2 * ov534-ov7xxx gspca driver
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #define MODULE_NAME "ov534"
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
39 #define OV534_REG_SUBADDR 0xf2
40 #define OV534_REG_WRITE 0xf3
41 #define OV534_REG_READ 0xf4
42 #define OV534_REG_OPERATION 0xf5
43 #define OV534_REG_STATUS 0xf6
45 #define OV534_OP_WRITE_3 0x37
46 #define OV534_OP_WRITE_2 0x33
47 #define OV534_OP_READ_2 0xf9
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
56 /* specific webcam descriptor */
58 struct gspca_dev gspca_dev
; /* !! must be the first item */
60 struct v4l2_ctrl_handler ctrl_handler
;
61 struct v4l2_ctrl
*hue
;
62 struct v4l2_ctrl
*saturation
;
63 struct v4l2_ctrl
*brightness
;
64 struct v4l2_ctrl
*contrast
;
65 struct { /* gain control cluster */
66 struct v4l2_ctrl
*autogain
;
67 struct v4l2_ctrl
*gain
;
69 struct v4l2_ctrl
*autowhitebalance
;
70 struct { /* exposure control cluster */
71 struct v4l2_ctrl
*autoexposure
;
72 struct v4l2_ctrl
*exposure
;
74 struct v4l2_ctrl
*sharpness
;
75 struct v4l2_ctrl
*hflip
;
76 struct v4l2_ctrl
*vflip
;
77 struct v4l2_ctrl
*plfreq
;
91 static int sd_start(struct gspca_dev
*gspca_dev
);
92 static void sd_stopN(struct gspca_dev
*gspca_dev
);
95 static const struct v4l2_pix_format ov772x_mode
[] = {
96 {320, 240, V4L2_PIX_FMT_YUYV
, V4L2_FIELD_NONE
,
97 .bytesperline
= 320 * 2,
98 .sizeimage
= 320 * 240 * 2,
99 .colorspace
= V4L2_COLORSPACE_SRGB
,
101 {640, 480, V4L2_PIX_FMT_YUYV
, V4L2_FIELD_NONE
,
102 .bytesperline
= 640 * 2,
103 .sizeimage
= 640 * 480 * 2,
104 .colorspace
= V4L2_COLORSPACE_SRGB
,
107 static const struct v4l2_pix_format ov767x_mode
[] = {
108 {320, 240, V4L2_PIX_FMT_JPEG
, V4L2_FIELD_NONE
,
110 .sizeimage
= 320 * 240 * 3 / 8 + 590,
111 .colorspace
= V4L2_COLORSPACE_JPEG
},
112 {640, 480, V4L2_PIX_FMT_JPEG
, V4L2_FIELD_NONE
,
114 .sizeimage
= 640 * 480 * 3 / 8 + 590,
115 .colorspace
= V4L2_COLORSPACE_JPEG
},
118 static const u8 qvga_rates
[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates
[] = {60, 50, 40, 30, 15};
121 static const struct framerates ov772x_framerates
[] = {
124 .nrates
= ARRAY_SIZE(qvga_rates
),
128 .nrates
= ARRAY_SIZE(vga_rates
),
137 static const u8 bridge_init_767x
[][2] = {
138 /* comments from the ms-win file apollo7670.set */
168 {0xc0, 0x50}, /* HSize 640 */
169 {0xc1, 0x3c}, /* VSize 480 */
170 {0x34, 0x05}, /* enable Audio Suspend mode */
171 {0xc2, 0x0c}, /* Input YUV */
172 {0xc3, 0xf9}, /* enable PRE */
173 {0x34, 0x05}, /* enable Audio Suspend mode */
174 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
175 {0x31, 0xf9}, /* enable 1.8V Suspend */
176 {0x35, 0x02}, /* turn on JPEG */
178 {0x25, 0x42}, /* GPIO[8]:Input */
179 {0x94, 0x11}, /* If the default setting is loaded when
180 * system boots up, this flag is closed here */
182 static const u8 sensor_init_767x
[][2] = {
200 {0x7a, 0x2a}, /* set Gamma=1.6 below */
220 {0x14, 0x38}, /* gain max 16x */
300 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
304 {0xa4, 0x8a}, /* Night mode trigger point */
337 static const u8 bridge_start_vga_767x
[][2] = {
345 {0x35, 0x02}, /* turn on JPEG */
347 {0xda, 0x00}, /* for higher clock rate(30fps) */
348 {0x34, 0x05}, /* enable Audio Suspend mode */
349 {0xc3, 0xf9}, /* enable PRE */
350 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
351 {0x8d, 0x1c}, /* output YUV */
352 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
353 {0x50, 0x00}, /* H/V divider=0 */
354 {0x51, 0xa0}, /* input H=640/4 */
355 {0x52, 0x3c}, /* input V=480/4 */
