp;
258 xt->src_start = vout->buf_phy_addr[vb->i];
259 xt->dst_start = vout->vrfb_context[vb->i].paddr[0];
261 xt->numf = vout->pix.height;
262 xt->frame_size = 1;
263 xt->sgl[0].size = vout->pix.width * vout->bpp;
264 xt->sgl[0].icg = dst_icg;
266 xt->dir = DMA_MEM_TO_MEM;
267 xt->src_sgl = false;
268 xt->src_inc = true;
269 xt->dst_sgl = true;
270 xt->dst_inc = true;
272 tx = dmaengine_prep_interleaved_dma(chan, xt, flags);
273 if (tx == NULL) {
274 pr_err("%s: DMA interleaved prep error\n", __func__);
275 return -EINVAL;
278 tx->callback = omap_vout_vrfb_dma_tx_callback;
279 tx->callback_param = &vout->vrfb_dma_tx;
281 cookie = dmaengine_submit(tx);
282 if (dma_submit_error(cookie)) {
283 pr_err("%s: dmaengine_submit failed (%d)\n", __func__, cookie);
284 return -EINVAL;
287 vout->vrfb_dma_tx.tx_status = 0;
288 dma_async_issue_pending(chan);
290 wait_event_interruptible_timeout(vout->vrfb_dma_tx.wait,
291 vout->vrfb_dma_tx.tx_status == 1,
292 VRFB_TX_TIMEOUT);
294 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
296 if (vout->vrfb_dma_tx.tx_status == 0) {
297 pr_err("%s: Timeout while waiting for DMA\n", __func__);
298 dmaengine_terminate_sync(chan);
299 return -EINVAL;
300 } else if (status != DMA_COMPLETE) {
301 pr_err("%s: DMA completion %s status\n", __func__,
302 status == DMA_ERROR ? "error" : "busy");
303 dmaengine_terminate_sync(chan);
304 return -EINVAL;
307 /* Store buffers physical address into an array. Addresses
308 * from this array will be used to configure DSS */
309 rotation = calc_rotation(vout);
310 vout->queued_buf_addr[vb->i] = (u8 *)
311 vout->vrfb_context[vb->i].paddr[rotation];
312 return 0;
316 * Calculate the buffer offsets from which the streaming should
317 * start. This offset calculation is mainly required because of
318 * the VRFB 32 pixels alignment with rotation.
320 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
322 enum dss_rotation rotation;
323 bool mirroring = vout->mirror;
324 struct v4l2_rect *crop = &vout->crop;
325 struct v4l2_pix_format *pix = &vout->pix;
326 int *cropped_offset = &vout->cropped_offset;
327 int vr_ps = 1, ps = 2, temp_ps = 2;
328 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
330 rotation = calc_rotation(vout);
332 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
333 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
334 if (is_rotation_enabled(vout)) {
336 * ps - Actual pixel size for YUYV/UYVY for
337 * VRFB/Mirroring is 4 bytes
338 * vr_ps - Virtually pixel size for YUYV/UYVY is
339 * 2 bytes
341 ps = 4;
342 vr_ps = 2;
343 } else {
344 ps = 2; /* otherwise the pixel size is 2 byte */
346 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
347 ps = 4;
348 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
349 ps = 3;
351 vout->ps = ps;
352 vout->vr_ps = vr_ps;
354 if (is_rotation_enabled(vout)) {
355 line_length = MAX_PIXELS_PER_LINE;
356 ctop = (pix->height - crop->height) - crop->top;
357 cleft = (pix->width - crop->width) - crop->left;
358 } else {
359 line_length = pix->width;
361 vout->line_length = line_length;
362 switch (rotation) {
363 case dss_rotation_90_degree:
364 offset = vout->vrfb_context[0].yoffset *
365 vout->vrfb_context[0].bytespp;
366 temp_ps = ps / vr_ps;
367 if (!mirroring) {
368 *cropped_offset = offset + line_length *
369 temp_ps * cleft + crop->top * temp_ps;
370 } else {
371 *cropped_offset = offset + line_length * temp_ps *
372 cleft + crop->top * temp_ps + (line_length *
373 ((crop->width / (vr_ps)) - 1) * ps);
375 break;
376 case dss_rotation_180_degree:
377 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
378 vout->vrfb_context[0].bytespp) +
379 (vout->vrfb_context[0].xoffset *
380 vout->vrfb_context[0].bytespp));
381 if (!mirroring) {
382 *cropped_offset = offset + (line_length * ps * ctop) +
383 (cleft / vr_ps) * ps;
385 } else {
386 *cropped_offset = offset + (line_length * ps * ctop) +
387 (cleft / vr_ps) * ps + (line_length *
388 (crop->height - 1) * ps);
390 break;
391 case dss_rotation_270_degree:
392 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
393 vout->vrfb_context[0].bytespp;
394 temp_ps = ps / vr_ps;
395 if (!mirroring) {
396 *cropped_offset = offset + line_length *
397 temp_ps * crop->left + ctop * ps;
398 } else {
399 *cropped_offset = offset + line_length *
400 temp_ps * crop->left + ctop * ps +
401 (line_length * ((crop->width / vr_ps) - 1) *
402 ps);
404 break;
405 case dss_rotation_0_degree:
406 if (!mirroring) {
407 *cropped_offset = (line_length * ps) *
408 crop->top + (crop->left / vr_ps) * ps;
409 } else {
410 *cropped_offset = (line_length * ps) *
411 crop->top + (crop->left / vr_ps) * ps +
412 (line_length * (crop->height - 1) * ps);
414 break;
415 default:
416 *cropped_offset = (line_length * ps * crop->top) /
417 vr_ps + (crop->left * ps) / vr_ps +
418 ((crop->width / vr_ps) - 1) * ps;
419 break;