Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / rc / rc-main.c
blobc30affbd43a98a0a244faaf468d49e3d0f7bcdbf
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 114 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 114 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 125 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 100 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 100 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 110 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 110 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 110 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 125 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffffff, .repeat_period = 100 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 100 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 114 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 114 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 114 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 114 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 125 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 [RC_PROTO_IMON] = { .name = "imon",
72 .scancode_bits = 0x7fffffff, .repeat_period = 114 },
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
83 static struct rc_map_list *seek_rc_map(const char *name)
85 struct rc_map_list *map = NULL;
87 spin_lock(&rc_map_lock);
88 list_for_each_entry(map, &rc_map_list, list) {
89 if (!strcmp(name, map->map.name)) {
90 spin_unlock(&rc_map_lock);
91 return map;
94 spin_unlock(&rc_map_lock);
96 return NULL;
99 struct rc_map *rc_map_get(const char *name)
102 struct rc_map_list *map;
104 map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 if (!map) {
107 int rc = request_module("%s", name);
108 if (rc < 0) {
109 pr_err("Couldn't load IR keymap %s\n", name);
110 return NULL;
112 msleep(20); /* Give some time for IR to register */
114 map = seek_rc_map(name);
116 #endif
117 if (!map) {
118 pr_err("IR keymap %s not found\n", name);
119 return NULL;
122 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
124 return &map->map;
126 EXPORT_SYMBOL_GPL(rc_map_get);
128 int rc_map_register(struct rc_map_list *map)
130 spin_lock(&rc_map_lock);
131 list_add_tail(&map->list, &rc_map_list);
132 spin_unlock(&rc_map_lock);
133 return 0;
135 EXPORT_SYMBOL_GPL(rc_map_register);
137 void rc_map_unregister(struct rc_map_list *map)
139 spin_lock(&rc_map_lock);
140 list_del(&map->list);
141 spin_unlock(&rc_map_lock);
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
146 static struct rc_map_table empty[] = {
147 { 0x2a, KEY_COFFEE },
150 static struct rc_map_list empty_map = {
151 .map = {
152 .scan = empty,
153 .size = ARRAY_SIZE(empty),
154 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
155 .name = RC_MAP_EMPTY,
160 * ir_create_table() - initializes a scancode table
161 * @dev: the rc_dev device
162 * @rc_map: the rc_map to initialize
163 * @name: name to assign to the table
164 * @rc_proto: ir type to assign to the new table
165 * @size: initial size of the table
167 * This routine will initialize the rc_map and will allocate
168 * memory to hold at least the specified number of elements.
170 * return: zero on success or a negative error code
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 const char *name, u64 rc_proto, size_t size)
175 rc_map->name = kstrdup(name, GFP_KERNEL);
176 if (!rc_map->name)
177 return -ENOMEM;
178 rc_map->rc_proto = rc_proto;
179 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 if (!rc_map->scan) {
183 kfree(rc_map->name);
184 rc_map->name = NULL;
185 return -ENOMEM;
188 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 rc_map->size, rc_map->alloc);
190 return 0;
194 * ir_free_table() - frees memory allocated by a scancode table
195 * @rc_map: the table whose mappings need to be freed
197 * This routine will free memory alloctaed for key mappings used by given
198 * scancode table.
200 static void ir_free_table(struct rc_map *rc_map)
202 rc_map->size = 0;
203 kfree(rc_map->name);
204 rc_map->name = NULL;
205 kfree(rc_map->scan);
206 rc_map->scan = NULL;
210 * ir_resize_table() - resizes a scancode table if necessary
211 * @dev: the rc_dev device
212 * @rc_map: the rc_map to resize
213 * @gfp_flags: gfp flags to use when allocating memory
215 * This routine will shrink the rc_map if it has lots of
216 * unused entries and grow it if it is full.
218 * return: zero on success or a negative error code
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 gfp_t gfp_flags)
223 unsigned int oldalloc = rc_map->alloc;
224 unsigned int newalloc = oldalloc;
225 struct rc_map_table *oldscan = rc_map->scan;
226 struct rc_map_table *newscan;
228 if (rc_map->size == rc_map->len) {
229 /* All entries in use -> grow keytable */
230 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 return -ENOMEM;
233 newalloc *= 2;
234 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
237 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 /* Less than 1/3 of entries in use -> shrink keytable */
239 newalloc /= 2;
240 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
243 if (newalloc == oldalloc)
244 return 0;
246 newscan = kmalloc(newalloc, gfp_flags);
247 if (!newscan)
248 return -ENOMEM;
250 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 rc_map->scan = newscan;
252 rc_map->alloc = newalloc;
253 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 kfree(oldscan);
255 return 0;
259 * ir_update_mapping() - set a keycode in the scancode->keycode table
260 * @dev: the struct rc_dev device descriptor
261 * @rc_map: scancode table to be adjusted
262 * @index: index of the mapping that needs to be updated
263 * @new_keycode: the desired keycode
265 * This routine is used to update scancode->keycode mapping at given
266 * position.
268 * return: previous keycode assigned to the mapping
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 struct rc_map *rc_map,
273 unsigned int index,
274 unsigned int new_keycode)
276 int old_keycode = rc_map->scan[index].keycode;
277 int i;
279 /* Did the user wish to remove the mapping? */
280 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
281 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
282 index, rc_map->scan[index].scancode);
283 rc_map->len--;
284 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
285 (rc_map->len - index) * sizeof(struct rc_map_table));
286 } else {
287 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 index,
289 old_keycode == KEY_RESERVED ? "New" : "Replacing",
290 rc_map->scan[index].scancode, new_keycode);
291 rc_map->scan[index].keycode = new_keycode;
292 __set_bit(new_keycode, dev->input_dev->keybit);
295 if (old_keycode != KEY_RESERVED) {
296 /* A previous mapping was updated... */
297 __clear_bit(old_keycode, dev->input_dev->keybit);
298 /* ... but another scancode might use the same keycode */
299 for (i = 0; i < rc_map->len; i++) {
300 if (rc_map->scan[i].keycode == old_keycode) {
301 __set_bit(old_keycode, dev->input_dev->keybit);
302 break;
306 /* Possibly shrink the keytable, failure is not a problem */
307 ir_resize_table(dev, rc_map, GFP_ATOMIC);
310 return old_keycode;
314 * ir_establish_scancode() - set a keycode in the scancode->keycode table
315 * @dev: the struct rc_dev device descriptor
316 * @rc_map: scancode table to be searched
317 * @scancode: the desired scancode
318 * @resize: controls whether we allowed to resize the table to
319 * accommodate not yet present scancodes
321 * This routine is used to locate given scancode in rc_map.
