1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
26 unsigned int repeat_period
;
27 unsigned int scancode_bits
;
29 [RC_PROTO_UNKNOWN
] = { .name
= "unknown", .repeat_period
= 125 },
30 [RC_PROTO_OTHER
] = { .name
= "other", .repeat_period
= 125 },
31 [RC_PROTO_RC5
] = { .name
= "rc-5",
32 .scancode_bits
= 0x1f7f, .repeat_period
= 114 },
33 [RC_PROTO_RC5X_20
] = { .name
= "rc-5x-20",
34 .scancode_bits
= 0x1f7f3f, .repeat_period
= 114 },
35 [RC_PROTO_RC5_SZ
] = { .name
= "rc-5-sz",
36 .scancode_bits
= 0x2fff, .repeat_period
= 114 },
37 [RC_PROTO_JVC
] = { .name
= "jvc",
38 .scancode_bits
= 0xffff, .repeat_period
= 125 },
39 [RC_PROTO_SONY12
] = { .name
= "sony-12",
40 .scancode_bits
= 0x1f007f, .repeat_period
= 100 },
41 [RC_PROTO_SONY15
] = { .name
= "sony-15",
42 .scancode_bits
= 0xff007f, .repeat_period
= 100 },
43 [RC_PROTO_SONY20
] = { .name
= "sony-20",
44 .scancode_bits
= 0x1fff7f, .repeat_period
= 100 },
45 [RC_PROTO_NEC
] = { .name
= "nec",
46 .scancode_bits
= 0xffff, .repeat_period
= 110 },
47 [RC_PROTO_NECX
] = { .name
= "nec-x",
48 .scancode_bits
= 0xffffff, .repeat_period
= 110 },
49 [RC_PROTO_NEC32
] = { .name
= "nec-32",
50 .scancode_bits
= 0xffffffff, .repeat_period
= 110 },
51 [RC_PROTO_SANYO
] = { .name
= "sanyo",
52 .scancode_bits
= 0x1fffff, .repeat_period
= 125 },
53 [RC_PROTO_MCIR2_KBD
] = { .name
= "mcir2-kbd",
54 .scancode_bits
= 0xffffff, .repeat_period
= 100 },
55 [RC_PROTO_MCIR2_MSE
] = { .name
= "mcir2-mse",
56 .scancode_bits
= 0x1fffff, .repeat_period
= 100 },
57 [RC_PROTO_RC6_0
] = { .name
= "rc-6-0",
58 .scancode_bits
= 0xffff, .repeat_period
= 114 },
59 [RC_PROTO_RC6_6A_20
] = { .name
= "rc-6-6a-20",
60 .scancode_bits
= 0xfffff, .repeat_period
= 114 },
61 [RC_PROTO_RC6_6A_24
] = { .name
= "rc-6-6a-24",
62 .scancode_bits
= 0xffffff, .repeat_period
= 114 },
63 [RC_PROTO_RC6_6A_32
] = { .name
= "rc-6-6a-32",
64 .scancode_bits
= 0xffffffff, .repeat_period
= 114 },
65 [RC_PROTO_RC6_MCE
] = { .name
= "rc-6-mce",
66 .scancode_bits
= 0xffff7fff, .repeat_period
= 114 },
67 [RC_PROTO_SHARP
] = { .name
= "sharp",
68 .scancode_bits
= 0x1fff, .repeat_period
= 125 },
69 [RC_PROTO_XMP
] = { .name
= "xmp", .repeat_period
= 125 },
70 [RC_PROTO_CEC
] = { .name
= "cec", .repeat_period
= 0 },
71 [RC_PROTO_IMON
] = { .name
= "imon",
72 .scancode_bits
= 0x7fffffff, .repeat_period
= 114 },
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list
);
77 static DEFINE_SPINLOCK(rc_map_lock
);
78 static struct led_trigger
*led_feedback
;
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida
);
83 static struct rc_map_list
*seek_rc_map(const char *name
)
85 struct rc_map_list
*map
= NULL
;
87 spin_lock(&rc_map_lock
);
88 list_for_each_entry(map
, &rc_map_list
, list
) {
89 if (!strcmp(name
, map
->map
.name
)) {
90 spin_unlock(&rc_map_lock
);
94 spin_unlock(&rc_map_lock
);
99 struct rc_map
*rc_map_get(const char *name
)
102 struct rc_map_list
*map
;
104 map
= seek_rc_map(name
);
105 #ifdef CONFIG_MODULES
107 int rc
= request_module("%s", name
);
109 pr_err("Couldn't load IR keymap %s\n", name
);
112 msleep(20); /* Give some time for IR to register */
114 map
= seek_rc_map(name
);
118 pr_err("IR keymap %s not found\n", name
);
122 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
126 EXPORT_SYMBOL_GPL(rc_map_get
);
128 int rc_map_register(struct rc_map_list
*map
)
130 spin_lock(&rc_map_lock
);
131 list_add_tail(&map
->list
, &rc_map_list
);
132 spin_unlock(&rc_map_lock
);
135 EXPORT_SYMBOL_GPL(rc_map_register
);
137 void rc_map_unregister(struct rc_map_list
*map
)
139 spin_lock(&rc_map_lock
);
140 list_del(&map
->list
);
141 spin_unlock(&rc_map_lock
);
143 EXPORT_SYMBOL_GPL(rc_map_unregister
);
146 static struct rc_map_table empty
[] = {
147 { 0x2a, KEY_COFFEE
},
150 static struct rc_map_list empty_map
= {
153 .size
= ARRAY_SIZE(empty
),
154 .rc_proto
= RC_PROTO_UNKNOWN
, /* Legacy IR type */
155 .name
= RC_MAP_EMPTY
,
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
170 * return: zero on success or a negative error code
172 static int ir_create_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
173 const char *name
, u64 rc_proto
, size_t size
)
175 rc_map
->name
= kstrdup(name
, GFP_KERNEL
);
178 rc_map
->rc_proto
= rc_proto
;
179 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
180 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
181 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
188 dev_dbg(&dev
->dev
, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map
->size
, rc_map
->alloc
);
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
197 * This routine will free memory alloctaed for key mappings used by given
200 static void ir_free_table(struct rc_map
*rc_map
)
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
218 * return: zero on success or a negative error code
220 static int ir_resize_table(struct rc_dev
*dev
, struct rc_map
*rc_map
,
223 unsigned int oldalloc
= rc_map
->alloc
;
224 unsigned int newalloc
= oldalloc
;
225 struct rc_map_table
*oldscan
= rc_map
->scan
;
226 struct rc_map_table
*newscan
;
228 if (rc_map
->size
== rc_map
->len
) {
229 /* All entries in use -> grow keytable */
230 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
234 dev_dbg(&dev
->dev
, "Growing table to %u bytes\n", newalloc
);
237 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
240 dev_dbg(&dev
->dev
, "Shrinking table to %u bytes\n", newalloc
);
243 if (newalloc
== oldalloc
)
246 newscan
= kmalloc(newalloc
, gfp_flags
);
250 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
251 rc_map
->scan
= newscan
;
252 rc_map
->alloc
= newalloc
;
253 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
265 * This routine is used to update scancode->keycode mapping at given
