2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4 * Copyright (c) 2013 Texas Instruments Inc.
5 * David Griego, <dagriego@biglakesoftware.com>
6 * Dale Farnsworth, <dale@farnsworth.org>
7 * Archit Taneja, <archit@ti.com>
9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
10 * Pawel Osciak, <pawel@osciak.com>
11 * Marek Szyprowski, <m.szyprowski@samsung.com>
13 * Based on the virtual v4l2-mem2mem example device
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License version 2 as published by
17 * the Free Software Foundation
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
24 #include <linux/interrupt.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/videodev2.h>
34 #include <linux/log2.h>
35 #include <linux/sizes.h>
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-ctrls.h>
39 #include <media/v4l2-device.h>
40 #include <media/v4l2-event.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mem2mem.h>
43 #include <media/videobuf2-v4l2.h>
44 #include <media/videobuf2-dma-contig.h>
47 #include "vpdma_priv.h"
52 #define VPE_MODULE_NAME "vpe"
54 /* minimum and maximum frame sizes */
60 /* required alignments */
61 #define S_ALIGN 0 /* multiple of 1 */
62 #define H_ALIGN 1 /* multiple of 2 */
64 /* flags that indicate a format can be used for capture/output */
65 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
66 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
68 /* used as plane indices */
69 #define VPE_MAX_PLANES 2
73 /* per m2m context info */
74 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
76 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
79 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
80 * 3 output descriptors, and 10 control descriptors
82 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
83 13 * VPDMA_CFD_CTD_DESC_SIZE)
85 #define vpe_dbg(vpedev, fmt, arg...) \
86 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
87 #define vpe_err(vpedev, fmt, arg...) \
88 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
90 struct vpe_us_coeffs
{
91 unsigned short anchor_fid0_c0
;
92 unsigned short anchor_fid0_c1
;
93 unsigned short anchor_fid0_c2
;
94 unsigned short anchor_fid0_c3
;
95 unsigned short interp_fid0_c0
;
96 unsigned short interp_fid0_c1
;
97 unsigned short interp_fid0_c2
;
98 unsigned short interp_fid0_c3
;
99 unsigned short anchor_fid1_c0
;
100 unsigned short anchor_fid1_c1
;
101 unsigned short anchor_fid1_c2
;
102 unsigned short anchor_fid1_c3
;
103 unsigned short interp_fid1_c0
;
104 unsigned short interp_fid1_c1
;
105 unsigned short interp_fid1_c2
;
106 unsigned short interp_fid1_c3
;
110 * Default upsampler coefficients
112 static const struct vpe_us_coeffs us_coeffs
[] = {
114 /* Coefficients for progressive input */
115 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
116 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
119 /* Coefficients for Top Field Interlaced input */
120 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
121 /* Coefficients for Bottom Field Interlaced input */
122 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
127 * the following registers are for configuring some of the parameters of the
128 * motion and edge detection blocks inside DEI, these generally remain the same,
129 * these could be passed later via userspace if some one needs to tweak these.
131 struct vpe_dei_regs
{
132 unsigned long mdt_spacial_freq_thr_reg
; /* VPE_DEI_REG2 */
133 unsigned long edi_config_reg
; /* VPE_DEI_REG3 */
134 unsigned long edi_lut_reg0
; /* VPE_DEI_REG4 */
135 unsigned long edi_lut_reg1
; /* VPE_DEI_REG5 */
136 unsigned long edi_lut_reg2
; /* VPE_DEI_REG6 */
137 unsigned long edi_lut_reg3
; /* VPE_DEI_REG7 */
141 * default expert DEI register values, unlikely to be modified.
143 static const struct vpe_dei_regs dei_regs
= {
144 .mdt_spacial_freq_thr_reg
= 0x020C0804u
,
145 .edi_config_reg
= 0x0118100Cu
,
146 .edi_lut_reg0
= 0x08040200u
,
147 .edi_lut_reg1
= 0x1010100Cu
,
148 .edi_lut_reg2
= 0x10101010u
,
149 .edi_lut_reg3
= 0x10101010u
,
153 * The port_data structure contains per-port data.
155 struct vpe_port_data
{
156 enum vpdma_channel channel
; /* VPDMA channel */
157 u8 vb_index
; /* input frame f, f-1, f-2 index */
158 u8 vb_part
; /* plane index for co-panar formats */
162 * Define indices into the port_data tables
164 #define VPE_PORT_LUMA1_IN 0
165 #define VPE_PORT_CHROMA1_IN 1
166 #define VPE_PORT_LUMA2_IN 2
167 #define VPE_PORT_CHROMA2_IN 3
168 #define VPE_PORT_LUMA3_IN 4
169 #define VPE_PORT_CHROMA3_IN 5
170 #define VPE_PORT_MV_IN 6
171 #define VPE_PORT_MV_OUT 7
172 #define VPE_PORT_LUMA_OUT 8
173 #define VPE_PORT_CHROMA_OUT 9
174 #define VPE_PORT_RGB_OUT 10
176 static const struct vpe_port_data port_data
[11] = {
177 [VPE_PORT_LUMA1_IN
] = {
178 .channel
= VPE_CHAN_LUMA1_IN
,
182 [VPE_PORT_CHROMA1_IN
] = {
183 .channel
= VPE_CHAN_CHROMA1_IN
,
185 .vb_part
= VPE_CHROMA
,
187 [VPE_PORT_LUMA2_IN
] = {
188 .channel
= VPE_CHAN_LUMA2_IN
,
192 [VPE_PORT_CHROMA2_IN
] = {
193 .channel
= VPE_CHAN_CHROMA2_IN
,
195 .vb_part
= VPE_CHROMA
,
197 [VPE_PORT_LUMA3_IN
] = {
198 .channel
= VPE_CHAN_LUMA3_IN
,
202 [VPE_PORT_CHROMA3_IN
] = {
203 .channel
= VPE_CHAN_CHROMA3_IN
,
205 .vb_part
= VPE_CHROMA
,
208 .channel
= VPE_CHAN_MV_IN
,
210 [VPE_PORT_MV_OUT
] = {
211 .channel
= VPE_CHAN_MV_OUT
,
213 [VPE_PORT_LUMA_OUT
] = {
214 .channel
= VPE_CHAN_LUMA_OUT
,
217 [VPE_PORT_CHROMA_OUT
] = {
218 .channel
= VPE_CHAN_CHROMA_OUT
,
219 .vb_part
= VPE_CHROMA
,
221 [VPE_PORT_RGB_OUT
] = {
222 .channel
= VPE_CHAN_RGB_OUT
,
228 /* driver info for each of the supported video formats */
230 char *name
; /* human-readable name */
231 u32 fourcc
; /* standard format identifier */
232 u8 types
; /* CAPTURE and/or OUTPUT */
233 u8 coplanar
; /* set for unpacked Luma and Chroma */
234 /* vpdma format info for each plane */
235 struct vpdma_data_format
const *vpdma_fmt
[VPE_MAX_PLANES
];
238 static struct vpe_fmt vpe_formats
[] = {
240 .name
= "NV16 YUV 422 co-planar",
241 .fourcc
= V4L2_PIX_FMT_NV16
,
242 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
244 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y444
],
245 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C444
],
249 .name
= "NV12 YUV 420 co-planar",
250 .fourcc
= V4L2_PIX_FMT_NV12
,
251 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
253 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_Y420
],
254 &vpdma_yuv_fmts
[VPDMA_DATA_FMT_C420
],
258 .name
= "YUYV 422 packed",
259 .fourcc
= V4L2_PIX_FMT_YUYV
,
260 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
262 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_YCB422
],
266 .name
= "UYVY 422 packed",
267 .fourcc
= V4L2_PIX_FMT_UYVY
,
268 .types
= VPE_FMT_TYPE_CAPTURE
| VPE_FMT_TYPE_OUTPUT
,
270 .vpdma_fmt
= { &vpdma_yuv_fmts
[VPDMA_DATA_FMT_CBY422
],
274 .name
= "RGB888 packed",
275 .fourcc
= V4L2_PIX_FMT_RGB24
,
276 .types
= VPE_FMT_TYPE_CAPTURE
,
278 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGB24
],
283 .fourcc
= V4L2_PIX_FMT_RGB32
,
284 .types
= VPE_FMT_TYPE_CAPTURE
,
286 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ARGB32
],
290 .name
= "BGR888 packed",
291 .fourcc
= V4L2_PIX_FMT_BGR24
,
292 .types
= VPE_FMT_TYPE_CAPTURE
,
294 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_BGR24
],
299 .fourcc
= V4L2_PIX_FMT_BGR32
,
300 .types
= VPE_FMT_TYPE_CAPTURE
,
302 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_ABGR32
],
307 .fourcc
= V4L2_PIX_FMT_RGB565
,
308 .types
= VPE_FMT_TYPE_CAPTURE
,
310 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGB565
],
315 .fourcc
= V4L2_PIX_FMT_RGB555
,
316 .types
= VPE_FMT_TYPE_CAPTURE
,
318 .vpdma_fmt
= { &vpdma_rgb_fmts
[VPDMA_DATA_FMT_RGBA16_5551
],
324 * per-queue, driver-specific private data.
325 * there is one source queue and one destination queue for each m2m context.
328 unsigned int width
; /* frame width */
329 unsigned int height
; /* frame height */
330 unsigned int nplanes
; /* Current number of planes */
331 unsigned int bytesperline
[VPE_MAX_PLANES
]; /* bytes per line in memory */
332 enum v4l2_colorspace colorspace
;
333 enum v4l2_field field
; /* supported field value */
335 unsigned int sizeimage
[VPE_MAX_PLANES
]; /* image size in memory */
336 struct v4l2_rect c_rect
; /* crop/compose rectangle */
337 struct vpe_fmt
*fmt
; /* format info */
340 /* vpe_q_data flag bits */
341 #define Q_DATA_FRAME_1D BIT(0)
342 #define Q_DATA_MODE_TILED BIT(1)
343 #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
344 #define Q_DATA_INTERLACED_SEQ_TB BIT(3)
346 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
347 Q_DATA_INTERLACED_SEQ_TB)
354 /* find our format description corresponding to the passed v4l2_format */
355 static struct vpe_fmt
*__find_format(u32 fourcc
)
360 for (k
= 0; k
< ARRAY_SIZE(vpe_formats
); k
++) {
361 fmt
= &vpe_formats
[k
];
362 if (fmt
->fourcc
== fourcc
)
369 static struct vpe_fmt
*find_format(struct v4l2_format
*f
)
371 return __find_format(f
->fmt
.pix
.pixelformat
);
375 * there is one vpe_dev structure in the driver, it is shared by
379 struct v4l2_device v4l2_dev
;
380 struct video_device vfd
;
381 struct v4l2_m2m_dev
*m2m_dev
;
383 atomic_t num_instances
; /* count of driver instances */
384 dma_addr_t loaded_mmrs
; /* shadow mmrs in device */
385 struct mutex dev_mutex
;
390 struct resource
*res
;
392 struct vpdma_data vpdma_data
;
393 struct vpdma_data
*vpdma
; /* vpdma data handle */
394 struct sc_data
*sc
; /* scaler data handle */
395 struct csc_data
*csc
; /* csc data handle */
399 * There is one vpe_ctx structure for each m2m context.