322 * If scancode is not yet present the routine will allocate a new slot
323 * for it.
325 * return: index of the mapping containing scancode in question
326 * or -1U in case of failure.
328 static unsigned int ir_establish_scancode(struct rc_dev *dev,
329 struct rc_map *rc_map,
330 unsigned int scancode,
331 bool resize)
333 unsigned int i;
336 * Unfortunately, some hardware-based IR decoders don't provide
337 * all bits for the complete IR code. In general, they provide only
338 * the command part of the IR code. Yet, as it is possible to replace
339 * the provided IR with another one, it is needed to allow loading
340 * IR tables from other remotes. So, we support specifying a mask to
341 * indicate the valid bits of the scancodes.
343 if (dev->scancode_mask)
344 scancode &= dev->scancode_mask;
346 /* First check if we already have a mapping for this ir command */
347 for (i = 0; i < rc_map->len; i++) {
348 if (rc_map->scan[i].scancode == scancode)
349 return i;
351 /* Keytable is sorted from lowest to highest scancode */
352 if (rc_map->scan[i].scancode >= scancode)
353 break;
356 /* No previous mapping found, we might need to grow the table */
357 if (rc_map->size == rc_map->len) {
358 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
359 return -1U;
362 /* i is the proper index to insert our new keycode */
363 if (i < rc_map->len)
364 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
365 (rc_map->len - i) * sizeof(struct rc_map_table));
366 rc_map->scan[i].scancode = scancode;
367 rc_map->scan[i].keycode = KEY_RESERVED;
368 rc_map->len++;
370 return i;
374 * ir_setkeycode() - set a keycode in the scancode->keycode table
375 * @idev: the struct input_dev device descriptor
376 * @ke: Input keymap entry
377 * @old_keycode: result
379 * This routine is used to handle evdev EVIOCSKEY ioctl.
381 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
383 static int ir_setkeycode(struct input_dev *idev,
384 const struct input_keymap_entry *ke,
385 unsigned int *old_keycode)
387 struct rc_dev *rdev = input_get_drvdata(idev);
388 struct rc_map *rc_map = &rdev->rc_map;
389 unsigned int index;
390 unsigned int scancode;
391 int retval = 0;
392 unsigned long flags;
394 spin_lock_irqsave(&rc_map->lock, flags);
396 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 index = ke->index;
398 if (index >= rc_map->len) {
399 retval = -EINVAL;
400 goto out;
402 } else {
403 retval = input_scancode_to_scalar(ke, &scancode);
404 if (retval)
405 goto out;
407 index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 if (index >= rc_map->len) {
409 retval = -ENOMEM;
410 goto out;
414 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
416 out:
417 spin_unlock_irqrestore(&rc_map->lock, flags);
418 return retval;
422 * ir_setkeytable() - sets several entries in the scancode->keycode table
423 * @dev: the struct rc_dev device descriptor
424 * @from: the struct rc_map to copy entries from
426 * This routine is used to handle table initialization.
428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
430 static int ir_setkeytable(struct rc_dev *dev,
431 const struct rc_map *from)
433 struct rc_map *rc_map = &dev->rc_map;
434 unsigned int i, index;
435 int rc;
437 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
438 from->size);
439 if (rc)
440 return rc;
442 for (i = 0; i < from->size; i++) {
443 index = ir_establish_scancode(dev, rc_map,
444 from->scan[i].scancode, false);
445 if (index >= rc_map->len) {
446 rc = -ENOMEM;
447 break;
450 ir_update_mapping(dev, rc_map, index,
451 from->scan[i].keycode);
454 if (rc)
455 ir_free_table(rc_map);
457 return rc;
460 static int rc_map_cmp(const void *key, const void *elt)
462 const unsigned int *scancode = key;
463 const struct rc_map_table *e = elt;
465 if (*scancode < e->scancode)
466 return -1;
467 else if (*scancode > e->scancode)
468 return 1;
469 return 0;
473 * ir_lookup_by_scancode() - locate mapping by scancode
474 * @rc_map: the struct rc_map to search
475 * @scancode: scancode to look for in the table
477 * This routine performs binary search in RC keykeymap table for
478 * given scancode.
480 * return: index in the table, -1U if not found
482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 unsigned int scancode)
485 struct rc_map_table *res;
487 res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 sizeof(struct rc_map_table), rc_map_cmp);
489 if (!res)
490 return -1U;
491 else
492 return res - rc_map->scan;
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @ke: Input keymap entry
500 * This routine is used to handle evdev EVIOCGKEY ioctl.
502 * return: always returns zero.
504 static int ir_getkeycode(struct input_dev *idev,
505 struct input_keymap_entry *ke)
507 struct rc_dev *rdev = input_get_drvdata(idev);
508 struct rc_map *rc_map = &rdev->rc_map;
509 struct rc_map_table *entry;
510 unsigned long flags;
511 unsigned int index;
512 unsigned int scancode;
513 int retval;
515 spin_lock_irqsave(&rc_map->lock, flags);
517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 index = ke->index;
519 } else {
520 retval = input_scancode_to_scalar(ke, &scancode);
521 if (retval)
522 goto out;
524 index = ir_lookup_by_scancode(rc_map, scancode);
527 if (index < rc_map->len) {
528 entry = &rc_map->scan[index];
530 ke->index = index;
531 ke->keycode = entry->keycode;
532 ke->len = sizeof(entry->scancode);
533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
541 ke->index = index;
542 ke->keycode = KEY_RESERVED;
543 } else {
544 retval = -EINVAL;
545 goto out;
548 retval = 0;
550 out:
551 spin_unlock_irqrestore(&rc_map->lock, flags);
552 return retval;
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
560 * This routine is used by drivers which need to convert a scancode to a
561 * keycode. Normally it should not be used since drivers should have no
562 * interest in keycodes.
564 * return: the corresponding keycode, or KEY_RESERVED
566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
568 struct rc_map *rc_map = &dev->rc_map;
569 unsigned int keycode;
570 unsigned int index;
571 unsigned long flags;
573 spin_lock_irqsave(&rc_map->lock, flags);
575 index = ir_lookup_by_scancode(rc_map, scancode);
576 keycode = index < rc_map->len ?