268 * return: previous keycode assigned to the mapping
271 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
272 struct rc_map
*rc_map
,
274 unsigned int new_keycode
)
276 int old_keycode
= rc_map
->scan
[index
].keycode
;
279 /* Did the user wish to remove the mapping? */
280 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
281 dev_dbg(&dev
->dev
, "#%d: Deleting scan 0x%04x\n",
282 index
, rc_map
->scan
[index
].scancode
);
284 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
285 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
287 dev_dbg(&dev
->dev
, "#%d: %s scan 0x%04x with key 0x%04x\n",
289 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
290 rc_map
->scan
[index
].scancode
, new_keycode
);
291 rc_map
->scan
[index
].keycode
= new_keycode
;
292 __set_bit(new_keycode
, dev
->input_dev
->keybit
);
295 if (old_keycode
!= KEY_RESERVED
) {
296 /* A previous mapping was updated... */
297 __clear_bit(old_keycode
, dev
->input_dev
->keybit
);
298 /* ... but another scancode might use the same keycode */
299 for (i
= 0; i
< rc_map
->len
; i
++) {
300 if (rc_map
->scan
[i
].keycode
== old_keycode
) {
301 __set_bit(old_keycode
, dev
->input_dev
->keybit
);
306 /* Possibly shrink the keytable, failure is not a problem */
307 ir_resize_table(dev
, rc_map
, GFP_ATOMIC
);
314 * ir_establish_scancode() - set a keycode in the scancode->keycode table
315 * @dev: the struct rc_dev device descriptor
316 * @rc_map: scancode table to be searched
317 * @scancode: the desired scancode
318 * @resize: controls whether we allowed to resize the table to
319 * accommodate not yet present scancodes
321 * This routine is used to locate given scancode in rc_map.
322 * If scancode is not yet present the routine will allocate a new slot
325 * return: index of the mapping containing scancode in question
326 * or -1U in case of failure.
328 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
329 struct rc_map
*rc_map
,
330 unsigned int scancode
,
336 * Unfortunately, some hardware-based IR decoders don't provide
337 * all bits for the complete IR code. In general, they provide only
338 * the command part of the IR code. Yet, as it is possible to replace
339 * the provided IR with another one, it is needed to allow loading
340 * IR tables from other remotes. So, we support specifying a mask to
341 * indicate the valid bits of the scancodes.
343 if (dev
->scancode_mask
)
344 scancode
&= dev
->scancode_mask
;
346 /* First check if we already have a mapping for this ir command */
347 for (i
= 0; i
< rc_map
->len
; i
++) {
348 if (rc_map
->scan
[i
].scancode
== scancode
)
351 /* Keytable is sorted from lowest to highest scancode */
352 if (rc_map
->scan
[i
].scancode
>= scancode
)
356 /* No previous mapping found, we might need to grow the table */
357 if (rc_map
->size
== rc_map
->len
) {
358 if (!resize
|| ir_resize_table(dev
, rc_map
, GFP_ATOMIC
))
362 /* i is the proper index to insert our new keycode */
364 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
365 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
366 rc_map
->scan
[i
].scancode
= scancode
;
367 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
374 * ir_setkeycode() - set a keycode in the scancode->keycode table
375 * @idev: the struct input_dev device descriptor
376 * @ke: Input keymap entry
377 * @old_keycode: result
379 * This routine is used to handle evdev EVIOCSKEY ioctl.
381 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
383 static int ir_setkeycode(struct input_dev
*idev
,
384 const struct input_keymap_entry
*ke
,
385 unsigned int *old_keycode
)
387 struct rc_dev
*rdev
= input_get_drvdata(idev
);
388 struct rc_map
*rc_map
= &rdev
->rc_map
;
390 unsigned int scancode
;
394 spin_lock_irqsave(&rc_map
->lock
, flags
);
396 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
398 if (index
>= rc_map
->len
) {
403 retval
= input_scancode_to_scalar(ke
, &scancode
);
407 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
408 if (index
>= rc_map
->len
) {
414 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
417 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @from: the struct rc_map to copy entries from
426 * This routine is used to handle table initialization.
428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
430 static int ir_setkeytable(struct rc_dev
*dev
,
431 const struct rc_map
*from
)
433 struct rc_map
*rc_map
= &dev
->rc_map
;
434 unsigned int i
, index
;
437 rc
= ir_create_table(dev
, rc_map
, from
->name
, from
->rc_proto
,
442 for (i
= 0; i
< from
->size
; i
++) {
443 index
= ir_establish_scancode(dev
, rc_map
,
444 from
->scan
[i
].scancode
, false);
445 if (index
>= rc_map
->len
) {
450 ir_update_mapping(dev
, rc_map
, index
,
451 from
->scan
[i
].keycode
);
455 ir_free_table(rc_map
);
460 static int rc_map_cmp(const void *key
, const void *elt
)
462 const unsigned int *scancode
= key
;
463 const struct rc_map_table
*e
= elt
;
465 if (*scancode
< e
->scancode
)
467 else if (*scancode
> e
->scancode
)
473 * ir_lookup_by_scancode() - locate mapping by scancode
474 * @rc_map: the struct rc_map to search
475 * @scancode: scancode to look for in the table
477 * This routine performs binary search in RC keykeymap table for
480 * return: index in the table, -1U if not found
482 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
483 unsigned int scancode
)
485 struct rc_map_table
*res
;
487 res
= bsearch(&scancode
, rc_map
->scan
, rc_map
->len
,
488 sizeof(struct rc_map_table
), rc_map_cmp
);
492 return res
- rc_map
->scan
;
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @ke: Input keymap entry
500 * This routine is used to handle evdev EVIOCGKEY ioctl.
502 * return: always returns zero.