356 {0x53, 0x00}, /* offset X=0 */
357 {0x54, 0x00}, /* offset Y=0 */
358 {0x55, 0x00}, /* H/V size[8]=0 */
359 {0x57, 0x00}, /* H-size[9]=0 */
360 {0x5c, 0x00}, /* output size[9:8]=0 */
361 {0x5a, 0xa0}, /* output H=640/4 */
362 {0x5b, 0x78}, /* output V=480/4 */
367 static const u8 sensor_start_vga_767x
[][2] = {
373 static const u8 bridge_start_qvga_767x
[][2] = {
381 {0x35, 0x02}, /* turn on JPEG */
383 {0xc0, 0x50}, /* CIF HSize 640 */
384 {0xc1, 0x3c}, /* CIF VSize 480 */
385 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
386 {0x8d, 0x1c}, /* output YUV */
387 {0x34, 0x05}, /* enable Audio Suspend mode */
388 {0xc2, 0x4c}, /* output YUV and Enable DCW */
389 {0xc3, 0xf9}, /* enable PRE */
390 {0x1c, 0x00}, /* indirect addressing */
391 {0x1d, 0x48}, /* output YUV422 */
392 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
393 {0x51, 0xa0}, /* DCW input H=640/4 */
394 {0x52, 0x78}, /* DCW input V=480/4 */
395 {0x53, 0x00}, /* offset X=0 */
396 {0x54, 0x00}, /* offset Y=0 */
397 {0x55, 0x00}, /* H/V size[8]=0 */
398 {0x57, 0x00}, /* H-size[9]=0 */
399 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
400 {0x5a, 0x50}, /* DCW output H=320/4 */
401 {0x5b, 0x3c}, /* DCW output V=240/4 */
406 static const u8 sensor_start_qvga_767x
[][2] = {
413 static const u8 bridge_init_772x
[][2] = {
452 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 { 0x1d, 0x00 }, /* payload size */
455 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 { 0x1d, 0x58 }, /* frame size */
457 { 0x1d, 0x00 }, /* frame size */
460 { 0x1d, 0x08 }, /* turn on UVC header */
461 { 0x1d, 0x0e }, /* .. */
471 static const u8 sensor_init_772x
[][2] = {
474 /*fixme: better have a delay?*/
497 { 0x63, 0xaa }, /* AWB - was e0 */
500 { 0x13, 0xf0 }, /* com8 */
513 { 0x13, 0xff }, /* AWB */
561 { 0x8e, 0x00 }, /* De-noise threshold */
564 static const u8 bridge_start_vga_772x
[][2] = {
575 static const u8 sensor_start_vga_772x
[][2] = {
585 static const u8 bridge_start_qvga_772x
[][2] = {
596 static const u8 sensor_start_qvga_772x
[][2] = {
607 static void ov534_reg_write(struct gspca_dev
*gspca_dev
, u16 reg
, u8 val
)
609 struct usb_device
*udev
= gspca_dev
->dev
;
612 if (gspca_dev
->usb_err
< 0)
615 gspca_dbg(gspca_dev
, D_USBO
, "SET 01 0000 %04x %02x\n", reg
, val
);
616 gspca_dev
->usb_buf
[0] = val
;
617 ret
= usb_control_msg(udev
,
618 usb_sndctrlpipe(udev
, 0),
620 USB_DIR_OUT
| USB_TYPE_VENDOR
| USB_RECIP_DEVICE
,
621 0x00, reg
, gspca_dev
->usb_buf
, 1, CTRL_TIMEOUT
);
623 pr_err("write failed %d\n", ret
);
624 gspca_dev
->usb_err
= ret
;
628 static u8
ov534_reg_read(struct gspca_dev
*gspca_dev
, u16 reg
)
630 struct usb_device
*udev
= gspca_dev
->dev
;
633 if (gspca_dev
->usb_err
< 0)
635 ret
= usb_control_msg(udev
,
636 usb_rcvctrlpipe(udev
, 0),
638 USB_DIR_IN
| USB_TYPE_VENDOR
| USB_RECIP_DEVICE
,
639 0x00, reg
, gspca_dev
->usb_buf
, 1, CTRL_TIMEOUT
);
640 gspca_dbg(gspca_dev
, D_USBI
, "GET 01 0000 %04x %02x\n",
641 reg
, gspca_dev
->usb_buf
[0]);
643 pr_err("read failed %d\n", ret
);
644 gspca_dev
->usb_err
= ret
;
646 * Make sure the result is zeroed to avoid uninitialized
649 gspca_dev
->usb_buf
[0] = 0;
651 return gspca_dev
->usb_buf
[0];
654 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
655 * (direction and output)? */
656 static void ov534_set_led(struct gspca_dev
*gspca_dev
, int status
)
660 gspca_dbg(gspca_dev
, D_CONF
, "led status: %d\n", status
);
662 data
= ov534_reg_read(gspca_dev
, 0x21);
664 ov534_reg_write(gspca_dev
, 0x21, data
);
