Linux 4.19.133
[linux/fpc-iii.git] / drivers / media / usb / gspca / sonixb.c
blob22de65d840dd3d980b5725b45762c02e9a1e6714
1 /*
2 * sonix sn9c102 (bayer) library
4 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
5 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
6 * Add Pas106 Stefano Mozzi (C) 2004
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 /* Some documentation on known sonixb registers:
21 Reg Use
22 sn9c101 / sn9c102:
23 0x10 high nibble red gain low nibble blue gain
24 0x11 low nibble green gain
25 sn9c103:
26 0x05 red gain 0-127
27 0x06 blue gain 0-127
28 0x07 green gain 0-127
29 all:
30 0x08-0x0f i2c / 3wire registers
31 0x12 hstart
32 0x13 vstart
33 0x15 hsize (hsize = register-value * 16)
34 0x16 vsize (vsize = register-value * 16)
35 0x17 bit 0 toggle compression quality (according to sn9c102 driver)
36 0x18 bit 7 enables compression, bit 4-5 set image down scaling:
37 00 scale 1, 01 scale 1/2, 10, scale 1/4
38 0x19 high-nibble is sensor clock divider, changes exposure on sensors which
39 use a clock generated by the bridge. Some sensors have their own clock.
40 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32)
41 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32)
42 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
43 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
46 #define MODULE_NAME "sonixb"
48 #include <linux/input.h>
49 #include "gspca.h"
51 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
52 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
53 MODULE_LICENSE("GPL");
55 /* specific webcam descriptor */
56 struct sd {
57 struct gspca_dev gspca_dev; /* !! must be the first item */
59 struct v4l2_ctrl *brightness;
60 struct v4l2_ctrl *plfreq;
62 atomic_t avg_lum;
63 int prev_avg_lum;
64 int exposure_knee;
65 int header_read;
66 u8 header[12]; /* Header without sof marker */
68 unsigned char autogain_ignore_frames;
69 unsigned char frames_to_drop;
71 __u8 bridge; /* Type of bridge */
72 #define BRIDGE_101 0
73 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
74 #define BRIDGE_103 1
76 __u8 sensor; /* Type of image sensor chip */
77 #define SENSOR_HV7131D 0
78 #define SENSOR_HV7131R 1
79 #define SENSOR_OV6650 2
80 #define SENSOR_OV7630 3
81 #define SENSOR_PAS106 4
82 #define SENSOR_PAS202 5
83 #define SENSOR_TAS5110C 6
84 #define SENSOR_TAS5110D 7
85 #define SENSOR_TAS5130CXX 8
86 __u8 reg11;
89 typedef const __u8 sensor_init_t[8];
91 struct sensor_data {
92 const __u8 *bridge_init;
93 sensor_init_t *sensor_init;
94 int sensor_init_size;
95 int flags;
96 __u8 sensor_addr;
99 /* sensor_data flags */
100 #define F_SIF 0x01 /* sif or vga */
102 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
103 #define MODE_RAW 0x10 /* raw bayer mode */
104 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */
106 #define COMP 0xc7 /* 0x87 //0x07 */
107 #define COMP1 0xc9 /* 0x89 //0x09 */
109 #define MCK_INIT 0x63
110 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/
112 #define SYS_CLK 0x04
114 #define SENS(bridge, sensor, _flags, _sensor_addr) \
116 .bridge_init = bridge, \
117 .sensor_init = sensor, \
118 .sensor_init_size = sizeof(sensor), \
119 .flags = _flags, .sensor_addr = _sensor_addr \
122 /* We calculate the autogain at the end of the transfer of a frame, at this
123 moment a frame with the old settings is being captured and transmitted. So
124 if we adjust the gain or exposure we must ignore atleast the next frame for
125 the new settings to come into effect before doing any other adjustments. */
126 #define AUTOGAIN_IGNORE_FRAMES 1
128 static const struct v4l2_pix_format vga_mode[] = {
129 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
130 .bytesperline = 160,
131 .sizeimage = 160 * 120,
132 .colorspace = V4L2_COLORSPACE_SRGB,
133 .priv = 2 | MODE_RAW},
134 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
135 .bytesperline = 160,
136 .sizeimage = 160 * 120 * 5 / 4,
137 .colorspace = V4L2_COLORSPACE_SRGB,
138 .priv = 2},
139 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
140 .bytesperline = 320,
141 .sizeimage = 320 * 240 * 5 / 4,
142 .colorspace = V4L2_COLORSPACE_SRGB,
143 .priv = 1},
144 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
145 .bytesperline = 640,
146 .sizeimage = 640 * 480 * 5 / 4,
147 .colorspace = V4L2_COLORSPACE_SRGB,
148 .priv = 0},
150 static const struct v4l2_pix_format sif_mode[] = {
151 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
152 .bytesperline = 160,
153 .sizeimage = 160 * 120,
154 .colorspace = V4L2_COLORSPACE_SRGB,
155 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
156 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
157 .bytesperline = 160,
158 .sizeimage = 160 * 120 * 5 / 4,
159 .colorspace = V4L2_COLORSPACE_SRGB,
160 .priv = 1 | MODE_REDUCED_SIF},
161 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
162 .bytesperline = 176,
163 .sizeimage = 176 * 144,
164 .colorspace = V4L2_COLORSPACE_SRGB,
165 .priv = 1 | MODE_RAW},
166 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
167 .bytesperline = 176,
168 .sizeimage = 176 * 144 * 5 / 4,
169 .colorspace = V4L2_COLORSPACE_SRGB,
170 .priv = 1},
171 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
172 .bytesperline = 320,
173 .sizeimage = 320 * 240 * 5 / 4,
174 .colorspace = V4L2_COLORSPACE_SRGB,
175 .priv = 0 | MODE_REDUCED_SIF},
176 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
177 .bytesperline = 352,
178 .sizeimage = 352 * 288 * 5 / 4,
179 .colorspace = V4L2_COLORSPACE_SRGB,
180 .priv = 0},
183 static const __u8 initHv7131d[] = {
184 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
185 0x00, 0x00,
186 0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
187 0x28, 0x1e, 0x60, 0x8e, 0x42,
189 static const __u8 hv7131d_sensor_init[][8] = {
190 {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
191 {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
192 {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
193 {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
194 {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
197 static const __u8 initHv7131r[] = {
198 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
199 0x00, 0x00,
200 0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
201 0x28, 0x1e, 0x60, 0x8a, 0x20,
203 static const __u8 hv7131r_sensor_init[][8] = {
204 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
205 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
206 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
207 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
208 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
210 static const __u8 initOv6650[] = {
211 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
212 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
213 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
214 0x10,
216 static const __u8 ov6650_sensor_init[][8] = {
217 /* Bright, contrast, etc are set through SCBB interface.