504 static int ir_getkeycode(struct input_dev
*idev
,
505 struct input_keymap_entry
*ke
)
507 struct rc_dev
*rdev
= input_get_drvdata(idev
);
508 struct rc_map
*rc_map
= &rdev
->rc_map
;
509 struct rc_map_table
*entry
;
512 unsigned int scancode
;
515 spin_lock_irqsave(&rc_map
->lock
, flags
);
517 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
520 retval
= input_scancode_to_scalar(ke
, &scancode
);
524 index
= ir_lookup_by_scancode(rc_map
, scancode
);
527 if (index
< rc_map
->len
) {
528 entry
= &rc_map
->scan
[index
];
531 ke
->keycode
= entry
->keycode
;
532 ke
->len
= sizeof(entry
->scancode
);
533 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
535 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
542 ke
->keycode
= KEY_RESERVED
;
551 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
560 * This routine is used by drivers which need to convert a scancode to a
561 * keycode. Normally it should not be used since drivers should have no
562 * interest in keycodes.
564 * return: the corresponding keycode, or KEY_RESERVED
566 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u32 scancode
)
568 struct rc_map
*rc_map
= &dev
->rc_map
;
569 unsigned int keycode
;
573 spin_lock_irqsave(&rc_map
->lock
, flags
);
575 index
= ir_lookup_by_scancode(rc_map
, scancode
);
576 keycode
= index
< rc_map
->len
?
577 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
579 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
581 if (keycode
!= KEY_RESERVED
)
582 dev_dbg(&dev
->dev
, "%s: scancode 0x%04x keycode 0x%02x\n",
583 dev
->device_name
, scancode
, keycode
);
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
590 * ir_do_keyup() - internal function to signal the release of a keypress
591 * @dev: the struct rc_dev descriptor of the device
592 * @sync: whether or not to call input_sync
594 * This function is used internally to release a keypress, it must be
595 * called with keylock held.
597 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
599 if (!dev
->keypressed
)
602 dev_dbg(&dev
->dev
, "keyup key 0x%04x\n", dev
->last_keycode
);
603 del_timer(&dev
->timer_repeat
);
604 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
605 led_trigger_event(led_feedback
, LED_OFF
);
607 input_sync(dev
->input_dev
);
608 dev
->keypressed
= false;
612 * rc_keyup() - signals the release of a keypress
613 * @dev: the struct rc_dev descriptor of the device
615 * This routine is used to signal that a key has been released on the
618 void rc_keyup(struct rc_dev
*dev
)
622 spin_lock_irqsave(&dev
->keylock
, flags
);
623 ir_do_keyup(dev
, true);
624 spin_unlock_irqrestore(&dev
->keylock
, flags
);
626 EXPORT_SYMBOL_GPL(rc_keyup
);
629 * ir_timer_keyup() - generates a keyup event after a timeout
631 * @t: a pointer to the struct timer_list
633 * This routine will generate a keyup event some time after a keydown event
634 * is generated when no further activity has been detected.
636 static void ir_timer_keyup(struct timer_list
*t
)
638 struct rc_dev
*dev
= from_timer(dev
, t
, timer_keyup
);
642 * ir->keyup_jiffies is used to prevent a race condition if a
643 * hardware interrupt occurs at this point and the keyup timer
644 * event is moved further into the future as a result.
646 * The timer will then be reactivated and this function called
647 * again in the future. We need to exit gracefully in that case
648 * to allow the input subsystem to do its auto-repeat magic or
649 * a keyup event might follow immediately after the keydown.
651 spin_lock_irqsave(&dev
->keylock
, flags
);
652 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
653 ir_do_keyup(dev
, true);
654 spin_unlock_irqrestore(&dev
->keylock
, flags
);
658 * ir_timer_repeat() - generates a repeat event after a timeout
660 * @t: a pointer to the struct timer_list
662 * This routine will generate a soft repeat event every REP_PERIOD
665 static void ir_timer_repeat(struct timer_list
*t
)
667 struct rc_dev
*dev
= from_timer(dev
, t
, timer_repeat
);
668 struct input_dev
*input
= dev
->input_dev
;
671 spin_lock_irqsave(&dev
->keylock
, flags
);
672 if (dev
->keypressed
) {
673 input_event(input
, EV_KEY
, dev
->last_keycode
, 2);
675 if (input
->rep
[REP_PERIOD
])
676 mod_timer(&dev
->timer_repeat
, jiffies
+
677 msecs_to_jiffies(input
->rep
[REP_PERIOD
]));
679 spin_unlock_irqrestore(&dev
->keylock
, flags
);
682 static unsigned int repeat_period(int protocol
)
684 if (protocol
>= ARRAY_SIZE(protocols
))
687 return protocols
[protocol
].repeat_period
;
691 * rc_repeat() - signals that a key is still pressed
692 * @dev: the struct rc_dev descriptor of the device
694 * This routine is used by IR decoders when a repeat message which does
695 * not include the necessary bits to reproduce the scancode has been
698 void rc_repeat(struct rc_dev
*dev
)
701 unsigned int timeout
= nsecs_to_jiffies(dev
->timeout
) +
702 msecs_to_jiffies(repeat_period(dev
->last_protocol
));
703 struct lirc_scancode sc
= {
704 .scancode
= dev
->last_scancode
, .rc_proto
= dev
->last_protocol
,
705 .keycode
= dev
->keypressed
? dev
->last_keycode
: KEY_RESERVED
,
706 .flags
= LIRC_SCANCODE_FLAG_REPEAT
|
707 (dev
->last_toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0)
710 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
711 ir_lirc_scancode_event(dev
, &sc
);
713 spin_lock_irqsave(&dev
->keylock
, flags
);
715 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, dev
->last_scancode
);
716 input_sync(dev
->input_dev
);
718 if (dev
->keypressed
) {
719 dev
->keyup_jiffies
= jiffies
+ timeout
;
720 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
723 spin_unlock_irqrestore(&dev
->keylock
, flags
);
725 EXPORT_SYMBOL_GPL(rc_repeat
);
728 * ir_do_keydown() - internal function to process a keypress
729 * @dev: the struct rc_dev descriptor of the device
730 * @protocol: the protocol of the keypress
731 * @scancode: the scancode of the keypress
732 * @keycode: the keycode of the keypress
733 * @toggle: the toggle value of the keypress
735 * This function is used internally to register a keypress, it must be
736 * called with keylock held.