577 rc_map->scan[index].keycode : KEY_RESERVED;
579 spin_unlock_irqrestore(&rc_map->lock, flags);
581 if (keycode != KEY_RESERVED)
582 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
583 dev->device_name, scancode, keycode);
585 return keycode;
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
590 * ir_do_keyup() - internal function to signal the release of a keypress
591 * @dev: the struct rc_dev descriptor of the device
592 * @sync: whether or not to call input_sync
594 * This function is used internally to release a keypress, it must be
595 * called with keylock held.
597 static void ir_do_keyup(struct rc_dev *dev, bool sync)
599 if (!dev->keypressed)
600 return;
602 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
603 del_timer(&dev->timer_repeat);
604 input_report_key(dev->input_dev, dev->last_keycode, 0);
605 led_trigger_event(led_feedback, LED_OFF);
606 if (sync)
607 input_sync(dev->input_dev);
608 dev->keypressed = false;
612 * rc_keyup() - signals the release of a keypress
613 * @dev: the struct rc_dev descriptor of the device
615 * This routine is used to signal that a key has been released on the
616 * remote control.
618 void rc_keyup(struct rc_dev *dev)
620 unsigned long flags;
622 spin_lock_irqsave(&dev->keylock, flags);
623 ir_do_keyup(dev, true);
624 spin_unlock_irqrestore(&dev->keylock, flags);
626 EXPORT_SYMBOL_GPL(rc_keyup);
629 * ir_timer_keyup() - generates a keyup event after a timeout
631 * @t: a pointer to the struct timer_list
633 * This routine will generate a keyup event some time after a keydown event
634 * is generated when no further activity has been detected.
636 static void ir_timer_keyup(struct timer_list *t)
638 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
639 unsigned long flags;
642 * ir->keyup_jiffies is used to prevent a race condition if a
643 * hardware interrupt occurs at this point and the keyup timer
644 * event is moved further into the future as a result.
646 * The timer will then be reactivated and this function called
647 * again in the future. We need to exit gracefully in that case
648 * to allow the input subsystem to do its auto-repeat magic or
649 * a keyup event might follow immediately after the keydown.
651 spin_lock_irqsave(&dev->keylock, flags);
652 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
653 ir_do_keyup(dev, true);
654 spin_unlock_irqrestore(&dev->keylock, flags);
658 * ir_timer_repeat() - generates a repeat event after a timeout
660 * @t: a pointer to the struct timer_list
662 * This routine will generate a soft repeat event every REP_PERIOD
663 * milliseconds.
665 static void ir_timer_repeat(struct timer_list *t)
667 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
668 struct input_dev *input = dev->input_dev;
669 unsigned long flags;
671 spin_lock_irqsave(&dev->keylock, flags);
672 if (dev->keypressed) {
673 input_event(input, EV_KEY, dev->last_keycode, 2);
674 input_sync(input);
675 if (input->rep[REP_PERIOD])
676 mod_timer(&dev->timer_repeat, jiffies +
677 msecs_to_jiffies(input->rep[REP_PERIOD]));
679 spin_unlock_irqrestore(&dev->keylock, flags);
682 static unsigned int repeat_period(int protocol)
684 if (protocol >= ARRAY_SIZE(protocols))
685 return 100;
687 return protocols[protocol].repeat_period;
691 * rc_repeat() - signals that a key is still pressed
692 * @dev: the struct rc_dev descriptor of the device
694 * This routine is used by IR decoders when a repeat message which does
695 * not include the necessary bits to reproduce the scancode has been
696 * received.
698 void rc_repeat(struct rc_dev *dev)
700 unsigned long flags;
701 unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
702 msecs_to_jiffies(repeat_period(dev->last_protocol));
703 struct lirc_scancode sc = {
704 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
705 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
706 .flags = LIRC_SCANCODE_FLAG_REPEAT |
707 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
710 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
711 ir_lirc_scancode_event(dev, &sc);
713 spin_lock_irqsave(&dev->keylock, flags);
715 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
716 input_sync(dev->input_dev);
718 if (dev->keypressed) {
719 dev->keyup_jiffies = jiffies + timeout;
720 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
723 spin_unlock_irqrestore(&dev->keylock, flags);
725 EXPORT_SYMBOL_GPL(rc_repeat);
728 * ir_do_keydown() - internal function to process a keypress
729 * @dev: the struct rc_dev descriptor of the device
730 * @protocol: the protocol of the keypress
731 * @scancode: the scancode of the keypress
732 * @keycode: the keycode of the keypress
733 * @toggle: the toggle value of the keypress
735 * This function is used internally to register a keypress, it must be
736 * called with keylock held.
738 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
739 u32 scancode, u32 keycode, u8 toggle)
741 bool new_event = (!dev->keypressed ||
742 dev->last_protocol != protocol ||
743 dev->last_scancode != scancode ||
744 dev->last_toggle != toggle);
745 struct lirc_scancode sc = {
746 .scancode = scancode, .rc_proto = protocol,
747 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
748 .keycode = keycode
751 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
752 ir_lirc_scancode_event(dev, &sc);
754 if (new_event && dev->keypressed)
755 ir_do_keyup(dev, false);
757 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
759 dev->last_protocol = protocol;
760 dev->last_scancode = scancode;
761 dev->last_toggle = toggle;
762 dev->last_keycode = keycode;
764 if (new_event && keycode != KEY_RESERVED) {
765 /* Register a keypress */
766 dev->keypressed = true;
768 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
769 dev->device_name, keycode, protocol, scancode);
770 input_report_key(dev->input_dev, keycode, 1);
772 led_trigger_event(led_feedback, LED_FULL);
776 * For CEC, start sending repeat messages as soon as the first
777 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
778 * is non-zero. Otherwise, the input layer will generate repeat
779 * messages.
781 if (!new_event && keycode != KEY_RESERVED &&
782 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
783 !timer_pending(&dev->timer_repeat) &&
784 dev->input_dev->rep[REP_PERIOD] &&
785 !dev->input_dev->rep[REP_DELAY]) {
786 input_event(dev->input_dev, EV_KEY, keycode, 2);
787 mod_timer(&dev->timer_repeat, jiffies +
788 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
791 input_sync(dev->input_dev);
795 * rc_keydown() - generates input event for a key press
796 * @dev: the struct rc_dev descriptor of the device
797 * @protocol: the protocol for the keypress
798 * @scancode: the scancode for the keypress
799 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
800 * support toggle values, this should be set to zero)
802 * This routine is used to signal that a key has been pressed on the
803 * remote control.
