Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / platform / rcar_fdp1.c
blob2bd5898a62044e1ff250285557a84592572e4235
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Renesas R-Car Fine Display Processor
5 * Video format converter and frame deinterlacer device.
7 * Author: Kieran Bingham, <kieran@bingham.xyz>
8 * Copyright (c) 2016 Renesas Electronics Corporation.
10 * This code is developed and inspired from the vim2m, rcar_jpu,
11 * m2m-deinterlace, and vsp1 drivers.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/fs.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/timer.h>
27 #include <media/rcar-fcp.h>
28 #include <media/v4l2-ctrls.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-event.h>
31 #include <media/v4l2-ioctl.h>
32 #include <media/v4l2-mem2mem.h>
33 #include <media/videobuf2-dma-contig.h>
35 static unsigned int debug;
36 module_param(debug, uint, 0644);
37 MODULE_PARM_DESC(debug, "activate debug info");
39 /* Minimum and maximum frame width/height */
40 #define FDP1_MIN_W 80U
41 #define FDP1_MIN_H 80U
43 #define FDP1_MAX_W 3840U
44 #define FDP1_MAX_H 2160U
46 #define FDP1_MAX_PLANES 3U
47 #define FDP1_MAX_STRIDE 8190U
49 /* Flags that indicate a format can be used for capture/output */
50 #define FDP1_CAPTURE BIT(0)
51 #define FDP1_OUTPUT BIT(1)
53 #define DRIVER_NAME "rcar_fdp1"
55 /* Number of Job's to have available on the processing queue */
56 #define FDP1_NUMBER_JOBS 8
58 #define dprintk(fdp1, fmt, arg...) \
59 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
62 * FDP1 registers and bits
65 /* FDP1 start register - Imm */
66 #define FD1_CTL_CMD 0x0000
67 #define FD1_CTL_CMD_STRCMD BIT(0)
69 /* Sync generator register - Imm */
70 #define FD1_CTL_SGCMD 0x0004
71 #define FD1_CTL_SGCMD_SGEN BIT(0)
73 /* Register set end register - Imm */
74 #define FD1_CTL_REGEND 0x0008
75 #define FD1_CTL_REGEND_REGEND BIT(0)
77 /* Channel activation register - Vupdt */
78 #define FD1_CTL_CHACT 0x000c
79 #define FD1_CTL_CHACT_SMW BIT(9)
80 #define FD1_CTL_CHACT_WR BIT(8)
81 #define FD1_CTL_CHACT_SMR BIT(3)
82 #define FD1_CTL_CHACT_RD2 BIT(2)
83 #define FD1_CTL_CHACT_RD1 BIT(1)
84 #define FD1_CTL_CHACT_RD0 BIT(0)
86 /* Operation Mode Register - Vupdt */
87 #define FD1_CTL_OPMODE 0x0010
88 #define FD1_CTL_OPMODE_PRG BIT(4)
89 #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
90 #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
91 #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
93 #define FD1_CTL_VPERIOD 0x0014
94 #define FD1_CTL_CLKCTRL 0x0018
95 #define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
97 /* Software reset register */
98 #define FD1_CTL_SRESET 0x001c
99 #define FD1_CTL_SRESET_SRST BIT(0)
101 /* Control status register (V-update-status) */
102 #define FD1_CTL_STATUS 0x0024
103 #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
104 #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
105 #define FD1_CTL_STATUS_SGREGSET BIT(10)
106 #define FD1_CTL_STATUS_SGVERR BIT(9)
107 #define FD1_CTL_STATUS_SGFREND BIT(8)
108 #define FD1_CTL_STATUS_BSY BIT(0)
110 #define FD1_CTL_VCYCLE_STAT 0x0028
112 /* Interrupt enable register */
113 #define FD1_CTL_IRQENB 0x0038
114 /* Interrupt status register */
115 #define FD1_CTL_IRQSTA 0x003c
116 /* Interrupt control register */
117 #define FD1_CTL_IRQFSET 0x0040
119 /* Common IRQ Bit settings */
120 #define FD1_CTL_IRQ_VERE BIT(16)
121 #define FD1_CTL_IRQ_VINTE BIT(4)
122 #define FD1_CTL_IRQ_FREE BIT(0)
123 #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
124 FD1_CTL_IRQ_VINTE | \
125 FD1_CTL_IRQ_FREE)
127 /* RPF */
128 #define FD1_RPF_SIZE 0x0060
129 #define FD1_RPF_SIZE_MASK GENMASK(12, 0)
130 #define FD1_RPF_SIZE_H_SHIFT 16
131 #define FD1_RPF_SIZE_V_SHIFT 0
133 #define FD1_RPF_FORMAT 0x0064
134 #define FD1_RPF_FORMAT_CIPM BIT(16)
135 #define FD1_RPF_FORMAT_RSPYCS BIT(13)
136 #define FD1_RPF_FORMAT_RSPUVS BIT(12)
137 #define FD1_RPF_FORMAT_CF BIT(8)
139 #define FD1_RPF_PSTRIDE 0x0068
140 #define FD1_RPF_PSTRIDE_Y_SHIFT 16
141 #define FD1_RPF_PSTRIDE_C_SHIFT 0
143 /* RPF0 Source Component Y Address register */
144 #define FD1_RPF0_ADDR_Y 0x006c
146 /* RPF1 Current Picture Registers */
147 #define FD1_RPF1_ADDR_Y 0x0078
148 #define FD1_RPF1_ADDR_C0 0x007c
149 #define FD1_RPF1_ADDR_C1 0x0080
151 /* RPF2 next picture register */
152 #define FD1_RPF2_ADDR_Y 0x0084
154 #define FD1_RPF_SMSK_ADDR 0x0090
155 #define FD1_RPF_SWAP 0x0094
157 /* WPF */
158 #define FD1_WPF_FORMAT 0x00c0
159 #define FD1_WPF_FORMAT_PDV_SHIFT 24
160 #define FD1_WPF_FORMAT_FCNL BIT(20)
161 #define FD1_WPF_FORMAT_WSPYCS BIT(15)
162 #define FD1_WPF_FORMAT_WSPUVS BIT(14)
163 #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
164 #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
165 #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
166 #define FD1_WPF_FORMAT_CSC BIT(8)
168 #define FD1_WPF_RNDCTL 0x00c4
169 #define FD1_WPF_RNDCTL_CBRM BIT(28)
170 #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
171 #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
172 #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
174 #define FD1_WPF_PSTRIDE 0x00c8
175 #define FD1_WPF_PSTRIDE_Y_SHIFT 16
176 #define FD1_WPF_PSTRIDE_C_SHIFT 0
178 /* WPF Destination picture */
179 #define FD1_WPF_ADDR_Y 0x00cc
180 #define FD1_WPF_ADDR_C0 0x00d0
181 #define FD1_WPF_ADDR_C1 0x00d4
182 #define FD1_WPF_SWAP 0x00d8
183 #define FD1_WPF_SWAP_OSWAP_SHIFT 0
184 #define FD1_WPF_SWAP_SSWAP_SHIFT 4
186 /* WPF/RPF Common */
187 #define FD1_RWPF_SWAP_BYTE BIT(0)
188 #define FD1_RWPF_SWAP_WORD BIT(1)
189 #define FD1_RWPF_SWAP_LWRD BIT(2)
190 #define FD1_RWPF_SWAP_LLWD BIT(3)
192 /* IPC */
193 #define FD1_IPC_MODE 0x0100
194 #define FD1_IPC_MODE_DLI BIT(8)
195 #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
196 #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
197 #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
198 #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
199 #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
201 #define FD1_IPC_SMSK_THRESH 0x0104
202 #define FD1_IPC_SMSK_THRESH_CONST 0x00010002
204 #define FD1_IPC_COMB_DET 0x0108
205 #define FD1_IPC_COMB_DET_CONST 0x00200040
207 #define FD1_IPC_MOTDEC 0x010c
208 #define FD1_IPC_MOTDEC_CONST 0x00008020
210 /* DLI registers */
211 #define FD1_IPC_DLI_BLEND 0x0120
212 #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
214 #define FD1_IPC_DLI_HGAIN 0x0124
215 #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
217 #define FD1_IPC_DLI_SPRS 0x0128
218 #define FD1_IPC_DLI_SPRS_CONST 0x009004ff
220 #define FD1_IPC_DLI_ANGLE 0x012c
221 #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
223 #define FD1_IPC_DLI_ISOPIX0 0x0130
224 #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
226 #define FD1_IPC_DLI_ISOPIX1 0x0134
227 #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
229 /* Sensor registers */
230 #define FD1_IPC_SENSOR_TH0 0x0140
231 #define FD1_IPC_SENSOR_TH0_CONST 0x20208080
233 #define FD1_IPC_SENSOR_TH1 0x0144
234 #define FD1_IPC_SENSOR_TH1_CONST 0
236 #define FD1_IPC_SENSOR_CTL0 0x0170
237 #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
239 #define FD1_IPC_SENSOR_CTL1 0x0174
240 #define FD1_IPC_SENSOR_CTL1_CONST 0
242 #define FD1_IPC_SENSOR_CTL2 0x0178
243 #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
244 #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
246 #define FD1_IPC_SENSOR_CTL3 0x017c
247 #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
248 #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
250 /* Line memory pixel number register */
251 #define FD1_IPC_LMEM 0x01e0
252 #define FD1_IPC_LMEM_LINEAR 1024
253 #define FD1_IPC_LMEM_TILE 960
255 /* Internal Data (HW Version) */
256 #define FD1_IP_INTDATA 0x0800
257 #define FD1_IP_H3_ES1 0x02010101
258 #define FD1_IP_M3W 0x02010202
259 #define FD1_IP_H3 0x02010203
260 #define FD1_IP_M3N 0x02010204
261 #define FD1_IP_E3 0x02010205
263 /* LUTs */
264 #define FD1_LUT_DIF_ADJ 0x1000
265 #define FD1_LUT_SAD_ADJ 0x1400
266 #define FD1_LUT_BLD_GAIN 0x1800
267 #define FD1_LUT_DIF_GAIN 0x1c00
268 #define FD1_LUT_MDET 0x2000
271 * struct fdp1_fmt - The FDP1 internal format data
272 * @fourcc: the fourcc code, to match the V4L2 API
273 * @bpp: bits per pixel per plane
274 * @num_planes: number of planes
275 * @hsub: horizontal subsampling factor
276 * @vsub: vertical subsampling factor
277 * @fmt: 7-bit format code for the fdp1 hardware
278 * @swap_yc: the Y and C components are swapped (Y comes before C)
279 * @swap_uv: the U and V components are swapped (V comes before U)
280 * @swap: swap register control
281 * @types: types of queue this format is applicable to
283 struct fdp1_fmt {
284 u32 fourcc;
285 u8 bpp[3];
286 u8 num_planes;
287 u8 hsub;
288 u8 vsub;
289 u8 fmt;
290 bool swap_yc;
291 bool swap_uv;
292 u8 swap;
293 u8 types;
296 static const struct fdp1_fmt fdp1_formats[] = {