738 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_proto protocol
,
739 u32 scancode
, u32 keycode
, u8 toggle
)
741 bool new_event
= (!dev
->keypressed
||
742 dev
->last_protocol
!= protocol
||
743 dev
->last_scancode
!= scancode
||
744 dev
->last_toggle
!= toggle
);
745 struct lirc_scancode sc
= {
746 .scancode
= scancode
, .rc_proto
= protocol
,
747 .flags
= toggle
? LIRC_SCANCODE_FLAG_TOGGLE
: 0,
751 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
752 ir_lirc_scancode_event(dev
, &sc
);
754 if (new_event
&& dev
->keypressed
)
755 ir_do_keyup(dev
, false);
757 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
759 dev
->last_protocol
= protocol
;
760 dev
->last_scancode
= scancode
;
761 dev
->last_toggle
= toggle
;
762 dev
->last_keycode
= keycode
;
764 if (new_event
&& keycode
!= KEY_RESERVED
) {
765 /* Register a keypress */
766 dev
->keypressed
= true;
768 dev_dbg(&dev
->dev
, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
769 dev
->device_name
, keycode
, protocol
, scancode
);
770 input_report_key(dev
->input_dev
, keycode
, 1);
772 led_trigger_event(led_feedback
, LED_FULL
);
776 * For CEC, start sending repeat messages as soon as the first
777 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
778 * is non-zero. Otherwise, the input layer will generate repeat
781 if (!new_event
&& keycode
!= KEY_RESERVED
&&
782 dev
->allowed_protocols
== RC_PROTO_BIT_CEC
&&
783 !timer_pending(&dev
->timer_repeat
) &&
784 dev
->input_dev
->rep
[REP_PERIOD
] &&
785 !dev
->input_dev
->rep
[REP_DELAY
]) {
786 input_event(dev
->input_dev
, EV_KEY
, keycode
, 2);
787 mod_timer(&dev
->timer_repeat
, jiffies
+
788 msecs_to_jiffies(dev
->input_dev
->rep
[REP_PERIOD
]));
791 input_sync(dev
->input_dev
);
795 * rc_keydown() - generates input event for a key press
796 * @dev: the struct rc_dev descriptor of the device
797 * @protocol: the protocol for the keypress
798 * @scancode: the scancode for the keypress
799 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
800 * support toggle values, this should be set to zero)
802 * This routine is used to signal that a key has been pressed on the
805 void rc_keydown(struct rc_dev
*dev
, enum rc_proto protocol
, u32 scancode
,
809 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
811 spin_lock_irqsave(&dev
->keylock
, flags
);
812 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
814 if (dev
->keypressed
) {
815 dev
->keyup_jiffies
= jiffies
+ nsecs_to_jiffies(dev
->timeout
) +
816 msecs_to_jiffies(repeat_period(protocol
));
817 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
819 spin_unlock_irqrestore(&dev
->keylock
, flags
);
821 EXPORT_SYMBOL_GPL(rc_keydown
);
824 * rc_keydown_notimeout() - generates input event for a key press without
825 * an automatic keyup event at a later time
826 * @dev: the struct rc_dev descriptor of the device
827 * @protocol: the protocol for the keypress
828 * @scancode: the scancode for the keypress
829 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
830 * support toggle values, this should be set to zero)
832 * This routine is used to signal that a key has been pressed on the
833 * remote control. The driver must manually call rc_keyup() at a later stage.
835 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_proto protocol
,
836 u32 scancode
, u8 toggle
)
839 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
841 spin_lock_irqsave(&dev
->keylock
, flags
);
842 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
843 spin_unlock_irqrestore(&dev
->keylock
, flags
);
845 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
848 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
849 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
851 * @scancode: scancode
853 bool rc_validate_scancode(enum rc_proto proto
, u32 scancode
)
857 * NECX has a 16-bit address; if the lower 8 bits match the upper
858 * 8 bits inverted, then the address would match regular nec.
861 if ((((scancode
>> 16) ^ ~(scancode
>> 8)) & 0xff) == 0)
865 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
866 * of the command match the upper 8 bits inverted, then it would
867 * be either NEC or NECX.
870 if ((((scancode
>> 8) ^ ~scancode
) & 0xff) == 0)
874 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
875 * is regular mode-6a 32 bit
877 case RC_PROTO_RC6_MCE
:
878 if ((scancode
& 0xffff0000) != 0x800f0000)
881 case RC_PROTO_RC6_6A_32
:
882 if ((scancode
& 0xffff0000) == 0x800f0000)
893 * rc_validate_filter() - checks that the scancode and mask are valid and
894 * provides sensible defaults
895 * @dev: the struct rc_dev descriptor of the device
896 * @filter: the scancode and mask
898 * return: 0 or -EINVAL if the filter is not valid
900 static int rc_validate_filter(struct rc_dev
*dev
,
901 struct rc_scancode_filter
*filter
)
903 u32 mask
, s
= filter
->data
;
904 enum rc_proto protocol
= dev
->wakeup_protocol
;
906 if (protocol
>= ARRAY_SIZE(protocols
))
909 mask
= protocols
[protocol
].scancode_bits
;
911 if (!rc_validate_scancode(protocol
, s
))
914 filter
->data
&= mask
;
915 filter
->mask
&= mask
;
918 * If we have to raw encode the IR for wakeup, we cannot have a mask
920 if (dev
->encode_wakeup
&& filter
->mask
!= 0 && filter
->mask
!= mask
)
926 int rc_open(struct rc_dev
*rdev
)
933 mutex_lock(&rdev
->lock
);
935 if (!rdev
->registered
) {
938 if (!rdev
->users
++ && rdev
->open
)
939 rval
= rdev
->open(rdev
);
945 mutex_unlock(&rdev
->lock
);
950 static int ir_open(struct input_dev
*idev
)
952 struct rc_dev
*rdev
= input_get_drvdata(idev
);
954 return rc_open(rdev
);
957 void rc_close(struct rc_dev
*rdev
)
960 mutex_lock(&rdev
->lock
);
962 if (!--rdev
->users
&& rdev
->close
&& rdev
->registered
)
965 mutex_unlock(&rdev
->lock
);
969 static void ir_close(struct input_dev
*idev
)
971 struct rc_dev
*rdev
= input_get_drvdata(idev
);
975 /* class for /sys/class/rc */
976 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
978 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
981 static struct class rc_class
= {
983 .devnode
= rc_devnode
,
987 * These are the protocol textual descriptions that are
988 * used by the sysfs protocols file. Note that the order
989 * of the entries is relevant.