666 data
= ov534_reg_read(gspca_dev
, 0x23);
672 ov534_reg_write(gspca_dev
, 0x23, data
);
675 data
= ov534_reg_read(gspca_dev
, 0x21);
677 ov534_reg_write(gspca_dev
, 0x21, data
);
681 static int sccb_check_status(struct gspca_dev
*gspca_dev
)
686 for (i
= 0; i
< 5; i
++) {
688 data
= ov534_reg_read(gspca_dev
, OV534_REG_STATUS
);
698 gspca_err(gspca_dev
, "sccb status 0x%02x, attempt %d/5\n",
705 static void sccb_reg_write(struct gspca_dev
*gspca_dev
, u8 reg
, u8 val
)
707 gspca_dbg(gspca_dev
, D_USBO
, "sccb write: %02x %02x\n", reg
, val
);
708 ov534_reg_write(gspca_dev
, OV534_REG_SUBADDR
, reg
);
709 ov534_reg_write(gspca_dev
, OV534_REG_WRITE
, val
);
710 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_WRITE_3
);
712 if (!sccb_check_status(gspca_dev
)) {
713 pr_err("sccb_reg_write failed\n");
714 gspca_dev
->usb_err
= -EIO
;
718 static u8
sccb_reg_read(struct gspca_dev
*gspca_dev
, u16 reg
)
720 ov534_reg_write(gspca_dev
, OV534_REG_SUBADDR
, reg
);
721 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_WRITE_2
);
722 if (!sccb_check_status(gspca_dev
))
723 pr_err("sccb_reg_read failed 1\n");
725 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_READ_2
);
726 if (!sccb_check_status(gspca_dev
))
727 pr_err("sccb_reg_read failed 2\n");
729 return ov534_reg_read(gspca_dev
, OV534_REG_READ
);
732 /* output a bridge sequence (reg - val) */
733 static void reg_w_array(struct gspca_dev
*gspca_dev
,
734 const u8 (*data
)[2], int len
)
737 ov534_reg_write(gspca_dev
, (*data
)[0], (*data
)[1]);
742 /* output a sensor sequence (reg - val) */
743 static void sccb_w_array(struct gspca_dev
*gspca_dev
,
744 const u8 (*data
)[2], int len
)
747 if ((*data
)[0] != 0xff) {
748 sccb_reg_write(gspca_dev
, (*data
)[0], (*data
)[1]);
750 sccb_reg_read(gspca_dev
, (*data
)[1]);
751 sccb_reg_write(gspca_dev
, 0xff, 0x00);
757 /* ov772x specific controls */
758 static void set_frame_rate(struct gspca_dev
*gspca_dev
)
760 struct sd
*sd
= (struct sd
*) gspca_dev
;
768 const struct rate_s
*r
;
769 static const struct rate_s rate_0
[] = { /* 640x480 */
770 {60, 0x01, 0xc1, 0x04},
771 {50, 0x01, 0x41, 0x02},
772 {40, 0x02, 0xc1, 0x04},
773 {30, 0x04, 0x81, 0x02},
774 {15, 0x03, 0x41, 0x04},
776 static const struct rate_s rate_1
[] = { /* 320x240 */
777 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
778 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
779 {150, 0x01, 0xc1, 0x04},
780 {137, 0x02, 0xc1, 0x02},
781 {125, 0x02, 0x81, 0x02},
782 {100, 0x02, 0xc1, 0x04},
783 {75, 0x03, 0xc1, 0x04},
784 {60, 0x04, 0xc1, 0x04},
785 {50, 0x02, 0x41, 0x04},
786 {37, 0x03, 0x41, 0x04},
787 {30, 0x04, 0x41, 0x04},
790 if (sd
->sensor
!= SENSOR_OV772x
)
792 if (gspca_dev
->cam
.cam_mode
[gspca_dev
->curr_mode
].priv
== 0) {
794 i
= ARRAY_SIZE(rate_0
);
797 i
= ARRAY_SIZE(rate_1
);
800 if (sd
->frame_rate
>= r
->fps
)
805 sccb_reg_write(gspca_dev
, 0x11, r
->r11
);
806 sccb_reg_write(gspca_dev
, 0x0d, r
->r0d
);
807 ov534_reg_write(gspca_dev
, 0xe5, r
->re5
);
809 gspca_dbg(gspca_dev
, D_PROBE
, "frame_rate: %d\n", r
->fps
);
812 static void sethue(struct gspca_dev
*gspca_dev
, s32 val
)
814 struct sd
*sd
= (struct sd
*) gspca_dev
;
816 if (sd
->sensor
== SENSOR_OV767x
) {
822 /* According to the datasheet the registers expect HUESIN and
823 * HUECOS to be the result of the trigonometric functions,
826 * The 0x7fff here represents the maximum absolute value
827 * returned byt fixp_sin and fixp_cos, so the scaling will
828 * consider the result like in the interval [-1.0, 1.0].