404 struct v4l2_ctrl_handler hdl
;
406 unsigned int field
; /* current field */
407 unsigned int sequence
; /* current frame/field seq */
408 unsigned int aborting
; /* abort after next irq */
410 unsigned int bufs_per_job
; /* input buffers per batch */
411 unsigned int bufs_completed
; /* bufs done in this batch */
413 struct vpe_q_data q_data
[2]; /* src & dst queue data */
414 struct vb2_v4l2_buffer
*src_vbs
[VPE_MAX_SRC_BUFS
];
415 struct vb2_v4l2_buffer
*dst_vb
;
417 dma_addr_t mv_buf_dma
[2]; /* dma addrs of motion vector in/out bufs */
418 void *mv_buf
[2]; /* virtual addrs of motion vector bufs */
419 size_t mv_buf_size
; /* current motion vector buffer size */
420 struct vpdma_buf mmr_adb
; /* shadow reg addr/data block */
421 struct vpdma_buf sc_coeff_h
; /* h coeff buffer */
422 struct vpdma_buf sc_coeff_v
; /* v coeff buffer */
423 struct vpdma_desc_list desc_list
; /* DMA descriptor list */
425 bool deinterlacing
; /* using de-interlacer */
426 bool load_mmrs
; /* have new shadow reg values */
428 unsigned int src_mv_buf_selector
;
433 * M2M devices get 2 queues.
434 * Return the queue given the type.
436 static struct vpe_q_data
*get_q_data(struct vpe_ctx
*ctx
,
437 enum v4l2_buf_type type
)
440 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
:
441 case V4L2_BUF_TYPE_VIDEO_OUTPUT
:
442 return &ctx
->q_data
[Q_DATA_SRC
];
443 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
:
444 case V4L2_BUF_TYPE_VIDEO_CAPTURE
:
445 return &ctx
->q_data
[Q_DATA_DST
];
452 static u32
read_reg(struct vpe_dev
*dev
, int offset
)
454 return ioread32(dev
->base
+ offset
);
457 static void write_reg(struct vpe_dev
*dev
, int offset
, u32 value
)
459 iowrite32(value
, dev
->base
+ offset
);
462 /* register field read/write helpers */
463 static int get_field(u32 value
, u32 mask
, int shift
)
465 return (value
& (mask
<< shift
)) >> shift
;
468 static int read_field_reg(struct vpe_dev
*dev
, int offset
, u32 mask
, int shift
)
470 return get_field(read_reg(dev
, offset
), mask
, shift
);
473 static void write_field(u32
*valp
, u32 field
, u32 mask
, int shift
)
477 val
&= ~(mask
<< shift
);
478 val
|= (field
& mask
) << shift
;
482 static void write_field_reg(struct vpe_dev
*dev
, int offset
, u32 field
,
485 u32 val
= read_reg(dev
, offset
);
487 write_field(&val
, field
, mask
, shift
);
489 write_reg(dev
, offset
, val
);
493 * DMA address/data block for the shadow registers
496 struct vpdma_adb_hdr out_fmt_hdr
;
499 struct vpdma_adb_hdr us1_hdr
;
501 struct vpdma_adb_hdr us2_hdr
;
503 struct vpdma_adb_hdr us3_hdr
;
505 struct vpdma_adb_hdr dei_hdr
;
507 struct vpdma_adb_hdr sc_hdr0
;
510 struct vpdma_adb_hdr sc_hdr8
;
513 struct vpdma_adb_hdr sc_hdr17
;
516 struct vpdma_adb_hdr csc_hdr
;
521 #define GET_OFFSET_TOP(ctx, obj, reg) \
522 ((obj)->res->start - ctx->dev->res->start + reg)
524 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
525 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
527 * Set the headers for all of the address/data block structures.
529 static void init_adb_hdrs(struct vpe_ctx
*ctx
)
531 VPE_SET_MMR_ADB_HDR(ctx
, out_fmt_hdr
, out_fmt_reg
, VPE_CLK_FORMAT_SELECT
);
532 VPE_SET_MMR_ADB_HDR(ctx
, us1_hdr
, us1_regs
, VPE_US1_R0
);
533 VPE_SET_MMR_ADB_HDR(ctx
, us2_hdr
, us2_regs
, VPE_US2_R0
);
534 VPE_SET_MMR_ADB_HDR(ctx
, us3_hdr
, us3_regs
, VPE_US3_R0
);
535 VPE_SET_MMR_ADB_HDR(ctx
, dei_hdr
, dei_regs
, VPE_DEI_FRAME_SIZE
);
536 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr0
, sc_regs0
,
537 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC0
));
538 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr8
, sc_regs8
,
539 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC8
));
540 VPE_SET_MMR_ADB_HDR(ctx
, sc_hdr17
, sc_regs17
,
541 GET_OFFSET_TOP(ctx
, ctx
->dev
->sc
, CFG_SC17
));
542 VPE_SET_MMR_ADB_HDR(ctx
, csc_hdr
, csc_regs
,
543 GET_OFFSET_TOP(ctx
, ctx
->dev
->csc
, CSC_CSC00
));
547 * Allocate or re-allocate the motion vector DMA buffers
548 * There are two buffers, one for input and one for output.
549 * However, the roles are reversed after each field is processed.
550 * In other words, after each field is processed, the previous
551 * output (dst) MV buffer becomes the new input (src) MV buffer.
553 static int realloc_mv_buffers(struct vpe_ctx
*ctx
, size_t size
)
555 struct device
*dev
= ctx
->dev
->v4l2_dev
.dev
;
557 if (ctx
->mv_buf_size
== size
)
561 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[0],
565 dma_free_coherent(dev
, ctx
->mv_buf_size
, ctx
->mv_buf
[1],
571 ctx
->mv_buf
[0] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[0],
573 if (!ctx
->mv_buf
[0]) {
574 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
578 ctx
->mv_buf
[1] = dma_alloc_coherent(dev
, size
, &ctx
->mv_buf_dma
[1],
580 if (!ctx
->mv_buf
[1]) {
581 vpe_err(ctx
->dev
, "failed to allocate motion vector buffer\n");
582 dma_free_coherent(dev
, size
, ctx
->mv_buf
[0],
588 ctx
->mv_buf_size
= size
;
589 ctx
->src_mv_buf_selector
= 0;
594 static void free_mv_buffers(struct vpe_ctx
*ctx
)
596 realloc_mv_buffers(ctx
, 0);
600 * While de-interlacing, we keep the two most recent input buffers
601 * around. This function frees those two buffers when we have
602 * finished processing the current stream.
604 static void free_vbs(struct vpe_ctx
*ctx
)
606 struct vpe_dev
*dev
= ctx
->dev
;
609 if (ctx
->src_vbs
[2] == NULL
)
612 spin_lock_irqsave(&dev
->lock
, flags
);
613 if (ctx
->src_vbs
[2]) {
614 v4l2_m2m_buf_done(ctx
->src_vbs
[2], VB2_BUF_STATE_DONE
);
615 if (ctx
->src_vbs
[1] && (ctx
->src_vbs
[1] != ctx
->src_vbs
[2]))
616 v4l2_m2m_buf_done(ctx
->src_vbs
[1], VB2_BUF_STATE_DONE
);
617 ctx
->src_vbs
[2] = NULL
;
618 ctx
->src_vbs
[1] = NULL
;
620 spin_unlock_irqrestore(&dev
->lock
, flags
);
624 * Enable or disable the VPE clocks
626 static void vpe_set_clock_enable(struct vpe_dev
*dev
, bool on
)
631 val
= VPE_DATA_PATH_CLK_ENABLE
| VPE_VPEDMA_CLK_ENABLE
;
632 write_reg(dev
, VPE_CLK_ENABLE
, val
);
635 static void vpe_top_reset(struct vpe_dev
*dev
)
638 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_DATA_PATH_CLK_RESET_MASK
,
639 VPE_DATA_PATH_CLK_RESET_SHIFT
);
641 usleep_range(100, 150);
643 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_DATA_PATH_CLK_RESET_MASK
,
644 VPE_DATA_PATH_CLK_RESET_SHIFT
);
647 static void vpe_top_vpdma_reset(struct vpe_dev
*dev
)
649 write_field_reg(dev
, VPE_CLK_RESET
, 1, VPE_VPDMA_CLK_RESET_MASK
,
650 VPE_VPDMA_CLK_RESET_SHIFT
);
652 usleep_range(100, 150);
654 write_field_reg(dev
, VPE_CLK_RESET
, 0, VPE_VPDMA_CLK_RESET_MASK
,
655 VPE_VPDMA_CLK_RESET_SHIFT
);
659 * Load the correct of upsampler coefficients into the shadow MMRs
661 static void set_us_coefficients(struct vpe_ctx
*ctx
)
663 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
664 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
665 u32
*us1_reg
= &mmr_adb
->us1_regs
[0];
666 u32
*us2_reg
= &mmr_adb
->us2_regs
[0];
667 u32
*us3_reg
= &mmr_adb
->us3_regs
[0];
668 const unsigned short *cp
, *end_cp
;
670 cp
= &us_coeffs
[0].anchor_fid0_c0
;
672 if (s_q_data
->flags
& Q_IS_INTERLACED
) /* interlaced */
673 cp
+= sizeof(us_coeffs
[0]) / sizeof(*cp
);
675 end_cp
= cp
+ sizeof(us_coeffs
[0]) / sizeof(*cp
);
677 while (cp
< end_cp
) {
678 write_field(us1_reg
, *cp
++, VPE_US_C0_MASK
, VPE_US_C0_SHIFT
);
679 write_field(us1_reg
, *cp
++, VPE_US_C1_MASK
, VPE_US_C1_SHIFT
);
680 *us2_reg
++ = *us1_reg
;
681 *us3_reg
++ = *us1_reg
++;
683 ctx
->load_mmrs
= true;
687 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
689 static void set_cfg_modes(struct vpe_ctx
*ctx
)
691 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_SRC
].fmt
;
692 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
693 u32
*us1_reg0
= &mmr_adb
->us1_regs
[0];
694 u32
*us2_reg0
= &mmr_adb
->us2_regs
[0];
695 u32
*us3_reg0
= &mmr_adb
->us3_regs
[0];
699 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
700 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
703 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
)
706 write_field(us1_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
707 write_field(us2_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
708 write_field(us3_reg0
, cfg_mode
, VPE_US_MODE_MASK
, VPE_US_MODE_SHIFT
);
710 ctx
->load_mmrs
= true;
713 static void set_line_modes(struct vpe_ctx
*ctx
)
715 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_SRC
].fmt
;
718 if (fmt
->fourcc
== V4L2_PIX_FMT_NV12
)
719 line_mode
= 0; /* double lines to line buffer */
722 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA1_IN
);
723 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA2_IN
);
724 vpdma_set_line_mode(ctx
->dev
->vpdma
, line_mode
, VPE_CHAN_CHROMA3_IN
);
726 /* frame start for input luma */
727 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
729 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
731 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
734 /* frame start for input chroma */
735 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
736 VPE_CHAN_CHROMA1_IN
);
737 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
738 VPE_CHAN_CHROMA2_IN
);
739 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
740 VPE_CHAN_CHROMA3_IN
);
742 /* frame start for MV in client */
743 vpdma_set_frame_start_event(ctx
->dev
->vpdma
, VPDMA_FSEVENT_CHANNEL_ACTIVE
,
748 * Set the shadow registers that are modified when the source
751 static void set_src_registers(struct vpe_ctx
*ctx
)
753 set_us_coefficients(ctx
);
757 * Set the shadow registers that are modified when the destination
760 static void set_dst_registers(struct vpe_ctx
*ctx
)
762 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
763 enum v4l2_colorspace clrspc
= ctx
->q_data
[Q_DATA_DST
].colorspace
;
764 struct vpe_fmt
*fmt
= ctx
->q_data
[Q_DATA_DST
].fmt
;
767 if (clrspc
== V4L2_COLORSPACE_SRGB
) {
768 val
|= VPE_RGB_OUT_SELECT
;
769 vpdma_set_bg_color(ctx
->dev
->vpdma
,
770 (struct vpdma_data_format
*)fmt
->vpdma_fmt
[0], 0xff);
771 } else if (fmt
->fourcc
== V4L2_PIX_FMT_NV16
)
772 val
|= VPE_COLOR_SEPARATE_422
;
775 * the source of CHR_DS and CSC is always the scaler, irrespective of
776 * whether it's used or not
778 val
|= VPE_DS_SRC_DEI_SCALER
| VPE_CSC_SRC_DEI_SCALER
;
780 if (fmt
->fourcc
!= V4L2_PIX_FMT_NV12
)
781 val
|= VPE_DS_BYPASS
;
783 mmr_adb
->out_fmt_reg
[0] = val
;
785 ctx
->load_mmrs
= true;
789 * Set the de-interlacer shadow register values
791 static void set_dei_regs(struct vpe_ctx
*ctx
)
793 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
794 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
795 unsigned int src_h
= s_q_data
->c_rect
.height
;
796 unsigned int src_w
= s_q_data
->c_rect
.width
;
797 u32
*dei_mmr0
= &mmr_adb
->dei_regs
[0];
798 bool deinterlace
= true;
802 * according to TRM, we should set DEI in progressive bypass mode when
803 * the input content is progressive, however, DEI is bypassed correctly
804 * for both progressive and interlace content in interlace bypass mode.