991 static const struct {
994 const char *module_name
;
996 { RC_PROTO_BIT_NONE
, "none", NULL
},
997 { RC_PROTO_BIT_OTHER
, "other", NULL
},
998 { RC_PROTO_BIT_UNKNOWN
, "unknown", NULL
},
1000 RC_PROTO_BIT_RC5X_20
, "rc-5", "ir-rc5-decoder" },
1001 { RC_PROTO_BIT_NEC
|
1003 RC_PROTO_BIT_NEC32
, "nec", "ir-nec-decoder" },
1004 { RC_PROTO_BIT_RC6_0
|
1005 RC_PROTO_BIT_RC6_6A_20
|
1006 RC_PROTO_BIT_RC6_6A_24
|
1007 RC_PROTO_BIT_RC6_6A_32
|
1008 RC_PROTO_BIT_RC6_MCE
, "rc-6", "ir-rc6-decoder" },
1009 { RC_PROTO_BIT_JVC
, "jvc", "ir-jvc-decoder" },
1010 { RC_PROTO_BIT_SONY12
|
1011 RC_PROTO_BIT_SONY15
|
1012 RC_PROTO_BIT_SONY20
, "sony", "ir-sony-decoder" },
1013 { RC_PROTO_BIT_RC5_SZ
, "rc-5-sz", "ir-rc5-decoder" },
1014 { RC_PROTO_BIT_SANYO
, "sanyo", "ir-sanyo-decoder" },
1015 { RC_PROTO_BIT_SHARP
, "sharp", "ir-sharp-decoder" },
1016 { RC_PROTO_BIT_MCIR2_KBD
|
1017 RC_PROTO_BIT_MCIR2_MSE
, "mce_kbd", "ir-mce_kbd-decoder" },
1018 { RC_PROTO_BIT_XMP
, "xmp", "ir-xmp-decoder" },
1019 { RC_PROTO_BIT_CEC
, "cec", NULL
},
1020 { RC_PROTO_BIT_IMON
, "imon", "ir-imon-decoder" },
1024 * struct rc_filter_attribute - Device attribute relating to a filter type.
1025 * @attr: Device attribute.
1026 * @type: Filter type.
1027 * @mask: false for filter value, true for filter mask.
1029 struct rc_filter_attribute
{
1030 struct device_attribute attr
;
1031 enum rc_filter_type type
;
1034 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1036 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1037 struct rc_filter_attribute dev_attr_##_name = { \
1038 .attr = __ATTR(_name, _mode, _show, _store), \
1044 * show_protocols() - shows the current IR protocol(s)
1045 * @device: the device descriptor
1046 * @mattr: the device attribute struct
1047 * @buf: a pointer to the output buffer
1049 * This routine is a callback routine for input read the IR protocol type(s).
1050 * it is trigged by reading /sys/class/rc/rc?/protocols.
1051 * It returns the protocol names of supported protocols.
1052 * Enabled protocols are printed in brackets.
1054 * dev->lock is taken to guard against races between
1055 * store_protocols and show_protocols.
1057 static ssize_t
show_protocols(struct device
*device
,
1058 struct device_attribute
*mattr
, char *buf
)
1060 struct rc_dev
*dev
= to_rc_dev(device
);
1061 u64 allowed
, enabled
;
1065 mutex_lock(&dev
->lock
);
1067 enabled
= dev
->enabled_protocols
;
1068 allowed
= dev
->allowed_protocols
;
1069 if (dev
->raw
&& !allowed
)
1070 allowed
= ir_raw_get_allowed_protocols();
1072 mutex_unlock(&dev
->lock
);
1074 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1075 __func__
, (long long)allowed
, (long long)enabled
);
1077 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1078 if (allowed
& enabled
& proto_names
[i
].type
)
1079 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
1080 else if (allowed
& proto_names
[i
].type
)
1081 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
1083 if (allowed
& proto_names
[i
].type
)
1084 allowed
&= ~proto_names
[i
].type
;
1088 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1089 tmp
+= sprintf(tmp
, "[lirc] ");
1096 return tmp
+ 1 - buf
;
1100 * parse_protocol_change() - parses a protocol change request
1101 * @dev: rc_dev device
1102 * @protocols: pointer to the bitmask of current protocols
1103 * @buf: pointer to the buffer with a list of changes
1105 * Writing "+proto" will add a protocol to the protocol mask.
1106 * Writing "-proto" will remove a protocol from protocol mask.
1107 * Writing "proto" will enable only "proto".
1108 * Writing "none" will disable all protocols.
1109 * Returns the number of changes performed or a negative error code.
1111 static int parse_protocol_change(struct rc_dev
*dev
, u64
*protocols
,
1116 bool enable
, disable
;
1120 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
1128 } else if (*tmp
== '-') {
1137 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1138 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
1139 mask
= proto_names
[i
].type
;
1144 if (i
== ARRAY_SIZE(proto_names
)) {
1145 if (!strcasecmp(tmp
, "lirc"))
1148 dev_dbg(&dev
->dev
, "Unknown protocol: '%s'\n",
1159 *protocols
&= ~mask
;
1165 dev_dbg(&dev
->dev
, "Protocol not specified\n");
1172 void ir_raw_load_modules(u64
*protocols
)
1177 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
1178 if (proto_names
[i
].type
== RC_PROTO_BIT_NONE
||
1179 proto_names
[i
].type
& (RC_PROTO_BIT_OTHER
|
1180 RC_PROTO_BIT_UNKNOWN
))
1183 available
= ir_raw_get_allowed_protocols();
1184 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1187 if (!proto_names
[i
].module_name
) {
1188 pr_err("Can't enable IR protocol %s\n",
1189 proto_names
[i
].name
);
1190 *protocols
&= ~proto_names
[i
].type
;
1194 ret
= request_module("%s", proto_names
[i
].module_name
);
1196 pr_err("Couldn't load IR protocol module %s\n",
1197 proto_names
[i
].module_name
);
1198 *protocols
&= ~proto_names
[i
].type
;
1202 available
= ir_raw_get_allowed_protocols();
1203 if (!(*protocols
& proto_names
[i
].type
& ~available
))
1206 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1207 proto_names
[i
].module_name
,
1208 proto_names
[i
].name
);
1209 *protocols
&= ~proto_names
[i
].type
;
1214 * store_protocols() - changes the current/wakeup IR protocol(s)
1215 * @device: the device descriptor
1216 * @mattr: the device attribute struct
1217 * @buf: a pointer to the input buffer
1218 * @len: length of the input buffer
1220 * This routine is for changing the IR protocol type.
1221 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1222 * See parse_protocol_change() for the valid commands.
1223 * Returns @len on success or a negative error code.
1225 * dev->lock is taken to guard against races between
1226 * store_protocols and show_protocols.
