2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
56 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
64 module_param(use_spi_crc
, bool, 0);
66 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
75 return queue_delayed_work(system_freezable_wq
, work
, delay
);
78 #ifdef CONFIG_FAIL_MMC_REQUEST
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
84 static void mmc_should_fail_request(struct mmc_host
*host
,
85 struct mmc_request
*mrq
)
87 struct mmc_command
*cmd
= mrq
->cmd
;
88 struct mmc_data
*data
= mrq
->data
;
89 static const int data_errors
[] = {
98 if ((cmd
&& cmd
->error
) || data
->error
||
99 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
102 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
103 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
106 #else /* CONFIG_FAIL_MMC_REQUEST */
108 static inline void mmc_should_fail_request(struct mmc_host
*host
,
109 struct mmc_request
*mrq
)
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
115 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
117 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
118 complete_all(&mrq
->cmd_completion
);
121 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
123 if (!mrq
->cap_cmd_during_tfr
)
126 mmc_complete_cmd(mrq
);
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host
), mrq
->cmd
->opcode
);
131 EXPORT_SYMBOL(mmc_command_done
);
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
141 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
143 struct mmc_command
*cmd
= mrq
->cmd
;
144 int err
= cmd
->error
;
146 /* Flag re-tuning needed on CRC errors */
147 if (cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
148 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
&&
149 !host
->retune_crc_disable
&&
150 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
151 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
152 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
153 mmc_retune_needed(host
);
155 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
156 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
160 if (host
->ongoing_mrq
== mrq
)
161 host
->ongoing_mrq
= NULL
;
163 mmc_complete_cmd(mrq
);
165 trace_mmc_request_done(host
, mrq
);
168 * We list various conditions for the command to be considered
171 * - There was no error, OK fine then
172 * - We are not doing some kind of retry
173 * - The card was removed (...so just complete everything no matter
174 * if there are errors or retries)
176 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
177 mmc_should_fail_request(host
, mrq
);
179 if (!host
->ongoing_mrq
)
180 led_trigger_event(host
->led
, LED_OFF
);
183 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
184 mmc_hostname(host
), mrq
->sbc
->opcode
,
186 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
187 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
190 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
191 mmc_hostname(host
), cmd
->opcode
, err
,
192 cmd
->resp
[0], cmd
->resp
[1],
193 cmd
->resp
[2], cmd
->resp
[3]);
196 pr_debug("%s: %d bytes transferred: %d\n",
198 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
202 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
203 mmc_hostname(host
), mrq
->stop
->opcode
,
205 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
206 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
210 * Request starter must handle retries - see
211 * mmc_wait_for_req_done().
217 EXPORT_SYMBOL(mmc_request_done
);
219 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
223 /* Assumes host controller has been runtime resumed by mmc_claim_host */
224 err
= mmc_retune(host
);
226 mrq
->cmd
->error
= err
;
227 mmc_request_done(host
, mrq
);
232 * For sdio rw commands we must wait for card busy otherwise some
233 * sdio devices won't work properly.
234 * And bypass I/O abort, reset and bus suspend operations.
236 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
237 host
->ops
->card_busy
) {
238 int tries
= 500; /* Wait aprox 500ms at maximum */
240 while (host
->ops
->card_busy(host
) && --tries
)
244 mrq
->cmd
->error
= -EBUSY
;
245 mmc_request_done(host
, mrq
);
250 if (mrq
->cap_cmd_during_tfr
) {
251 host
->ongoing_mrq
= mrq
;
253 * Retry path could come through here without having waiting on
254 * cmd_completion, so ensure it is reinitialised.