297 /* RGB formats are only supported by the Write Pixel Formatter */
299 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
300 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
301 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
302 FDP1_CAPTURE },
303 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
304 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
305 FD1_RWPF_SWAP_WORD,
306 FDP1_CAPTURE },
307 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
308 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
309 FD1_RWPF_SWAP_WORD,
310 FDP1_CAPTURE },
311 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
312 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
313 FD1_RWPF_SWAP_WORD,
314 FDP1_CAPTURE },
315 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
316 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
317 FDP1_CAPTURE },
318 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
319 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
320 FDP1_CAPTURE },
321 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
322 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
323 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
324 FDP1_CAPTURE },
325 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
326 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
327 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
328 FDP1_CAPTURE },
329 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
330 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
331 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
332 FDP1_CAPTURE },
333 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
334 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
335 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
336 FDP1_CAPTURE },
337 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
338 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
339 FD1_RWPF_SWAP_WORD,
340 FDP1_CAPTURE },
341 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
342 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
343 FD1_RWPF_SWAP_WORD,
344 FDP1_CAPTURE },
346 /* YUV Formats are supported by Read and Write Pixel Formatters */
348 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
349 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
350 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
351 FDP1_CAPTURE | FDP1_OUTPUT },
352 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
353 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
354 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
355 FDP1_CAPTURE | FDP1_OUTPUT },
356 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
357 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
358 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
359 FDP1_CAPTURE | FDP1_OUTPUT },
360 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
361 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
362 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
363 FDP1_CAPTURE | FDP1_OUTPUT },
364 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
365 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
366 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
367 FDP1_CAPTURE | FDP1_OUTPUT },
368 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
369 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
370 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
371 FDP1_CAPTURE | FDP1_OUTPUT },
372 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
373 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
374 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
375 FDP1_CAPTURE | FDP1_OUTPUT },
376 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
377 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
378 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
379 FDP1_CAPTURE | FDP1_OUTPUT },
380 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
381 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
382 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
383 FDP1_CAPTURE | FDP1_OUTPUT },
384 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
385 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
386 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
387 FDP1_CAPTURE | FDP1_OUTPUT },
388 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
389 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
390 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
391 FDP1_CAPTURE | FDP1_OUTPUT },
392 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
393 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
394 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
395 FDP1_CAPTURE | FDP1_OUTPUT },
396 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
397 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
398 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
399 FDP1_CAPTURE | FDP1_OUTPUT },
400 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
401 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
402 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
403 FDP1_CAPTURE | FDP1_OUTPUT },
406 static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
408 return fmt->fmt <= 0x1b; /* Last RGB code */
412 * FDP1 Lookup tables range from 0...255 only
414 * Each table must be less than 256 entries, and all tables
415 * are padded out to 256 entries by duplicating the last value.
417 static const u8 fdp1_diff_adj[] = {
418 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
419 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
420 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
423 static const u8 fdp1_sad_adj[] = {
424 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
425 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
426 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
429 static const u8 fdp1_bld_gain[] = {
430 0x80,
433 static const u8 fdp1_dif_gain[] = {
434 0x80,
437 static const u8 fdp1_mdet[] = {
438 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
439 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
440 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
441 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
442 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
443 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
444 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
445 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
446 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
447 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
448 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
449 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
450 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
451 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
452 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
453 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
454 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
455 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
456 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
457 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
458 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
459 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
460 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
461 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
462 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
463 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
464 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
465 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
466 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
467 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
468 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
469 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
472 /* Per-queue, driver-specific private data */
473 struct fdp1_q_data {
474 const struct fdp1_fmt *fmt;
475 struct v4l2_pix_format_mplane format;
477 unsigned int vsize;
478 unsigned int stride_y;
479 unsigned int stride_c;
482 static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
484 const struct fdp1_fmt *fmt;
485 unsigned int i;
487 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
488 fmt = &fdp1_formats[i];
489 if (fmt->fourcc == pixelformat)
490 return fmt;
493 return NULL;
496 enum fdp1_deint_mode {
497 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
498 FDP1_ADAPT2D3D,
499 FDP1_FIXED2D,
500 FDP1_FIXED3D,
501 FDP1_PREVFIELD,
502 FDP1_NEXTFIELD,
505 #define FDP1_DEINT_MODE_USES_NEXT(mode) \
506 (mode == FDP1_ADAPT2D3D || \
507 mode == FDP1_FIXED3D || \
508 mode == FDP1_NEXTFIELD)
510 #define FDP1_DEINT_MODE_USES_PREV(mode) \
511 (mode == FDP1_ADAPT2D3D || \
512 mode == FDP1_FIXED3D || \
513 mode == FDP1_PREVFIELD)
516 * FDP1 operates on potentially 3 fields, which are tracked
517 * from the VB buffers using this context structure.
518 * Will always be a field or a full frame, never two fields.