1228 static ssize_t
store_protocols(struct device
*device
,
1229 struct device_attribute
*mattr
,
1230 const char *buf
, size_t len
)
1232 struct rc_dev
*dev
= to_rc_dev(device
);
1233 u64
*current_protocols
;
1234 struct rc_scancode_filter
*filter
;
1235 u64 old_protocols
, new_protocols
;
1238 dev_dbg(&dev
->dev
, "Normal protocol change requested\n");
1239 current_protocols
= &dev
->enabled_protocols
;
1240 filter
= &dev
->scancode_filter
;
1242 if (!dev
->change_protocol
) {
1243 dev_dbg(&dev
->dev
, "Protocol switching not supported\n");
1247 mutex_lock(&dev
->lock
);
1249 old_protocols
= *current_protocols
;
1250 new_protocols
= old_protocols
;
1251 rc
= parse_protocol_change(dev
, &new_protocols
, buf
);
1255 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1256 ir_raw_load_modules(&new_protocols
);
1258 rc
= dev
->change_protocol(dev
, &new_protocols
);
1260 dev_dbg(&dev
->dev
, "Error setting protocols to 0x%llx\n",
1261 (long long)new_protocols
);
1265 if (new_protocols
!= old_protocols
) {
1266 *current_protocols
= new_protocols
;
1267 dev_dbg(&dev
->dev
, "Protocols changed to 0x%llx\n",
1268 (long long)new_protocols
);
1272 * If a protocol change was attempted the filter may need updating, even
1273 * if the actual protocol mask hasn't changed (since the driver may have
1274 * cleared the filter).
1275 * Try setting the same filter with the new protocol (if any).
1276 * Fall back to clearing the filter.
1278 if (dev
->s_filter
&& filter
->mask
) {
1280 rc
= dev
->s_filter(dev
, filter
);
1287 dev
->s_filter(dev
, filter
);
1294 mutex_unlock(&dev
->lock
);
1299 * show_filter() - shows the current scancode filter value or mask
1300 * @device: the device descriptor
1301 * @attr: the device attribute struct
1302 * @buf: a pointer to the output buffer
1304 * This routine is a callback routine to read a scancode filter value or mask.
1305 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1306 * It prints the current scancode filter value or mask of the appropriate filter
1307 * type in hexadecimal into @buf and returns the size of the buffer.
1309 * Bits of the filter value corresponding to set bits in the filter mask are
1310 * compared against input scancodes and non-matching scancodes are discarded.
1312 * dev->lock is taken to guard against races between
1313 * store_filter and show_filter.
1315 static ssize_t
show_filter(struct device
*device
,
1316 struct device_attribute
*attr
,
1319 struct rc_dev
*dev
= to_rc_dev(device
);
1320 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1321 struct rc_scancode_filter
*filter
;
1324 mutex_lock(&dev
->lock
);
1326 if (fattr
->type
== RC_FILTER_NORMAL
)
1327 filter
= &dev
->scancode_filter
;
1329 filter
= &dev
->scancode_wakeup_filter
;
1335 mutex_unlock(&dev
->lock
);
1337 return sprintf(buf
, "%#x\n", val
);
1341 * store_filter() - changes the scancode filter value
1342 * @device: the device descriptor
1343 * @attr: the device attribute struct
1344 * @buf: a pointer to the input buffer
1345 * @len: length of the input buffer
1347 * This routine is for changing a scancode filter value or mask.
1348 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1349 * Returns -EINVAL if an invalid filter value for the current protocol was
1350 * specified or if scancode filtering is not supported by the driver, otherwise
1353 * Bits of the filter value corresponding to set bits in the filter mask are
1354 * compared against input scancodes and non-matching scancodes are discarded.
1356 * dev->lock is taken to guard against races between
1357 * store_filter and show_filter.
1359 static ssize_t
store_filter(struct device
*device
,
1360 struct device_attribute
*attr
,
1361 const char *buf
, size_t len
)
1363 struct rc_dev
*dev
= to_rc_dev(device
);
1364 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1365 struct rc_scancode_filter new_filter
, *filter
;
1368 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1370 ret
= kstrtoul(buf
, 0, &val
);
1374 if (fattr
->type
== RC_FILTER_NORMAL
) {
1375 set_filter
= dev
->s_filter
;
1376 filter
= &dev
->scancode_filter
;
1378 set_filter
= dev
->s_wakeup_filter
;
1379 filter
= &dev
->scancode_wakeup_filter
;
1385 mutex_lock(&dev
->lock
);
1387 new_filter
= *filter
;
1389 new_filter
.mask
= val
;
1391 new_filter
.data
= val
;
1393 if (fattr
->type
== RC_FILTER_WAKEUP
) {
1395 * Refuse to set a filter unless a protocol is enabled
1396 * and the filter is valid for that protocol
1398 if (dev
->wakeup_protocol
!= RC_PROTO_UNKNOWN
)
1399 ret
= rc_validate_filter(dev
, &new_filter
);
1407 if (fattr
->type
== RC_FILTER_NORMAL
&& !dev
->enabled_protocols
&&
1409 /* refuse to set a filter unless a protocol is enabled */
1414 ret
= set_filter(dev
, &new_filter
);
1418 *filter
= new_filter
;
1421 mutex_unlock(&dev
->lock
);
1422 return (ret
< 0) ? ret
: len
;
1426 * show_wakeup_protocols() - shows the wakeup IR protocol
1427 * @device: the device descriptor
1428 * @mattr: the device attribute struct
1429 * @buf: a pointer to the output buffer
1431 * This routine is a callback routine for input read the IR protocol type(s).
1432 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1433 * It returns the protocol names of supported protocols.
1434 * The enabled protocols are printed in brackets.
1436 * dev->lock is taken to guard against races between
1437 * store_wakeup_protocols and show_wakeup_protocols.
1439 static ssize_t
show_wakeup_protocols(struct device
*device
,
1440 struct device_attribute
*mattr
,
1443 struct rc_dev
*dev
= to_rc_dev(device
);
1445 enum rc_proto enabled
;
1449 mutex_lock(&dev
->lock
);
1451 allowed
= dev
->allowed_wakeup_protocols
;
1452 enabled
= dev
->wakeup_protocol
;
1454 mutex_unlock(&dev
->lock
);
1456 dev_dbg(&dev
->dev
, "%s: allowed - 0x%llx, enabled - %d\n",
1457 __func__
, (long long)allowed
, enabled
);
1459 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1460 if (allowed
& (1ULL << i
)) {
1462 tmp
+= sprintf(tmp
, "[%s] ", protocols
[i
].name
);
1464 tmp
+= sprintf(tmp
, "%s ", protocols
[i
].name
);
1472 return tmp
+ 1 - buf
;
1476 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1477 * @device: the device descriptor
1478 * @mattr: the device attribute struct
1479 * @buf: a pointer to the input buffer
1480 * @len: length of the input buffer
1482 * This routine is for changing the IR protocol type.
1483 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1484 * Returns @len on success or a negative error code.