805 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
806 u8 toggle)
808 unsigned long flags;
809 u32 keycode = rc_g_keycode_from_table(dev, scancode);
811 spin_lock_irqsave(&dev->keylock, flags);
812 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
814 if (dev->keypressed) {
815 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
816 msecs_to_jiffies(repeat_period(protocol));
817 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
819 spin_unlock_irqrestore(&dev->keylock, flags);
821 EXPORT_SYMBOL_GPL(rc_keydown);
824 * rc_keydown_notimeout() - generates input event for a key press without
825 * an automatic keyup event at a later time
826 * @dev: the struct rc_dev descriptor of the device
827 * @protocol: the protocol for the keypress
828 * @scancode: the scancode for the keypress
829 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
830 * support toggle values, this should be set to zero)
832 * This routine is used to signal that a key has been pressed on the
833 * remote control. The driver must manually call rc_keyup() at a later stage.
835 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
836 u32 scancode, u8 toggle)
838 unsigned long flags;
839 u32 keycode = rc_g_keycode_from_table(dev, scancode);
841 spin_lock_irqsave(&dev->keylock, flags);
842 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
843 spin_unlock_irqrestore(&dev->keylock, flags);
845 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
848 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
849 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
850 * @proto: protocol
851 * @scancode: scancode
853 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
855 switch (proto) {
857 * NECX has a 16-bit address; if the lower 8 bits match the upper
858 * 8 bits inverted, then the address would match regular nec.
860 case RC_PROTO_NECX:
861 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
862 return false;
863 break;
865 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
866 * of the command match the upper 8 bits inverted, then it would
867 * be either NEC or NECX.
869 case RC_PROTO_NEC32:
870 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
871 return false;
872 break;
874 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
875 * is regular mode-6a 32 bit
877 case RC_PROTO_RC6_MCE:
878 if ((scancode & 0xffff0000) != 0x800f0000)
879 return false;
880 break;
881 case RC_PROTO_RC6_6A_32:
882 if ((scancode & 0xffff0000) == 0x800f0000)
883 return false;
884 break;
885 default:
886 break;
889 return true;
893 * rc_validate_filter() - checks that the scancode and mask are valid and
894 * provides sensible defaults
895 * @dev: the struct rc_dev descriptor of the device
896 * @filter: the scancode and mask
898 * return: 0 or -EINVAL if the filter is not valid
900 static int rc_validate_filter(struct rc_dev *dev,
901 struct rc_scancode_filter *filter)
903 u32 mask, s = filter->data;
904 enum rc_proto protocol = dev->wakeup_protocol;
906 if (protocol >= ARRAY_SIZE(protocols))
907 return -EINVAL;
909 mask = protocols[protocol].scancode_bits;
911 if (!rc_validate_scancode(protocol, s))
912 return -EINVAL;
914 filter->data &= mask;
915 filter->mask &= mask;
918 * If we have to raw encode the IR for wakeup, we cannot have a mask
920 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
921 return -EINVAL;
923 return 0;
926 int rc_open(struct rc_dev *rdev)
928 int rval = 0;
930 if (!rdev)
931 return -EINVAL;
933 mutex_lock(&rdev->lock);
935 if (!rdev->registered) {
936 rval = -ENODEV;
937 } else {
938 if (!rdev->users++ && rdev->open)
939 rval = rdev->open(rdev);
941 if (rval)
942 rdev->users--;
945 mutex_unlock(&rdev->lock);
947 return rval;
950 static int ir_open(struct input_dev *idev)
952 struct rc_dev *rdev = input_get_drvdata(idev);
954 return rc_open(rdev);
957 void rc_close(struct rc_dev *rdev)
959 if (rdev) {
960 mutex_lock(&rdev->lock);
962 if (!--rdev->users && rdev->close && rdev->registered)
963 rdev->close(rdev);
965 mutex_unlock(&rdev->lock);
969 static void ir_close(struct input_dev *idev)
971 struct rc_dev *rdev = input_get_drvdata(idev);
972 rc_close(rdev);
975 /* class for /sys/class/rc */
976 static char *rc_devnode(struct device *dev, umode_t *mode)
978 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
981 static struct class rc_class = {
982 .name = "rc",
983 .devnode = rc_devnode,
987 * These are the protocol textual descriptions that are
988 * used by the sysfs protocols file. Note that the order
989 * of the entries is relevant.
991 static const struct {
992 u64 type;
993 const char *name;
994 const char *module_name;
995 } proto_names[] = {
996 { RC_PROTO_BIT_NONE, "none", NULL },
997 { RC_PROTO_BIT_OTHER, "other", NULL },
998 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
999 { RC_PROTO_BIT_RC5 |
1000 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
1001 { RC_PROTO_BIT_NEC |
1002 RC_PROTO_BIT_NECX |
1003 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
1004 { RC_PROTO_BIT_RC6_0 |
1005 RC_PROTO_BIT_RC6_6A_20 |
1006 RC_PROTO_BIT_RC6_6A_24 |
1007 RC_PROTO_BIT_RC6_6A_32 |
1008 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
1009 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
1010 { RC_PROTO_BIT_SONY12 |
1011 RC_PROTO_BIT_SONY15 |
1012 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
1013 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1014 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1015 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1016 { RC_PROTO_BIT_MCIR2_KBD |
1017 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1018 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1019 { RC_PROTO_BIT_CEC, "cec", NULL },
1020 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" },
1024 * struct rc_filter_attribute - Device attribute relating to a filter type.
1025 * @attr: Device attribute.
1026 * @type: Filter type.
1027 * @mask: false for filter value, true for filter mask.
1029 struct rc_filter_attribute {
1030 struct device_attribute attr;
1031 enum rc_filter_type type;
1032 bool mask;
1034 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1036 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1037 struct rc_filter_attribute dev_attr_##_name = { \
1038 .attr = __ATTR(_name, _mode, _show, _store), \
1039 .type = (_type), \
1040 .mask = (_mask), \
1044 * show_protocols() - shows the current IR protocol(s)
1045 * @device: the device descriptor
1046 * @mattr: the device attribute struct
1047 * @buf: a pointer to the output buffer
1049 * This routine is a callback routine for input read the IR protocol type(s).
1050 * it is trigged by reading /sys/class/rc/rc?/protocols.
1051 * It returns the protocol names of supported protocols.