830 huesin
= fixp_sin16(val
) * 0x80 / 0x7fff;
831 huecos
= fixp_cos16(val
) * 0x80 / 0x7fff;
834 sccb_reg_write(gspca_dev
, 0xab,
835 sccb_reg_read(gspca_dev
, 0xab) | 0x2);
838 sccb_reg_write(gspca_dev
, 0xab,
839 sccb_reg_read(gspca_dev
, 0xab) & ~0x2);
842 sccb_reg_write(gspca_dev
, 0xa9, (u8
)huecos
);
843 sccb_reg_write(gspca_dev
, 0xaa, (u8
)huesin
);
847 static void setsaturation(struct gspca_dev
*gspca_dev
, s32 val
)
849 struct sd
*sd
= (struct sd
*) gspca_dev
;
851 if (sd
->sensor
== SENSOR_OV767x
) {
853 static u8 color_tb
[][6] = {
854 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
855 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
856 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
857 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
858 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
859 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
860 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
863 for (i
= 0; i
< ARRAY_SIZE(color_tb
[0]); i
++)
864 sccb_reg_write(gspca_dev
, 0x4f + i
, color_tb
[val
][i
]);
866 sccb_reg_write(gspca_dev
, 0xa7, val
); /* U saturation */
867 sccb_reg_write(gspca_dev
, 0xa8, val
); /* V saturation */
871 static void setbrightness(struct gspca_dev
*gspca_dev
, s32 val
)
873 struct sd
*sd
= (struct sd
*) gspca_dev
;
875 if (sd
->sensor
== SENSOR_OV767x
) {
878 sccb_reg_write(gspca_dev
, 0x55, val
); /* bright */
880 sccb_reg_write(gspca_dev
, 0x9b, val
);
884 static void setcontrast(struct gspca_dev
*gspca_dev
, s32 val
)
886 struct sd
*sd
= (struct sd
*) gspca_dev
;
888 if (sd
->sensor
== SENSOR_OV767x
)
889 sccb_reg_write(gspca_dev
, 0x56, val
); /* contras */
891 sccb_reg_write(gspca_dev
, 0x9c, val
);
894 static void setgain(struct gspca_dev
*gspca_dev
, s32 val
)
896 switch (val
& 0x30) {
914 sccb_reg_write(gspca_dev
, 0x00, val
);
917 static s32
getgain(struct gspca_dev
*gspca_dev
)
919 return sccb_reg_read(gspca_dev
, 0x00);
922 static void setexposure(struct gspca_dev
*gspca_dev
, s32 val
)
924 struct sd
*sd
= (struct sd
*) gspca_dev
;
926 if (sd
->sensor
== SENSOR_OV767x
) {
928 /* set only aec[9:2] */
929 sccb_reg_write(gspca_dev
, 0x10, val
); /* aech */
932 /* 'val' is one byte and represents half of the exposure value
933 * we are going to set into registers, a two bytes value:
935 * MSB: ((u16) val << 1) >> 8 == val >> 7
936 * LSB: ((u16) val << 1) & 0xff == val << 1
938 sccb_reg_write(gspca_dev
, 0x08, val
>> 7);
939 sccb_reg_write(gspca_dev
, 0x10, val
<< 1);
943 static s32
getexposure(struct gspca_dev
*gspca_dev
)
945 struct sd
*sd
= (struct sd
*) gspca_dev
;
947 if (sd
->sensor
== SENSOR_OV767x
) {
948 /* get only aec[9:2] */
949 return sccb_reg_read(gspca_dev
, 0x10); /* aech */
951 u8 hi
= sccb_reg_read(gspca_dev
, 0x08);
952 u8 lo
= sccb_reg_read(gspca_dev
, 0x10);
953 return (hi
<< 8 | lo
) >> 1;
957 static void setagc(struct gspca_dev
*gspca_dev
, s32 val
)
960 sccb_reg_write(gspca_dev
, 0x13,
961 sccb_reg_read(gspca_dev
, 0x13) | 0x04);
962 sccb_reg_write(gspca_dev
, 0x64,
963 sccb_reg_read(gspca_dev
, 0x64) | 0x03);
965 sccb_reg_write(gspca_dev
, 0x13,
966 sccb_reg_read(gspca_dev
, 0x13) & ~0x04);
967 sccb_reg_write(gspca_dev
, 0x64,
968 sccb_reg_read(gspca_dev
, 0x64) & ~0x03);
972 static void setawb(struct gspca_dev
*gspca_dev
, s32 val
)
974 struct sd
*sd
= (struct sd
*) gspca_dev
;
977 sccb_reg_write(gspca_dev
, 0x13,
978 sccb_reg_read(gspca_dev
, 0x13) | 0x02);
979 if (sd
->sensor
== SENSOR_OV772x
)
980 sccb_reg_write(gspca_dev
, 0x63,
981 sccb_reg_read(gspca_dev
, 0x63) | 0xc0);
983 sccb_reg_write(gspca_dev
, 0x13,
984 sccb_reg_read(gspca_dev
, 0x13) & ~0x02);
985 if (sd
->sensor
== SENSOR_OV772x
)
986 sccb_reg_write(gspca_dev
, 0x63,
987 sccb_reg_read(gspca_dev
, 0x63) & ~0xc0);
991 static void setaec(struct gspca_dev
*gspca_dev
, s32 val
)
993 struct sd
*sd
= (struct sd
*) gspca_dev
;
996 data
= sd
->sensor
== SENSOR_OV767x
?
