Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / tuners / msi001.c
blob5de6ed72870853bb39cc7e872621ab4199757f20
1 /*
2 * Mirics MSi001 silicon tuner driver
4 * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/module.h>
19 #include <linux/gcd.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-ctrls.h>
23 static const struct v4l2_frequency_band bands[] = {
25 .type = V4L2_TUNER_RF,
26 .index = 0,
27 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
28 .rangelow = 49000000,
29 .rangehigh = 263000000,
30 }, {
31 .type = V4L2_TUNER_RF,
32 .index = 1,
33 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
34 .rangelow = 390000000,
35 .rangehigh = 960000000,
39 struct msi001_dev {
40 struct spi_device *spi;
41 struct v4l2_subdev sd;
43 /* Controls */
44 struct v4l2_ctrl_handler hdl;
45 struct v4l2_ctrl *bandwidth_auto;
46 struct v4l2_ctrl *bandwidth;
47 struct v4l2_ctrl *lna_gain;
48 struct v4l2_ctrl *mixer_gain;
49 struct v4l2_ctrl *if_gain;
51 unsigned int f_tuner;
54 static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
56 return container_of(sd, struct msi001_dev, sd);
59 static int msi001_wreg(struct msi001_dev *dev, u32 data)
61 /* Register format: 4 bits addr + 20 bits value */
62 return spi_write(dev->spi, &data, 3);
65 static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
66 int if_gain)
68 struct spi_device *spi = dev->spi;
69 int ret;
70 u32 reg;
72 dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
73 lna_gain, mixer_gain, if_gain);
75 reg = 1 << 0;
76 reg |= (59 - if_gain) << 4;
77 reg |= 0 << 10;
78 reg |= (1 - mixer_gain) << 12;
79 reg |= (1 - lna_gain) << 13;
80 reg |= 4 << 14;
81 reg |= 0 << 17;
82 ret = msi001_wreg(dev, reg);
83 if (ret)
84 goto err;
86 return 0;
87 err:
88 dev_dbg(&spi->dev, "failed %d\n", ret);
89 return ret;
92 static int msi001_set_tuner(struct msi001_dev *dev)
94 struct spi_device *spi = dev->spi;
95 int ret, i;
96 unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
97 u32 reg;
98 u64 f_vco;
99 u8 mode, filter_mode;
101 static const struct {
102 u32 rf;
103 u8 mode;
104 u8 div_lo;
105 } band_lut[] = {
106 { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
107 {108000000, 0x42, 32}, /* VHF_MODE */
108 {330000000, 0x44, 16}, /* B3_MODE */
109 {960000000, 0x48, 4}, /* B45_MODE */
110 { ~0U, 0x50, 2}, /* BL_MODE */
112 static const struct {
113 u32 freq;
114 u8 filter_mode;
115 } if_freq_lut[] = {
116 { 0, 0x03}, /* Zero IF */
117 { 450000, 0x02}, /* 450 kHz IF */
118 {1620000, 0x01}, /* 1.62 MHz IF */
119 {2048000, 0x00}, /* 2.048 MHz IF */
121 static const struct {
122 u32 freq;
123 u8 val;
124 } bandwidth_lut[] = {
125 { 200000, 0x00}, /* 200 kHz */
126 { 300000, 0x01}, /* 300 kHz */
127 { 600000, 0x02}, /* 600 kHz */
128 {1536000, 0x03}, /* 1.536 MHz */
129 {5000000, 0x04}, /* 5 MHz */
130 {6000000, 0x05}, /* 6 MHz */
131 {7000000, 0x06}, /* 7 MHz */
132 {8000000, 0x07}, /* 8 MHz */
135 unsigned int f_rf = dev->f_tuner;
138 * bandwidth (Hz)
139 * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
141 unsigned int bandwidth;
144 * intermediate frequency (Hz)
145 * 0, 450000, 1620000, 2048000
147 unsigned int f_if = 0;
148 #define F_REF 24000000
149 #define DIV_PRE_N 4
150 #define F_VCO_STEP div_lo
152 dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
154 for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
155 if (f_rf <= band_lut[i].rf) {
156 mode = band_lut[i].mode;
157 div_lo = band_lut[i].div_lo;
158 break;
161 if (i == ARRAY_SIZE(band_lut)) {
162 ret = -EINVAL;
163 goto err;
166 /* AM_MODE is upconverted */
167 if ((mode >> 0) & 0x1)
168 f_if1 = 5 * F_REF;
169 else
170 f_if1 = 0;
172 for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
173 if (f_if == if_freq_lut[i].freq) {
174 filter_mode = if_freq_lut[i].filter_mode;
175 break;
178 if (i == ARRAY_SIZE(if_freq_lut)) {
179 ret = -EINVAL;
180 goto err;
183 /* filters */
184 bandwidth = dev->bandwidth->val;
185 bandwidth = clamp(bandwidth, 200000U, 8000000U);
187 for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
188 if (bandwidth <= bandwidth_lut[i].freq) {
189 bandwidth = bandwidth_lut[i].val;
190 break;
193 if (i == ARRAY_SIZE(bandwidth_lut)) {