520 struct fdp1_field_buffer {
521 struct vb2_v4l2_buffer *vb;
522 dma_addr_t addrs[3];
524 /* Should be NONE:TOP:BOTTOM only */
525 enum v4l2_field field;
527 /* Flag to indicate this is the last field in the vb */
528 bool last_field;
530 /* Buffer queue lists */
531 struct list_head list;
534 struct fdp1_buffer {
535 struct v4l2_m2m_buffer m2m_buf;
536 struct fdp1_field_buffer fields[2];
537 unsigned int num_fields;
540 static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
542 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
545 struct fdp1_job {
546 struct fdp1_field_buffer *previous;
547 struct fdp1_field_buffer *active;
548 struct fdp1_field_buffer *next;
549 struct fdp1_field_buffer *dst;
551 /* A job can only be on one list at a time */
552 struct list_head list;
555 struct fdp1_dev {
556 struct v4l2_device v4l2_dev;
557 struct video_device vfd;
559 struct mutex dev_mutex;
560 spinlock_t irqlock;
561 spinlock_t device_process_lock;
563 void __iomem *regs;
564 unsigned int irq;
565 struct device *dev;
567 /* Job Queues */
568 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
569 struct list_head free_job_list;
570 struct list_head queued_job_list;
571 struct list_head hw_job_list;
573 unsigned int clk_rate;
575 struct rcar_fcp_device *fcp;
576 struct v4l2_m2m_dev *m2m_dev;
579 struct fdp1_ctx {
580 struct v4l2_fh fh;
581 struct fdp1_dev *fdp1;
583 struct v4l2_ctrl_handler hdl;
584 unsigned int sequence;
586 /* Processed buffers in this transaction */
587 u8 num_processed;
589 /* Transaction length (i.e. how many buffers per transaction) */
590 u32 translen;
592 /* Abort requested by m2m */
593 int aborting;
595 /* Deinterlace processing mode */
596 enum fdp1_deint_mode deint_mode;
599 * Adaptive 2D/3D mode uses a shared mask
600 * This is allocated at streamon, if the ADAPT2D3D mode
601 * is requested
603 unsigned int smsk_size;
604 dma_addr_t smsk_addr[2];
605 void *smsk_cpu;
607 /* Capture pipeline, can specify an alpha value
608 * for supported formats. 0-255 only
610 unsigned char alpha;
612 /* Source and destination queue data */
613 struct fdp1_q_data out_q; /* HW Source */
614 struct fdp1_q_data cap_q; /* HW Destination */
617 * Field Queues
618 * Interlaced fields are used on 3 occasions, and tracked in this list.
620 * V4L2 Buffers are tracked inside the fdp1_buffer
621 * and released when the last 'field' completes
623 struct list_head fields_queue;
624 unsigned int buffers_queued;
627 * For de-interlacing we need to track our previous buffer
628 * while preparing our job lists.
630 struct fdp1_field_buffer *previous;
633 static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
635 return container_of(fh, struct fdp1_ctx, fh);
638 static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
639 enum v4l2_buf_type type)
641 if (V4L2_TYPE_IS_OUTPUT(type))
642 return &ctx->out_q;
643 else
644 return &ctx->cap_q;
648 * list_remove_job: Take the first item off the specified job list
650 * Returns: pointer to a job, or NULL if the list is empty.
652 static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
653 struct list_head *list)
655 struct fdp1_job *job;
656 unsigned long flags;
658 spin_lock_irqsave(&fdp1->irqlock, flags);
659 job = list_first_entry_or_null(list, struct fdp1_job, list);
660 if (job)
661 list_del(&job->list);
662 spin_unlock_irqrestore(&fdp1->irqlock, flags);
664 return job;
668 * list_add_job: Add a job to the specified job list
670 * Returns: void - always succeeds
672 static void list_add_job(struct fdp1_dev *fdp1,
673 struct list_head *list,
674 struct fdp1_job *job)
676 unsigned long flags;
678 spin_lock_irqsave(&fdp1->irqlock, flags);
679 list_add_tail(&job->list, list);
680 spin_unlock_irqrestore(&fdp1->irqlock, flags);
683 static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
685 return list_remove_job(fdp1, &fdp1->free_job_list);
688 static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
690 /* Ensure that all residue from previous jobs is gone */
691 memset(job, 0, sizeof(struct fdp1_job));
693 list_add_job(fdp1, &fdp1->free_job_list, job);
696 static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
698 list_add_job(fdp1, &fdp1->queued_job_list, job);
701 static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
703 return list_remove_job(fdp1, &fdp1->queued_job_list);
706 static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
708 list_add_job(fdp1, &fdp1->hw_job_list, job);
711 static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
713 return list_remove_job(fdp1, &fdp1->hw_job_list);
717 * Buffer lists handling
719 static void fdp1_field_complete(struct fdp1_ctx *ctx,
720 struct fdp1_field_buffer *fbuf)
722 /* job->previous may be on the first field */
723 if (!fbuf)
724 return;
726 if (fbuf->last_field)
727 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
730 static void fdp1_queue_field(struct fdp1_ctx *ctx,
731 struct fdp1_field_buffer *fbuf)
733 unsigned long flags;
735 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
736 list_add_tail(&fbuf->list, &ctx->fields_queue);
737 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
739 ctx->buffers_queued++;
742 static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
744 struct fdp1_field_buffer *fbuf;
745 unsigned long flags;
747 ctx->buffers_queued--;
749 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
750 fbuf = list_first_entry_or_null(&ctx->fields_queue,
751 struct fdp1_field_buffer, list);
752 if (fbuf)
753 list_del(&fbuf->list);
754 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
756 return fbuf;
760 * Return the next field in the queue - or NULL,
761 * without removing the item from the list
763 static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
765 struct fdp1_field_buffer *fbuf;
766 unsigned long flags;
768 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
769 fbuf = list_first_entry_or_null(&ctx->fields_queue,
770 struct fdp1_field_buffer, list);
771 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
773 return fbuf;
776 static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
778 u32 value = ioread32(fdp1->regs + reg);
780 if (debug >= 2)
781 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
783 return value;
786 static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
788 if (debug >= 2)
789 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
791 iowrite32(val, fdp1->regs + reg);
794 /* IPC registers are to be programmed with constant values */
795 static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
797 struct fdp1_dev *fdp1 = ctx->fdp1;
799 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
800 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
801 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
803 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
804 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
805 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
806 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
807 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
808 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
812 static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
814 struct fdp1_dev *fdp1 = ctx->fdp1;
815 struct fdp1_q_data *src_q_data = &ctx->out_q;
816 unsigned int x0, x1;
817 unsigned int hsize = src_q_data->format.width;
818 unsigned int vsize = src_q_data->format.height;
820 x0 = hsize / 3;
821 x1 = 2 * hsize / 3;
823 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
824 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
825 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
826 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
828 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
829 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
830 FD1_IPC_SENSOR_CTL2);
832 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
833 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
834 FD1_IPC_SENSOR_CTL3);
838 * fdp1_write_lut: Write a padded LUT to the hw
840 * FDP1 uses constant data for de-interlacing processing,
841 * with large tables. These hardware tables are all 256 bytes
842 * long, however they often contain repeated data at the end.
844 * The last byte of the table is written to all remaining entries.