997 0x05 : /* agc + aec */
1000 case V4L2_EXPOSURE_AUTO
:
1001 sccb_reg_write(gspca_dev
, 0x13,
1002 sccb_reg_read(gspca_dev
, 0x13) | data
);
1004 case V4L2_EXPOSURE_MANUAL
:
1005 sccb_reg_write(gspca_dev
, 0x13,
1006 sccb_reg_read(gspca_dev
, 0x13) & ~data
);
1011 static void setsharpness(struct gspca_dev
*gspca_dev
, s32 val
)
1013 sccb_reg_write(gspca_dev
, 0x91, val
); /* Auto de-noise threshold */
1014 sccb_reg_write(gspca_dev
, 0x8e, val
); /* De-noise threshold */
1017 static void sethvflip(struct gspca_dev
*gspca_dev
, s32 hflip
, s32 vflip
)
1019 struct sd
*sd
= (struct sd
*) gspca_dev
;
1022 if (sd
->sensor
== SENSOR_OV767x
) {
1023 val
= sccb_reg_read(gspca_dev
, 0x1e); /* mvfp */
1029 sccb_reg_write(gspca_dev
, 0x1e, val
);
1031 val
= sccb_reg_read(gspca_dev
, 0x0c);
1037 sccb_reg_write(gspca_dev
, 0x0c, val
);
1041 static void setlightfreq(struct gspca_dev
*gspca_dev
, s32 val
)
1043 struct sd
*sd
= (struct sd
*) gspca_dev
;
1045 val
= val
? 0x9e : 0x00;
1046 if (sd
->sensor
== SENSOR_OV767x
) {
1047 sccb_reg_write(gspca_dev
, 0x2a, 0x00);
1049 val
= 0x9d; /* insert dummy to 25fps for 50Hz */
1051 sccb_reg_write(gspca_dev
, 0x2b, val
);
1055 /* this function is called at probe time */
1056 static int sd_config(struct gspca_dev
*gspca_dev
,
1057 const struct usb_device_id
*id
)
1059 struct sd
*sd
= (struct sd
*) gspca_dev
;
1062 cam
= &gspca_dev
->cam
;
1064 cam
->cam_mode
= ov772x_mode
;
1065 cam
->nmodes
= ARRAY_SIZE(ov772x_mode
);
1067 sd
->frame_rate
= DEFAULT_FRAME_RATE
;
1072 static int ov534_g_volatile_ctrl(struct v4l2_ctrl
*ctrl
)
1074 struct sd
*sd
= container_of(ctrl
->handler
, struct sd
, ctrl_handler
);
1075 struct gspca_dev
*gspca_dev
= &sd
->gspca_dev
;
1078 case V4L2_CID_AUTOGAIN
:
1079 gspca_dev
->usb_err
= 0;
1080 if (ctrl
->val
&& sd
->gain
&& gspca_dev
->streaming
)
1081 sd
->gain
->val
= getgain(gspca_dev
);
1082 return gspca_dev
->usb_err
;
1084 case V4L2_CID_EXPOSURE_AUTO
:
1085 gspca_dev
->usb_err
= 0;
1086 if (ctrl
->val
== V4L2_EXPOSURE_AUTO
&& sd
->exposure
&&
1087 gspca_dev
->streaming
)
1088 sd
->exposure
->val
= getexposure(gspca_dev
);
1089 return gspca_dev
->usb_err
;
1094 static int ov534_s_ctrl(struct v4l2_ctrl
*ctrl
)
1096 struct sd
*sd
= container_of(ctrl
->handler
, struct sd
, ctrl_handler
);
1097 struct gspca_dev
*gspca_dev
= &sd
->gspca_dev
;
1099 gspca_dev
->usb_err
= 0;
1100 if (!gspca_dev
->streaming
)
1105 sethue(gspca_dev
, ctrl
->val
);
1107 case V4L2_CID_SATURATION
:
1108 setsaturation(gspca_dev
, ctrl
->val
);
1110 case V4L2_CID_BRIGHTNESS
:
1111 setbrightness(gspca_dev
, ctrl
->val
);
1113 case V4L2_CID_CONTRAST
:
1114 setcontrast(gspca_dev
, ctrl
->val
);
1116 case V4L2_CID_AUTOGAIN
:
1117 /* case V4L2_CID_GAIN: */
1118 setagc(gspca_dev
, ctrl
->val
);
1119 if (!gspca_dev
->usb_err
&& !ctrl
->val
&& sd
->gain
)
1120 setgain(gspca_dev
, sd
->gain
->val
);
1122 case V4L2_CID_AUTO_WHITE_BALANCE
:
1123 setawb(gspca_dev
, ctrl
->val
);
1125 case V4L2_CID_EXPOSURE_AUTO
:
1126 /* case V4L2_CID_EXPOSURE: */
1127 setaec(gspca_dev
, ctrl
->val
);
1128 if (!gspca_dev
->usb_err
&& ctrl
->val
== V4L2_EXPOSURE_MANUAL
&&
1130 setexposure(gspca_dev
, sd
->exposure
->val
);
1132 case V4L2_CID_SHARPNESS
:
1133 setsharpness(gspca_dev
, ctrl
->val
);
1135 case V4L2_CID_HFLIP
:
1136 sethvflip(gspca_dev
, ctrl
->val
, sd
->vflip
->val
);
1138 case V4L2_CID_VFLIP
:
1139 sethvflip(gspca_dev
, sd
->hflip
->val
, ctrl
->val
);
1141 case V4L2_CID_POWER_LINE_FREQUENCY
:
1142 setlightfreq(gspca_dev
, ctrl
->val
);
1145 return gspca_dev
->usb_err
;
1148 static const struct v4l2_ctrl_ops ov534_ctrl_ops
= {
1149 .g_volatile_ctrl
= ov534_g_volatile_ctrl
,
1150 .s_ctrl
= ov534_s_ctrl
,
1153 static int sd_init_controls(struct gspca_dev
*gspca_dev
)
1155 struct sd
*sd
= (struct sd
*) gspca_dev
;