256 reinit_completion(&mrq
->cmd_completion
);
259 trace_mmc_request_start(host
, mrq
);
262 host
->cqe_ops
->cqe_off(host
);
264 host
->ops
->request(host
, mrq
);
267 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
271 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
272 mmc_hostname(host
), mrq
->sbc
->opcode
,
273 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
277 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
278 mmc_hostname(host
), cqe
? "CQE direct " : "",
279 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
281 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
282 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
286 pr_debug("%s: blksz %d blocks %d flags %08x "
287 "tsac %d ms nsac %d\n",
288 mmc_hostname(host
), mrq
->data
->blksz
,
289 mrq
->data
->blocks
, mrq
->data
->flags
,
290 mrq
->data
->timeout_ns
/ 1000000,
291 mrq
->data
->timeout_clks
);
295 pr_debug("%s: CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host
), mrq
->stop
->opcode
,
297 mrq
->stop
->arg
, mrq
->stop
->flags
);
301 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
303 unsigned int i
, sz
= 0;
304 struct scatterlist
*sg
;
309 mrq
->cmd
->data
= mrq
->data
;
316 if (mrq
->data
->blksz
> host
->max_blk_size
||
317 mrq
->data
->blocks
> host
->max_blk_count
||
318 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
321 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
323 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
326 mrq
->data
->error
= 0;
327 mrq
->data
->mrq
= mrq
;
329 mrq
->data
->stop
= mrq
->stop
;
330 mrq
->stop
->error
= 0;
331 mrq
->stop
->mrq
= mrq
;
338 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
342 init_completion(&mrq
->cmd_completion
);
344 mmc_retune_hold(host
);
346 if (mmc_card_removed(host
->card
))
349 mmc_mrq_pr_debug(host
, mrq
, false);
351 WARN_ON(!host
->claimed
);
353 err
= mmc_mrq_prep(host
, mrq
);
357 led_trigger_event(host
->led
, LED_FULL
);
358 __mmc_start_request(host
, mrq
);
362 EXPORT_SYMBOL(mmc_start_request
);
364 static void mmc_wait_done(struct mmc_request
*mrq
)
366 complete(&mrq
->completion
);
369 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
371 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
374 * If there is an ongoing transfer, wait for the command line to become
377 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
378 wait_for_completion(&ongoing_mrq
->cmd_completion
);
381 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
385 mmc_wait_ongoing_tfr_cmd(host
);
387 init_completion(&mrq
->completion
);
388 mrq
->done
= mmc_wait_done
;
390 err
= mmc_start_request(host
, mrq
);
392 mrq
->cmd
->error
= err
;
393 mmc_complete_cmd(mrq
);
394 complete(&mrq
->completion
);
400 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
402 struct mmc_command
*cmd
;
405 wait_for_completion(&mrq
->completion
);
410 * If host has timed out waiting for the sanitize
411 * to complete, card might be still in programming state
412 * so let's try to bring the card out of programming
415 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
416 if (!mmc_interrupt_hpi(host
->card
)) {
417 pr_warn("%s: %s: Interrupted sanitize\n",
418 mmc_hostname(host
), __func__
);
422 pr_err("%s: %s: Failed to interrupt sanitize\n",
423 mmc_hostname(host
), __func__
);
426 if (!cmd
->error
|| !cmd
->retries
||
427 mmc_card_removed(host
->card
))
430 mmc_retune_recheck(host
);
432 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
433 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
436 __mmc_start_request(host
, mrq
);
439 mmc_retune_release(host
);
441 EXPORT_SYMBOL(mmc_wait_for_req_done
);
444 * mmc_cqe_start_req - Start a CQE request.
445 * @host: MMC host to start the request
446 * @mrq: request to start
448 * Start the request, re-tuning if needed and it is possible. Returns an error
449 * code if the request fails to start or -EBUSY if CQE is busy.