805 * It has been recommended not to use progressive bypass mode.
807 if (!(s_q_data
->flags
& Q_IS_INTERLACED
) || !ctx
->deinterlacing
) {
809 val
= VPE_DEI_INTERLACE_BYPASS
;
812 src_h
= deinterlace
? src_h
* 2 : src_h
;
814 val
|= (src_h
<< VPE_DEI_HEIGHT_SHIFT
) |
815 (src_w
<< VPE_DEI_WIDTH_SHIFT
) |
820 ctx
->load_mmrs
= true;
823 static void set_dei_shadow_registers(struct vpe_ctx
*ctx
)
825 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
826 u32
*dei_mmr
= &mmr_adb
->dei_regs
[0];
827 const struct vpe_dei_regs
*cur
= &dei_regs
;
829 dei_mmr
[2] = cur
->mdt_spacial_freq_thr_reg
;
830 dei_mmr
[3] = cur
->edi_config_reg
;
831 dei_mmr
[4] = cur
->edi_lut_reg0
;
832 dei_mmr
[5] = cur
->edi_lut_reg1
;
833 dei_mmr
[6] = cur
->edi_lut_reg2
;
834 dei_mmr
[7] = cur
->edi_lut_reg3
;
836 ctx
->load_mmrs
= true;
839 static void config_edi_input_mode(struct vpe_ctx
*ctx
, int mode
)
841 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
842 u32
*edi_config_reg
= &mmr_adb
->dei_regs
[3];
845 write_field(edi_config_reg
, 1, 1, 2); /* EDI_ENABLE_3D */
848 write_field(edi_config_reg
, 1, 1, 3); /* EDI_CHROMA_3D */
850 write_field(edi_config_reg
, mode
, VPE_EDI_INP_MODE_MASK
,
851 VPE_EDI_INP_MODE_SHIFT
);
853 ctx
->load_mmrs
= true;
857 * Set the shadow registers whose values are modified when either the
858 * source or destination format is changed.
860 static int set_srcdst_params(struct vpe_ctx
*ctx
)
862 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
863 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
864 struct vpe_mmr_adb
*mmr_adb
= ctx
->mmr_adb
.addr
;
865 unsigned int src_w
= s_q_data
->c_rect
.width
;
866 unsigned int src_h
= s_q_data
->c_rect
.height
;
867 unsigned int dst_w
= d_q_data
->c_rect
.width
;
868 unsigned int dst_h
= d_q_data
->c_rect
.height
;
873 ctx
->field
= V4L2_FIELD_TOP
;
875 if ((s_q_data
->flags
& Q_IS_INTERLACED
) &&
876 !(d_q_data
->flags
& Q_IS_INTERLACED
)) {
878 const struct vpdma_data_format
*mv
=
879 &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
882 * we make sure that the source image has a 16 byte aligned
883 * stride, we need to do the same for the motion vector buffer
884 * by aligning it's stride to the next 16 byte boundry. this
885 * extra space will not be used by the de-interlacer, but will
886 * ensure that vpdma operates correctly
888 bytes_per_line
= ALIGN((s_q_data
->width
* mv
->depth
) >> 3,
890 mv_buf_size
= bytes_per_line
* s_q_data
->height
;
892 ctx
->deinterlacing
= true;
895 ctx
->deinterlacing
= false;
900 ctx
->src_vbs
[2] = ctx
->src_vbs
[1] = ctx
->src_vbs
[0] = NULL
;
902 ret
= realloc_mv_buffers(ctx
, mv_buf_size
);
909 csc_set_coeff(ctx
->dev
->csc
, &mmr_adb
->csc_regs
[0],
910 s_q_data
->colorspace
, d_q_data
->colorspace
);
912 sc_set_hs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_h
.addr
, src_w
, dst_w
);
913 sc_set_vs_coeffs(ctx
->dev
->sc
, ctx
->sc_coeff_v
.addr
, src_h
, dst_h
);
915 sc_config_scaler(ctx
->dev
->sc
, &mmr_adb
->sc_regs0
[0],
916 &mmr_adb
->sc_regs8
[0], &mmr_adb
->sc_regs17
[0],
917 src_w
, src_h
, dst_w
, dst_h
);
923 * Return the vpe_ctx structure for a given struct file
925 static struct vpe_ctx
*file2ctx(struct file
*file
)
927 return container_of(file
->private_data
, struct vpe_ctx
, fh
);
935 * job_ready() - check whether an instance is ready to be scheduled to run
937 static int job_ready(void *priv
)
939 struct vpe_ctx
*ctx
= priv
;
942 * This check is needed as this might be called directly from driver
943 * When called by m2m framework, this will always satisfy, but when
944 * called from vpe_irq, this might fail. (src stream with zero buffers)
946 if (v4l2_m2m_num_src_bufs_ready(ctx
->fh
.m2m_ctx
) <= 0 ||
947 v4l2_m2m_num_dst_bufs_ready(ctx
->fh
.m2m_ctx
) <= 0)
953 static void job_abort(void *priv
)
955 struct vpe_ctx
*ctx
= priv
;
957 /* Will cancel the transaction in the next interrupt handler */
961 static void vpe_dump_regs(struct vpe_dev
*dev
)
963 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
965 vpe_dbg(dev
, "VPE Registers:\n");
969 DUMPREG(INT0_STATUS0_RAW
);
970 DUMPREG(INT0_STATUS0
);
971 DUMPREG(INT0_ENABLE0
);
972 DUMPREG(INT0_STATUS1_RAW
);
973 DUMPREG(INT0_STATUS1
);
974 DUMPREG(INT0_ENABLE1
);
977 DUMPREG(CLK_FORMAT_SELECT
);
978 DUMPREG(CLK_RANGE_MAP
);
1003 DUMPREG(DEI_FRAME_SIZE
);
1004 DUMPREG(MDT_BYPASS
);
1005 DUMPREG(MDT_SF_THRESHOLD
);
1006 DUMPREG(EDI_CONFIG
);
1007 DUMPREG(DEI_EDI_LUT_R0
);
1008 DUMPREG(DEI_EDI_LUT_R1
);
1009 DUMPREG(DEI_EDI_LUT_R2
);
1010 DUMPREG(DEI_EDI_LUT_R3
);
1011 DUMPREG(DEI_FMD_WINDOW_R0
);
1012 DUMPREG(DEI_FMD_WINDOW_R1
);
1013 DUMPREG(DEI_FMD_CONTROL_R0
);
1014 DUMPREG(DEI_FMD_CONTROL_R1
);
1015 DUMPREG(DEI_FMD_STATUS_R0
);
1016 DUMPREG(DEI_FMD_STATUS_R1
);
1017 DUMPREG(DEI_FMD_STATUS_R2
);
1020 sc_dump_regs(dev
->sc
);
1021 csc_dump_regs(dev
->csc
);
1024 static void add_out_dtd(struct vpe_ctx
*ctx
, int port
)
1026 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_DST
];
1027 const struct vpe_port_data
*p_data
= &port_data
[port
];
1028 struct vb2_buffer
*vb
= &ctx
->dst_vb
->vb2_buf
;
1029 struct vpe_fmt
*fmt
= q_data
->fmt
;
1030 const struct vpdma_data_format
*vpdma_fmt
;
1031 int mv_buf_selector
= !ctx
->src_mv_buf_selector
;
1032 dma_addr_t dma_addr
;
1037 if (port
== VPE_PORT_MV_OUT
) {
1038 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1039 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1040 q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1041 stride
= ALIGN((q_data
->width
* vpdma_fmt
->depth
) >> 3,
1042 VPDMA_STRIDE_ALIGN
);
1044 /* to incorporate interleaved formats */
1045 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1047 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1049 * If we are using a single plane buffer and
1050 * we need to set a separate vpdma chroma channel.