1156 struct v4l2_ctrl_handler
*hdl
= &sd
->ctrl_handler
;
1157 /* parameters with different values between the supported sensors */
1171 if (sd
->sensor
== SENSOR_OV767x
) {
1175 brightness_min
= -127;
1176 brightness_max
= 127;
1178 contrast_max
= 0x80;
1179 contrast_def
= 0x40;
1180 exposure_min
= 0x08;
1181 exposure_max
= 0x60;
1182 exposure_def
= 0x13;
1186 saturation_max
= 255,
1187 saturation_def
= 64,
1189 brightness_max
= 255;
1199 gspca_dev
->vdev
.ctrl_handler
= hdl
;
1201 v4l2_ctrl_handler_init(hdl
, 13);
1203 if (sd
->sensor
== SENSOR_OV772x
)
1204 sd
->hue
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1205 V4L2_CID_HUE
, -90, 90, 1, 0);
1207 sd
->saturation
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1208 V4L2_CID_SATURATION
, saturation_min
, saturation_max
, 1,
1210 sd
->brightness
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1211 V4L2_CID_BRIGHTNESS
, brightness_min
, brightness_max
, 1,
1213 sd
->contrast
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1214 V4L2_CID_CONTRAST
, 0, contrast_max
, 1, contrast_def
);
1216 if (sd
->sensor
== SENSOR_OV772x
) {
1217 sd
->autogain
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1218 V4L2_CID_AUTOGAIN
, 0, 1, 1, 1);
1219 sd
->gain
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1220 V4L2_CID_GAIN
, 0, 63, 1, 20);
1223 sd
->autoexposure
= v4l2_ctrl_new_std_menu(hdl
, &ov534_ctrl_ops
,
1224 V4L2_CID_EXPOSURE_AUTO
,
1225 V4L2_EXPOSURE_MANUAL
, 0,
1226 V4L2_EXPOSURE_AUTO
);
1227 sd
->exposure
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1228 V4L2_CID_EXPOSURE
, exposure_min
, exposure_max
, 1,
1231 sd
->autowhitebalance
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1232 V4L2_CID_AUTO_WHITE_BALANCE
, 0, 1, 1, 1);
1234 if (sd
->sensor
== SENSOR_OV772x
)
1235 sd
->sharpness
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1236 V4L2_CID_SHARPNESS
, 0, 63, 1, 0);
1238 sd
->hflip
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1239 V4L2_CID_HFLIP
, 0, 1, 1, hflip_def
);
1240 sd
->vflip
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1241 V4L2_CID_VFLIP
, 0, 1, 1, 0);
1242 sd
->plfreq
= v4l2_ctrl_new_std_menu(hdl
, &ov534_ctrl_ops
,
1243 V4L2_CID_POWER_LINE_FREQUENCY
,
1244 V4L2_CID_POWER_LINE_FREQUENCY_50HZ
, 0,
1245 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED
);
1248 pr_err("Could not initialize controls\n");
1252 if (sd
->sensor
== SENSOR_OV772x
)
1253 v4l2_ctrl_auto_cluster(2, &sd
->autogain
, 0, true);
1255 v4l2_ctrl_auto_cluster(2, &sd
->autoexposure
, V4L2_EXPOSURE_MANUAL
,
1261 /* this function is called at probe and resume time */
1262 static int sd_init(struct gspca_dev
*gspca_dev
)
1264 struct sd
*sd
= (struct sd
*) gspca_dev
;
1266 static const struct reg_array bridge_init
[NSENSORS
] = {
1267 [SENSOR_OV767x
] = {bridge_init_767x
, ARRAY_SIZE(bridge_init_767x
)},
1268 [SENSOR_OV772x
] = {bridge_init_772x
, ARRAY_SIZE(bridge_init_772x
)},
1270 static const struct reg_array sensor_init
[NSENSORS
] = {
1271 [SENSOR_OV767x
] = {sensor_init_767x
, ARRAY_SIZE(sensor_init_767x
)},
1272 [SENSOR_OV772x
] = {sensor_init_772x
, ARRAY_SIZE(sensor_init_772x
)},
1276 ov534_reg_write(gspca_dev
, 0xe7, 0x3a);
1277 ov534_reg_write(gspca_dev
, 0xe0, 0x08);
1280 /* initialize the sensor address */
1281 ov534_reg_write(gspca_dev
, OV534_REG_ADDRESS
, 0x42);
1284 sccb_reg_write(gspca_dev
, 0x12, 0x80);
1287 /* probe the sensor */
1288 sccb_reg_read(gspca_dev
, 0x0a);
1289 sensor_id
= sccb_reg_read(gspca_dev
, 0x0a) << 8;
1290 sccb_reg_read(gspca_dev
, 0x0b);
1291 sensor_id
|= sccb_reg_read(gspca_dev
, 0x0b);
1292 gspca_dbg(gspca_dev
, D_PROBE
, "Sensor ID: %04x\n", sensor_id
);
1294 if ((sensor_id
& 0xfff0) == 0x7670) {
1295 sd
->sensor
= SENSOR_OV767x
;
1296 gspca_dev
->cam
.cam_mode
= ov767x_mode
;
1297 gspca_dev
->cam