218 * AVCAP on win2 do not send any data on this controls. */
219 /* Anyway, some registers appears to alter bright and constrat */
221 /* Reset sensor */
222 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
223 /* Set clock register 0x11 low nibble is clock divider */
224 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
225 /* Next some unknown stuff */
226 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
227 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
228 * THIS SET GREEN SCREEN
229 * (pixels could be innverted in decode kind of "brg",
230 * but blue wont be there. Avoid this data ... */
231 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
232 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
233 {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
234 /* Enable rgb brightness control */
235 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
236 /* HDG: Note windows uses the line below, which sets both register 0x60
237 and 0x61 I believe these registers of the ov6650 are identical as
238 those of the ov7630, because if this is true the windows settings
239 add a bit additional red gain and a lot additional blue gain, which
240 matches my findings that the windows settings make blue much too
241 blue and red a little too red.
242 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
243 /* Some more unknown stuff */
244 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
245 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
248 static const __u8 initOv7630[] = {
249 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */
250 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */
251 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */
252 0x28, 0x1e, /* H & V sizes r15 .. r16 */
253 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */
255 static const __u8 ov7630_sensor_init[][8] = {
256 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
257 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
258 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */
259 {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */
260 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
261 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
262 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
263 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
264 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
265 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
266 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
267 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
268 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */
269 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
270 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
271 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
272 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
273 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
274 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
277 static const __u8 initPas106[] = {
278 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
279 0x00, 0x00,
280 0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
281 0x16, 0x12, 0x24, COMP1, MCK_INIT1,
283 /* compression 0x86 mckinit1 0x2b */
285 /* "Known" PAS106B registers:
286 0x02 clock divider
287 0x03 Variable framerate bits 4-11
288 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
289 The variable framerate control must never be set lower then 300,
290 which sets the framerate at 90 / reg02, otherwise vsync is lost.
291 0x05 Shutter Time Line Offset, this can be used as an exposure control:
292 0 = use full frame time, 255 = no exposure at all
293 Note this may never be larger then "var-framerate control" / 2 - 2.
294 When var-framerate control is < 514, no exposure is reached at the max
295 allowed value for the framerate control value, rather then at 255.
296 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
297 only a very little bit, leave at 0xcd
298 0x07 offset sign bit (bit0 1 > negative offset)
299 0x08 offset
300 0x09 Blue Gain
301 0x0a Green1 Gain
302 0x0b Green2 Gain
303 0x0c Red Gain
304 0x0e Global gain
305 0x13 Write 1 to commit settings to sensor
308 static const __u8 pas106_sensor_init[][8] = {
309 /* Pixel Clock Divider 6 */
310 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
311 /* Frame Time MSB (also seen as 0x12) */
312 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
313 /* Frame Time LSB (also seen as 0x05) */
314 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
315 /* Shutter Time Line Offset (also seen as 0x6d) */
316 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
317 /* Shutter Time Pixel Offset (also seen as 0xb1) */
318 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
319 /* Black Level Subtract Sign (also seen 0x00) */
320 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
321 /* Black Level Subtract Level (also seen 0x01) */
322 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
323 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
324 /* Color Gain B Pixel 5 a */
325 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
326 /* Color Gain G1 Pixel 1 5 */
327 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
328 /* Color Gain G2 Pixel 1 0 5 */
329 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
330 /* Color Gain R Pixel 3 1 */
331 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
332 /* Color GainH Pixel */
333 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
334 /* Global Gain */
335 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
336 /* Contrast */
337 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
338 /* H&V synchro polarity */
339 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
340 /* ?default */
341 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
342 /* DAC scale */
343 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
344 /* ?default */
345 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
346 /* Validate Settings */
347 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
350 static const __u8 initPas202[] = {
351 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
352 0x00, 0x00,
353 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
354 0x28, 0x1e, 0x20, 0x89, 0x20,
357 /* "Known" PAS202BCB registers:
358 0x02 clock divider
359 0x04 Variable framerate bits 6-11 (*)
360 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !!
361 0x07 Blue Gain
362 0x08 Green Gain
363 0x09 Red Gain
364 0x0b offset sign bit (bit0 1 > negative offset)
365 0x0c offset
366 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
367 leave at 1 otherwise we get a jump in our exposure control
368 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
369 0x10 Master gain 0 - 31
370 0x11 write 1 to apply changes
371 (*) The variable framerate control must never be set lower then 500
372 which sets the framerate at 30 / reg02, otherwise vsync is lost.