451 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
456 * CQE cannot process re-tuning commands. Caller must hold retuning
457 * while CQE is in use. Re-tuning can happen here only when CQE has no
458 * active requests i.e. this is the first. Note, re-tuning will call
461 err
= mmc_retune(host
);
467 mmc_mrq_pr_debug(host
, mrq
, true);
469 err
= mmc_mrq_prep(host
, mrq
);
473 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
477 trace_mmc_request_start(host
, mrq
);
483 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
484 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
486 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
487 mmc_hostname(host
), mrq
->tag
, err
);
491 EXPORT_SYMBOL(mmc_cqe_start_req
);
494 * mmc_cqe_request_done - CQE has finished processing an MMC request
495 * @host: MMC host which completed request
496 * @mrq: MMC request which completed
498 * CQE drivers should call this function when they have completed
499 * their processing of a request.
501 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
503 mmc_should_fail_request(host
, mrq
);
505 /* Flag re-tuning needed on CRC errors */
506 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
507 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
508 mmc_retune_needed(host
);
510 trace_mmc_request_done(host
, mrq
);
513 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
514 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
516 pr_debug("%s: CQE transfer done tag %d\n",
517 mmc_hostname(host
), mrq
->tag
);
521 pr_debug("%s: %d bytes transferred: %d\n",
523 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
528 EXPORT_SYMBOL(mmc_cqe_request_done
);
531 * mmc_cqe_post_req - CQE post process of a completed MMC request
533 * @mrq: MMC request to be processed
535 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
537 if (host
->cqe_ops
->cqe_post_req
)
538 host
->cqe_ops
->cqe_post_req(host
, mrq
);
540 EXPORT_SYMBOL(mmc_cqe_post_req
);
542 /* Arbitrary 1 second timeout */
543 #define MMC_CQE_RECOVERY_TIMEOUT 1000
546 * mmc_cqe_recovery - Recover from CQE errors.
547 * @host: MMC host to recover
549 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
550 * in eMMC, and discarding the queue in CQE. CQE must call
551 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
552 * fails to discard its queue.
554 int mmc_cqe_recovery(struct mmc_host
*host
)
556 struct mmc_command cmd
;
559 mmc_retune_hold_now(host
);
562 * Recovery is expected seldom, if at all, but it reduces performance,
563 * so make sure it is not completely silent.
565 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
567 host
->cqe_ops
->cqe_recovery_start(host
);
569 memset(&cmd
, 0, sizeof(cmd
));
570 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
571 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
572 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
573 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
574 mmc_wait_for_cmd(host
, &cmd
, 0);
576 memset(&cmd
, 0, sizeof(cmd
));
577 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
578 cmd
.arg
= 1; /* Discard entire queue */
579 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
580 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
581 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
582 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
584 host
->cqe_ops
->cqe_recovery_finish(host
);
586 mmc_retune_release(host
);
590 EXPORT_SYMBOL(mmc_cqe_recovery
);
593 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
597 * mmc_is_req_done() is used with requests that have
598 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
599 * starting a request and before waiting for it to complete. That is,
600 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
601 * and before mmc_wait_for_req_done(). If it is called at other times the
602 * result is not meaningful.
604 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
606 return completion_done(&mrq
->completion
);
608 EXPORT_SYMBOL(mmc_is_req_done
);
611 * mmc_wait_for_req - start a request and wait for completion
612 * @host: MMC host to start command
613 * @mrq: MMC request to start
615 * Start a new MMC custom command request for a host, and wait
616 * for the command to complete. In the case of 'cap_cmd_during_tfr'
617 * requests, the transfer is ongoing and the caller can issue further
618 * commands that do not use the data lines, and then wait by calling
619 * mmc_wait_for_req_done().
620 * Does not attempt to parse the response.
622 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
624 __mmc_start_req(host
, mrq
);
626 if (!mrq
->cap_cmd_during_tfr
)
627 mmc_wait_for_req_done(host
, mrq
);
629 EXPORT_SYMBOL(mmc_wait_for_req
);
632 * mmc_wait_for_cmd - start a command and wait for completion
633 * @host: MMC host to start command
634 * @cmd: MMC command to start
635 * @retries: maximum number of retries
637 * Start a new MMC command for a host, and wait for the command
638 * to complete. Return any error that occurred while the command
639 * was executing. Do not attempt to parse the response.