1052 if (q_data
->nplanes
== 1 && plane
) {
1053 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, 0);
1054 /* Compute required offset */
1055 offset
= q_data
->bytesperline
[0] * q_data
->height
;
1057 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1058 /* Use address as is, no offset */
1063 "acquiring output buffer(%d) dma_addr failed\n",
1067 /* Apply the offset */
1069 stride
= q_data
->bytesperline
[VPE_LUMA
];
1072 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1073 flags
|= VPDMA_DATA_FRAME_1D
;
1074 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1075 flags
|= VPDMA_DATA_MODE_TILED
;
1077 vpdma_set_max_size(ctx
->dev
->vpdma
, VPDMA_MAX_SIZE1
,
1080 vpdma_add_out_dtd(&ctx
->desc_list
, q_data
->width
,
1081 stride
, &q_data
->c_rect
,
1082 vpdma_fmt
, dma_addr
, MAX_OUT_WIDTH_REG1
,
1083 MAX_OUT_HEIGHT_REG1
, p_data
->channel
, flags
);
1086 static void add_in_dtd(struct vpe_ctx
*ctx
, int port
)
1088 struct vpe_q_data
*q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1089 const struct vpe_port_data
*p_data
= &port_data
[port
];
1090 struct vb2_buffer
*vb
= &ctx
->src_vbs
[p_data
->vb_index
]->vb2_buf
;
1091 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
1092 struct vpe_fmt
*fmt
= q_data
->fmt
;
1093 const struct vpdma_data_format
*vpdma_fmt
;
1094 int mv_buf_selector
= ctx
->src_mv_buf_selector
;
1095 int field
= vbuf
->field
== V4L2_FIELD_BOTTOM
;
1096 int frame_width
, frame_height
;
1097 dma_addr_t dma_addr
;
1102 if (port
== VPE_PORT_MV_IN
) {
1103 vpdma_fmt
= &vpdma_misc_fmts
[VPDMA_DATA_FMT_MV
];
1104 dma_addr
= ctx
->mv_buf_dma
[mv_buf_selector
];
1105 stride
= ALIGN((q_data
->width
* vpdma_fmt
->depth
) >> 3,
1106 VPDMA_STRIDE_ALIGN
);
1108 /* to incorporate interleaved formats */
1109 int plane
= fmt
->coplanar
? p_data
->vb_part
: 0;
1111 vpdma_fmt
= fmt
->vpdma_fmt
[plane
];
1113 * If we are using a single plane buffer and
1114 * we need to set a separate vpdma chroma channel.
1116 if (q_data
->nplanes
== 1 && plane
) {
1117 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, 0);
1118 /* Compute required offset */
1119 offset
= q_data
->bytesperline
[0] * q_data
->height
;
1121 dma_addr
= vb2_dma_contig_plane_dma_addr(vb
, plane
);
1122 /* Use address as is, no offset */
1127 "acquiring output buffer(%d) dma_addr failed\n",
1131 /* Apply the offset */
1133 stride
= q_data
->bytesperline
[VPE_LUMA
];
1135 if (q_data
->flags
& Q_DATA_INTERLACED_SEQ_TB
) {
1137 * Use top or bottom field from same vb alternately
1138 * f,f-1,f-2 = TBT when seq is even
1139 * f,f-1,f-2 = BTB when seq is odd
1141 field
= (p_data
->vb_index
+ (ctx
->sequence
% 2)) % 2;
1145 * bottom field of a SEQ_TB buffer
1146 * Skip the top field data by
1148 int height
= q_data
->height
/ 2;
1149 int bpp
= fmt
->fourcc
== V4L2_PIX_FMT_NV12
?
1150 1 : (vpdma_fmt
->depth
>> 3);
1153 dma_addr
+= q_data
->width
* height
* bpp
;
1158 if (q_data
->flags
& Q_DATA_FRAME_1D
)
1159 flags
|= VPDMA_DATA_FRAME_1D
;
1160 if (q_data
->flags
& Q_DATA_MODE_TILED
)
1161 flags
|= VPDMA_DATA_MODE_TILED
;
1163 frame_width
= q_data
->c_rect
.width
;
1164 frame_height
= q_data
->c_rect
.height
;
1166 if (p_data
->vb_part
&& fmt
->fourcc
== V4L2_PIX_FMT_NV12
)
1169 vpdma_add_in_dtd(&ctx
->desc_list
, q_data
->width
, stride
,
1170 &q_data
->c_rect
, vpdma_fmt
, dma_addr
,
1171 p_data
->channel
, field
, flags
, frame_width
,
1172 frame_height
, 0, 0);
1176 * Enable the expected IRQ sources
1178 static void enable_irqs(struct vpe_ctx
*ctx
)
1180 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_SET
, VPE_INT0_LIST0_COMPLETE
);
1181 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_SET
, VPE_DEI_ERROR_INT
|
1182 VPE_DS1_UV_ERROR_INT
);
1184 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, 0, true);
1187 static void disable_irqs(struct vpe_ctx
*ctx
)
1189 write_reg(ctx
->dev
, VPE_INT0_ENABLE0_CLR
, 0xffffffff);
1190 write_reg(ctx
->dev
, VPE_INT0_ENABLE1_CLR
, 0xffffffff);
1192 vpdma_enable_list_complete_irq(ctx
->dev
->vpdma
, 0, 0, false);
1195 /* device_run() - prepares and starts the device
1197 * This function is only called when both the source and destination
1198 * buffers are in place.
1200 static void device_run(void *priv
)
1202 struct vpe_ctx
*ctx
= priv
;
1203 struct sc_data
*sc
= ctx
->dev
->sc
;
1204 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1205 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
1207 if (ctx
->deinterlacing
&& s_q_data
->flags
& Q_DATA_INTERLACED_SEQ_TB
&&
1208 ctx
->sequence
% 2 == 0) {
1209 /* When using SEQ_TB buffers, When using it first time,
1210 * No need to remove the buffer as the next field is present
1211 * in the same buffer. (so that job_ready won't fail)
1212 * It will be removed when using bottom field
1214 ctx
->src_vbs
[0] = v4l2_m2m_next_src_buf(ctx
->fh
.m2m_ctx
);
1215 WARN_ON(ctx
->src_vbs
[0] == NULL
);
1217 ctx
->src_vbs
[0] = v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
1218 WARN_ON(ctx
->src_vbs
[0] == NULL
);
1221 ctx
->dst_vb
= v4l2_m2m_dst_buf_remove(ctx
->fh
.m2m_ctx
);
1222 WARN_ON(ctx
->dst_vb
== NULL
);
1224 if (ctx
->deinterlacing
) {
1226 if (ctx
->src_vbs
[2] == NULL
) {
1227 ctx
->src_vbs
[2] = ctx
->src_vbs
[0];
1228 WARN_ON(ctx
->src_vbs
[2] == NULL
);
1229 ctx
->src_vbs
[1] = ctx
->src_vbs
[0];
1230 WARN_ON(ctx
->src_vbs
[1] == NULL
);
1234 * we have output the first 2 frames through line average, we
1235 * now switch to EDI de-interlacer
1237 if (ctx
->sequence
== 2)
1238 config_edi_input_mode(ctx
, 0x3); /* EDI (Y + UV) */
1241 /* config descriptors */
1242 if (ctx
->dev
->loaded_mmrs
!= ctx
->mmr_adb
.dma_addr
|| ctx
->load_mmrs
) {
1243 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->mmr_adb
);
1244 vpdma_add_cfd_adb(&ctx
->desc_list
, CFD_MMR_CLIENT
, &ctx
->mmr_adb
);
1246 set_line_modes(ctx
);
1248 ctx
->dev
->loaded_mmrs
= ctx
->mmr_adb
.dma_addr
;
1249 ctx
->load_mmrs
= false;
1252 if (sc
->loaded_coeff_h
!= ctx
->sc_coeff_h
.dma_addr
||
1254 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_h
);
1255 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1256 &ctx
->sc_coeff_h
, 0);
1258 sc
->loaded_coeff_h
= ctx
->sc_coeff_h
.dma_addr
;
1259 sc
->load_coeff_h
= false;
1262 if (sc
->loaded_coeff_v
!= ctx
->sc_coeff_v
.dma_addr
||
1264 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->sc_coeff_v
);
1265 vpdma_add_cfd_block(&ctx
->desc_list
, CFD_SC_CLIENT
,
1266 &ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
>> 4);
1268 sc
->loaded_coeff_v
= ctx
->sc_coeff_v
.dma_addr
;
1269 sc
->load_coeff_v
= false;
1272 /* output data descriptors */
1273 if (ctx
->deinterlacing
)
1274 add_out_dtd(ctx
, VPE_PORT_MV_OUT
);
1276 if (d_q_data
->colorspace
== V4L2_COLORSPACE_SRGB
) {
1277 add_out_dtd(ctx
, VPE_PORT_RGB_OUT
);
1279 add_out_dtd(ctx
, VPE_PORT_LUMA_OUT
);
1280 if (d_q_data
->fmt
->coplanar
)
1281 add_out_dtd(ctx
, VPE_PORT_CHROMA_OUT
);
1284 /* input data descriptors */
1285 if (ctx
->deinterlacing
) {
1286 add_in_dtd(ctx
, VPE_PORT_LUMA3_IN
);
1287 add_in_dtd(ctx
, VPE_PORT_CHROMA3_IN
);
1289 add_in_dtd(ctx
, VPE_PORT_LUMA2_IN
);
1290 add_in_dtd(ctx
, VPE_PORT_CHROMA2_IN
);
1293 add_in_dtd(ctx
, VPE_PORT_LUMA1_IN
);
1294 add_in_dtd(ctx
, VPE_PORT_CHROMA1_IN
);
1296 if (ctx
->deinterlacing
)
1297 add_in_dtd(ctx
, VPE_PORT_MV_IN
);
1299 /* sync on channel control descriptors for input ports */
1300 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_LUMA1_IN
);
1301 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_CHROMA1_IN
);
1303 if (ctx
->deinterlacing
) {
1304 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1306 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1307 VPE_CHAN_CHROMA2_IN
);
1309 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1311 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1312 VPE_CHAN_CHROMA3_IN
);
1314 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_IN
);
1317 /* sync on channel control descriptors for output ports */
1318 if (d_q_data
->colorspace
== V4L2_COLORSPACE_SRGB
) {
1319 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1322 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1324 if (d_q_data
->fmt
->coplanar
)
1325 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
,
1326 VPE_CHAN_CHROMA_OUT
);
1329 if (ctx
->deinterlacing
)
1330 vpdma_add_sync_on_channel_ctd(&ctx