374 static const __u8 pas202_sensor_init[][8] = {
375 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
376 to set it lower, but for some reason the bridge starts missing
377 vsync's then */
378 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
379 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
380 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
381 {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
382 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
383 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
384 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
385 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
386 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
387 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
390 static const __u8 initTas5110c[] = {
391 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
392 0x00, 0x00,
393 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
394 0x16, 0x12, 0x60, 0x86, 0x2b,
396 /* Same as above, except a different hstart */
397 static const __u8 initTas5110d[] = {
398 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
399 0x00, 0x00,
400 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
401 0x16, 0x12, 0x60, 0x86, 0x2b,
403 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
404 static const __u8 tas5110c_sensor_init[][8] = {
405 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
406 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
408 /* Known TAS5110D registers
409 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
410 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
411 * Note: writing reg03 seems to only work when written together with 02
413 static const __u8 tas5110d_sensor_init[][8] = {
414 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
417 static const __u8 initTas5130[] = {
418 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
419 0x00, 0x00,
420 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
421 0x28, 0x1e, 0x60, COMP, MCK_INIT,
423 static const __u8 tas5130_sensor_init[][8] = {
424 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
425 * shutter 0x47 short exposure? */
426 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
427 /* shutter 0x01 long exposure */
428 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
431 static const struct sensor_data sensor_data[] = {
432 SENS(initHv7131d, hv7131d_sensor_init, 0, 0),
433 SENS(initHv7131r, hv7131r_sensor_init, 0, 0),
434 SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60),
435 SENS(initOv7630, ov7630_sensor_init, 0, 0x21),
436 SENS(initPas106, pas106_sensor_init, F_SIF, 0),
437 SENS(initPas202, pas202_sensor_init, 0, 0),
438 SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0),
439 SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0),
440 SENS(initTas5130, tas5130_sensor_init, 0, 0),
443 /* get one byte in gspca_dev->usb_buf */
444 static void reg_r(struct gspca_dev *gspca_dev,
445 __u16 value)
447 int res;
449 if (gspca_dev->usb_err < 0)
450 return;
452 res = usb_control_msg(gspca_dev->dev,
453 usb_rcvctrlpipe(gspca_dev->dev, 0),
454 0, /* request */
455 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
456 value,
457 0, /* index */
458 gspca_dev->usb_buf, 1,
459 500);
461 if (res < 0) {
462 dev_err(gspca_dev->v4l2_dev.dev,
463 "Error reading register %02x: %d\n", value, res);
464 gspca_dev->usb_err = res;
466 * Make sure the result is zeroed to avoid uninitialized
467 * values.
469 gspca_dev->usb_buf[0] = 0;
473 static void reg_w(struct gspca_dev *gspca_dev,
474 __u16 value,
475 const __u8 *buffer,
476 int len)
478 int res;
480 if (gspca_dev->usb_err < 0)
481 return;
483 memcpy(gspca_dev->usb_buf, buffer, len);
484 res = usb_control_msg(gspca_dev->dev,
485 usb_sndctrlpipe(gspca_dev->dev, 0),
486 0x08, /* request */
487 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
488 value,
489 0, /* index */
490 gspca_dev->usb_buf, len,
491 500);
493 if (res < 0) {
494 dev_err(gspca_dev->v4l2_dev.dev,
495 "Error writing register %02x: %d\n", value, res);
496 gspca_dev->usb_err = res;
500 static void i2c_w(struct gspca_dev *gspca_dev, const u8 *buf)
502 int retry = 60;
504 if (gspca_dev->usb_err < 0)
505 return;
507 /* is i2c ready */
508 reg_w(gspca_dev, 0x08, buf, 8);
509 while (retry--) {
510 if (gspca_dev->usb_err < 0)
511 return;
512 msleep(1);
513 reg_r(gspca_dev, 0x08);
514 if (gspca_dev->usb_buf[0] & 0x04) {
515 if (gspca_dev->usb_buf[0] & 0x08) {
516 dev_err(gspca_dev->v4l2_dev.dev,
517 "i2c error writing %8ph\n", buf);
518 gspca_dev->usb_err = -EIO;
520 return;
524 dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n");
525 gspca_dev->usb_err = -EIO;
528 static void i2c_w_vector(struct gspca_dev *gspca_dev,
529 const __u8 buffer[][8], int len)
531 for (;;) {
532 if (gspca_dev->usb_err < 0)
533 return;
534 i2c_w(gspca_dev, *buffer);
535 len -= 8;
536 if (len <= 0)
537 break;
538 buffer++;
542 static void setbrightness(struct gspca_dev *gspca_dev)
544 struct sd *sd = (struct sd *) gspca_dev;
546 switch (sd->sensor) {
547 case SENSOR_OV6650:
548 case SENSOR_OV7630: {
549 __u8 i2cOV[] =
550 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
552 /* change reg 0x06 */
553 i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
554 i2cOV[3] = sd->brightness->val;
555 i2c_w(gspca_dev, i2cOV);
556 break;
558 case SENSOR_PAS106:
559 case SENSOR_PAS202: {
560 __u8 i2cpbright[] =
561 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
562 __u8 i2cpdoit[] =
563 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
565 /* PAS106 uses reg 7 and 8 instead of b and c */
566 if (sd->sensor == SENSOR_PAS106) {
567 i2cpbright[2] = 7;
568 i2cpdoit[2] = 0x13;
571 if (sd->brightness->val < 127) {
572 /* change reg 0x0b, signreg */
573 i2cpbright[3] = 0x01;
574 /* set reg 0x0c, offset */
575 i2cpbright[4] = 127 - sd->brightness->val;
576 } else
577 i2cpbright[4] = sd->brightness->val - 127;
579 i2c_w(gspca_dev, i2cpbright);
580 i2c_w(gspca_dev, i2cpdoit);
581 break;
583 default:
584 break;
588 static void setgain(struct gspca_dev *gspca_dev)
590 struct sd *sd = (struct sd *) gspca_dev;
591 u8 gain = gspca_dev->gain->val;
593 switch (sd->sensor) {
594 case SENSOR_HV7131D: {
595 __u8 i2c[] =
596 {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
598 i2c[3] = 0x3f - gain;
599 i2c[4] = 0x3f - gain;
600 i2c[5] = 0x3f - gain;
602 i2c_w(gspca_dev, i2c);
603 break;
605 case SENSOR_TAS5110C:
606 case SENSOR_TAS5130CXX: {
607 __u8 i2c[] =
608 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
610 i2c[4] = 255 - gain;
611 i2c_w(gspca_dev, i2c);
612 break;
614 case SENSOR_TAS5110D: {
615 __u8 i2c[] = {
616 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
617 gain = 255 - gain;
618 /* The bits in the register are the wrong way around!! */
619 i2c[3] |= (gain & 0x80) >> 7;
620 i2c[3] |= (gain & 0x40) >> 5;
621 i2c[3] |= (gain & 0x20) >> 3;
622 i2c[3] |= (gain & 0x10) >> 1;
623 i2c[3] |= (gain & 0x08) << 1;
624 i2c[3] |= (gain & 0x04) << 3;
625 i2c[3] |= (gain & 0x02) << 5;
626 i2c[3] |= (gain & 0x01) << 7;
627 i2c_w(gspca_dev, i2c);
628 break;
630 case SENSOR_OV6650:
631 case SENSOR_OV7630: {
632 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
635 * The ov7630's gain is weird, at 32 the gain drops to the
636 * same level as at 16, so skip 32-47 (of the 0-63 scale).