1052 * Enabled protocols are printed in brackets.
1054 * dev->lock is taken to guard against races between
1055 * store_protocols and show_protocols.
1057 static ssize_t show_protocols(struct device *device,
1058 struct device_attribute *mattr, char *buf)
1060 struct rc_dev *dev = to_rc_dev(device);
1061 u64 allowed, enabled;
1062 char *tmp = buf;
1063 int i;
1065 mutex_lock(&dev->lock);
1067 enabled = dev->enabled_protocols;
1068 allowed = dev->allowed_protocols;
1069 if (dev->raw && !allowed)
1070 allowed = ir_raw_get_allowed_protocols();
1072 mutex_unlock(&dev->lock);
1074 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1075 __func__, (long long)allowed, (long long)enabled);
1077 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1078 if (allowed & enabled & proto_names[i].type)
1079 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1080 else if (allowed & proto_names[i].type)
1081 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1083 if (allowed & proto_names[i].type)
1084 allowed &= ~proto_names[i].type;
1087 #ifdef CONFIG_LIRC
1088 if (dev->driver_type == RC_DRIVER_IR_RAW)
1089 tmp += sprintf(tmp, "[lirc] ");
1090 #endif
1092 if (tmp != buf)
1093 tmp--;
1094 *tmp = '\n';
1096 return tmp + 1 - buf;
1100 * parse_protocol_change() - parses a protocol change request
1101 * @dev: rc_dev device
1102 * @protocols: pointer to the bitmask of current protocols
1103 * @buf: pointer to the buffer with a list of changes
1105 * Writing "+proto" will add a protocol to the protocol mask.
1106 * Writing "-proto" will remove a protocol from protocol mask.
1107 * Writing "proto" will enable only "proto".
1108 * Writing "none" will disable all protocols.
1109 * Returns the number of changes performed or a negative error code.
1111 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1112 const char *buf)
1114 const char *tmp;
1115 unsigned count = 0;
1116 bool enable, disable;
1117 u64 mask;
1118 int i;
1120 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1121 if (!*tmp)
1122 break;
1124 if (*tmp == '+') {
1125 enable = true;
1126 disable = false;
1127 tmp++;
1128 } else if (*tmp == '-') {
1129 enable = false;
1130 disable = true;
1131 tmp++;
1132 } else {
1133 enable = false;
1134 disable = false;
1137 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1138 if (!strcasecmp(tmp, proto_names[i].name)) {
1139 mask = proto_names[i].type;
1140 break;
1144 if (i == ARRAY_SIZE(proto_names)) {
1145 if (!strcasecmp(tmp, "lirc"))
1146 mask = 0;
1147 else {
1148 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1149 tmp);
1150 return -EINVAL;
1154 count++;
1156 if (enable)
1157 *protocols |= mask;
1158 else if (disable)
1159 *protocols &= ~mask;
1160 else
1161 *protocols = mask;
1164 if (!count) {
1165 dev_dbg(&dev->dev, "Protocol not specified\n");
1166 return -EINVAL;
1169 return count;
1172 void ir_raw_load_modules(u64 *protocols)
1174 u64 available;
1175 int i, ret;
1177 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1178 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1179 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1180 RC_PROTO_BIT_UNKNOWN))
1181 continue;
1183 available = ir_raw_get_allowed_protocols();
1184 if (!(*protocols & proto_names[i].type & ~available))
1185 continue;
1187 if (!proto_names[i].module_name) {
1188 pr_err("Can't enable IR protocol %s\n",
1189 proto_names[i].name);
1190 *protocols &= ~proto_names[i].type;
1191 continue;
1194 ret = request_module("%s", proto_names[i].module_name);
1195 if (ret < 0) {
1196 pr_err("Couldn't load IR protocol module %s\n",
1197 proto_names[i].module_name);
1198 *protocols &= ~proto_names[i].type;
1199 continue;
1201 msleep(20);
1202 available = ir_raw_get_allowed_protocols();
1203 if (!(*protocols & proto_names[i].type & ~available))
1204 continue;
1206 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1207 proto_names[i].module_name,
1208 proto_names[i].name);
1209 *protocols &= ~proto_names[i].type;
1214 * store_protocols() - changes the current/wakeup IR protocol(s)
1215 * @device: the device descriptor
1216 * @mattr: the device attribute struct
1217 * @buf: a pointer to the input buffer
1218 * @len: length of the input buffer
1220 * This routine is for changing the IR protocol type.
1221 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1222 * See parse_protocol_change() for the valid commands.
1223 * Returns @len on success or a negative error code.
1225 * dev->lock is taken to guard against races between
1226 * store_protocols and show_protocols.
1228 static ssize_t store_protocols(struct device *device,
1229 struct device_attribute *mattr,
1230 const char *buf, size_t len)
1232 struct rc_dev *dev = to_rc_dev(device);
1233 u64 *current_protocols;
1234 struct rc_scancode_filter *filter;
1235 u64 old_protocols, new_protocols;
1236 ssize_t rc;
1238 dev_dbg(&dev->dev, "Normal protocol change requested\n");
1239 current_protocols = &dev->enabled_protocols;
1240 filter = &dev->scancode_filter;
1242 if (!dev->change_protocol) {
1243 dev_dbg(&dev->dev, "Protocol switching not supported\n");
1244 return -EINVAL;
1247 mutex_lock(&dev->lock);
1249 old_protocols = *current_protocols;
1250 new_protocols = old_protocols;
1251 rc = parse_protocol_change(dev, &new_protocols, buf);
1252 if (rc < 0)
1253 goto out;
1255 if (dev->driver_type == RC_DRIVER_IR_RAW)
1256 ir_raw_load_modules(&new_protocols);
1258 rc = dev->change_protocol(dev, &new_protocols);
1259 if (rc < 0) {
1260 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1261 (long long)new_protocols);
1262 goto out;
1265 if (new_protocols != old_protocols) {
1266 *current_protocols = new_protocols;
1267 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1268 (long long)new_protocols);
1272 * If a protocol change was attempted the filter may need updating, even
1273 * if the actual protocol mask hasn't changed (since the driver may have
1274 * cleared the filter).
1275 * Try setting the same filter with the new protocol (if any).
1276 * Fall back to clearing the filter.