846 static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
847 unsigned int len, unsigned int base)
849 unsigned int i;
850 u8 pad;
852 /* Tables larger than the hw are clipped */
853 len = min(len, 256u);
855 for (i = 0; i < len; i++)
856 fdp1_write(fdp1, lut[i], base + (i*4));
858 /* Tables are padded with the last entry */
859 pad = lut[i-1];
861 for (; i < 256; i++)
862 fdp1_write(fdp1, pad, base + (i*4));
865 static void fdp1_set_lut(struct fdp1_dev *fdp1)
867 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
868 FD1_LUT_DIF_ADJ);
869 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
870 FD1_LUT_SAD_ADJ);
871 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
872 FD1_LUT_BLD_GAIN);
873 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
874 FD1_LUT_DIF_GAIN);
875 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
876 FD1_LUT_MDET);
879 static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
880 struct fdp1_job *job)
882 struct fdp1_dev *fdp1 = ctx->fdp1;
883 u32 picture_size;
884 u32 pstride;
885 u32 format;
886 u32 smsk_addr;
888 struct fdp1_q_data *q_data = &ctx->out_q;
890 /* Picture size is common to Source and Destination frames */
891 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
892 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
894 /* Strides */
895 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
896 if (q_data->format.num_planes > 1)
897 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
899 /* Format control */
900 format = q_data->fmt->fmt;
901 if (q_data->fmt->swap_yc)
902 format |= FD1_RPF_FORMAT_RSPYCS;
904 if (q_data->fmt->swap_uv)
905 format |= FD1_RPF_FORMAT_RSPUVS;
907 if (job->active->field == V4L2_FIELD_BOTTOM) {
908 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
909 smsk_addr = ctx->smsk_addr[0];
910 } else {
911 smsk_addr = ctx->smsk_addr[1];
914 /* Deint mode is non-zero when deinterlacing */
915 if (ctx->deint_mode)
916 format |= FD1_RPF_FORMAT_CIPM;
918 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
919 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
920 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
921 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
922 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
924 /* Previous Field Channel (CH0) */
925 if (job->previous)
926 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
928 /* Current Field Channel (CH1) */
929 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
930 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
931 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
933 /* Next Field Channel (CH2) */
934 if (job->next)
935 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
938 static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
939 struct fdp1_job *job)
941 struct fdp1_dev *fdp1 = ctx->fdp1;
942 struct fdp1_q_data *src_q_data = &ctx->out_q;
943 struct fdp1_q_data *q_data = &ctx->cap_q;
944 u32 pstride;
945 u32 format;
946 u32 swap;
947 u32 rndctl;
949 pstride = q_data->format.plane_fmt[0].bytesperline
950 << FD1_WPF_PSTRIDE_Y_SHIFT;
952 if (q_data->format.num_planes > 1)
953 pstride |= q_data->format.plane_fmt[1].bytesperline
954 << FD1_WPF_PSTRIDE_C_SHIFT;
956 format = q_data->fmt->fmt; /* Output Format Code */
958 if (q_data->fmt->swap_yc)
959 format |= FD1_WPF_FORMAT_WSPYCS;
961 if (q_data->fmt->swap_uv)
962 format |= FD1_WPF_FORMAT_WSPUVS;
964 if (fdp1_fmt_is_rgb(q_data->fmt)) {
965 /* Enable Colour Space conversion */
966 format |= FD1_WPF_FORMAT_CSC;
968 /* Set WRTM */
969 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
970 format |= FD1_WPF_FORMAT_WRTM_709_16;
971 else if (src_q_data->format.quantization ==
972 V4L2_QUANTIZATION_FULL_RANGE)
973 format |= FD1_WPF_FORMAT_WRTM_601_0;
974 else
975 format |= FD1_WPF_FORMAT_WRTM_601_16;
978 /* Set an alpha value into the Pad Value */
979 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
981 /* Determine picture rounding and clipping */
982 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
983 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
985 /* WPF Swap needs both ISWAP and OSWAP setting */
986 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
987 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
989 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
990 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
991 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
992 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
994 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
995 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
996 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
999 static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
1000 struct fdp1_job *job)
1002 struct fdp1_dev *fdp1 = ctx->fdp1;
1003 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1004 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1005 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1007 /* De-interlacing Mode */
1008 switch (ctx->deint_mode) {
1009 default:
1010 case FDP1_PROGRESSIVE:
1011 dprintk(fdp1, "Progressive Mode\n");
1012 opmode |= FD1_CTL_OPMODE_PRG;
1013 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1014 break;
1015 case FDP1_ADAPT2D3D:
1016 dprintk(fdp1, "Adapt2D3D Mode\n");
1017 if (ctx->sequence == 0 || ctx->aborting)
1018 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1019 else
1020 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1022 if (ctx->sequence > 1) {
1023 channels |= FD1_CTL_CHACT_SMW;
1024 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1027 if (ctx->sequence > 2)
1028 channels |= FD1_CTL_CHACT_SMR;
1030 break;
1031 case FDP1_FIXED3D:
1032 dprintk(fdp1, "Fixed 3D Mode\n");
1033 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1034 /* Except for first and last frame, enable all channels */
1035 if (!(ctx->sequence == 0 || ctx->aborting))
1036 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1037 break;
1038 case FDP1_FIXED2D:
1039 dprintk(fdp1, "Fixed 2D Mode\n");
1040 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1041 /* No extra channels enabled */
1042 break;
1043 case FDP1_PREVFIELD:
1044 dprintk(fdp1, "Previous Field Mode\n");
1045 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1046 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1047 break;
1048 case FDP1_NEXTFIELD:
1049 dprintk(fdp1, "Next Field Mode\n");
1050 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1051 channels |= FD1_CTL_CHACT_RD2; /* Next */
1052 break;
1055 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1056 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1057 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1061 * fdp1_device_process() - Run the hardware
1063 * Configure and start the hardware to generate a single frame
1064 * of output given our input parameters.
1066 static int fdp1_device_process(struct fdp1_ctx *ctx)
1069 struct fdp1_dev *fdp1 = ctx->fdp1;
1070 struct fdp1_job *job;
1071 unsigned long flags;
1073 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1075 /* Get a job to process */
1076 job = get_queued_job(fdp1);
1077 if (!job) {
1079 * VINT can call us to see if we can queue another job.
1080 * If we have no work to do, we simply return.
1082 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1083 return 0;
1086 /* First Frame only? ... */
1087 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1089 /* Set the mode, and configuration */
1090 fdp1_configure_deint_mode(ctx, job);
1092 /* DLI Static Configuration */
1093 fdp1_set_ipc_dli(ctx);
1095 /* Sensor Configuration */
1096 fdp1_set_ipc_sensor(ctx);
1098 /* Setup the source picture */
1099 fdp1_configure_rpf(ctx, job);
1101 /* Setup the destination picture */
1102 fdp1_configure_wpf(ctx, job);
1104 /* Line Memory Pixel Number Register for linear access */
1105 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1107 /* Enable Interrupts */
1108 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1110 /* Finally, the Immediate Registers */
1112 /* This job is now in the HW queue */
1113 queue_hw_job(fdp1, job);
1115 /* Start the command */
1116 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1118 /* Registers will update to HW at next VINT */
1119 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1121 /* Enable VINT Generator */
1122 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1124 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1126 return 0;
1130 * mem2mem callbacks
1134 * job_ready() - check whether an instance is ready to be scheduled to run
1136 static int fdp1_m2m_job_ready(void *priv)
1138 struct fdp1_ctx *ctx = priv;
1139 struct fdp1_q_data *src_q_data = &ctx->out_q;
1140 int srcbufs = 1;
1141 int dstbufs = 1;
1143 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1144 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1145 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1147 /* One output buffer is required for each field */
1148 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1149 dstbufs = 2;
1151 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1152 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1153 dprintk(ctx->fdp1, "Not enough buffers available\n");
1154 return 0;
1157 return 1;
1160 static void fdp1_m2m_job_abort(void *priv)
1162 struct fdp1_ctx *ctx = priv;
1164 dprintk(ctx->fdp1, "+\n");
1166 /* Will cancel the transaction in the next interrupt handler */
1167 ctx->aborting = 1;
1169 /* Immediate abort sequence */
1170 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1171 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1175 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1177 * Prepare the next field, (or frame in progressive) and an output
1178 * buffer for the hardware to perform a single operation.