638 if (sd->sensor == SENSOR_OV7630 && gain >= 32)
639 gain += 16;
641 i2c[1] = sensor_data[sd->sensor].sensor_addr;
642 i2c[3] = gain;
643 i2c_w(gspca_dev, i2c);
644 break;
646 case SENSOR_PAS106:
647 case SENSOR_PAS202: {
648 __u8 i2cpgain[] =
649 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
650 __u8 i2cpcolorgain[] =
651 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
652 __u8 i2cpdoit[] =
653 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
655 /* PAS106 uses different regs (and has split green gains) */
656 if (sd->sensor == SENSOR_PAS106) {
657 i2cpgain[2] = 0x0e;
658 i2cpcolorgain[0] = 0xd0;
659 i2cpcolorgain[2] = 0x09;
660 i2cpdoit[2] = 0x13;
663 i2cpgain[3] = gain;
664 i2cpcolorgain[3] = gain >> 1;
665 i2cpcolorgain[4] = gain >> 1;
666 i2cpcolorgain[5] = gain >> 1;
667 i2cpcolorgain[6] = gain >> 1;
669 i2c_w(gspca_dev, i2cpgain);
670 i2c_w(gspca_dev, i2cpcolorgain);
671 i2c_w(gspca_dev, i2cpdoit);
672 break;
674 default:
675 if (sd->bridge == BRIDGE_103) {
676 u8 buf[3] = { gain, gain, gain }; /* R, G, B */
677 reg_w(gspca_dev, 0x05, buf, 3);
678 } else {
679 u8 buf[2];
680 buf[0] = gain << 4 | gain; /* Red and blue */
681 buf[1] = gain; /* Green */
682 reg_w(gspca_dev, 0x10, buf, 2);
687 static void setexposure(struct gspca_dev *gspca_dev)
689 struct sd *sd = (struct sd *) gspca_dev;
691 switch (sd->sensor) {
692 case SENSOR_HV7131D: {
693 /* Note the datasheet wrongly says line mode exposure uses reg
694 0x26 and 0x27, testing has shown 0x25 + 0x26 */
695 __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
696 u16 reg = gspca_dev->exposure->val;
698 i2c[3] = reg >> 8;
699 i2c[4] = reg & 0xff;
700 i2c_w(gspca_dev, i2c);
701 break;
703 case SENSOR_TAS5110C:
704 case SENSOR_TAS5110D: {
705 /* register 19's high nibble contains the sn9c10x clock divider
706 The high nibble configures the no fps according to the
707 formula: 60 / high_nibble. With a maximum of 30 fps */
708 u8 reg = gspca_dev->exposure->val;
710 reg = (reg << 4) | 0x0b;
711 reg_w(gspca_dev, 0x19, &reg, 1);
712 break;
714 case SENSOR_OV6650:
715 case SENSOR_OV7630: {
716 /* The ov6650 / ov7630 have 2 registers which both influence
717 exposure, register 11, whose low nibble sets the nr off fps
718 according to: fps = 30 / (low_nibble + 1)
720 The fps configures the maximum exposure setting, but it is
721 possible to use less exposure then what the fps maximum
722 allows by setting register 10. register 10 configures the
723 actual exposure as quotient of the full exposure, with 0
724 being no exposure at all (not very useful) and reg10_max
725 being max exposure possible at that framerate.
727 The code maps our 0 - 510 ms exposure ctrl to these 2
728 registers, trying to keep fps as high as possible.