641 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
643 struct mmc_request mrq
= {};
645 WARN_ON(!host
->claimed
);
647 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
648 cmd
->retries
= retries
;
653 mmc_wait_for_req(host
, &mrq
);
658 EXPORT_SYMBOL(mmc_wait_for_cmd
);
661 * mmc_set_data_timeout - set the timeout for a data command
662 * @data: data phase for command
663 * @card: the MMC card associated with the data transfer
665 * Computes the data timeout parameters according to the
666 * correct algorithm given the card type.
668 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
673 * SDIO cards only define an upper 1 s limit on access.
675 if (mmc_card_sdio(card
)) {
676 data
->timeout_ns
= 1000000000;
677 data
->timeout_clks
= 0;
682 * SD cards use a 100 multiplier rather than 10
684 mult
= mmc_card_sd(card
) ? 100 : 10;
687 * Scale up the multiplier (and therefore the timeout) by
688 * the r2w factor for writes.
690 if (data
->flags
& MMC_DATA_WRITE
)
691 mult
<<= card
->csd
.r2w_factor
;
693 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
694 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
697 * SD cards also have an upper limit on the timeout.
699 if (mmc_card_sd(card
)) {
700 unsigned int timeout_us
, limit_us
;
702 timeout_us
= data
->timeout_ns
/ 1000;
703 if (card
->host
->ios
.clock
)
704 timeout_us
+= data
->timeout_clks
* 1000 /
705 (card
->host
->ios
.clock
/ 1000);
707 if (data
->flags
& MMC_DATA_WRITE
)
709 * The MMC spec "It is strongly recommended
710 * for hosts to implement more than 500ms
711 * timeout value even if the card indicates
712 * the 250ms maximum busy length." Even the
713 * previous value of 300ms is known to be
714 * insufficient for some cards.
721 * SDHC cards always use these fixed values.
723 if (timeout_us
> limit_us
) {
724 data
->timeout_ns
= limit_us
* 1000;
725 data
->timeout_clks
= 0;
728 /* assign limit value if invalid */
730 data
->timeout_ns
= limit_us
* 1000;
734 * Some cards require longer data read timeout than indicated in CSD.
735 * Address this by setting the read timeout to a "reasonably high"
736 * value. For the cards tested, 600ms has proven enough. If necessary,
737 * this value can be increased if other problematic cards require this.
739 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
740 data
->timeout_ns
= 600000000;
741 data
->timeout_clks
= 0;
745 * Some cards need very high timeouts if driven in SPI mode.
746 * The worst observed timeout was 900ms after writing a
747 * continuous stream of data until the internal logic
750 if (mmc_host_is_spi(card
->host
)) {
751 if (data
->flags
& MMC_DATA_WRITE
) {
752 if (data
->timeout_ns
< 1000000000)
753 data
->timeout_ns
= 1000000000; /* 1s */
755 if (data
->timeout_ns
< 100000000)
756 data
->timeout_ns
= 100000000; /* 100ms */
760 EXPORT_SYMBOL(mmc_set_data_timeout
);
763 * mmc_align_data_size - pads a transfer size to a more optimal value
764 * @card: the MMC card associated with the data transfer
765 * @sz: original transfer size
767 * Pads the original data size with a number of extra bytes in
768 * order to avoid controller bugs and/or performance hits
769 * (e.g. some controllers revert to PIO for certain sizes).
771 * Returns the improved size, which might be unmodified.
773 * Note that this function is only relevant when issuing a
774 * single scatter gather entry.
776 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
779 * FIXME: We don't have a system for the controller to tell
780 * the core about its problems yet, so for now we just 32-bit
783 sz
= ((sz
+ 3) / 4) * 4;
787 EXPORT_SYMBOL(mmc_align_data_size
);
790 * Allow claiming an already claimed host if the context is the same or there is
791 * no context but the task is the same.