->desc_list
, VPE_CHAN_MV_OUT
);
1334 vpdma_map_desc_buf(ctx
->dev
->vpdma
, &ctx
->desc_list
.buf
);
1335 vpdma_submit_descs(ctx
->dev
->vpdma
, &ctx
->desc_list
, 0);
1338 static void dei_error(struct vpe_ctx
*ctx
)
1340 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1341 "received DEI error interrupt\n");
1344 static void ds1_uv_error(struct vpe_ctx
*ctx
)
1346 dev_warn(ctx
->dev
->v4l2_dev
.dev
,
1347 "received downsampler error interrupt\n");
1350 static irqreturn_t
vpe_irq(int irq_vpe
, void *data
)
1352 struct vpe_dev
*dev
= (struct vpe_dev
*)data
;
1353 struct vpe_ctx
*ctx
;
1354 struct vpe_q_data
*d_q_data
;
1355 struct vb2_v4l2_buffer
*s_vb
, *d_vb
;
1356 unsigned long flags
;
1358 bool list_complete
= false;
1360 irqst0
= read_reg(dev
, VPE_INT0_STATUS0
);
1362 write_reg(dev
, VPE_INT0_STATUS0_CLR
, irqst0
);
1363 vpe_dbg(dev
, "INT0_STATUS0 = 0x%08x\n", irqst0
);
1366 irqst1
= read_reg(dev
, VPE_INT0_STATUS1
);
1368 write_reg(dev
, VPE_INT0_STATUS1_CLR
, irqst1
);
1369 vpe_dbg(dev
, "INT0_STATUS1 = 0x%08x\n", irqst1
);
1372 ctx
= v4l2_m2m_get_curr_priv(dev
->m2m_dev
);
1374 vpe_err(dev
, "instance released before end of transaction\n");
1379 if (irqst1
& VPE_DEI_ERROR_INT
) {
1380 irqst1
&= ~VPE_DEI_ERROR_INT
;
1383 if (irqst1
& VPE_DS1_UV_ERROR_INT
) {
1384 irqst1
&= ~VPE_DS1_UV_ERROR_INT
;
1390 if (irqst0
& VPE_INT0_LIST0_COMPLETE
)
1391 vpdma_clear_list_stat(ctx
->dev
->vpdma
, 0, 0);
1393 irqst0
&= ~(VPE_INT0_LIST0_COMPLETE
);
1394 list_complete
= true;
1397 if (irqst0
| irqst1
) {
1398 dev_warn(dev
->v4l2_dev
.dev
, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1403 * Setup next operation only when list complete IRQ occurs
1404 * otherwise, skip the following code
1411 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->desc_list
.buf
);
1412 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->mmr_adb
);
1413 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_h
);
1414 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_v
);
1416 vpdma_reset_desc_list(&ctx
->desc_list
);
1418 /* the previous dst mv buffer becomes the next src mv buffer */
1419 ctx
->src_mv_buf_selector
= !ctx
->src_mv_buf_selector
;
1421 s_vb
= ctx
->src_vbs
[0];
1424 d_vb
->flags
= s_vb
->flags
;
1425 d_vb
->vb2_buf
.timestamp
= s_vb
->vb2_buf
.timestamp
;
1427 if (s_vb
->flags
& V4L2_BUF_FLAG_TIMECODE
)
1428 d_vb
->timecode
= s_vb
->timecode
;
1430 d_vb
->sequence
= ctx
->sequence
;
1431 s_vb
->sequence
= ctx
->sequence
;
1433 d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
1434 if (d_q_data
->flags
& Q_IS_INTERLACED
) {
1435 d_vb
->field
= ctx
->field
;
1436 if (ctx
->field
== V4L2_FIELD_BOTTOM
) {
1438 ctx
->field
= V4L2_FIELD_TOP
;
1440 WARN_ON(ctx
->field
!= V4L2_FIELD_TOP
);
1441 ctx
->field
= V4L2_FIELD_BOTTOM
;
1444 d_vb
->field
= V4L2_FIELD_NONE
;
1448 if (ctx
->deinterlacing
) {
1450 * Allow source buffer to be dequeued only if it won't be used
1451 * in the next iteration. All vbs are initialized to first
1452 * buffer and we are shifting buffers every iteration, for the
1453 * first two iterations, no buffer will be dequeued.
1454 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1455 * field when deinterlacing is enabled
1457 if (ctx
->src_vbs
[2] != ctx
->src_vbs
[1])
1458 s_vb
= ctx
->src_vbs
[2];
1463 spin_lock_irqsave(&dev
->lock
, flags
);
1466 v4l2_m2m_buf_done(s_vb
, VB2_BUF_STATE_DONE
);
1468 v4l2_m2m_buf_done(d_vb
, VB2_BUF_STATE_DONE
);
1470 spin_unlock_irqrestore(&dev
->lock
, flags
);
1472 if (ctx
->deinterlacing
) {
1473 ctx
->src_vbs
[2] = ctx
->src_vbs
[1];
1474 ctx
->src_vbs
[1] = ctx
->src_vbs
[0];
1478 * Since the vb2_buf_done has already been called fir therse
1479 * buffer we can now NULL them out so that we won't try
1480 * to clean out stray pointer later on.
1482 ctx
->src_vbs
[0] = NULL
;
1488 ctx
->bufs_completed
++;
1489 if (ctx
->bufs_completed
< ctx
->bufs_per_job
&& job_ready(ctx
)) {
1495 vpe_dbg(ctx
->dev
, "finishing transaction\n");
1496 ctx
->bufs_completed
= 0;
1497 v4l2_m2m_job_finish(dev
->m2m_dev
, ctx
->fh
.m2m_ctx
);
1505 static int vpe_querycap(struct file
*file
, void *priv
,
1506 struct v4l2_capability
*cap
)
1508 strncpy(cap
->driver
, VPE_MODULE_NAME
, sizeof(cap
->driver
) - 1);
1509 strncpy(cap
->card
, VPE_MODULE_NAME
, sizeof(cap
->card
) - 1);
1510 snprintf(cap
->bus_info
, sizeof(cap
->bus_info
), "platform:%s",
1512 cap
->device_caps
= V4L2_CAP_VIDEO_M2M_MPLANE
| V4L2_CAP_STREAMING
;
1513 cap
->capabilities
= cap
->device_caps
| V4L2_CAP_DEVICE_CAPS
;
1517 static int __enum_fmt(struct v4l2_fmtdesc
*f
, u32 type
)
1520 struct vpe_fmt
*fmt
= NULL
;
1523 for (i
= 0; i
< ARRAY_SIZE(vpe_formats
); ++i
) {
1524 if (vpe_formats
[i
].types
& type
) {
1525 if (index
== f
->index
) {
1526 fmt
= &vpe_formats
[i
];
1536 strncpy(f
->description
, fmt
->name
, sizeof(f
->description
) - 1);
1537 f
->pixelformat
= fmt
->fourcc
;
1541 static int vpe_enum_fmt(struct file
*file
, void *priv
,
1542 struct v4l2_fmtdesc
*f
)
1544 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1545 return __enum_fmt(f
, VPE_FMT_TYPE_OUTPUT
);
1547 return __enum_fmt(f
, VPE_FMT_TYPE_CAPTURE
);
1550 static int vpe_g_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1552 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1553 struct vpe_ctx
*ctx
= file2ctx(file
);
1554 struct vb2_queue
*vq
;
1555 struct vpe_q_data
*q_data
;
1558 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1562 q_data
= get_q_data(ctx
, f
->type
);
1564 pix
->width
= q_data
->width
;
1565 pix
->height
= q_data
->height
;
1566 pix
->pixelformat
= q_data
->fmt
->fourcc
;
1567 pix
->field
= q_data
->field
;
1569 if (V4L2_TYPE_IS_OUTPUT(f
->type
)) {
1570 pix
->colorspace
= q_data
->colorspace
;
1572 struct vpe_q_data
*s_q_data
;
1574 /* get colorspace from the source queue */
1575 s_q_data
= get_q_data(ctx
, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
);
1577 pix
->colorspace
= s_q_data
->colorspace
;
1580 pix
->num_planes
= q_data
->nplanes
;
1582 for (i
= 0; i
< pix
->num_planes
; i
++) {
1583 pix
->plane_fmt
[i
].bytesperline
= q_data
->bytesperline
[i
];
1584 pix
->plane_fmt
[i
].sizeimage
= q_data
->sizeimage
[i
];
1590 static int __vpe_try_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
,
1591 struct vpe_fmt
*fmt
, int type
)
1593 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1594 struct v4l2_plane_pix_format
*plane_fmt
;
1595 unsigned int w_align
;
1596 int i
, depth
, depth_bytes
, height
;
1597 unsigned int stride
= 0;
1599 if (!fmt
|| !(fmt
->types
& type
)) {
1600 vpe_dbg(ctx
->dev
, "Fourcc format (0x%08x) invalid.\n",
1602 fmt
= __find_format(V4L2_PIX_FMT_YUYV
);
1605 if (pix
->field
!= V4L2_FIELD_NONE
&& pix
->field
!= V4L2_FIELD_ALTERNATE
1606 && pix
->field
!= V4L2_FIELD_SEQ_TB
)
1607 pix
->field
= V4L2_FIELD_NONE
;
1609 depth
= fmt
->vpdma_fmt
[VPE_LUMA
]->depth
;
1612 * the line stride should 16 byte aligned for VPDMA to work, based on
1613 * the bytes per pixel, figure out how much the width should be aligned
1614 * to make sure line stride is 16 byte aligned
1616 depth_bytes
= depth
>> 3;
1618 if (depth_bytes
== 3) {
1620 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1621 * really help in ensuring line stride is 16 byte aligned
1626 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1627 * can ensure a line stride alignment of 16 bytes. For example,
1628 * if bpp is 2, then the line stride can be 16 byte aligned if
1629 * the width is 8 byte aligned
1633 * HACK: using order_base_2() here causes lots of asm output
1634 * errors with smatch, on i386:
1635 * ./arch/x86/include/asm/bitops.h:457:22:
1636 * warning: asm output is not an lvalue
1637 * Perhaps some gcc optimization is doing the wrong thing
1639 * Let's get rid of them by doing the calculus on two steps
1641 w_align
= roundup_pow_of_two(VPDMA_DESC_ALIGN
/ depth_bytes
);
1642 w_align
= ilog2(w_align
);
1645 v4l_bound_align_image(&pix
->width
, MIN_W
, MAX_W
, w_align
,
1646 &pix
->height
, MIN_H
, MAX_H
, H_ALIGN
,
1649 if (!pix
->num_planes
|| pix
->num_planes
> 2)
1650 pix
->num_planes
= fmt
->coplanar
? 2 : 1;
1651 else if (pix
->num_planes
> 1 && !fmt
->coplanar
)
1652 pix
->num_planes
= 1;
1654 pix
->pixelformat
= fmt
->fourcc
;
1657 * For the actual image parameters, we need to consider the field
1658 * height of the image for SEQ_TB buffers.