730 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
731 int reg10, reg11, reg10_max;
733 /* ov6645 datasheet says reg10_max is 9a, but that uses
734 tline * 2 * reg10 as formula for calculating texpo, the
735 ov6650 probably uses the same formula as the 7730 which uses
736 tline * 4 * reg10, which explains why the reg10max we've
737 found experimentally for the ov6650 is exactly half that of
738 the ov6645. The ov7630 datasheet says the max is 0x41. */
739 if (sd->sensor == SENSOR_OV6650) {
740 reg10_max = 0x4d;
741 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
742 } else
743 reg10_max = 0x41;
745 reg11 = (15 * gspca_dev->exposure->val + 999) / 1000;
746 if (reg11 < 1)
747 reg11 = 1;
748 else if (reg11 > 16)
749 reg11 = 16;
751 /* In 640x480, if the reg11 has less than 4, the image is
752 unstable (the bridge goes into a higher compression mode
753 which we have not reverse engineered yet). */
754 if (gspca_dev->pixfmt.width == 640 && reg11 < 4)
755 reg11 = 4;
757 /* frame exposure time in ms = 1000 * reg11 / 30 ->
758 reg10 = (gspca_dev->exposure->val / 2) * reg10_max
759 / (1000 * reg11 / 30) */
760 reg10 = (gspca_dev->exposure->val * 15 * reg10_max)
761 / (1000 * reg11);
763 /* Don't allow this to get below 10 when using autogain, the
764 steps become very large (relatively) when below 10 causing
765 the image to oscilate from much too dark, to much too bright
766 and back again. */
767 if (gspca_dev->autogain->val && reg10 < 10)
768 reg10 = 10;
769 else if (reg10 > reg10_max)
770 reg10 = reg10_max;
772 /* Write reg 10 and reg11 low nibble */
773 i2c[1] = sensor_data[sd->sensor].sensor_addr;
774 i2c[3] = reg10;
775 i2c[4] |= reg11 - 1;
777 /* If register 11 didn't change, don't change it */
778 if (sd->reg11 == reg11)
779 i2c[0] = 0xa0;
781 i2c_w(gspca_dev, i2c);
782 if (gspca_dev->usb_err == 0)
783 sd->reg11 = reg11;
784 break;
786 case SENSOR_PAS202: {
787 __u8 i2cpframerate[] =
788 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
789 __u8 i2cpexpo[] =
790 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
791 const __u8 i2cpdoit[] =
792 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
793 int framerate_ctrl;
795 /* The exposure knee for the autogain algorithm is 200
796 (100 ms / 10 fps on other sensors), for values below this
797 use the control for setting the partial frame expose time,
798 above that use variable framerate. This way we run at max
799 framerate (640x480@7.5 fps, 320x240@10fps) until the knee
800 is reached. Using the variable framerate control above 200
801 is better then playing around with both clockdiv + partial
802 frame exposure times (like we are doing with the ov chips),
803 as that sometimes leads to jumps in the exposure control,
804 which are bad for auto exposure. */
805 if (gspca_dev->exposure->val < 200) {
806 i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255)
807 / 200;
808 framerate_ctrl = 500;
809 } else {
810 /* The PAS202's exposure control goes from 0 - 4095,
811 but anything below 500 causes vsync issues, so scale
812 our 200-1023 to 500-4095 */
813 framerate_ctrl = (gspca_dev->exposure->val - 200)
814 * 1000 / 229 + 500;
817 i2cpframerate[3] = framerate_ctrl >> 6;
818 i2cpframerate[4] = framerate_ctrl & 0x3f;
819 i2c_w(gspca_dev, i2cpframerate);
820 i2c_w(gspca_dev, i2cpexpo);
821 i2c_w(gspca_dev, i2cpdoit);
822 break;
824 case SENSOR_PAS106: {
825 __u8 i2cpframerate[] =
826 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
827 __u8 i2cpexpo[] =
828 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
829 const __u8 i2cpdoit[] =
830 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
831 int framerate_ctrl;
833 /* For values below 150 use partial frame exposure, above
834 that use framerate ctrl */
835 if (gspca_dev->exposure->val < 150) {
836 i2cpexpo[3] = 150 - gspca_dev->exposure->val;
837 framerate_ctrl = 300;
838 } else {
839 /* The PAS106's exposure control goes from 0 - 4095,
840 but anything below 300 causes vsync issues, so scale
841 our 150-1023 to 300-4095 */
842 framerate_ctrl = (gspca_dev->exposure->val - 150)
843 * 1000 / 230 + 300;
846 i2cpframerate[3] = framerate_ctrl >> 4;
847 i2cpframerate[4] = framerate_ctrl & 0x0f;
848 i2c_w(gspca_dev, i2cpframerate);
849 i2c_w(gspca_dev, i2cpexpo);
850 i2c_w(gspca_dev, i2cpdoit);
851 break;
853 default:
854 break;
858 static void setfreq(struct gspca_dev *gspca_dev)
860 struct sd *sd = (struct sd *) gspca_dev;
862 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) {
863 /* Framerate adjust register for artificial light 50 hz flicker
864 compensation, for the ov6650 this is identical to ov6630
865 0x2b register, see ov6630 datasheet.