1278 if (dev->s_filter && filter->mask) {
1279 if (new_protocols)
1280 rc = dev->s_filter(dev, filter);
1281 else
1282 rc = -1;
1284 if (rc < 0) {
1285 filter->data = 0;
1286 filter->mask = 0;
1287 dev->s_filter(dev, filter);
1291 rc = len;
1293 out:
1294 mutex_unlock(&dev->lock);
1295 return rc;
1299 * show_filter() - shows the current scancode filter value or mask
1300 * @device: the device descriptor
1301 * @attr: the device attribute struct
1302 * @buf: a pointer to the output buffer
1304 * This routine is a callback routine to read a scancode filter value or mask.
1305 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1306 * It prints the current scancode filter value or mask of the appropriate filter
1307 * type in hexadecimal into @buf and returns the size of the buffer.
1309 * Bits of the filter value corresponding to set bits in the filter mask are
1310 * compared against input scancodes and non-matching scancodes are discarded.
1312 * dev->lock is taken to guard against races between
1313 * store_filter and show_filter.
1315 static ssize_t show_filter(struct device *device,
1316 struct device_attribute *attr,
1317 char *buf)
1319 struct rc_dev *dev = to_rc_dev(device);
1320 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1321 struct rc_scancode_filter *filter;
1322 u32 val;
1324 mutex_lock(&dev->lock);
1326 if (fattr->type == RC_FILTER_NORMAL)
1327 filter = &dev->scancode_filter;
1328 else
1329 filter = &dev->scancode_wakeup_filter;
1331 if (fattr->mask)
1332 val = filter->mask;
1333 else
1334 val = filter->data;
1335 mutex_unlock(&dev->lock);
1337 return sprintf(buf, "%#x\n", val);
1341 * store_filter() - changes the scancode filter value
1342 * @device: the device descriptor
1343 * @attr: the device attribute struct
1344 * @buf: a pointer to the input buffer
1345 * @len: length of the input buffer
1347 * This routine is for changing a scancode filter value or mask.
1348 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1349 * Returns -EINVAL if an invalid filter value for the current protocol was
1350 * specified or if scancode filtering is not supported by the driver, otherwise
1351 * returns @len.
1353 * Bits of the filter value corresponding to set bits in the filter mask are
1354 * compared against input scancodes and non-matching scancodes are discarded.
1356 * dev->lock is taken to guard against races between
1357 * store_filter and show_filter.
1359 static ssize_t store_filter(struct device *device,
1360 struct device_attribute *attr,
1361 const char *buf, size_t len)
1363 struct rc_dev *dev = to_rc_dev(device);
1364 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1365 struct rc_scancode_filter new_filter, *filter;
1366 int ret;
1367 unsigned long val;
1368 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1370 ret = kstrtoul(buf, 0, &val);
1371 if (ret < 0)
1372 return ret;
1374 if (fattr->type == RC_FILTER_NORMAL) {
1375 set_filter = dev->s_filter;
1376 filter = &dev->scancode_filter;
1377 } else {
1378 set_filter = dev->s_wakeup_filter;
1379 filter = &dev->scancode_wakeup_filter;
1382 if (!set_filter)
1383 return -EINVAL;
1385 mutex_lock(&dev->lock);
1387 new_filter = *filter;
1388 if (fattr->mask)
1389 new_filter.mask = val;
1390 else
1391 new_filter.data = val;
1393 if (fattr->type == RC_FILTER_WAKEUP) {
1395 * Refuse to set a filter unless a protocol is enabled
1396 * and the filter is valid for that protocol
1398 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1399 ret = rc_validate_filter(dev, &new_filter);
1400 else
1401 ret = -EINVAL;
1403 if (ret != 0)
1404 goto unlock;
1407 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1408 val) {
1409 /* refuse to set a filter unless a protocol is enabled */
1410 ret = -EINVAL;
1411 goto unlock;
1414 ret = set_filter(dev, &new_filter);
1415 if (ret < 0)
1416 goto unlock;
1418 *filter = new_filter;
1420 unlock:
1421 mutex_unlock(&dev->lock);
1422 return (ret < 0) ? ret : len;
1426 * show_wakeup_protocols() - shows the wakeup IR protocol
1427 * @device: the device descriptor
1428 * @mattr: the device attribute struct
1429 * @buf: a pointer to the output buffer
1431 * This routine is a callback routine for input read the IR protocol type(s).
1432 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1433 * It returns the protocol names of supported protocols.
1434 * The enabled protocols are printed in brackets.
1436 * dev->lock is taken to guard against races between
1437 * store_wakeup_protocols and show_wakeup_protocols.
1439 static ssize_t show_wakeup_protocols(struct device *device,
1440 struct device_attribute *mattr,
1441 char *buf)
1443 struct rc_dev *dev = to_rc_dev(device);
1444 u64 allowed;
1445 enum rc_proto enabled;
1446 char *tmp = buf;
1447 int i;
1449 mutex_lock(&dev->lock);
1451 allowed = dev->allowed_wakeup_protocols;
1452 enabled = dev->wakeup_protocol;
1454 mutex_unlock(&dev->lock);
1456 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1457 __func__, (long long)allowed, enabled);
1459 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1460 if (allowed & (1ULL << i)) {
1461 if (i == enabled)
1462 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1463 else
1464 tmp += sprintf(tmp, "%s ", protocols[i].name);
1468 if (tmp != buf)
1469 tmp--;
1470 *tmp = '\n';
1472 return tmp + 1 - buf;
1476 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1477 * @device: the device descriptor
1478 * @mattr: the device attribute struct
1479 * @buf: a pointer to the input buffer
1480 * @len: length of the input buffer
1482 * This routine is for changing the IR protocol type.
1483 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1484 * Returns @len on success or a negative error code.
1486 * dev->lock is taken to guard against races between
1487 * store_wakeup_protocols and show_wakeup_protocols.