1660 if (pix
->field
== V4L2_FIELD_SEQ_TB
)
1661 height
= pix
->height
/ 2;
1663 height
= pix
->height
;
1665 if (!pix
->colorspace
) {
1666 if (fmt
->fourcc
== V4L2_PIX_FMT_RGB24
||
1667 fmt
->fourcc
== V4L2_PIX_FMT_BGR24
||
1668 fmt
->fourcc
== V4L2_PIX_FMT_RGB32
||
1669 fmt
->fourcc
== V4L2_PIX_FMT_BGR32
) {
1670 pix
->colorspace
= V4L2_COLORSPACE_SRGB
;
1672 if (height
> 1280) /* HD */
1673 pix
->colorspace
= V4L2_COLORSPACE_REC709
;
1675 pix
->colorspace
= V4L2_COLORSPACE_SMPTE170M
;
1679 memset(pix
->reserved
, 0, sizeof(pix
->reserved
));
1680 for (i
= 0; i
< pix
->num_planes
; i
++) {
1681 plane_fmt
= &pix
->plane_fmt
[i
];
1682 depth
= fmt
->vpdma_fmt
[i
]->depth
;
1684 stride
= (pix
->width
* fmt
->vpdma_fmt
[VPE_LUMA
]->depth
) >> 3;
1685 if (stride
> plane_fmt
->bytesperline
)
1686 plane_fmt
->bytesperline
= stride
;
1688 plane_fmt
->bytesperline
= clamp_t(u32
, plane_fmt
->bytesperline
,
1692 plane_fmt
->bytesperline
= ALIGN(plane_fmt
->bytesperline
,
1693 VPDMA_STRIDE_ALIGN
);
1695 if (i
== VPE_LUMA
) {
1696 plane_fmt
->sizeimage
= pix
->height
*
1697 plane_fmt
->bytesperline
;
1699 if (pix
->num_planes
== 1 && fmt
->coplanar
)
1700 plane_fmt
->sizeimage
+= pix
->height
*
1701 plane_fmt
->bytesperline
*
1702 fmt
->vpdma_fmt
[VPE_CHROMA
]->depth
>> 3;
1704 } else { /* i == VIP_CHROMA */
1705 plane_fmt
->sizeimage
= (pix
->height
*
1706 plane_fmt
->bytesperline
*
1709 memset(plane_fmt
->reserved
, 0, sizeof(plane_fmt
->reserved
));
1715 static int vpe_try_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1717 struct vpe_ctx
*ctx
= file2ctx(file
);
1718 struct vpe_fmt
*fmt
= find_format(f
);
1720 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1721 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_OUTPUT
);
1723 return __vpe_try_fmt(ctx
, f
, fmt
, VPE_FMT_TYPE_CAPTURE
);
1726 static int __vpe_s_fmt(struct vpe_ctx
*ctx
, struct v4l2_format
*f
)
1728 struct v4l2_pix_format_mplane
*pix
= &f
->fmt
.pix_mp
;
1729 struct v4l2_plane_pix_format
*plane_fmt
;
1730 struct vpe_q_data
*q_data
;
1731 struct vb2_queue
*vq
;
1734 vq
= v4l2_m2m_get_vq(ctx
->fh
.m2m_ctx
, f
->type
);
1738 if (vb2_is_busy(vq
)) {
1739 vpe_err(ctx
->dev
, "queue busy\n");
1743 q_data
= get_q_data(ctx
, f
->type
);
1747 q_data
->fmt
= find_format(f
);
1748 q_data
->width
= pix
->width
;
1749 q_data
->height
= pix
->height
;
1750 q_data
->colorspace
= pix
->colorspace
;
1751 q_data
->field
= pix
->field
;
1752 q_data
->nplanes
= pix
->num_planes
;
1754 for (i
= 0; i
< pix
->num_planes
; i
++) {
1755 plane_fmt
= &pix
->plane_fmt
[i
];
1757 q_data
->bytesperline
[i
] = plane_fmt
->bytesperline
;
1758 q_data
->sizeimage
[i
] = plane_fmt
->sizeimage
;
1761 q_data
->c_rect
.left
= 0;
1762 q_data
->c_rect
.top
= 0;
1763 q_data
->c_rect
.width
= q_data
->width
;
1764 q_data
->c_rect
.height
= q_data
->height
;
1766 if (q_data
->field
== V4L2_FIELD_ALTERNATE
)
1767 q_data
->flags
|= Q_DATA_INTERLACED_ALTERNATE
;
1768 else if (q_data
->field
== V4L2_FIELD_SEQ_TB
)
1769 q_data
->flags
|= Q_DATA_INTERLACED_SEQ_TB
;
1771 q_data
->flags
&= ~Q_IS_INTERLACED
;
1773 /* the crop height is halved for the case of SEQ_TB buffers */
1774 if (q_data
->flags
& Q_DATA_INTERLACED_SEQ_TB
)
1775 q_data
->c_rect
.height
/= 2;
1777 vpe_dbg(ctx
->dev
, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1778 f
->type
, q_data
->width
, q_data
->height
, q_data
->fmt
->fourcc
,
1779 q_data
->bytesperline
[VPE_LUMA
]);
1780 if (q_data
->nplanes
== 2)
1781 vpe_dbg(ctx
->dev
, " bpl_uv %d\n",
1782 q_data
->bytesperline
[VPE_CHROMA
]);
1787 static int vpe_s_fmt(struct file
*file
, void *priv
, struct v4l2_format
*f
)
1790 struct vpe_ctx
*ctx
= file2ctx(file
);
1792 ret
= vpe_try_fmt(file
, priv
, f
);
1796 ret
= __vpe_s_fmt(ctx
, f
);
1800 if (V4L2_TYPE_IS_OUTPUT(f
->type
))
1801 set_src_registers(ctx
);
1803 set_dst_registers(ctx
);
1805 return set_srcdst_params(ctx
);
1808 static int __vpe_try_selection(struct vpe_ctx
*ctx
, struct v4l2_selection
*s
)
1810 struct vpe_q_data
*q_data
;
1813 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1814 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1817 q_data
= get_q_data(ctx
, s
->type
);
1821 switch (s
->target
) {
1822 case V4L2_SEL_TGT_COMPOSE
:
1824 * COMPOSE target is only valid for capture buffer type, return
1825 * error for output buffer type
1827 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1830 case V4L2_SEL_TGT_CROP
:
1832 * CROP target is only valid for output buffer type, return
1833 * error for capture buffer type
1835 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1839 * bound and default crop/compose targets are invalid targets to
1847 * For SEQ_TB buffers, crop height should be less than the height of
1848 * the field height, not the buffer height
1850 if (q_data
->flags
& Q_DATA_INTERLACED_SEQ_TB
)
1851 height
= q_data
->height
/ 2;
1853 height
= q_data
->height
;
1855 if (s
->r
.top
< 0 || s
->r
.left
< 0) {
1856 vpe_err(ctx
->dev
, "negative values for top and left\n");
1857 s
->r
.top
= s
->r
.left
= 0;
1860 v4l_bound_align_image(&s
->r
.width
, MIN_W
, q_data
->width
, 1,
1861 &s
->r
.height
, MIN_H
, height
, H_ALIGN
, S_ALIGN
);
1863 /* adjust left/top if cropping rectangle is out of bounds */
1864 if (s
->r
.left
+ s
->r
.width
> q_data
->width
)
1865 s
->r
.left
= q_data
->width
- s
->r
.width
;
1866 if (s
->r
.top
+ s
->r
.height
> q_data
->height
)
1867 s
->r
.top
= q_data
->height
- s
->r
.height
;
1872 static int vpe_g_selection(struct file
*file
, void *fh
,
1873 struct v4l2_selection
*s
)
1875 struct vpe_ctx
*ctx
= file2ctx(file
);
1876 struct vpe_q_data
*q_data
;
1877 bool use_c_rect
= false;
1879 if ((s
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
) &&
1880 (s
->type
!= V4L2_BUF_TYPE_VIDEO_OUTPUT
))
1883 q_data
= get_q_data(ctx
, s
->type
);
1887 switch (s
->target
) {
1888 case V4L2_SEL_TGT_COMPOSE_DEFAULT
:
1889 case V4L2_SEL_TGT_COMPOSE_BOUNDS
:
1890 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1893 case V4L2_SEL_TGT_CROP_BOUNDS
:
1894 case V4L2_SEL_TGT_CROP_DEFAULT
:
1895 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1898 case V4L2_SEL_TGT_COMPOSE
:
1899 if (s
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1903 case V4L2_SEL_TGT_CROP
:
1904 if (s
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
)
1914 * for CROP/COMPOSE target type, return c_rect params from the
1915 * respective buffer type
1917 s
->r
= q_data
->c_rect
;
1920 * for DEFAULT/BOUNDS target type, return width and height from
1921 * S_FMT of the respective buffer type
1925 s
->r
.width
= q_data
->width
;
1926 s
->r
.height
= q_data
->height
;
1933 static int vpe_s_selection(struct file
*file
, void *fh
,
1934 struct v4l2_selection
*s
)
1936 struct vpe_ctx
*ctx
= file2ctx(file
);
1937 struct vpe_q_data
*q_data
;
1938 struct v4l2_selection sel
= *s
;
1941 ret
= __vpe_try_selection(ctx
, &sel
);
1945 q_data
= get_q_data(ctx
, sel
.type
);
1949 if ((q_data
->c_rect
.left
== sel
.r
.left
) &&
1950 (q_data
->c_rect
.top
== sel
.r
.top
) &&
1951 (q_data
->c_rect
.width
== sel
.r
.width
) &&
1952 (q_data
->c_rect
.height
== sel
.r
.height
)) {
1954 "requested crop/compose values are already set\n");
1958 q_data
->c_rect
= sel
.r
;
1960 return set_srcdst_params(ctx
);
1964 * defines number of buffers/frames a context can process with VPE before
1965 * switching to a different context. default value is 1 buffer per context
1967 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1969 static int vpe_s_ctrl(struct v4l2_ctrl
*ctrl
)
1971 struct vpe_ctx
*ctx
=
1972 container_of(ctrl
->handler
, struct vpe_ctx
, hdl
);
1975 case V4L2_CID_VPE_BUFS_PER_JOB
:
1976 ctx
->bufs_per_job
= ctrl
->val
;
1980 vpe_err(ctx
->dev
, "Invalid control\n");
1987 static const struct v4l2_ctrl_ops vpe_ctrl_ops
= {
1988 .s_ctrl
= vpe_s_ctrl
,
1991 static const struct v4l2_ioctl_ops vpe_ioctl_ops
= {
1992 .vidioc_querycap
= vpe_querycap
,
1994 .vidioc_enum_fmt_vid_cap_mplane