194 ret = -EINVAL;
195 goto err;
198 dev->bandwidth->val = bandwidth_lut[i].freq;
200 dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
203 * Fractional-N synthesizer
205 * +---------------------------------------+
206 * v |
207 * Fref +----+ +-------+ +----+ +------+ +---+
208 * ------> | PD | --> | VCO | ------> | /4 | --> | /N.F | <-- | K |
209 * +----+ +-------+ +----+ +------+ +---+
213 * +-------+ Fout
214 * | /Rout | ------>
215 * +-------+
218 /* Calculate PLL integer and fractional control word. */
219 f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
220 div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
221 k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
222 k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
224 /* Find out greatest common divisor and divide to smaller. */
225 uitmp = gcd(k_thresh, k_frac);
226 k_thresh /= uitmp;
227 k_frac /= uitmp;
229 /* Force divide to reg max. Resolution will be reduced. */
230 uitmp = DIV_ROUND_UP(k_thresh, 4095);
231 k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
232 k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
234 /* Calculate real RF set. */
235 uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
236 uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
237 uitmp /= div_lo;
239 dev_dbg(&spi->dev,
240 "f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
241 f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
243 ret = msi001_wreg(dev, 0x00000e);
244 if (ret)
245 goto err;
247 ret = msi001_wreg(dev, 0x000003);
248 if (ret)
249 goto err;
251 reg = 0 << 0;
252 reg |= mode << 4;
253 reg |= filter_mode << 12;
254 reg |= bandwidth << 14;
255 reg |= 0x02 << 17;
256 reg |= 0x00 << 20;
257 ret = msi001_wreg(dev, reg);
258 if (ret)
259 goto err;
261 reg = 5 << 0;
262 reg |= k_thresh << 4;
263 reg |= 1 << 19;
264 reg |= 1 << 21;
265 ret = msi001_wreg(dev, reg);
266 if (ret)
267 goto err;
269 reg = 2 << 0;
270 reg |= k_frac << 4;
271 reg |= div_n << 16;
272 ret = msi001_wreg(dev, reg);
273 if (ret)
274 goto err;
276 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
277 dev->mixer_gain->cur.val, dev->if_gain->cur.val);
278 if (ret)
279 goto err;
281 reg = 6 << 0;
282 reg |= 63 << 4;
283 reg |= 4095 << 10;
284 ret = msi001_wreg(dev, reg);
285 if (ret)
286 goto err;
288 return 0;
289 err:
290 dev_dbg(&spi->dev, "failed %d\n", ret);
291 return ret;
294 static int msi001_standby(struct v4l2_subdev *sd)
296 struct msi001_dev *dev = sd_to_msi001_dev(sd);
298 return msi001_wreg(dev, 0x000000);
301 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
303 struct msi001_dev *dev = sd_to_msi001_dev(sd);
304 struct spi_device *spi = dev->spi;
306 dev_dbg(&spi->dev, "index=%d\n", v->index);
308 strlcpy(v->name, "Mirics MSi001", sizeof(v->name));
309 v->type = V4L2_TUNER_RF;
310 v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
311 v->rangelow = 49000000;
312 v->rangehigh = 960000000;
314 return 0;
317 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
319 struct msi001_dev *dev = sd_to_msi001_dev(sd);
320 struct spi_device *spi = dev->spi;
322 dev_dbg(&spi->dev, "index=%d\n", v->index);
323 return 0;
326 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
328 struct msi001_dev *dev = sd_to_msi001_dev(sd);
329 struct spi_device *spi = dev->spi;
331 dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
332 f->frequency = dev->f_tuner;
333 return 0;
336 static int msi001_s_frequency(struct v4l2_subdev *sd,
337 const struct v4l2_frequency *f)
339 struct msi001_dev *dev = sd_to_msi001_dev(sd);
340 struct spi_device *spi = dev->spi;
341 unsigned int band;
343 dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
344 f->tuner, f->type, f->frequency);
346 if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
347 band = 0;
348 else
349 band = 1;
350 dev->f_tuner = clamp_t(unsigned int, f->frequency,
351 bands[band].rangelow, bands[band].rangehigh);
353 return msi001_set_tuner(dev);
356 static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
357 struct v4l2_frequency_band *band)
359 struct msi001_dev *dev = sd_to_msi001_dev(sd);
360 struct spi_device *spi = dev->spi;