1180 static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1182 struct vb2_v4l2_buffer *vbuf;
1183 struct fdp1_buffer *fbuf;
1184 struct fdp1_dev *fdp1 = ctx->fdp1;
1185 struct fdp1_job *job;
1186 unsigned int buffers_required = 1;
1188 dprintk(fdp1, "+\n");
1190 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1191 buffers_required = 2;
1193 if (ctx->buffers_queued < buffers_required)
1194 return NULL;
1196 job = fdp1_job_alloc(fdp1);
1197 if (!job) {
1198 dprintk(fdp1, "No free jobs currently available\n");
1199 return NULL;
1202 job->active = fdp1_dequeue_field(ctx);
1203 if (!job->active) {
1204 /* Buffer check should prevent this ever happening */
1205 dprintk(fdp1, "No input buffers currently available\n");
1207 fdp1_job_free(fdp1, job);
1208 return NULL;
1211 dprintk(fdp1, "+ Buffer en-route...\n");
1213 /* Source buffers have been prepared on our buffer_queue
1214 * Prepare our Output buffer
1216 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1217 fbuf = to_fdp1_buffer(vbuf);
1218 job->dst = &fbuf->fields[0];
1220 job->active->vb->sequence = ctx->sequence;
1221 job->dst->vb->sequence = ctx->sequence;
1222 ctx->sequence++;
1224 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1225 job->previous = ctx->previous;
1227 /* Active buffer becomes the next job's previous buffer */
1228 ctx->previous = job->active;
1231 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1232 /* Must be called after 'active' is dequeued */
1233 job->next = fdp1_peek_queued_field(ctx);
1236 /* Transfer timestamps and flags from src->dst */
1238 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1240 job->dst->vb->flags = job->active->vb->flags &
1241 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1243 /* Ideally, the frame-end function will just 'check' to see
1244 * if there are more jobs instead
1246 ctx->translen++;
1248 /* Finally, Put this job on the processing queue */
1249 queue_job(fdp1, job);
1251 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1253 return job;
1256 /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1258 * A single input buffer is taken and serialised into our fdp1_buffer
1259 * queue. The queue is then processed to create as many jobs as possible
1260 * from our available input.
1262 static void fdp1_m2m_device_run(void *priv)
1264 struct fdp1_ctx *ctx = priv;
1265 struct fdp1_dev *fdp1 = ctx->fdp1;
1266 struct vb2_v4l2_buffer *src_vb;
1267 struct fdp1_buffer *buf;
1268 unsigned int i;
1270 dprintk(fdp1, "+\n");
1272 ctx->translen = 0;
1274 /* Get our incoming buffer of either one or two fields, or one frame */
1275 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1276 buf = to_fdp1_buffer(src_vb);
1278 for (i = 0; i < buf->num_fields; i++) {
1279 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1281 fdp1_queue_field(ctx, fbuf);
1282 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1283 i, fbuf->last_field);
1286 /* Queue as many jobs as our data provides for */
1287 while (fdp1_prepare_job(ctx))
1290 if (ctx->translen == 0) {
1291 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1292 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1293 return;
1296 /* Kick the job processing action */
1297 fdp1_device_process(ctx);
1301 * device_frame_end:
1303 * Handles the M2M level after a buffer completion event.
1305 static void device_frame_end(struct fdp1_dev *fdp1,
1306 enum vb2_buffer_state state)
1308 struct fdp1_ctx *ctx;
1309 unsigned long flags;
1310 struct fdp1_job *job = get_hw_queued_job(fdp1);
1312 dprintk(fdp1, "+\n");
1314 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1316 if (ctx == NULL) {
1317 v4l2_err(&fdp1->v4l2_dev,
1318 "Instance released before the end of transaction\n");
1319 return;
1322 ctx->num_processed++;
1325 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1326 * reference is complete
1328 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1329 fdp1_field_complete(ctx, job->previous);
1330 else
1331 fdp1_field_complete(ctx, job->active);
1333 spin_lock_irqsave(&fdp1->irqlock, flags);
1334 v4l2_m2m_buf_done(job->dst->vb, state);
1335 job->dst = NULL;
1336 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1338 /* Move this job back to the free job list */
1339 fdp1_job_free(fdp1, job);
1341 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1342 ctx->num_processed, ctx->translen);
1344 if (ctx->num_processed == ctx->translen ||
1345 ctx->aborting) {
1346 dprintk(ctx->fdp1, "Finishing transaction\n");
1347 ctx->num_processed = 0;
1348 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1349 } else {
1351 * For pipelined performance support, this would
1352 * be called from a VINT handler
1354 fdp1_device_process(ctx);
1359 * video ioctls
1361 static int fdp1_vidioc_querycap(struct file *file, void *priv,
1362 struct v4l2_capability *cap)
1364 strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1365 strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1366 snprintf(cap->bus_info, sizeof(cap->bus_info),
1367 "platform:%s", DRIVER_NAME);
1368 return 0;
1371 static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1373 unsigned int i, num;
1375 num = 0;
1377 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1378 if (fdp1_formats[i].types & type) {
1379 if (num == f->index)
1380 break;
1381 ++num;
1385 /* Format not found */
1386 if (i >= ARRAY_SIZE(fdp1_formats))
1387 return -EINVAL;
1389 /* Format found */
1390 f->pixelformat = fdp1_formats[i].fourcc;
1392 return 0;
1395 static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1396 struct v4l2_fmtdesc *f)
1398 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1401 static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1402 struct v4l2_fmtdesc *f)
1404 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1407 static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1409 struct fdp1_q_data *q_data;
1410 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1412 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1413 return -EINVAL;
1415 q_data = get_q_data(ctx, f->type);
1416 f->fmt.pix_mp = q_data->format;
1418 return 0;
1421 static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1422 const struct fdp1_fmt *fmt)
1424 unsigned int i;
1426 /* Compute and clamp the stride and image size. */
1427 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1428 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1429 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1430 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1431 unsigned int align = 128;
1432 unsigned int bpl;
1434 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1435 pix->width / hsub * fmt->bpp[i] / 8,
1436 round_down(FDP1_MAX_STRIDE, align));
1438 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1439 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1440 * pix->height / vsub;
1442 memset(pix->plane_fmt[i].reserved, 0,
1443 sizeof(pix->plane_fmt[i].reserved));
1446 if (fmt->num_planes == 3) {
1447 /* The two chroma planes must have the same stride. */
1448 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1449 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1451 memset(pix->plane_fmt[2].reserved, 0,
1452 sizeof(pix->plane_fmt[2].reserved));
1456 static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1457 const struct fdp1_fmt **fmtinfo,
1458 struct v4l2_pix_format_mplane *pix)
1460 const struct fdp1_fmt *fmt;
1461 unsigned int width;
1462 unsigned int height;
1464 /* Validate the pixel format to ensure the output queue supports it. */
1465 fmt = fdp1_find_format(pix->pixelformat);
1466 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1467 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1469 if (fmtinfo)
1470 *fmtinfo = fmt;
1472 pix->pixelformat = fmt->fourcc;
1473 pix->num_planes = fmt->num_planes;
1476 * Progressive video and all interlaced field orders are acceptable.
1477 * Default to V4L2_FIELD_INTERLACED.
1479 if (pix->field != V4L2_FIELD_NONE &&
1480 pix->field != V4L2_FIELD_ALTERNATE &&
1481 !V4L2_FIELD_HAS_BOTH(pix->field))
1482 pix->field = V4L2_FIELD_INTERLACED;
1485 * The deinterlacer doesn't care about the colorspace, accept all values
1486 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1487 * at the output of the deinterlacer supports a subset of encodings and
1488 * quantization methods and will only be available when the colorspace
1489 * allows it.
1491 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1492 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1495 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1496 * them to the supported frame size range. The height boundary are
1497 * related to the full frame, divide them by two when the format passes
1498 * fields in separate buffers.