1489 static ssize_t store_wakeup_protocols(struct device *device,
1490 struct device_attribute *mattr,
1491 const char *buf, size_t len)
1493 struct rc_dev *dev = to_rc_dev(device);
1494 enum rc_proto protocol;
1495 ssize_t rc;
1496 u64 allowed;
1497 int i;
1499 mutex_lock(&dev->lock);
1501 allowed = dev->allowed_wakeup_protocols;
1503 if (sysfs_streq(buf, "none")) {
1504 protocol = RC_PROTO_UNKNOWN;
1505 } else {
1506 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1507 if ((allowed & (1ULL << i)) &&
1508 sysfs_streq(buf, protocols[i].name)) {
1509 protocol = i;
1510 break;
1514 if (i == ARRAY_SIZE(protocols)) {
1515 rc = -EINVAL;
1516 goto out;
1519 if (dev->encode_wakeup) {
1520 u64 mask = 1ULL << protocol;
1522 ir_raw_load_modules(&mask);
1523 if (!mask) {
1524 rc = -EINVAL;
1525 goto out;
1530 if (dev->wakeup_protocol != protocol) {
1531 dev->wakeup_protocol = protocol;
1532 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1534 if (protocol == RC_PROTO_RC6_MCE)
1535 dev->scancode_wakeup_filter.data = 0x800f0000;
1536 else
1537 dev->scancode_wakeup_filter.data = 0;
1538 dev->scancode_wakeup_filter.mask = 0;
1540 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1541 if (rc == 0)
1542 rc = len;
1543 } else {
1544 rc = len;
1547 out:
1548 mutex_unlock(&dev->lock);
1549 return rc;
1552 static void rc_dev_release(struct device *device)
1554 struct rc_dev *dev = to_rc_dev(device);
1556 kfree(dev);
1559 #define ADD_HOTPLUG_VAR(fmt, val...) \
1560 do { \
1561 int err = add_uevent_var(env, fmt, val); \
1562 if (err) \
1563 return err; \
1564 } while (0)
1566 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1568 struct rc_dev *dev = to_rc_dev(device);
1570 if (dev->rc_map.name)
1571 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1572 if (dev->driver_name)
1573 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1574 if (dev->device_name)
1575 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1577 return 0;
1581 * Static device attribute struct with the sysfs attributes for IR's
1583 static struct device_attribute dev_attr_ro_protocols =
1584 __ATTR(protocols, 0444, show_protocols, NULL);
1585 static struct device_attribute dev_attr_rw_protocols =
1586 __ATTR(protocols, 0644, show_protocols, store_protocols);
1587 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1588 store_wakeup_protocols);
1589 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1590 show_filter, store_filter, RC_FILTER_NORMAL, false);
1591 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1592 show_filter, store_filter, RC_FILTER_NORMAL, true);
1593 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1594 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1595 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1596 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1598 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1599 &dev_attr_rw_protocols.attr,
1600 NULL,
1603 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1604 .attrs = rc_dev_rw_protocol_attrs,
1607 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1608 &dev_attr_ro_protocols.attr,
1609 NULL,
1612 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1613 .attrs = rc_dev_ro_protocol_attrs,
1616 static struct attribute *rc_dev_filter_attrs[] = {
1617 &dev_attr_filter.attr.attr,
1618 &dev_attr_filter_mask.attr.attr,
1619 NULL,
1622 static const struct attribute_group rc_dev_filter_attr_grp = {
1623 .attrs = rc_dev_filter_attrs,
1626 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1627 &dev_attr_wakeup_filter.attr.attr,
1628 &dev_attr_wakeup_filter_mask.attr.attr,
1629 &dev_attr_wakeup_protocols.attr,
1630 NULL,
1633 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1634 .attrs = rc_dev_wakeup_filter_attrs,
1637 static const struct device_type rc_dev_type = {
1638 .release = rc_dev_release,
1639 .uevent = rc_dev_uevent,
1642 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1644 struct rc_dev *dev;
1646 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1647 if (!dev)
1648 return NULL;
1650 if (type != RC_DRIVER_IR_RAW_TX) {
1651 dev->input_dev = input_allocate_device();
1652 if (!dev->input_dev) {
1653 kfree(dev);
1654 return NULL;
1657 dev->input_dev->getkeycode = ir_getkeycode;
1658 dev->input_dev->setkeycode = ir_setkeycode;
1659 input_set_drvdata(dev->input_dev, dev);
1661 dev->timeout = IR_DEFAULT_TIMEOUT;
1662 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1663 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1665 spin_lock_init(&dev->rc_map.lock);
1666 spin_lock_init(&dev->keylock);
1668 mutex_init(&dev->lock);
1670 dev->dev.type = &rc_dev_type;
1671 dev->dev.class = &rc_class;
1672 device_initialize(&dev->dev);
1674 dev->driver_type = type;
1676 __module_get(THIS_MODULE);
1677 return dev;
1679 EXPORT_SYMBOL_GPL(rc_allocate_device);
1681 void rc_free_device(struct rc_dev *dev)
1683 if (!dev)
1684 return;
1686 input_free_device(dev->input_dev);
1688 put_device(&dev->dev);
1690 /* kfree(dev) will be called by the callback function
1691 rc_dev_release() */
1693 module_put(THIS_MODULE);
1695 EXPORT_SYMBOL_GPL(rc_free_device);
1697 static void devm_rc_alloc_release(struct device *dev, void *res)
1699 rc_free_device(*(struct rc_dev **)res);
1702 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1703 enum rc_driver_type type)
1705 struct rc_dev **dr, *rc;
1707 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1708 if (!dr)
1709 return NULL;
1711 rc = rc_allocate_device(type);
1712 if (!rc) {
1713 devres_free(dr);
1714 return NULL;
1717 rc->dev.parent = dev;
1718 rc->managed_alloc = true;
1719 *dr = rc;
1720 devres_add(dev, dr);
1722 return rc;
1724 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1726 static int rc_prepare_rx_device(struct rc_dev *dev)
1728 int rc;
1729 struct rc_map *rc_map;
1730 u64 rc_proto;
1732 if (!dev->map_name)
1733 return -EINVAL;
1735 rc_map = rc_map_get(dev->map_name);
1736 if (!rc_map)
1737 rc_map = rc_map_get(RC_MAP_EMPTY);
1738 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1739 return -EINVAL;
1741 rc = ir_setkeytable(dev, rc_map);
1742 if (rc)
1743 return rc;
1745 rc_proto = BIT_ULL(rc_map->rc_proto);
1747 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1748 dev->enabled_protocols = dev->allowed_protocols;
1750 if (dev->driver_type == RC_DRIVER_IR_RAW)
1751 ir_raw_load_modules(&rc_proto);
1753 if (dev->change_protocol) {
1754 rc = dev->change_protocol(dev, &rc_proto);
1755 if (rc < 0)
1756 goto out_table;
1757 dev->enabled_protocols = rc_proto;
1760 set_bit(EV_KEY, dev->input_dev->evbit);
1761 set_bit(EV_REP, dev->input_dev->evbit);
1762 set_bit(EV_MSC, dev->input_dev->evbit);
1763 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1764 if (dev->open)
1765 dev->input_dev->open = ir_open;
1766 if (dev->close)
1767 dev->input_dev->close = ir_close;
1769 dev->input_dev->dev.parent = &dev->dev;
1770 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1771 dev->input_dev->phys = dev->input_phys;
1772 dev->input_dev->name = dev->device_name;
1774 return 0;
1776 out_table:
1777 ir_free_table(&dev->rc_map);
1779 return rc;
1782 static int rc_setup_rx_device(struct rc_dev *dev)
1784 int rc;
1786 /* rc_open will be called here */
1787 rc = input_register_device(dev->input_dev);
1788 if (rc)
1789 return rc;
1792 * Default delay of 250ms is too short for some protocols, especially
1793 * since the timeout is currently set to 250ms. Increase it to 500ms,
1794 * to avoid wrong repetition of the keycodes. Note that this must be
1795 * set after the call to input_register_device().