866 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
867 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
868 switch (sd->plfreq->val) {
869 default:
870 /* case 0: * no filter*/
871 /* case 2: * 60 hz */
872 i2c[3] = 0;
873 break;
874 case 1: /* 50 hz */
875 i2c[3] = (sd->sensor == SENSOR_OV6650)
876 ? 0x4f : 0x8a;
877 break;
879 i2c[1] = sensor_data[sd->sensor].sensor_addr;
880 i2c_w(gspca_dev, i2c);
884 static void do_autogain(struct gspca_dev *gspca_dev)
886 struct sd *sd = (struct sd *) gspca_dev;
887 int deadzone, desired_avg_lum, avg_lum;
889 avg_lum = atomic_read(&sd->avg_lum);
890 if (avg_lum == -1)
891 return;
893 if (sd->autogain_ignore_frames > 0) {
894 sd->autogain_ignore_frames--;
895 return;
898 /* SIF / VGA sensors have a different autoexposure area and thus
899 different avg_lum values for the same picture brightness */
900 if (sensor_data[sd->sensor].flags & F_SIF) {
901 deadzone = 500;
902 /* SIF sensors tend to overexpose, so keep this small */
903 desired_avg_lum = 5000;
904 } else {
905 deadzone = 1500;
906 desired_avg_lum = 13000;
909 if (sd->brightness)
910 desired_avg_lum = sd->brightness->val * desired_avg_lum / 127;
912 if (gspca_dev->exposure->maximum < 500) {
913 if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
914 desired_avg_lum, deadzone))
915 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
916 } else {
917 int gain_knee = (s32)gspca_dev->gain->maximum * 9 / 10;
918 if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum,
919 deadzone, gain_knee, sd->exposure_knee))
920 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
924 /* this function is called at probe time */
925 static int sd_config(struct gspca_dev *gspca_dev,
926 const struct usb_device_id *id)
928 struct sd *sd = (struct sd *) gspca_dev;
929 struct cam *cam;
931 reg_r(gspca_dev, 0x00);
932 if (gspca_dev->usb_buf[0] != 0x10)
933 return -ENODEV;
935 /* copy the webcam info from the device id */
936 sd->sensor = id->driver_info >> 8;
937 sd->bridge = id->driver_info & 0xff;
939 cam = &gspca_dev->cam;
940 if (!(sensor_data[sd->sensor].flags & F_SIF)) {
941 cam->cam_mode = vga_mode;
942 cam->nmodes = ARRAY_SIZE(vga_mode);
943 } else {
944 cam->cam_mode = sif_mode;
945 cam->nmodes = ARRAY_SIZE(sif_mode);
947 cam->npkt = 36; /* 36 packets per ISOC message */
949 return 0;
952 /* this function is called at probe and resume time */
953 static int sd_init(struct gspca_dev *gspca_dev)
955 const __u8 stop = 0x09; /* Disable stream turn of LED */
957 reg_w(gspca_dev, 0x01, &stop, 1);
959 return gspca_dev->usb_err;
962 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
964 struct gspca_dev *gspca_dev =
965 container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
966 struct sd *sd = (struct sd *)gspca_dev;
968 gspca_dev->usb_err = 0;
970 if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) {
971 /* when switching to autogain set defaults to make sure
972 we are on a valid point of the autogain gain /
973 exposure knee graph, and give this change time to
974 take effect before doing autogain. */
975 gspca_dev->gain->val = gspca_dev->gain->default_value;
976 gspca_dev->exposure->val = gspca_dev->exposure->default_value;
977 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
980 if (!gspca_dev->streaming)
981 return 0;
983 switch (ctrl->id) {
984 case V4L2_CID_BRIGHTNESS:
985 setbrightness(gspca_dev);
986 break;
987 case V4L2_CID_AUTOGAIN:
988 if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val))
989 setexposure(gspca_dev);
990 if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val))
991 setgain(gspca_dev);
992 break;
993 case V4L2_CID_POWER_LINE_FREQUENCY:
994 setfreq(gspca_dev);
995 break;
996 default:
997 return -EINVAL;
999 return gspca_dev->usb_err;
1002 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
1003 .s_ctrl = sd_s_ctrl,
1006 /* this function is called at probe time */
1007 static int sd_init_controls(struct gspca_dev *gspca_dev)
1009 struct sd *sd = (struct sd *) gspca_dev;
1010 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
1012 gspca_dev->vdev.ctrl_handler = hdl;
1013 v4l2_ctrl_handler_init(hdl, 5);
1015 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 ||
1016 sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202)
1017 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1018 V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);
1020 /* Gain range is sensor dependent */
1021 switch (sd->sensor) {
1022 case SENSOR_OV6650:
1023 case SENSOR_PAS106:
1024 case SENSOR_PAS202:
1025 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1026 V4L2_CID_GAIN, 0, 31, 1, 15);
1027 break;
1028 case SENSOR_OV7630:
1029 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1030 V4L2_CID_GAIN, 0, 47, 1, 31);
1031 break;
1032 case SENSOR_HV7131D:
1033 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1034 V4L2_CID_GAIN, 0, 63, 1, 31);
1035 break;
1036 case SENSOR_TAS5110C:
1037 case SENSOR_TAS5110D:
1038 case SENSOR_TAS5130CXX:
1039 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1040 V4L2_CID_GAIN, 0, 255, 1, 127);
1041 break;
1042 default:
1043 if (sd->bridge == BRIDGE_103) {
1044 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1045 V4L2_CID_GAIN, 0, 127, 1, 63);
1046 } else {
1047 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1048 V4L2_CID_GAIN, 0, 15, 1, 7);
1052 /* Exposure range is sensor dependent, and not all have exposure */
1053 switch (sd->sensor) {
1054 case SENSOR_HV7131D:
1055 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1056 V4L2_CID_EXPOSURE, 0, 8191, 1, 482);
1057 sd->exposure_knee = 964;
1058 break;
1059 case SENSOR_OV6650:
1060 case SENSOR_OV7630:
1061 case SENSOR_PAS106:
1062 case SENSOR_PAS202:
1063 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1064 V4L2_CID_EXPOSURE, 0, 1023, 1, 66);
1065 sd->exposure_knee = 200;
1066 break;
1067 case SENSOR_TAS5110C:
1068 case SENSOR_TAS5110D:
1069 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1070 V4L2_CID_EXPOSURE, 2, 15, 1, 2);
1071 break;
1074 if (gspca_dev->exposure) {
1075 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1076 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1079 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630)