1500 width = round_down(pix->width, fmt->hsub);
1501 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1503 height = round_down(pix->height, fmt->vsub);
1504 if (pix->field == V4L2_FIELD_ALTERNATE)
1505 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1506 else
1507 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1509 fdp1_compute_stride(pix, fmt);
1512 static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1513 const struct fdp1_fmt **fmtinfo,
1514 struct v4l2_pix_format_mplane *pix)
1516 struct fdp1_q_data *src_data = &ctx->out_q;
1517 enum v4l2_colorspace colorspace;
1518 enum v4l2_ycbcr_encoding ycbcr_enc;
1519 enum v4l2_quantization quantization;
1520 const struct fdp1_fmt *fmt;
1521 bool allow_rgb;
1524 * Validate the pixel format. We can only accept RGB output formats if
1525 * the input encoding and quantization are compatible with the format
1526 * conversions supported by the hardware. The supported combinations are
1528 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1529 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1530 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1532 colorspace = src_data->format.colorspace;
1534 ycbcr_enc = src_data->format.ycbcr_enc;
1535 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1536 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1538 quantization = src_data->format.quantization;
1539 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1540 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1541 ycbcr_enc);
1543 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1544 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1545 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1547 fmt = fdp1_find_format(pix->pixelformat);
1548 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1549 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1551 if (fmtinfo)
1552 *fmtinfo = fmt;
1554 pix->pixelformat = fmt->fourcc;
1555 pix->num_planes = fmt->num_planes;
1556 pix->field = V4L2_FIELD_NONE;
1559 * The colorspace on the capture queue is copied from the output queue
1560 * as the hardware can't change the colorspace. It can convert YCbCr to
1561 * RGB though, in which case the encoding and quantization are set to
1562 * default values as anything else wouldn't make sense.
1564 pix->colorspace = src_data->format.colorspace;
1565 pix->xfer_func = src_data->format.xfer_func;
1567 if (fdp1_fmt_is_rgb(fmt)) {
1568 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1569 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1570 } else {
1571 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1572 pix->quantization = src_data->format.quantization;
1576 * The frame width is identical to the output queue, and the height is
1577 * either doubled or identical depending on whether the output queue
1578 * field order contains one or two fields per frame.
1580 pix->width = src_data->format.width;
1581 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1582 pix->height = 2 * src_data->format.height;
1583 else
1584 pix->height = src_data->format.height;
1586 fdp1_compute_stride(pix, fmt);
1589 static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1591 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1593 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1594 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1595 else
1596 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1598 dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
1599 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1600 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1601 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1603 return 0;
1606 static void fdp1_set_format(struct fdp1_ctx *ctx,
1607 struct v4l2_pix_format_mplane *pix,
1608 enum v4l2_buf_type type)
1610 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1611 const struct fdp1_fmt *fmtinfo;
1613 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1614 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1615 else
1616 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1618 q_data->fmt = fmtinfo;
1619 q_data->format = *pix;
1621 q_data->vsize = pix->height;
1622 if (pix->field != V4L2_FIELD_NONE)
1623 q_data->vsize /= 2;
1625 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1626 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1628 /* Adjust strides for interleaved buffers */
1629 if (pix->field == V4L2_FIELD_INTERLACED ||
1630 pix->field == V4L2_FIELD_INTERLACED_TB ||
1631 pix->field == V4L2_FIELD_INTERLACED_BT) {
1632 q_data->stride_y *= 2;
1633 q_data->stride_c *= 2;
1636 /* Propagate the format from the output node to the capture node. */
1637 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1638 struct fdp1_q_data *dst_data = &ctx->cap_q;
1641 * Copy the format, clear the per-plane bytes per line and image
1642 * size, override the field and double the height if needed.
1644 dst_data->format = q_data->format;
1645 memset(dst_data->format.plane_fmt, 0,
1646 sizeof(dst_data->format.plane_fmt));
1648 dst_data->format.field = V4L2_FIELD_NONE;
1649 if (pix->field == V4L2_FIELD_ALTERNATE)
1650 dst_data->format.height *= 2;
1652 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1654 dst_data->vsize = dst_data->format.height;
1655 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1656 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1660 static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1662 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1663 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1664 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1666 if (vb2_is_busy(vq)) {
1667 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1668 return -EBUSY;
1671 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1673 dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
1674 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1675 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1676 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1678 return 0;
1681 static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1683 struct fdp1_ctx *ctx =
1684 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1685 struct fdp1_q_data *src_q_data = &ctx->out_q;
1687 switch (ctrl->id) {
1688 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1689 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1690 ctrl->val = 2;
1691 else
1692 ctrl->val = 1;
1693 return 0;
1696 return 1;
1699 static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1701 struct fdp1_ctx *ctx =
1702 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1704 switch (ctrl->id) {
1705 case V4L2_CID_ALPHA_COMPONENT:
1706 ctx->alpha = ctrl->val;
1707 break;
1709 case V4L2_CID_DEINTERLACING_MODE:
1710 ctx->deint_mode = ctrl->val;
1711 break;
1714 return 0;
1717 static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1718 .s_ctrl = fdp1_s_ctrl,
1719 .g_volatile_ctrl = fdp1_g_ctrl,
1722 static const char * const fdp1_ctrl_deint_menu[] = {
1723 "Progressive",
1724 "Adaptive 2D/3D",
1725 "Fixed 2D",
1726 "Fixed 3D",
1727 "Previous field",
1728 "Next field",
1729 NULL
1732 static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1733 .vidioc_querycap = fdp1_vidioc_querycap,
1735 .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
1736 .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
1737 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1738 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1739 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1740 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1741 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1742 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1744 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1745 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1746 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1747 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1748 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1749 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1750 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1752 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1753 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1755 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1756 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1760 * Queue operations
1763 static int fdp1_queue_setup(struct vb2_queue *vq,
1764 unsigned int *nbuffers, unsigned int *nplanes,
1765 unsigned int sizes[],
1766 struct device *alloc_ctxs[])
1768 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1769 struct fdp1_q_data *q_data;
1770 unsigned int i;
1772 q_data = get_q_data(ctx, vq->type);
1774 if (*nplanes) {
1775 if (*nplanes > FDP1_MAX_PLANES)
1776 return -EINVAL;
1778 return 0;
1781 *nplanes = q_data->format.num_planes;
1783 for (i = 0; i < *nplanes; i++)
1784 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1786 return 0;
1789 static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1790 struct vb2_v4l2_buffer *vbuf,
1791 unsigned int field_num)
1793 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1794 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1795 unsigned int num_fields;
1796 unsigned int i;
1798 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1800 fbuf->vb = vbuf;
1801 fbuf->last_field = (field_num + 1) == num_fields;
1803 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1804 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1806 switch (vbuf->field) {
1807 case V4L2_FIELD_INTERLACED:
1809 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1810 * top-bottom for 50Hz. As TV standards are not applicable to
1811 * the mem-to-mem API, use the height as a heuristic.