.nmodes
= ARRAY_SIZE(ov767x_mode
);
1299 sd
->sensor
= SENSOR_OV772x
;
1300 gspca_dev
->cam
.bulk
= 1;
1301 gspca_dev
->cam
.bulk_size
= 16384;
1302 gspca_dev
->cam
.bulk_nurbs
= 2;
1303 gspca_dev
->cam
.mode_framerates
= ov772x_framerates
;
1307 reg_w_array(gspca_dev
, bridge_init
[sd
->sensor
].val
,
1308 bridge_init
[sd
->sensor
].len
);
1309 ov534_set_led(gspca_dev
, 1);
1310 sccb_w_array(gspca_dev
, sensor_init
[sd
->sensor
].val
,
1311 sensor_init
[sd
->sensor
].len
);
1313 sd_stopN(gspca_dev
);
1314 /* set_frame_rate(gspca_dev); */
1316 return gspca_dev
->usb_err
;
1319 static int sd_start(struct gspca_dev
*gspca_dev
)
1321 struct sd
*sd
= (struct sd
*) gspca_dev
;
1323 static const struct reg_array bridge_start
[NSENSORS
][2] = {
1324 [SENSOR_OV767x
] = {{bridge_start_qvga_767x
,
1325 ARRAY_SIZE(bridge_start_qvga_767x
)},
1326 {bridge_start_vga_767x
,
1327 ARRAY_SIZE(bridge_start_vga_767x
)}},
1328 [SENSOR_OV772x
] = {{bridge_start_qvga_772x
,
1329 ARRAY_SIZE(bridge_start_qvga_772x
)},
1330 {bridge_start_vga_772x
,
1331 ARRAY_SIZE(bridge_start_vga_772x
)}},
1333 static const struct reg_array sensor_start
[NSENSORS
][2] = {
1334 [SENSOR_OV767x
] = {{sensor_start_qvga_767x
,
1335 ARRAY_SIZE(sensor_start_qvga_767x
)},
1336 {sensor_start_vga_767x
,
1337 ARRAY_SIZE(sensor_start_vga_767x
)}},
1338 [SENSOR_OV772x
] = {{sensor_start_qvga_772x
,
1339 ARRAY_SIZE(sensor_start_qvga_772x
)},
1340 {sensor_start_vga_772x
,
1341 ARRAY_SIZE(sensor_start_vga_772x
)}},
1344 /* (from ms-win trace) */
1345 if (sd
->sensor
== SENSOR_OV767x
)
1346 sccb_reg_write(gspca_dev
, 0x1e, 0x04);
1347 /* black sun enable ? */
1349 mode
= gspca_dev
->curr_mode
; /* 0: 320x240, 1: 640x480 */
1350 reg_w_array(gspca_dev
, bridge_start
[sd
->sensor
][mode
].val
,
1351 bridge_start
[sd
->sensor
][mode
].len
);
1352 sccb_w_array(gspca_dev
, sensor_start
[sd
->sensor
][mode
].val
,
1353 sensor_start
[sd
->sensor
][mode
].len
);
1355 set_frame_rate(gspca_dev
);
1358 sethue(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->hue
));
1359 setsaturation(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->saturation
));
1361 setagc(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autogain
));
1362 setawb(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autowhitebalance
));
1363 setaec(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autoexposure
));
1365 setgain(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->gain
));
1366 setexposure(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->exposure
));
1367 setbrightness(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->brightness
));
1368 setcontrast(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->contrast
));
1370 setsharpness(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->sharpness
));
1371 sethvflip(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->hflip
),
1372 v4l2_ctrl_g_ctrl(sd
->vflip
));
1373 setlightfreq(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->plfreq
));
1375 ov534_set_led(gspca_dev
, 1);
1376 ov534_reg_write(gspca_dev
, 0xe0, 0x00);
1377 return gspca_dev
->usb_err
;
1380 static void sd_stopN(struct gspca_dev
*gspca_dev
)
1382 ov534_reg_write(gspca_dev
, 0xe0, 0x09);
1383 ov534_set_led(gspca_dev
, 0);
1386 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1387 #define UVC_STREAM_EOH (1 << 7)
1388 #define UVC_STREAM_ERR (1 << 6)
1389 #define UVC_STREAM_STI (1 << 5)
1390 #define UVC_STREAM_RES (1 << 4)
1391 #define UVC_STREAM_SCR (1 << 3)
1392 #define UVC_STREAM_PTS (1 << 2)
1393 #define UVC_STREAM_EOF (1 << 1)
1394 #define UVC_STREAM_FID (1 << 0)
1396 static void sd_pkt_scan(struct gspca_dev
*gspca_dev
,
1399 struct sd
*sd
= (struct sd
*) gspca_dev
;
1402 int remaining_len
= len
;
1405 payload_len
= gspca_dev
->cam
.bulk
? 2048 : 2040;
1407 len