= vpe_enum_fmt
,
1995 .vidioc_g_fmt_vid_cap_mplane
= vpe_g_fmt
,
1996 .vidioc_try_fmt_vid_cap_mplane
= vpe_try_fmt
,
1997 .vidioc_s_fmt_vid_cap_mplane
= vpe_s_fmt
,
1999 .vidioc_enum_fmt_vid_out_mplane
= vpe_enum_fmt
,
2000 .vidioc_g_fmt_vid_out_mplane
= vpe_g_fmt
,
2001 .vidioc_try_fmt_vid_out_mplane
= vpe_try_fmt
,
2002 .vidioc_s_fmt_vid_out_mplane
= vpe_s_fmt
,
2004 .vidioc_g_selection
= vpe_g_selection
,
2005 .vidioc_s_selection
= vpe_s_selection
,
2007 .vidioc_reqbufs
= v4l2_m2m_ioctl_reqbufs
,
2008 .vidioc_querybuf
= v4l2_m2m_ioctl_querybuf
,
2009 .vidioc_qbuf
= v4l2_m2m_ioctl_qbuf
,
2010 .vidioc_dqbuf
= v4l2_m2m_ioctl_dqbuf
,
2011 .vidioc_expbuf
= v4l2_m2m_ioctl_expbuf
,
2012 .vidioc_streamon
= v4l2_m2m_ioctl_streamon
,
2013 .vidioc_streamoff
= v4l2_m2m_ioctl_streamoff
,
2015 .vidioc_subscribe_event
= v4l2_ctrl_subscribe_event
,
2016 .vidioc_unsubscribe_event
= v4l2_event_unsubscribe
,
2022 static int vpe_queue_setup(struct vb2_queue
*vq
,
2023 unsigned int *nbuffers
, unsigned int *nplanes
,
2024 unsigned int sizes
[], struct device
*alloc_devs
[])
2027 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vq
);
2028 struct vpe_q_data
*q_data
;
2030 q_data
= get_q_data(ctx
, vq
->type
);
2032 *nplanes
= q_data
->nplanes
;
2034 for (i
= 0; i
< *nplanes
; i
++)
2035 sizes
[i
] = q_data
->sizeimage
[i
];
2037 vpe_dbg(ctx
->dev
, "get %d buffer(s) of size %d", *nbuffers
,
2039 if (q_data
->nplanes
== 2)
2040 vpe_dbg(ctx
->dev
, " and %d\n", sizes
[VPE_CHROMA
]);
2045 static int vpe_buf_prepare(struct vb2_buffer
*vb
)
2047 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
2048 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
2049 struct vpe_q_data
*q_data
;
2052 vpe_dbg(ctx
->dev
, "type: %d\n", vb
->vb2_queue
->type
);
2054 q_data
= get_q_data(ctx
, vb
->vb2_queue
->type
);
2055 num_planes
= q_data
->nplanes
;
2057 if (vb
->vb2_queue
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
) {
2058 if (!(q_data
->flags
& Q_IS_INTERLACED
)) {
2059 vbuf
->field
= V4L2_FIELD_NONE
;
2061 if (vbuf
->field
!= V4L2_FIELD_TOP
&&
2062 vbuf
->field
!= V4L2_FIELD_BOTTOM
&&
2063 vbuf
->field
!= V4L2_FIELD_SEQ_TB
)
2068 for (i
= 0; i
< num_planes
; i
++) {
2069 if (vb2_plane_size(vb
, i
) < q_data
->sizeimage
[i
]) {
2071 "data will not fit into plane (%lu < %lu)\n",
2072 vb2_plane_size(vb
, i
),
2073 (long) q_data
->sizeimage
[i
]);
2078 for (i
= 0; i
< num_planes
; i
++)
2079 vb2_set_plane_payload(vb
, i
, q_data
->sizeimage
[i
]);
2084 static void vpe_buf_queue(struct vb2_buffer
*vb
)
2086 struct vb2_v4l2_buffer
*vbuf
= to_vb2_v4l2_buffer(vb
);
2087 struct vpe_ctx
*ctx
= vb2_get_drv_priv(vb
->vb2_queue
);
2089 v4l2_m2m_buf_queue(ctx
->fh
.m2m_ctx
, vbuf
);
2092 static int check_srcdst_sizes(struct vpe_ctx
*ctx
)
2094 struct vpe_q_data
*s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
2095 struct vpe_q_data
*d_q_data
= &ctx
->q_data
[Q_DATA_DST
];
2096 unsigned int src_w
= s_q_data
->c_rect
.width
;
2097 unsigned int src_h
= s_q_data
->c_rect
.height
;
2098 unsigned int dst_w
= d_q_data
->c_rect
.width
;
2099 unsigned int dst_h
= d_q_data
->c_rect
.height
;
2101 if (src_w
== dst_w
&& src_h
== dst_h
)
2104 if (src_h
<= SC_MAX_PIXEL_HEIGHT
&&
2105 src_w
<= SC_MAX_PIXEL_WIDTH
&&
2106 dst_h
<= SC_MAX_PIXEL_HEIGHT
&&
2107 dst_w
<= SC_MAX_PIXEL_WIDTH
)
2113 static void vpe_return_all_buffers(struct vpe_ctx
*ctx
, struct vb2_queue
*q
,
2114 enum vb2_buffer_state state
)
2116 struct vb2_v4l2_buffer
*vb
;
2117 unsigned long flags
;
2120 if (V4L2_TYPE_IS_OUTPUT(q
->type
))
2121 vb
= v4l2_m2m_src_buf_remove(ctx
->fh
.m2m_ctx
);
2123 vb
= v4l2_m2m_dst_buf_remove(ctx
->fh
.m2m_ctx
);
2126 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2127 v4l2_m2m_buf_done(vb
, state
);
2128 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2132 * Cleanup the in-transit vb2 buffers that have been
2133 * removed from their respective queue already but for
2134 * which procecessing has not been completed yet.
2136 if (V4L2_TYPE_IS_OUTPUT(q
->type
)) {
2137 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2139 if (ctx
->src_vbs
[2])
2140 v4l2_m2m_buf_done(ctx
->src_vbs
[2], state
);
2142 if (ctx
->src_vbs
[1] && (ctx
->src_vbs
[1] != ctx
->src_vbs
[2]))
2143 v4l2_m2m_buf_done(ctx
->src_vbs
[1], state
);
2145 if (ctx
->src_vbs
[0] &&
2146 (ctx
->src_vbs
[0] != ctx
->src_vbs
[1]) &&
2147 (ctx
->src_vbs
[0] != ctx
->src_vbs
[2]))
2148 v4l2_m2m_buf_done(ctx
->src_vbs
[0], state
);
2150 ctx
->src_vbs
[2] = NULL
;
2151 ctx
->src_vbs
[1] = NULL
;
2152 ctx
->src_vbs
[0] = NULL
;
2154 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2157 spin_lock_irqsave(&ctx
->dev
->lock
, flags
);
2159 v4l2_m2m_buf_done(ctx
->dst_vb
, state
);
2161 spin_unlock_irqrestore(&ctx
->dev
->lock
, flags
);
2166 static int vpe_start_streaming(struct vb2_queue
*q
, unsigned int count
)
2168 struct vpe_ctx
*ctx
= vb2_get_drv_priv(q
);
2170 /* Check any of the size exceed maximum scaling sizes */
2171 if (check_srcdst_sizes(ctx
)) {
2173 "Conversion setup failed, check source and destination parameters\n"
2175 vpe_return_all_buffers(ctx
, q
, VB2_BUF_STATE_QUEUED
);
2179 if (ctx
->deinterlacing
)
2180 config_edi_input_mode(ctx
, 0x0);
2182 if (ctx
->sequence
!= 0)
2183 set_srcdst_params(ctx
);
2188 static void vpe_stop_streaming(struct vb2_queue
*q
)
2190 struct vpe_ctx
*ctx
= vb2_get_drv_priv(q
);
2192 vpe_dump_regs(ctx
->dev
);
2193 vpdma_dump_regs(ctx
->dev
->vpdma
);
2195 vpe_return_all_buffers(ctx
, q
, VB2_BUF_STATE_ERROR
);
2198 static const struct vb2_ops vpe_qops
= {
2199 .queue_setup
= vpe_queue_setup
,
2200 .buf_prepare
= vpe_buf_prepare
,
2201 .buf_queue
= vpe_buf_queue
,
2202 .wait_prepare
= vb2_ops_wait_prepare
,
2203 .wait_finish
= vb2_ops_wait_finish
,
2204 .start_streaming
= vpe_start_streaming
,
2205 .stop_streaming
= vpe_stop_streaming
,
2208 static int queue_init(void *priv
, struct vb2_queue
*src_vq
,
2209 struct vb2_queue
*dst_vq
)
2211 struct vpe_ctx
*ctx
= priv
;
2212 struct vpe_dev
*dev
= ctx
->dev
;
2215 memset(src_vq
, 0, sizeof(*src_vq
));
2216 src_vq
->type
= V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
;
2217 src_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
2218 src_vq
->drv_priv
= ctx
;
2219 src_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
2220 src_vq
->ops
= &vpe_qops
;
2221 src_vq
->mem_ops
= &vb2_dma_contig_memops
;
2222 src_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
2223 src_vq
->lock
= &dev
->dev_mutex
;
2224 src_vq
->dev
= dev
->v4l2_dev
.dev
;
2226 ret
= vb2_queue_init(src_vq
);
2230 memset(dst_vq
, 0, sizeof(*dst_vq
));
2231 dst_vq
->type
= V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE
;
2232 dst_vq
->io_modes
= VB2_MMAP
| VB2_DMABUF
;
2233 dst_vq
->drv_priv
= ctx
;
2234 dst_vq
->buf_struct_size
= sizeof(struct v4l2_m2m_buffer
);
2235 dst_vq
->ops
= &vpe_qops
;
2236 dst_vq
->mem_ops
= &vb2_dma_contig_memops
;
2237 dst_vq
->timestamp_flags
= V4L2_BUF_FLAG_TIMESTAMP_COPY
;
2238 dst_vq
->lock
= &dev
->dev_mutex
;
2239 dst_vq
->dev
= dev
->v4l2_dev
.dev
;
2241 return vb2_queue_init(dst_vq
);
2244 static const struct v4l2_ctrl_config vpe_bufs_per_job
= {
2245 .ops
= &vpe_ctrl_ops
,
2246 .id
= V4L2_CID_VPE_BUFS_PER_JOB
,
2247 .name
= "Buffers Per Transaction",
2248 .type
= V4L2_CTRL_TYPE_INTEGER
,
2249 .def
= VPE_DEF_BUFS_PER_JOB
,
2251 .max
= VIDEO_MAX_FRAME
,
2258 static int vpe_open(struct file
*file
)
2260 struct vpe_dev
*dev
= video_drvdata(file
);
2261 struct vpe_q_data
*s_q_data
;
2262 struct v4l2_ctrl_handler
*hdl
;
2263 struct vpe_ctx
*ctx
;
2266 vpe_dbg(dev
, "vpe_open\n");
2268 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2274 if (mutex_lock_interruptible(&dev
->dev_mutex
)) {
2279 ret
= vpdma_create_desc_list(&ctx
->desc_list
, VPE_DESC_LIST_SIZE
,
2280 VPDMA_LIST_TYPE_NORMAL
);
2284 ret
= vpdma_alloc_desc_buf(&ctx
->mmr_adb
, sizeof(struct vpe_mmr_adb
));
2286 goto free_desc_list
;