1813 fbuf->field = (q_data->format.height < 576) == field_num
1814 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1815 break;
1816 case V4L2_FIELD_INTERLACED_TB:
1817 case V4L2_FIELD_SEQ_TB:
1818 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1819 break;
1820 case V4L2_FIELD_INTERLACED_BT:
1821 case V4L2_FIELD_SEQ_BT:
1822 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1823 break;
1824 default:
1825 fbuf->field = vbuf->field;
1826 break;
1829 /* Buffer is completed */
1830 if (!field_num)
1831 return;
1833 /* Adjust buffer addresses for second field */
1834 switch (vbuf->field) {
1835 case V4L2_FIELD_INTERLACED:
1836 case V4L2_FIELD_INTERLACED_TB:
1837 case V4L2_FIELD_INTERLACED_BT:
1838 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1839 fbuf->addrs[i] +=
1840 (i == 0 ? q_data->stride_y : q_data->stride_c);
1841 break;
1842 case V4L2_FIELD_SEQ_TB:
1843 case V4L2_FIELD_SEQ_BT:
1844 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1845 fbuf->addrs[i] += q_data->vsize *
1846 (i == 0 ? q_data->stride_y : q_data->stride_c);
1847 break;
1851 static int fdp1_buf_prepare(struct vb2_buffer *vb)
1853 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1854 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1855 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1856 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1857 unsigned int i;
1859 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1860 bool field_valid = true;
1862 /* Validate the buffer field. */
1863 switch (q_data->format.field) {
1864 case V4L2_FIELD_NONE:
1865 if (vbuf->field != V4L2_FIELD_NONE)
1866 field_valid = false;
1867 break;
1869 case V4L2_FIELD_ALTERNATE:
1870 if (vbuf->field != V4L2_FIELD_TOP &&
1871 vbuf->field != V4L2_FIELD_BOTTOM)
1872 field_valid = false;
1873 break;
1875 case V4L2_FIELD_INTERLACED:
1876 case V4L2_FIELD_SEQ_TB:
1877 case V4L2_FIELD_SEQ_BT:
1878 case V4L2_FIELD_INTERLACED_TB:
1879 case V4L2_FIELD_INTERLACED_BT:
1880 if (vbuf->field != q_data->format.field)
1881 field_valid = false;
1882 break;
1885 if (!field_valid) {
1886 dprintk(ctx->fdp1,
1887 "buffer field %u invalid for format field %u\n",
1888 vbuf->field, q_data->format.field);
1889 return -EINVAL;
1891 } else {
1892 vbuf->field = V4L2_FIELD_NONE;
1895 /* Validate the planes sizes. */
1896 for (i = 0; i < q_data->format.num_planes; i++) {
1897 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1899 if (vb2_plane_size(vb, i) < size) {
1900 dprintk(ctx->fdp1,
1901 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1902 i, q_data->format.num_planes,
1903 vb2_plane_size(vb, i), size);
1904 return -EINVAL;
1907 /* We have known size formats all around */
1908 vb2_set_plane_payload(vb, i, size);
1911 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1912 for (i = 0; i < buf->num_fields; ++i)
1913 fdp1_buf_prepare_field(q_data, vbuf, i);
1915 return 0;
1918 static void fdp1_buf_queue(struct vb2_buffer *vb)
1920 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1921 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1923 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1926 static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1928 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1929 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1931 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1933 * Force our deint_mode when we are progressive,
1934 * ignoring any setting on the device from the user,
1935 * Otherwise, lock in the requested de-interlace mode.
1937 if (q_data->format.field == V4L2_FIELD_NONE)
1938 ctx->deint_mode = FDP1_PROGRESSIVE;
1940 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1941 u32 stride;
1942 dma_addr_t smsk_base;
1943 const u32 bpp = 2; /* bytes per pixel */
1945 stride = round_up(q_data->format.width, 8);
1947 ctx->smsk_size = bpp * stride * q_data->vsize;
1949 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1950 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1952 if (ctx->smsk_cpu == NULL) {
1953 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1954 return -ENOMEM;
1957 ctx->smsk_addr[0] = smsk_base;
1958 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1962 return 0;
1965 static void fdp1_stop_streaming(struct vb2_queue *q)
1967 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1968 struct vb2_v4l2_buffer *vbuf;
1969 unsigned long flags;
1971 while (1) {
1972 if (V4L2_TYPE_IS_OUTPUT(q->type))
1973 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1974 else
1975 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1976 if (vbuf == NULL)
1977 break;
1978 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1979 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1980 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1983 /* Empty Output queues */
1984 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1985 /* Empty our internal queues */
1986 struct fdp1_field_buffer *fbuf;
1988 /* Free any queued buffers */
1989 fbuf = fdp1_dequeue_field(ctx);
1990 while (fbuf != NULL) {
1991 fdp1_field_complete(ctx, fbuf);
1992 fbuf = fdp1_dequeue_field(ctx);
1995 /* Free smsk_data */
1996 if (ctx->smsk_cpu) {
1997 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1998 ctx->smsk_cpu, ctx->smsk_addr[0]);
1999 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
2000 ctx->smsk_cpu = NULL;
2003 WARN(!list_empty(&ctx->fields_queue),
2004 "Buffer queue not empty");
2005 } else {
2006 /* Empty Capture queues (Jobs) */
2007 struct fdp1_job *job;
2009 job = get_queued_job(ctx->fdp1);
2010 while (job) {
2011 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2012 fdp1_field_complete(ctx, job->previous);
2013 else
2014 fdp1_field_complete(ctx, job->active);
2016 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2017 job->dst = NULL;
2019 job = get_queued_job(ctx->fdp1);
2022 /* Free any held buffer in the ctx */
2023 fdp1_field_complete(ctx, ctx->previous);
2025 WARN(!list_empty(&ctx->fdp1->queued_job_list),
2026 "Queued Job List not empty");
2028 WARN(!list_empty(&ctx->fdp1->hw_job_list),
2029 "HW Job list not empty");
2033 static const struct vb2_ops fdp1_qops = {
2034 .queue_setup = fdp1_queue_setup,
2035 .buf_prepare = fdp1_buf_prepare,
2036 .buf_queue = fdp1_buf_queue,
2037 .start_streaming = fdp1_start_streaming,
2038 .stop_streaming = fdp1_stop_streaming,
2039 .wait_prepare = vb2_ops_wait_prepare,
2040 .wait_finish = vb2_ops_wait_finish,
2043 static int queue_init(void *priv, struct vb2_queue *src_vq,
2044 struct vb2_queue *dst_vq)
2046 struct fdp1_ctx *ctx = priv;
2047 int ret;
2049 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2050 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2051 src_vq->drv_priv = ctx;
2052 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2053 src_vq->ops = &fdp1_qops;
2054 src_vq->mem_ops = &vb2_dma_contig_memops;
2055 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2056 src_vq->lock = &ctx->fdp1->dev_mutex;
2057 src_vq->dev = ctx->fdp1->dev;
2059 ret = vb2_queue_init(src_vq);
2060 if (ret)
2061 return ret;
2063 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2064 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2065 dst_vq->drv_priv = ctx;
2066 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2067 dst_vq->ops = &fdp1_qops;
2068 dst_vq->mem_ops = &vb2_dma_contig_memops;
2069 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2070 dst_vq->lock = &ctx->fdp1->dev_mutex;
2071 dst_vq->dev = ctx->fdp1->dev;
2073 return vb2_queue_init(dst_vq);
2077 * File operations
2079 static int fdp1_open(struct file *file)
2081 struct fdp1_dev *fdp1 = video_drvdata(file);
2082 struct v4l2_pix_format_mplane format;
2083 struct fdp1_ctx *ctx = NULL;
2084 struct v4l2_ctrl *ctrl;
2085 int ret = 0;
2087 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2088 return -ERESTARTSYS;
2090 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2091 if (!ctx) {
2092 ret = -ENOMEM;
2093 goto done;
2096 v4l2_fh_init(&ctx->fh, video_devdata(file));
2097 file->private_data = &ctx->fh;
2098 ctx->fdp1 = fdp1;
2100 /* Initialise Queues */
2101 INIT_LIST_HEAD(&ctx->fields_queue);
2103 ctx->translen = 1;
2104 ctx->sequence = 0;
2106 /* Initialise controls */
2108 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2109 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2110 V4L2_CID_DEINTERLACING_MODE,
2111 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2112 fdp1_ctrl_deint_menu);
2114 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2115 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2116 if (ctrl)
2117 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2119 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2120 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2122 if (ctx->hdl.error) {
2123 ret = ctx->hdl.error;
2124 v4l2_ctrl_handler_free(&ctx->hdl);