362 dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
363 band->tuner, band->type, band->index);
365 if (band->index >= ARRAY_SIZE(bands))
366 return -EINVAL;
368 band->capability = bands[band->index].capability;
369 band->rangelow = bands[band->index].rangelow;
370 band->rangehigh = bands[band->index].rangehigh;
372 return 0;
375 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
376 .standby = msi001_standby,
377 .g_tuner = msi001_g_tuner,
378 .s_tuner = msi001_s_tuner,
379 .g_frequency = msi001_g_frequency,
380 .s_frequency = msi001_s_frequency,
381 .enum_freq_bands = msi001_enum_freq_bands,
384 static const struct v4l2_subdev_ops msi001_ops = {
385 .tuner = &msi001_tuner_ops,
388 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
390 struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
391 struct spi_device *spi = dev->spi;
393 int ret;
395 dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
396 ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
397 ctrl->step);
399 switch (ctrl->id) {
400 case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
401 case V4L2_CID_RF_TUNER_BANDWIDTH:
402 ret = msi001_set_tuner(dev);
403 break;
404 case V4L2_CID_RF_TUNER_LNA_GAIN:
405 ret = msi001_set_gain(dev, dev->lna_gain->val,
406 dev->mixer_gain->cur.val,
407 dev->if_gain->cur.val);
408 break;
409 case V4L2_CID_RF_TUNER_MIXER_GAIN:
410 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
411 dev->mixer_gain->val,
412 dev->if_gain->cur.val);
413 break;
414 case V4L2_CID_RF_TUNER_IF_GAIN:
415 ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
416 dev->mixer_gain->cur.val,
417 dev->if_gain->val);
418 break;
419 default:
420 dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
421 ret = -EINVAL;
424 return ret;
427 static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
428 .s_ctrl = msi001_s_ctrl,
431 static int msi001_probe(struct spi_device *spi)
433 struct msi001_dev *dev;
434 int ret;
436 dev_dbg(&spi->dev, "\n");
438 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
439 if (!dev) {
440 ret = -ENOMEM;
441 goto err;
444 dev->spi = spi;
445 dev->f_tuner = bands[0].rangelow;
446 v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
448 /* Register controls */
449 v4l2_ctrl_handler_init(&dev->hdl, 5);
450 dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
451 V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
452 dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
453 V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
454 v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
455 dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
456 V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
457 dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
458 V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
459 dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
460 V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
461 if (dev->hdl.error) {
462 ret = dev->hdl.error;
463 dev_err(&spi->dev, "Could not initialize controls\n");
464 /* control init failed, free handler */
465 goto err_ctrl_handler_free;
468 dev->sd.ctrl_handler = &dev->hdl;
469 return 0;
470 err_ctrl_handler_free:
471 v4l2_ctrl_handler_free(&dev->hdl);
472 kfree(dev);
473 err:
474 return ret;
477 static int msi001_remove(struct spi_device *spi)
479 struct v4l2_subdev *sd = spi_get_drvdata(spi);
480 struct msi001_dev *dev = sd_to_msi001_dev(sd);
482 dev_dbg(&spi->dev, "\n");
485 * Registered by v4l2_spi_new_subdev() from master driver, but we must
486 * unregister it from here. Weird.
488 v4l2_device_unregister_subdev(&dev->sd);
489 v4l2_ctrl_handler_free(&dev->hdl);
490 kfree(dev);
491 return 0;
494 static const struct spi_device_id msi001_id_table[] = {
495 {"msi001", 0},
498 MODULE_DEVICE_TABLE(spi, msi001_id_table);
500 static struct spi_driver msi001_driver = {
501 .driver = {
502 .name = "msi001",
503 .suppress_bind_attrs = true,
505 .probe = msi001_probe,
506 .remove = msi001_remove,
507 .id_table = msi001_id_table,
509 module_spi_driver(msi001_driver);
511 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
512 MODULE_DESCRIPTION("Mirics MSi001");
513 MODULE_LICENSE("GPL");