1486 * dev->lock is taken to guard against races between
1487 * store_wakeup_protocols and show_wakeup_protocols.
1489 static ssize_t
store_wakeup_protocols(struct device
*device
,
1490 struct device_attribute
*mattr
,
1491 const char *buf
, size_t len
)
1493 struct rc_dev
*dev
= to_rc_dev(device
);
1494 enum rc_proto protocol
;
1499 mutex_lock(&dev
->lock
);
1501 allowed
= dev
->allowed_wakeup_protocols
;
1503 if (sysfs_streq(buf
, "none")) {
1504 protocol
= RC_PROTO_UNKNOWN
;
1506 for (i
= 0; i
< ARRAY_SIZE(protocols
); i
++) {
1507 if ((allowed
& (1ULL << i
)) &&
1508 sysfs_streq(buf
, protocols
[i
].name
)) {
1514 if (i
== ARRAY_SIZE(protocols
)) {
1519 if (dev
->encode_wakeup
) {
1520 u64 mask
= 1ULL << protocol
;
1522 ir_raw_load_modules(&mask
);
1530 if (dev
->wakeup_protocol
!= protocol
) {
1531 dev
->wakeup_protocol
= protocol
;
1532 dev_dbg(&dev
->dev
, "Wakeup protocol changed to %d\n", protocol
);
1534 if (protocol
== RC_PROTO_RC6_MCE
)
1535 dev
->scancode_wakeup_filter
.data
= 0x800f0000;
1537 dev
->scancode_wakeup_filter
.data
= 0;
1538 dev
->scancode_wakeup_filter
.mask
= 0;
1540 rc
= dev
->s_wakeup_filter(dev
, &dev
->scancode_wakeup_filter
);
1548 mutex_unlock(&dev
->lock
);
1552 static void rc_dev_release(struct device
*device
)
1554 struct rc_dev
*dev
= to_rc_dev(device
);
1559 #define ADD_HOTPLUG_VAR(fmt, val...) \
1561 int err = add_uevent_var(env, fmt, val); \
1566 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1568 struct rc_dev
*dev
= to_rc_dev(device
);
1570 if (dev
->rc_map
.name
)
1571 ADD_HOTPLUG_VAR("NAME=%s", dev
->rc_map
.name
);
1572 if (dev
->driver_name
)
1573 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev
->driver_name
);
1574 if (dev
->device_name
)
1575 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev
->device_name
);
1581 * Static device attribute struct with the sysfs attributes for IR's
1583 static struct device_attribute dev_attr_ro_protocols
=
1584 __ATTR(protocols
, 0444, show_protocols
, NULL
);
1585 static struct device_attribute dev_attr_rw_protocols
=
1586 __ATTR(protocols
, 0644, show_protocols
, store_protocols
);
1587 static DEVICE_ATTR(wakeup_protocols
, 0644, show_wakeup_protocols
,
1588 store_wakeup_protocols
);
1589 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1590 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1591 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1592 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1593 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1594 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1595 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1596 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1598 static struct attribute
*rc_dev_rw_protocol_attrs
[] = {
1599 &dev_attr_rw_protocols
.attr
,
1603 static const struct attribute_group rc_dev_rw_protocol_attr_grp
= {
1604 .attrs
= rc_dev_rw_protocol_attrs
,
1607 static struct attribute
*rc_dev_ro_protocol_attrs
[] = {
1608 &dev_attr_ro_protocols
.attr
,
1612 static const struct attribute_group rc_dev_ro_protocol_attr_grp
= {
1613 .attrs
= rc_dev_ro_protocol_attrs
,
1616 static struct attribute
*rc_dev_filter_attrs
[] = {
1617 &dev_attr_filter
.attr
.attr
,
1618 &dev_attr_filter_mask
.attr
.attr
,
1622 static const struct attribute_group rc_dev_filter_attr_grp
= {
1623 .attrs
= rc_dev_filter_attrs
,
1626 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1627 &dev_attr_wakeup_filter
.attr
.attr
,
1628 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1629 &dev_attr_wakeup_protocols
.attr
,
1633 static const struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1634 .attrs
= rc_dev_wakeup_filter_attrs
,
1637 static const struct device_type rc_dev_type
= {
1638 .release
= rc_dev_release
,
1639 .uevent
= rc_dev_uevent
,
1642 struct rc_dev
*rc_allocate_device(enum rc_driver_type type
)
1646 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1650 if (type
!= RC_DRIVER_IR_RAW_TX
) {
1651 dev
->input_dev
= input_allocate_device();
1652 if (!dev
->input_dev
) {
1657 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1658 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1659 input_set_drvdata(dev
->input_dev
, dev
);
1661 dev
->timeout
= IR_DEFAULT_TIMEOUT
;
1662 timer_setup(&dev
->timer_keyup
, ir_timer_keyup
, 0);
1663 timer_setup(&dev
->timer_repeat
, ir_timer_repeat
, 0);
1665 spin_lock_init(&dev
->rc_map
.lock
);
1666 spin_lock_init(&dev
->keylock
);
1668 mutex_init(&dev
->lock
);
1670 dev
->dev
.type
= &rc_dev_type
;
1671 dev
->dev
.class = &rc_class
;
1672 device_initialize(&dev
->dev
);
1674 dev
->driver_type
= type
;
1676 __module_get(THIS_MODULE
);
1679 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1681 void rc_free_device(struct rc_dev
*dev
)
1686 input_free_device(dev
->input_dev
);
1688 put_device(&dev
->dev
);
1690 /* kfree(dev) will be called by the callback function
1693 module_put(THIS_MODULE
);
1695 EXPORT_SYMBOL_GPL(rc_free_device
);
1697 static void devm_rc_alloc_release(struct device
*dev
, void *res
)
1699 rc_free_device(*(struct rc_dev
**)res
);
1702 struct rc_dev
*devm_rc_allocate_device(struct device
*dev
,
1703 enum rc_driver_type type
)
1705 struct rc_dev
**dr
, *rc
;
1707 dr
= devres_alloc(devm_rc_alloc_release
, sizeof(*dr
), GFP_KERNEL
);
1711 rc
= rc_allocate_device(type
);
1717 rc
->dev
.parent
= dev
;
1718 rc
->managed_alloc
= true;
1720 devres_add(dev
, dr
);
1724 EXPORT_SYMBOL_GPL(devm_rc_allocate_device
);
1726 static int rc_prepare_rx_device(struct rc_dev
*dev
)
1729 struct rc_map
*rc_map
;
1735 rc_map
= rc_map_get(dev
->map_name
);
1737 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1738 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1741 rc
= ir_setkeytable(dev
, rc_map
);
1745 rc_proto
= BIT_ULL(rc_map
->rc_proto
);
1747 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1748 dev
->enabled_protocols
= dev
->allowed_protocols
;
1750 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1751 ir_raw_load_modules(&rc_proto
);
1753 if (dev
->change_protocol
) {
1754 rc
= dev
->change_protocol(dev
, &rc_proto
);
1757 dev
->enabled_protocols
= rc_proto
;
1760 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1761 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1762 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1763 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1765 dev
->input_dev
->open
= ir_open
;
1767 dev
->input_dev
->close
= ir_close
;
1769 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1770 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1771 dev
->input_dev
->phys
= dev
->input_phys
;
1772 dev
->input_dev
->name
= dev
->device_name
;
1777 ir_free_table(&dev
->rc_map
);
1782 static int rc_setup_rx_device(struct rc_dev
*dev
)
1786 /* rc_open will be called here */
1787 rc
= input_register_device(dev
->input_dev
);
1792 * Default delay of 250ms is too short for some protocols, especially
1793 * since the timeout is currently set to 250ms. Increase it to 500ms,
1794 * to avoid wrong repetition of the keycodes. Note that this must be
1795 * set after the call to input_register_device().