1797 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1798 dev->input_dev->rep[REP_DELAY] = 0;
1799 else
1800 dev->input_dev->rep[REP_DELAY] = 500;
1803 * As a repeat event on protocols like RC-5 and NEC take as long as
1804 * 110/114ms, using 33ms as a repeat period is not the right thing
1805 * to do.
1807 dev->input_dev->rep[REP_PERIOD] = 125;
1809 return 0;
1812 static void rc_free_rx_device(struct rc_dev *dev)
1814 if (!dev)
1815 return;
1817 if (dev->input_dev) {
1818 input_unregister_device(dev->input_dev);
1819 dev->input_dev = NULL;
1822 ir_free_table(&dev->rc_map);
1825 int rc_register_device(struct rc_dev *dev)
1827 const char *path;
1828 int attr = 0;
1829 int minor;
1830 int rc;
1832 if (!dev)
1833 return -EINVAL;
1835 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1836 if (minor < 0)
1837 return minor;
1839 dev->minor = minor;
1840 dev_set_name(&dev->dev, "rc%u", dev->minor);
1841 dev_set_drvdata(&dev->dev, dev);
1843 dev->dev.groups = dev->sysfs_groups;
1844 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1845 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1846 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1847 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1848 if (dev->s_filter)
1849 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1850 if (dev->s_wakeup_filter)
1851 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1852 dev->sysfs_groups[attr++] = NULL;
1854 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1855 rc = ir_raw_event_prepare(dev);
1856 if (rc < 0)
1857 goto out_minor;
1860 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1861 rc = rc_prepare_rx_device(dev);
1862 if (rc)
1863 goto out_raw;
1866 rc = device_add(&dev->dev);
1867 if (rc)
1868 goto out_rx_free;
1870 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1871 dev_info(&dev->dev, "%s as %s\n",
1872 dev->device_name ?: "Unspecified device", path ?: "N/A");
1873 kfree(path);
1875 dev->registered = true;
1878 * once the the input device is registered in rc_setup_rx_device,
1879 * userspace can open the input device and rc_open() will be called
1880 * as a result. This results in driver code being allowed to submit
1881 * keycodes with rc_keydown, so lirc must be registered first.
1883 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1884 rc = ir_lirc_register(dev);
1885 if (rc < 0)
1886 goto out_dev;
1889 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1890 rc = rc_setup_rx_device(dev);
1891 if (rc)
1892 goto out_lirc;
1895 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1896 rc = ir_raw_event_register(dev);
1897 if (rc < 0)
1898 goto out_rx;
1901 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1902 dev->driver_name ? dev->driver_name : "unknown");
1904 return 0;
1906 out_rx:
1907 rc_free_rx_device(dev);
1908 out_lirc:
1909 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1910 ir_lirc_unregister(dev);
1911 out_dev:
1912 device_del(&dev->dev);
1913 out_rx_free:
1914 ir_free_table(&dev->rc_map);
1915 out_raw:
1916 ir_raw_event_free(dev);
1917 out_minor:
1918 ida_simple_remove(&rc_ida, minor);
1919 return rc;
1921 EXPORT_SYMBOL_GPL(rc_register_device);
1923 static void devm_rc_release(struct device *dev, void *res)
1925 rc_unregister_device(*(struct rc_dev **)res);
1928 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1930 struct rc_dev **dr;
1931 int ret;
1933 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1934 if (!dr)
1935 return -ENOMEM;
1937 ret = rc_register_device(dev);
1938 if (ret) {
1939 devres_free(dr);
1940 return ret;
1943 *dr = dev;
1944 devres_add(parent, dr);
1946 return 0;
1948 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1950 void rc_unregister_device(struct rc_dev *dev)
1952 if (!dev)
1953 return;
1955 if (dev->driver_type == RC_DRIVER_IR_RAW)
1956 ir_raw_event_unregister(dev);
1958 del_timer_sync(&dev->timer_keyup);
1959 del_timer_sync(&dev->timer_repeat);
1961 rc_free_rx_device(dev);
1963 mutex_lock(&dev->lock);
1964 if (dev->users && dev->close)
1965 dev->close(dev);
1966 dev->registered = false;
1967 mutex_unlock(&dev->lock);
1970 * lirc device should be freed with dev->registered = false, so
1971 * that userspace polling will get notified.
1973 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1974 ir_lirc_unregister(dev);
1976 device_del(&dev->dev);
1978 ida_simple_remove(&rc_ida, dev->minor);
1980 if (!dev->managed_alloc)
1981 rc_free_device(dev);
1984 EXPORT_SYMBOL_GPL(rc_unregister_device);
1987 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1990 static int __init rc_core_init(void)
1992 int rc = class_register(&rc_class);
1993 if (rc) {
1994 pr_err("rc_core: unable to register rc class\n");
1995 return rc;
1998 rc = lirc_dev_init();
1999 if (rc) {
2000 pr_err("rc_core: unable to init lirc\n");
2001 class_unregister(&rc_class);
2002 return 0;
2005 led_trigger_register_simple("rc-feedback", &led_feedback);
2006 rc_map_register(&empty_map);
2008 return 0;
2011 static void __exit rc_core_exit(void)
2013 lirc_dev_exit();
2014 class_unregister(&rc_class);
2015 led_trigger_unregister_simple(led_feedback);
2016 rc_map_unregister(&empty_map);
2019 subsys_initcall(rc_core_init);
2020 module_exit(rc_core_exit);
2022 MODULE_AUTHOR("Mauro Carvalho Chehab");
2023 MODULE_LICENSE("GPL v2");