1080 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
1081 V4L2_CID_POWER_LINE_FREQUENCY,
1082 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
1083 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1085 if (hdl->error) {
1086 pr_err("Could not initialize controls\n");
1087 return hdl->error;
1090 if (gspca_dev->autogain)
1091 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false);
1093 return 0;
1096 /* -- start the camera -- */
1097 static int sd_start(struct gspca_dev *gspca_dev)
1099 struct sd *sd = (struct sd *) gspca_dev;
1100 struct cam *cam = &gspca_dev->cam;
1101 int i, mode;
1102 __u8 regs[0x31];
1104 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1105 /* Copy registers 0x01 - 0x19 from the template */
1106 memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
1107 /* Set the mode */
1108 regs[0x18] |= mode << 4;
1110 /* Set bridge gain to 1.0 */
1111 if (sd->bridge == BRIDGE_103) {
1112 regs[0x05] = 0x20; /* Red */
1113 regs[0x06] = 0x20; /* Green */
1114 regs[0x07] = 0x20; /* Blue */
1115 } else {
1116 regs[0x10] = 0x00; /* Red and blue */
1117 regs[0x11] = 0x00; /* Green */
1120 /* Setup pixel numbers and auto exposure window */
1121 if (sensor_data[sd->sensor].flags & F_SIF) {
1122 regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1123 regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1124 regs[0x1c] = 0x02; /* AE H-start 64 */
1125 regs[0x1d] = 0x02; /* AE V-start 64 */
1126 regs[0x1e] = 0x09; /* AE H-end 288 */
1127 regs[0x1f] = 0x07; /* AE V-end 224 */
1128 } else {
1129 regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1130 regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1131 regs[0x1c] = 0x05; /* AE H-start 160 */
1132 regs[0x1d] = 0x03; /* AE V-start 96 */
1133 regs[0x1e] = 0x0f; /* AE H-end 480 */
1134 regs[0x1f] = 0x0c; /* AE V-end 384 */
1137 /* Setup the gamma table (only used with the sn9c103 bridge) */
1138 for (i = 0; i < 16; i++)
1139 regs[0x20 + i] = i * 16;
1140 regs[0x20 + i] = 255;
1142 /* Special cases where some regs depend on mode or bridge */
1143 switch (sd->sensor) {
1144 case SENSOR_TAS5130CXX:
1145 /* FIXME / TESTME
1146 probably not mode specific at all most likely the upper
1147 nibble of 0x19 is exposure (clock divider) just as with
1148 the tas5110, we need someone to test this. */
1149 regs[0x19] = mode ? 0x23 : 0x43;
1150 break;
1151 case SENSOR_OV7630:
1152 /* FIXME / TESTME for some reason with the 101/102 bridge the
1153 clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1154 Also the hstart needs to go from 1 to 2 when using a 103,
1155 which is likely related. This does not seem right. */
1156 if (sd->bridge == BRIDGE_103) {
1157 regs[0x01] = 0x44; /* Select 24 Mhz clock */
1158 regs[0x12] = 0x02; /* Set hstart to 2 */
1160 break;
1161 case SENSOR_PAS202:
1162 /* For some unknown reason we need to increase hstart by 1 on
1163 the sn9c103, otherwise we get wrong colors (bayer shift). */
1164 if (sd->bridge == BRIDGE_103)
1165 regs[0x12] += 1;
1166 break;
1168 /* Disable compression when the raw bayer format has been selected */
1169 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1170 regs[0x18] &= ~0x80;
1172 /* Vga mode emulation on SIF sensor? */
1173 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1174 regs[0x12] += 16; /* hstart adjust */
1175 regs[0x13] += 24; /* vstart adjust */
1176 regs[0x15] = 320 / 16; /* hsize */
1177 regs[0x16] = 240 / 16; /* vsize */
1180 /* reg 0x01 bit 2 video transfert on */
1181 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1182 /* reg 0x17 SensorClk enable inv Clk 0x60 */
1183 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1184 /* Set the registers from the template */
1185 reg_w(gspca_dev, 0x01, &regs[0x01],
1186 (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1188 /* Init the sensor */
1189 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1190 sensor_data[sd->sensor].sensor_init_size);
1192 /* Mode / bridge specific sensor setup */
1193 switch (sd->sensor) {
1194 case SENSOR_PAS202: {
1195 const __u8 i2cpclockdiv[] =
1196 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1197 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1198 if (mode)
1199 i2c_w(gspca_dev, i2cpclockdiv);
1200 break;
1202 case SENSOR_OV7630:
1203 /* FIXME / TESTME We should be able to handle this identical
1204 for the 101/102 and the 103 case */
1205 if (sd->bridge == BRIDGE_103) {
1206 const __u8 i2c[] = { 0xa0, 0x21, 0x13,
1207 0x80, 0x00, 0x00, 0x00, 0x10 };
1208 i2c_w(gspca_dev, i2c);
1210 break;
1212 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1213 reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1214 /* compression register */
1215 reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1216 /* H_start */
1217 reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1218 /* V_START */
1219 reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1220 /* reset 0x17 SensorClk enable inv Clk 0x60 */
1221 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1222 reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1223 /*MCKSIZE ->3 */ /*fixme: not ov7630*/
1224 reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1225 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1226 reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1227 /* Enable video transfert */
1228 reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1229 /* Compression */
1230 reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1231 msleep(20);
1233 sd->reg11 = -1;
1235 setgain(gspca_dev);
1236 setbrightness(gspca_dev);
1237 setexposure(gspca_dev);
1238 setfreq(gspca_dev);
1240 sd->frames_to_drop = 0;
1241 sd->autogain_ignore_frames = 0;
1242 gspca_dev->exp_too_high_cnt = 0;
1243 gspca_dev->exp_too_low_cnt = 0;
1244 atomic_set(&sd->avg_lum, -1);
1245 return gspca_dev->usb_err;
1248 static void sd_stopN(struct gspca_dev *gspca_dev)
1250 sd_init(gspca_dev);
1253 static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1255 struct sd *sd = (struct sd *) gspca_dev;
1256 int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1258 /* frames start with:
1259 * ff ff 00 c4 c4 96 synchro
1260 * 00 (unknown)
1261 * xx (frame sequence / size / compression)
1262 * (xx) (idem - extra byte for sn9c103)