793 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
794 struct task_struct
*task
)
796 return host
->claimer
== ctx
||
797 (!ctx
&& task
&& host
->claimer
->task
== task
);
800 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
802 struct task_struct
*task
)
804 if (!host
->claimer
) {
808 host
->claimer
= &host
->default_ctx
;
811 host
->claimer
->task
= task
;
815 * __mmc_claim_host - exclusively claim a host
816 * @host: mmc host to claim
817 * @ctx: context that claims the host or NULL in which case the default
818 * context will be used
819 * @abort: whether or not the operation should be aborted
821 * Claim a host for a set of operations. If @abort is non null and
822 * dereference a non-zero value then this will return prematurely with
823 * that non-zero value without acquiring the lock. Returns zero
824 * with the lock held otherwise.
826 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
829 struct task_struct
*task
= ctx
? NULL
: current
;
830 DECLARE_WAITQUEUE(wait
, current
);
837 add_wait_queue(&host
->wq
, &wait
);
838 spin_lock_irqsave(&host
->lock
, flags
);
840 set_current_state(TASK_UNINTERRUPTIBLE
);
841 stop
= abort
? atomic_read(abort
) : 0;
842 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
844 spin_unlock_irqrestore(&host
->lock
, flags
);
846 spin_lock_irqsave(&host
->lock
, flags
);
848 set_current_state(TASK_RUNNING
);
851 mmc_ctx_set_claimer(host
, ctx
, task
);
852 host
->claim_cnt
+= 1;
853 if (host
->claim_cnt
== 1)
857 spin_unlock_irqrestore(&host
->lock
, flags
);
858 remove_wait_queue(&host
->wq
, &wait
);
861 pm_runtime_get_sync(mmc_dev(host
));
865 EXPORT_SYMBOL(__mmc_claim_host
);
868 * mmc_release_host - release a host
869 * @host: mmc host to release
871 * Release a MMC host, allowing others to claim the host
872 * for their operations.
874 void mmc_release_host(struct mmc_host
*host
)
878 WARN_ON(!host
->claimed
);
880 spin_lock_irqsave(&host
->lock
, flags
);
881 if (--host
->claim_cnt
) {
882 /* Release for nested claim */
883 spin_unlock_irqrestore(&host
->lock
, flags
);
886 host
->claimer
->task
= NULL
;
887 host
->claimer
= NULL
;
888 spin_unlock_irqrestore(&host
->lock
, flags
);
890 pm_runtime_mark_last_busy(mmc_dev(host
));
891 pm_runtime_put_autosuspend(mmc_dev(host
));
894 EXPORT_SYMBOL(mmc_release_host
);
897 * This is a helper function, which fetches a runtime pm reference for the
898 * card device and also claims the host.
900 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
902 pm_runtime_get_sync(&card
->dev
);
903 __mmc_claim_host(card
->host
, ctx
, NULL
);
905 EXPORT_SYMBOL(mmc_get_card
);
908 * This is a helper function, which releases the host and drops the runtime
909 * pm reference for the card device.
911 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
913 struct mmc_host
*host
= card
->host
;
915 WARN_ON(ctx
&& host
->claimer
!= ctx
);
917 mmc_release_host(host
);
918 pm_runtime_mark_last_busy(&card
->dev
);
919 pm_runtime_put_autosuspend(&card
->dev
);
921 EXPORT_SYMBOL(mmc_put_card
);
924 * Internal function that does the actual ios call to the host driver,
925 * optionally printing some debug output.
927 static inline void mmc_set_ios(struct mmc_host
*host
)
929 struct mmc_ios
*ios
= &host
->ios
;
931 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
932 "width %u timing %u\n",
933 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
934 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
935 1 << ios
->bus_width
, ios
->timing
);
937 host
->ops
->set_ios(host
, ios
);
941 * Control chip select pin on a host.