= min(remaining_len
, payload_len
);
1409 /* Payloads are prefixed with a UVC-style header. We
1410 consider a frame to start when the FID toggles, or the PTS
1411 changes. A frame ends when EOF is set, and we've received
1412 the correct number of bytes. */
1414 /* Verify UVC header. Header length is always 12 */
1415 if (data
[0] != 12 || len
< 12) {
1416 gspca_dbg(gspca_dev
, D_PACK
, "bad header\n");
1421 if (data
[1] & UVC_STREAM_ERR
) {
1422 gspca_dbg(gspca_dev
, D_PACK
, "payload error\n");
1426 /* Extract PTS and FID */
1427 if (!(data
[1] & UVC_STREAM_PTS
)) {
1428 gspca_dbg(gspca_dev
, D_PACK
, "PTS not present\n");
1431 this_pts
= (data
[5] << 24) | (data
[4] << 16)
1432 | (data
[3] << 8) | data
[2];
1433 this_fid
= (data
[1] & UVC_STREAM_FID
) ? 1 : 0;
1435 /* If PTS or FID has changed, start a new frame. */
1436 if (this_pts
!= sd
->last_pts
|| this_fid
!= sd
->last_fid
) {
1437 if (gspca_dev
->last_packet_type
== INTER_PACKET
)
1438 gspca_frame_add(gspca_dev
, LAST_PACKET
,
1440 sd
->last_pts
= this_pts
;
1441 sd
->last_fid
= this_fid
;
1442 gspca_frame_add(gspca_dev
, FIRST_PACKET
,
1443 data
+ 12, len
- 12);
1444 /* If this packet is marked as EOF, end the frame */
1445 } else if (data
[1] & UVC_STREAM_EOF
) {
1447 if (gspca_dev
->pixfmt
.pixelformat
== V4L2_PIX_FMT_YUYV
1448 && gspca_dev
->image_len
+ len
- 12 !=
1449 gspca_dev
->pixfmt
.width
*
1450 gspca_dev
->pixfmt
.height
* 2) {
1451 gspca_dbg(gspca_dev
, D_PACK
, "wrong sized frame\n");
1454 gspca_frame_add(gspca_dev
, LAST_PACKET
,
1455 data
+ 12, len
- 12);
1458 /* Add the data from this payload */
1459 gspca_frame_add(gspca_dev
, INTER_PACKET
,
1460 data
+ 12, len
- 12);
1463 /* Done this payload */
1467 /* Discard data until a new frame starts. */
1468 gspca_dev
->last_packet_type
= DISCARD_PACKET
;
1471 remaining_len
-= len
;
1473 } while (remaining_len
> 0);
1476 /* get stream parameters (framerate) */
1477 static void sd_get_streamparm(struct gspca_dev
*gspca_dev
,
1478 struct v4l2_streamparm
*parm
)
1480 struct v4l2_captureparm
*cp
= &parm
->parm
.capture
;
1481 struct v4l2_fract
*tpf
= &cp
->timeperframe
;
1482 struct sd
*sd
= (struct sd
*) gspca_dev
;
1485 tpf
->denominator
= sd
->frame_rate
;
1488 /* set stream parameters (framerate) */
1489 static void sd_set_streamparm(struct gspca_dev
*gspca_dev
,
1490 struct v4l2_streamparm
*parm
)
1492 struct v4l2_captureparm
*cp
= &parm
->parm
.capture
;
1493 struct v4l2_fract
*tpf
= &cp
->timeperframe
;
1494 struct sd
*sd
= (struct sd
*) gspca_dev
;
1496 if (tpf
->numerator
== 0 || tpf
->denominator
== 0)
1497 sd
->frame_rate
= DEFAULT_FRAME_RATE
;
1499 sd
->frame_rate
= tpf
->denominator
/ tpf
->numerator
;
1501 if (gspca_dev
->streaming
)
1502 set_frame_rate(gspca_dev
);
1504 /* Return the actual framerate */
1506 tpf
->denominator
= sd
->frame_rate
;
1509 /* sub-driver description */
1510 static const struct sd_desc sd_desc
= {
1511 .name
= MODULE_NAME
,
1512 .config
= sd_config
,
1514 .init_controls
= sd_init_controls
,
1517 .pkt_scan
= sd_pkt_scan
,
1518 .get_streamparm
= sd_get_streamparm
,
1519 .set_streamparm
= sd_set_streamparm
,
1522 /* -- module initialisation -- */
1523 static const struct usb_device_id device_table
[] = {
1524 {USB_DEVICE(0x1415, 0x2000)},
1525 {USB_DEVICE(0x06f8, 0x3002)},
1529 MODULE_DEVICE_TABLE(usb
, device_table
);
1531 /* -- device connect -- */
1532 static int sd_probe(struct usb_interface
*intf
, const struct usb_device_id
*id
)
1534 return gspca_dev_probe(intf
, id
, &sd_desc
, sizeof(struct sd
),
1538 static struct usb_driver sd_driver
= {
1539 .name
= MODULE_NAME
,
1540 .id_table
= device_table
,
1542 .disconnect
= gspca_disconnect
,
1544 .suspend
= gspca_suspend
,
1545 .resume
= gspca_resume
,
1546 .reset_resume
= gspca_resume
,
1550 module_usb_driver(sd_driver
);