1797 if (dev
->allowed_protocols
== RC_PROTO_BIT_CEC
)
1798 dev
->input_dev
->rep
[REP_DELAY
] = 0;
1800 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1803 * As a repeat event on protocols like RC-5 and NEC take as long as
1804 * 110/114ms, using 33ms as a repeat period is not the right thing
1807 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1812 static void rc_free_rx_device(struct rc_dev
*dev
)
1817 if (dev
->input_dev
) {
1818 input_unregister_device(dev
->input_dev
);
1819 dev
->input_dev
= NULL
;
1822 ir_free_table(&dev
->rc_map
);
1825 int rc_register_device(struct rc_dev
*dev
)
1835 minor
= ida_simple_get(&rc_ida
, 0, RC_DEV_MAX
, GFP_KERNEL
);
1840 dev_set_name(&dev
->dev
, "rc%u", dev
->minor
);
1841 dev_set_drvdata(&dev
->dev
, dev
);
1843 dev
->dev
.groups
= dev
->sysfs_groups
;
1844 if (dev
->driver_type
== RC_DRIVER_SCANCODE
&& !dev
->change_protocol
)
1845 dev
->sysfs_groups
[attr
++] = &rc_dev_ro_protocol_attr_grp
;
1846 else if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
)
1847 dev
->sysfs_groups
[attr
++] = &rc_dev_rw_protocol_attr_grp
;
1849 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1850 if (dev
->s_wakeup_filter
)
1851 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1852 dev
->sysfs_groups
[attr
++] = NULL
;
1854 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1855 rc
= ir_raw_event_prepare(dev
);
1860 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1861 rc
= rc_prepare_rx_device(dev
);
1866 rc
= device_add(&dev
->dev
);
1870 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1871 dev_info(&dev
->dev
, "%s as %s\n",
1872 dev
->device_name
?: "Unspecified device", path
?: "N/A");
1875 dev
->registered
= true;
1878 * once the the input device is registered in rc_setup_rx_device,
1879 * userspace can open the input device and rc_open() will be called
1880 * as a result. This results in driver code being allowed to submit
1881 * keycodes with rc_keydown, so lirc must be registered first.
1883 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
) {
1884 rc
= ir_lirc_register(dev
);
1889 if (dev
->driver_type
!= RC_DRIVER_IR_RAW_TX
) {
1890 rc
= rc_setup_rx_device(dev
);
1895 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1896 rc
= ir_raw_event_register(dev
);
1901 dev_dbg(&dev
->dev
, "Registered rc%u (driver: %s)\n", dev
->minor
,
1902 dev
->driver_name
? dev
->driver_name
: "unknown");
1907 rc_free_rx_device(dev
);
1909 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1910 ir_lirc_unregister(dev
);
1912 device_del(&dev
->dev
);
1914 ir_free_table(&dev
->rc_map
);
1916 ir_raw_event_free(dev
);
1918 ida_simple_remove(&rc_ida
, minor
);
1921 EXPORT_SYMBOL_GPL(rc_register_device
);
1923 static void devm_rc_release(struct device
*dev
, void *res
)
1925 rc_unregister_device(*(struct rc_dev
**)res
);
1928 int devm_rc_register_device(struct device
*parent
, struct rc_dev
*dev
)
1933 dr
= devres_alloc(devm_rc_release
, sizeof(*dr
), GFP_KERNEL
);
1937 ret
= rc_register_device(dev
);
1944 devres_add(parent
, dr
);
1948 EXPORT_SYMBOL_GPL(devm_rc_register_device
);
1950 void rc_unregister_device(struct rc_dev
*dev
)
1955 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1956 ir_raw_event_unregister(dev
);
1958 del_timer_sync(&dev
->timer_keyup
);
1959 del_timer_sync(&dev
->timer_repeat
);
1961 rc_free_rx_device(dev
);
1963 mutex_lock(&dev
->lock
);
1964 if (dev
->users
&& dev
->close
)
1966 dev
->registered
= false;
1967 mutex_unlock(&dev
->lock
);
1970 * lirc device should be freed with dev->registered = false, so
1971 * that userspace polling will get notified.
1973 if (dev
->allowed_protocols
!= RC_PROTO_BIT_CEC
)
1974 ir_lirc_unregister(dev
);
1976 device_del(&dev
->dev
);
1978 ida_simple_remove(&rc_ida
, dev
->minor
);
1980 if (!dev
->managed_alloc
)
1981 rc_free_device(dev
);
1984 EXPORT_SYMBOL_GPL(rc_unregister_device
);
1987 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1990 static int __init
rc_core_init(void)
1992 int rc
= class_register(&rc_class
);
1994 pr_err("rc_core: unable to register rc class\n");
1998 rc
= lirc_dev_init();
2000 pr_err("rc_core: unable to init lirc\n");
2001 class_unregister(&rc_class
);
2005 led_trigger_register_simple("rc-feedback", &led_feedback
);
2006 rc_map_register(&empty_map
);
2011 static void __exit
rc_core_exit(void)
2014 class_unregister(&rc_class
);
2015 led_trigger_unregister_simple(led_feedback
);
2016 rc_map_unregister(&empty_map
);
2019 subsys_initcall(rc_core_init
);
2020 module_exit(rc_core_exit
);
2022 MODULE_AUTHOR("Mauro Carvalho Chehab");
2023 MODULE_LICENSE("GPL v2");