2288 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_h
, SC_COEF_SRAM_SIZE
);
2292 ret
= vpdma_alloc_desc_buf(&ctx
->sc_coeff_v
, SC_COEF_SRAM_SIZE
);
2298 v4l2_fh_init(&ctx
->fh
, video_devdata(file
));
2299 file
->private_data
= &ctx
->fh
;
2302 v4l2_ctrl_handler_init(hdl
, 1);
2303 v4l2_ctrl_new_custom(hdl
, &vpe_bufs_per_job
, NULL
);
2308 ctx
->fh
.ctrl_handler
= hdl
;
2309 v4l2_ctrl_handler_setup(hdl
);
2311 s_q_data
= &ctx
->q_data
[Q_DATA_SRC
];
2312 s_q_data
->fmt
= __find_format(V4L2_PIX_FMT_YUYV
);
2313 s_q_data
->width
= 1920;
2314 s_q_data
->height
= 1080;
2315 s_q_data
->nplanes
= 1;
2316 s_q_data
->bytesperline
[VPE_LUMA
] = (s_q_data
->width
*
2317 s_q_data
->fmt
->vpdma_fmt
[VPE_LUMA
]->depth
) >> 3;
2318 s_q_data
->sizeimage
[VPE_LUMA
] = (s_q_data
->bytesperline
[VPE_LUMA
] *
2320 s_q_data
->colorspace
= V4L2_COLORSPACE_REC709
;
2321 s_q_data
->field
= V4L2_FIELD_NONE
;
2322 s_q_data
->c_rect
.left
= 0;
2323 s_q_data
->c_rect
.top
= 0;
2324 s_q_data
->c_rect
.width
= s_q_data
->width
;
2325 s_q_data
->c_rect
.height
= s_q_data
->height
;
2326 s_q_data
->flags
= 0;
2328 ctx
->q_data
[Q_DATA_DST
] = *s_q_data
;
2330 set_dei_shadow_registers(ctx
);
2331 set_src_registers(ctx
);
2332 set_dst_registers(ctx
);
2333 ret
= set_srcdst_params(ctx
);
2337 ctx
->fh
.m2m_ctx
= v4l2_m2m_ctx_init(dev
->m2m_dev
, ctx
, &queue_init
);
2339 if (IS_ERR(ctx
->fh
.m2m_ctx
)) {
2340 ret
= PTR_ERR(ctx
->fh
.m2m_ctx
);
2344 v4l2_fh_add(&ctx
->fh
);
2347 * for now, just report the creation of the first instance, we can later
2348 * optimize the driver to enable or disable clocks when the first
2349 * instance is created or the last instance released
2351 if (atomic_inc_return(&dev
->num_instances
) == 1)
2352 vpe_dbg(dev
, "first instance created\n");
2354 ctx
->bufs_per_job
= VPE_DEF_BUFS_PER_JOB
;
2356 ctx
->load_mmrs
= true;
2358 vpe_dbg(dev
, "created instance %p, m2m_ctx: %p\n",
2359 ctx
, ctx
->fh
.m2m_ctx
);
2361 mutex_unlock(&dev
->dev_mutex
);
2365 v4l2_ctrl_handler_free(hdl
);
2366 v4l2_fh_exit(&ctx
->fh
);
2367 vpdma_free_desc_buf(&ctx
->sc_coeff_v
);
2369 vpdma_free_desc_buf(&ctx
->sc_coeff_h
);
2371 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2373 vpdma_free_desc_list(&ctx
->desc_list
);
2375 mutex_unlock(&dev
->dev_mutex
);
2381 static int vpe_release(struct file
*file
)
2383 struct vpe_dev
*dev
= video_drvdata(file
);
2384 struct vpe_ctx
*ctx
= file2ctx(file
);
2386 vpe_dbg(dev
, "releasing instance %p\n", ctx
);
2388 mutex_lock(&dev
->dev_mutex
);
2389 free_mv_buffers(ctx
);
2391 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->desc_list
.buf
);
2392 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->mmr_adb
);
2393 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_h
);
2394 vpdma_unmap_desc_buf(dev
->vpdma
, &ctx
->sc_coeff_v
);
2396 vpdma_free_desc_list(&ctx
->desc_list
);
2397 vpdma_free_desc_buf(&ctx
->mmr_adb
);
2399 vpdma_free_desc_buf(&ctx
->sc_coeff_v
);
2400 vpdma_free_desc_buf(&ctx
->sc_coeff_h
);
2402 v4l2_fh_del(&ctx
->fh
);
2403 v4l2_fh_exit(&ctx
->fh
);
2404 v4l2_ctrl_handler_free(&ctx
->hdl
);
2405 v4l2_m2m_ctx_release(ctx
->fh
.m2m_ctx
);
2410 * for now, just report the release of the last instance, we can later
2411 * optimize the driver to enable or disable clocks when the first
2412 * instance is created or the last instance released
2414 if (atomic_dec_return(&dev
->num_instances
) == 0)
2415 vpe_dbg(dev
, "last instance released\n");
2417 mutex_unlock(&dev
->dev_mutex
);
2422 static const struct v4l2_file_operations vpe_fops
= {
2423 .owner
= THIS_MODULE
,
2425 .release
= vpe_release
,
2426 .poll
= v4l2_m2m_fop_poll
,
2427 .unlocked_ioctl
= video_ioctl2
,
2428 .mmap
= v4l2_m2m_fop_mmap
,
2431 static const struct video_device vpe_videodev
= {
2432 .name
= VPE_MODULE_NAME
,
2434 .ioctl_ops
= &vpe_ioctl_ops
,
2436 .release
= video_device_release_empty
,
2437 .vfl_dir
= VFL_DIR_M2M
,
2440 static const struct v4l2_m2m_ops m2m_ops
= {
2441 .device_run
= device_run
,
2442 .job_ready
= job_ready
,
2443 .job_abort
= job_abort
,
2446 static int vpe_runtime_get(struct platform_device
*pdev
)
2450 dev_dbg(&pdev
->dev
, "vpe_runtime_get\n");
2452 r
= pm_runtime_get_sync(&pdev
->dev
);
2454 return r
< 0 ? r
: 0;
2457 static void vpe_runtime_put(struct platform_device
*pdev
)
2462 dev_dbg(&pdev
->dev
, "vpe_runtime_put\n");
2464 r
= pm_runtime_put_sync(&pdev
->dev
);
2465 WARN_ON(r
< 0 && r
!= -ENOSYS
);
2468 static void vpe_fw_cb(struct platform_device
*pdev
)
2470 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2471 struct video_device
*vfd
;
2475 *vfd
= vpe_videodev
;
2476 vfd
->lock
= &dev
->dev_mutex
;
2477 vfd
->v4l2_dev
= &dev
->v4l2_dev
;
2479 ret
= video_register_device(vfd
, VFL_TYPE_GRABBER
, 0);
2481 vpe_err(dev
, "Failed to register video device\n");
2483 vpe_set_clock_enable(dev
, 0);
2484 vpe_runtime_put(pdev
);
2485 pm_runtime_disable(&pdev
->dev
);
2486 v4l2_m2m_release(dev
->m2m_dev
);
2487 v4l2_device_unregister(&dev
->v4l2_dev
);
2492 video_set_drvdata(vfd
, dev
);
2493 dev_info(dev
->v4l2_dev
.dev
, "Device registered as /dev/video%d\n",
2497 static int vpe_probe(struct platform_device
*pdev
)
2499 struct vpe_dev
*dev
;
2502 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
2506 spin_lock_init(&dev
->lock
);
2508 ret
= v4l2_device_register(&pdev
->dev
, &dev
->v4l2_dev
);
2512 atomic_set(&dev
->num_instances
, 0);
2513 mutex_init(&dev
->dev_mutex
);
2515 dev
->res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2518 * HACK: we get resource info from device tree in the form of a list of
2519 * VPE sub blocks, the driver currently uses only the base of vpe_top
2520 * for register access, the driver should be changed later to access
2521 * registers based on the sub block base addresses
2523 dev
->base
= devm_ioremap(&pdev
->dev
, dev
->res
->start
, SZ_32K
);
2526 goto v4l2_dev_unreg
;
2529 irq
= platform_get_irq(pdev
, 0);
2530 ret
= devm_request_irq(&pdev
->dev
, irq
, vpe_irq
, 0, VPE_MODULE_NAME
,
2533 goto v4l2_dev_unreg
;
2535 platform_set_drvdata(pdev
, dev
);
2537 dev
->m2m_dev
= v4l2_m2m_init(&m2m_ops
);
2538 if (IS_ERR(dev
->m2m_dev
)) {
2539 vpe_err(dev
, "Failed to init mem2mem device\n");
2540 ret
= PTR_ERR(dev
->m2m_dev
);
2541 goto v4l2_dev_unreg
;
2544 pm_runtime_enable(&pdev
->dev
);
2546 ret
= vpe_runtime_get(pdev
);
2550 /* Perform clk enable followed by reset */
2551 vpe_set_clock_enable(dev
, 1);
2555 func
= read_field_reg(dev
, VPE_PID
, VPE_PID_FUNC_MASK
,
2556 VPE_PID_FUNC_SHIFT
);
2557 vpe_dbg(dev
, "VPE PID function %x\n", func
);
2559 vpe_top_vpdma_reset(dev
);
2561 dev
->sc
= sc_create(pdev
, "sc");
2562 if (IS_ERR(dev
->sc
)) {
2563 ret
= PTR_ERR(dev
->sc
);
2567 dev
->csc
= csc_create(pdev
, "csc");
2568 if (IS_ERR(dev
->csc
)) {
2569 ret
= PTR_ERR(dev
->csc
);
2573 dev
->vpdma
= &dev
->vpdma_data
;
2574 ret
= vpdma_create(pdev
, dev
->vpdma
, vpe_fw_cb
);
2581 vpe_runtime_put(pdev
);
2583 pm_runtime_disable(&pdev
->dev
);
2584 v4l2_m2m_release(dev
->m2m_dev
);
2586 v4l2_device_unregister(&dev
->v4l2_dev
);
2591 static int vpe_remove(struct platform_device
*pdev
)
2593 struct vpe_dev
*dev
= platform_get_drvdata(pdev
);
2595 v4l2_info(&dev
->v4l2_dev
, "Removing " VPE_MODULE_NAME
);
2597 v4l2_m2m_release(dev
->m2m_dev
);
2598 video_unregister_device(&dev
->vfd
);
2599 v4l2_device_unregister(&dev
->v4l2_dev
);
2601 vpe_set_clock_enable(dev
, 0);
2602 vpe_runtime_put(pdev
);
2603 pm_runtime_disable(&pdev
->dev
);
2608 #if defined(CONFIG_OF)
2609 static const struct of_device_id vpe_of_match
[] = {
2611 .compatible
= "ti,vpe",
2615 MODULE_DEVICE_TABLE(of
, vpe_of_match
);
2618 static struct platform_driver vpe_pdrv
= {
2620 .remove
= vpe_remove
,
2622 .name
= VPE_MODULE_NAME
,
2623 .of_match_table
= of_match_ptr(vpe_of_match
),
2627 module_platform_driver(vpe_pdrv
);
2629 MODULE_DESCRIPTION("TI VPE driver");
2630 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2631 MODULE_LICENSE("GPL");