1263 * ll mm brightness sum inside auto exposure
1264 * ll mm brightness sum outside auto exposure
1265 * (xx xx xx xx xx) audio values for snc103
1267 for (i = 0; i < len; i++) {
1268 switch (sd->header_read) {
1269 case 0:
1270 if (data[i] == 0xff)
1271 sd->header_read++;
1272 break;
1273 case 1:
1274 if (data[i] == 0xff)
1275 sd->header_read++;
1276 else
1277 sd->header_read = 0;
1278 break;
1279 case 2:
1280 if (data[i] == 0x00)
1281 sd->header_read++;
1282 else if (data[i] != 0xff)
1283 sd->header_read = 0;
1284 break;
1285 case 3:
1286 if (data[i] == 0xc4)
1287 sd->header_read++;
1288 else if (data[i] == 0xff)
1289 sd->header_read = 1;
1290 else
1291 sd->header_read = 0;
1292 break;
1293 case 4:
1294 if (data[i] == 0xc4)
1295 sd->header_read++;
1296 else if (data[i] == 0xff)
1297 sd->header_read = 1;
1298 else
1299 sd->header_read = 0;
1300 break;
1301 case 5:
1302 if (data[i] == 0x96)
1303 sd->header_read++;
1304 else if (data[i] == 0xff)
1305 sd->header_read = 1;
1306 else
1307 sd->header_read = 0;
1308 break;
1309 default:
1310 sd->header[sd->header_read - 6] = data[i];
1311 sd->header_read++;
1312 if (sd->header_read == header_size) {
1313 sd->header_read = 0;
1314 return data + i + 1;
1318 return NULL;
1321 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1322 u8 *data, /* isoc packet */
1323 int len) /* iso packet length */
1325 int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
1326 struct sd *sd = (struct sd *) gspca_dev;
1327 struct cam *cam = &gspca_dev->cam;
1328 u8 *sof;
1330 sof = find_sof(gspca_dev, data, len);
1331 if (sof) {
1332 if (sd->bridge == BRIDGE_103) {
1333 fr_h_sz = 18;
1334 lum_offset = 3;
1335 } else {
1336 fr_h_sz = 12;
1337 lum_offset = 2;
1340 len_after_sof = len - (sof - data);
1341 len = (sof - data) - fr_h_sz;
1342 if (len < 0)
1343 len = 0;
1346 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1347 /* In raw mode we sometimes get some garbage after the frame
1348 ignore this */
1349 int used;
1350 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1352 used = gspca_dev->image_len;
1353 if (used + len > size)
1354 len = size - used;
1357 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1359 if (sof) {
1360 int lum = sd->header[lum_offset] +
1361 (sd->header[lum_offset + 1] << 8);
1363 /* When exposure changes midway a frame we
1364 get a lum of 0 in this case drop 2 frames
1365 as the frames directly after an exposure
1366 change have an unstable image. Sometimes lum
1367 *really* is 0 (cam used in low light with
1368 low exposure setting), so do not drop frames
1369 if the previous lum was 0 too. */
1370 if (lum == 0 && sd->prev_avg_lum != 0) {
1371 lum = -1;
1372 sd->frames_to_drop = 2;
1373 sd->prev_avg_lum = 0;
1374 } else
1375 sd->prev_avg_lum = lum;
1376 atomic_set(&sd->avg_lum, lum);
1378 if (sd->frames_to_drop)
1379 sd->frames_to_drop--;
1380 else
1381 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
1383 gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
1387 #if IS_ENABLED(CONFIG_INPUT)
1388 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1389 u8 *data, /* interrupt packet data */
1390 int len) /* interrupt packet length */
1392 int ret = -EINVAL;
1394 if (len == 1 && data[0] == 1) {
1395 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1396 input_sync(gspca_dev->input_dev);
1397 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1398 input_sync(gspca_dev->input_dev);
1399 ret = 0;
1402 return ret;
1404 #endif
1406 /* sub-driver description */
1407 static const struct sd_desc sd_desc = {
1408 .name = MODULE_NAME,
1409 .config = sd_config,
1410 .init = sd_init,
1411 .init_controls = sd_init_controls,
1412 .start = sd_start,
1413 .stopN = sd_stopN,
1414 .pkt_scan = sd_pkt_scan,
1415 .dq_callback = do_autogain,
1416 #if IS_ENABLED(CONFIG_INPUT)
1417 .int_pkt_scan = sd_int_pkt_scan,
1418 #endif
1421 /* -- module initialisation -- */
1422 #define SB(sensor, bridge) \
1423 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1426 static const struct usb_device_id device_table[] = {
1427 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1428 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
1429 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1430 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1431 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1432 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1433 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1434 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1435 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1436 {USB_DEVICE(0x0c45, 0x6027), SB(OV7630, 101)}, /* Genius Eye 310 */
1437 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1438 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1439 {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
1440 /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1441 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1442 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1443 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1444 /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1445 /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1446 {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
1447 {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
1448 /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1449 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1450 {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
1451 {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1452 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1453 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1456 MODULE_DEVICE_TABLE(usb, device_table);
1458 /* -- device connect -- */
1459 static int sd_probe(struct usb_interface *intf,
1460 const struct usb_device_id *id)
1462 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1463 THIS_MODULE);
1466 static struct usb_driver sd_driver = {
1467 .name = MODULE_NAME,
1468 .id_table = device_table,
1469 .probe = sd_probe,
1470 .disconnect = gspca_disconnect,
1471 #ifdef CONFIG_PM
1472 .suspend = gspca_suspend,
1473 .resume = gspca_resume,
1474 .reset_resume = gspca_resume,
1475 #endif
1478 module_usb_driver(sd_driver);