2125 goto done;
2128 ctx->fh.ctrl_handler = &ctx->hdl;
2129 v4l2_ctrl_handler_setup(&ctx->hdl);
2131 /* Configure default parameters. */
2132 memset(&format, 0, sizeof(format));
2133 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2135 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2137 if (IS_ERR(ctx->fh.m2m_ctx)) {
2138 ret = PTR_ERR(ctx->fh.m2m_ctx);
2140 v4l2_ctrl_handler_free(&ctx->hdl);
2141 kfree(ctx);
2142 goto done;
2145 /* Perform any power management required */
2146 pm_runtime_get_sync(fdp1->dev);
2148 v4l2_fh_add(&ctx->fh);
2150 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2151 ctx, ctx->fh.m2m_ctx);
2153 done:
2154 mutex_unlock(&fdp1->dev_mutex);
2155 return ret;
2158 static int fdp1_release(struct file *file)
2160 struct fdp1_dev *fdp1 = video_drvdata(file);
2161 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2163 dprintk(fdp1, "Releasing instance %p\n", ctx);
2165 v4l2_fh_del(&ctx->fh);
2166 v4l2_fh_exit(&ctx->fh);
2167 v4l2_ctrl_handler_free(&ctx->hdl);
2168 mutex_lock(&fdp1->dev_mutex);
2169 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2170 mutex_unlock(&fdp1->dev_mutex);
2171 kfree(ctx);
2173 pm_runtime_put(fdp1->dev);
2175 return 0;
2178 static const struct v4l2_file_operations fdp1_fops = {
2179 .owner = THIS_MODULE,
2180 .open = fdp1_open,
2181 .release = fdp1_release,
2182 .poll = v4l2_m2m_fop_poll,
2183 .unlocked_ioctl = video_ioctl2,
2184 .mmap = v4l2_m2m_fop_mmap,
2187 static const struct video_device fdp1_videodev = {
2188 .name = DRIVER_NAME,
2189 .vfl_dir = VFL_DIR_M2M,
2190 .fops = &fdp1_fops,
2191 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2192 .ioctl_ops = &fdp1_ioctl_ops,
2193 .minor = -1,
2194 .release = video_device_release_empty,
2197 static const struct v4l2_m2m_ops m2m_ops = {
2198 .device_run = fdp1_m2m_device_run,
2199 .job_ready = fdp1_m2m_job_ready,
2200 .job_abort = fdp1_m2m_job_abort,
2203 static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2205 struct fdp1_dev *fdp1 = dev_id;
2206 u32 int_status;
2207 u32 ctl_status;
2208 u32 vint_cnt;
2209 u32 cycles;
2211 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2212 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2213 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2214 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2215 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2217 /* Clear interrupts */
2218 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2220 if (debug >= 2) {
2221 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2222 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2223 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2224 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2226 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2227 cycles, cycles/(fdp1->clk_rate/1000));
2229 dprintk(fdp1,
2230 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2231 ctl_status, vint_cnt,
2232 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2233 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2234 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2235 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2236 dprintk(fdp1, "***********************************\n");
2239 /* Spurious interrupt */
2240 if (!(FD1_CTL_IRQ_MASK & int_status))
2241 return IRQ_NONE;
2243 /* Work completed, release the frame */
2244 if (FD1_CTL_IRQ_VERE & int_status)
2245 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2246 else if (FD1_CTL_IRQ_FREE & int_status)
2247 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2249 return IRQ_HANDLED;
2252 static int fdp1_probe(struct platform_device *pdev)
2254 struct fdp1_dev *fdp1;
2255 struct video_device *vfd;
2256 struct device_node *fcp_node;
2257 struct resource *res;
2258 struct clk *clk;
2259 unsigned int i;
2261 int ret;
2262 int hw_version;
2264 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2265 if (!fdp1)
2266 return -ENOMEM;
2268 INIT_LIST_HEAD(&fdp1->free_job_list);
2269 INIT_LIST_HEAD(&fdp1->queued_job_list);
2270 INIT_LIST_HEAD(&fdp1->hw_job_list);
2272 /* Initialise the jobs on the free list */
2273 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2274 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2276 mutex_init(&fdp1->dev_mutex);
2278 spin_lock_init(&fdp1->irqlock);
2279 spin_lock_init(&fdp1->device_process_lock);
2280 fdp1->dev = &pdev->dev;
2281 platform_set_drvdata(pdev, fdp1);
2283 /* Memory-mapped registers */
2284 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2285 fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
2286 if (IS_ERR(fdp1->regs))
2287 return PTR_ERR(fdp1->regs);
2289 /* Interrupt service routine registration */
2290 fdp1->irq = ret = platform_get_irq(pdev, 0);
2291 if (ret < 0) {
2292 dev_err(&pdev->dev, "cannot find IRQ\n");
2293 return ret;
2296 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2297 dev_name(&pdev->dev), fdp1);
2298 if (ret) {
2299 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2300 return ret;
2303 /* FCP */
2304 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2305 if (fcp_node) {
2306 fdp1->fcp = rcar_fcp_get(fcp_node);
2307 of_node_put(fcp_node);
2308 if (IS_ERR(fdp1->fcp)) {
2309 dev_dbg(&pdev->dev, "FCP not found (%ld)\n",
2310 PTR_ERR(fdp1->fcp));
2311 return PTR_ERR(fdp1->fcp);
2315 /* Determine our clock rate */
2316 clk = clk_get(&pdev->dev, NULL);
2317 if (IS_ERR(clk))
2318 return PTR_ERR(clk);
2320 fdp1->clk_rate = clk_get_rate(clk);
2321 clk_put(clk);
2323 /* V4L2 device registration */
2324 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2325 if (ret) {
2326 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2327 return ret;
2330 /* M2M registration */
2331 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2332 if (IS_ERR(fdp1->m2m_dev)) {
2333 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2334 ret = PTR_ERR(fdp1->m2m_dev);
2335 goto unreg_dev;
2338 /* Video registration */
2339 fdp1->vfd = fdp1_videodev;
2340 vfd = &fdp1->vfd;
2341 vfd->lock = &fdp1->dev_mutex;
2342 vfd->v4l2_dev = &fdp1->v4l2_dev;
2343 video_set_drvdata(vfd, fdp1);
2344 strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2346 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2347 if (ret) {
2348 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2349 goto release_m2m;
2352 v4l2_info(&fdp1->v4l2_dev,
2353 "Device registered as /dev/video%d\n", vfd->num);
2355 /* Power up the cells to read HW */
2356 pm_runtime_enable(&pdev->dev);
2357 pm_runtime_get_sync(fdp1->dev);
2359 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2360 switch (hw_version) {
2361 case FD1_IP_H3_ES1:
2362 dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
2363 break;
2364 case FD1_IP_M3W:
2365 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2366 break;
2367 case FD1_IP_H3:
2368 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2369 break;
2370 case FD1_IP_M3N:
2371 dprintk(fdp1, "FDP1 Version R-Car M3-N\n");
2372 break;
2373 case FD1_IP_E3:
2374 dprintk(fdp1, "FDP1 Version R-Car E3\n");
2375 break;
2376 default:
2377 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2378 hw_version);
2381 /* Allow the hw to sleep until an open call puts it to use */
2382 pm_runtime_put(fdp1->dev);
2384 return 0;
2386 release_m2m:
2387 v4l2_m2m_release(fdp1->m2m_dev);
2389 unreg_dev:
2390 v4l2_device_unregister(&fdp1->v4l2_dev);
2392 return ret;
2395 static int fdp1_remove(struct platform_device *pdev)
2397 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2399 v4l2_m2m_release(fdp1->m2m_dev);
2400 video_unregister_device(&fdp1->vfd);
2401 v4l2_device_unregister(&fdp1->v4l2_dev);
2402 pm_runtime_disable(&pdev->dev);
2404 return 0;
2407 static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2409 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2411 rcar_fcp_disable(fdp1->fcp);
2413 return 0;
2416 static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2418 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2420 /* Program in the static LUTs */
2421 fdp1_set_lut(fdp1);
2423 return rcar_fcp_enable(fdp1->fcp);
2426 static const struct dev_pm_ops fdp1_pm_ops = {
2427 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2428 fdp1_pm_runtime_resume,
2429 NULL)
2432 static const struct of_device_id fdp1_dt_ids[] = {
2433 { .compatible = "renesas,fdp1" },
2434 { },
2436 MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2438 static struct platform_driver fdp1_pdrv = {
2439 .probe = fdp1_probe,
2440 .remove = fdp1_remove,
2441 .driver = {
2442 .name = DRIVER_NAME,
2443 .of_match_table = fdp1_dt_ids,
2444 .pm = &fdp1_pm_ops,
2448 module_platform_driver(fdp1_pdrv);
2450 MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2451 MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
2452 MODULE_LICENSE("GPL");
2453 MODULE_ALIAS("platform:" DRIVER_NAME);