943 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
945 host
->ios
.chip_select
= mode
;
950 * Sets the host clock to the highest possible frequency that
953 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
955 WARN_ON(hz
&& hz
< host
->f_min
);
957 if (hz
> host
->f_max
)
960 host
->ios
.clock
= hz
;
964 int mmc_execute_tuning(struct mmc_card
*card
)
966 struct mmc_host
*host
= card
->host
;
970 if (!host
->ops
->execute_tuning
)
974 host
->cqe_ops
->cqe_off(host
);
976 if (mmc_card_mmc(card
))
977 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
979 opcode
= MMC_SEND_TUNING_BLOCK
;
981 err
= host
->ops
->execute_tuning(host
, opcode
);
984 pr_err("%s: tuning execution failed: %d\n",
985 mmc_hostname(host
), err
);
987 mmc_retune_enable(host
);
993 * Change the bus mode (open drain/push-pull) of a host.
995 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
997 host
->ios
.bus_mode
= mode
;
1002 * Change data bus width of a host.
1004 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1006 host
->ios
.bus_width
= width
;
1011 * Set initial state after a power cycle or a hw_reset.
1013 void mmc_set_initial_state(struct mmc_host
*host
)
1016 host
->cqe_ops
->cqe_off(host
);
1018 mmc_retune_disable(host
);
1020 if (mmc_host_is_spi(host
))
1021 host
->ios
.chip_select
= MMC_CS_HIGH
;
1023 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1024 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1025 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1026 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1027 host
->ios
.drv_type
= 0;
1028 host
->ios
.enhanced_strobe
= false;
1031 * Make sure we are in non-enhanced strobe mode before we
1032 * actually enable it in ext_csd.
1034 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1035 host
->ops
->hs400_enhanced_strobe
)
1036 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1042 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1043 * @vdd: voltage (mV)
1044 * @low_bits: prefer low bits in boundary cases
1046 * This function returns the OCR bit number according to the provided @vdd
1047 * value. If conversion is not possible a negative errno value returned.
1049 * Depending on the @low_bits flag the function prefers low or high OCR bits
1050 * on boundary voltages. For example,
1051 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1052 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1054 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1056 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1058 const int max_bit
= ilog2(MMC_VDD_35_36
);
1061 if (vdd
< 1650 || vdd
> 3600)
1064 if (vdd
>= 1650 && vdd
<= 1950)
1065 return ilog2(MMC_VDD_165_195
);
1070 /* Base 2000 mV, step 100 mV, bit's base 8. */
1071 bit
= (vdd
- 2000) / 100 + 8;
1078 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1079 * @vdd_min: minimum voltage value (mV)
1080 * @vdd_max: maximum voltage value (mV)
1082 * This function returns the OCR mask bits according to the provided @vdd_min
1083 * and @vdd_max values. If conversion is not possible the function returns 0.
1085 * Notes wrt boundary cases:
1086 * This function sets the OCR bits for all boundary voltages, for example
1087 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1088 * MMC_VDD_34_35 mask.
1090 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1094 if (vdd_max
< vdd_min
)
1097 /* Prefer high bits for the boundary vdd_max values. */
1098 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1102 /* Prefer low bits for the boundary vdd_min values. */
1103 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1107 /* Fill the mask, from max bit to min bit. */
1108 while (vdd_max
>= vdd_min
)
1109 mask
|= 1 << vdd_max
--;
1113 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1118 * mmc_of_parse_voltage - return mask of supported voltages
1119 * @np: The device node need to be parsed.
1120 * @mask: mask of voltages available for MMC/SD/SDIO
1122 * Parse the "voltage-ranges" DT property, returning zero if it is not
1123 * found, negative errno if the voltage-range specification is invalid,
1124 * or one if the voltage-range is specified and successfully parsed.
1126 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1128 const u32
*voltage_ranges
;
1131 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1132 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1133 if (!voltage_ranges
) {
1134 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1138 pr_err("%pOF: voltage-ranges empty\n", np
);
1142 for (i
= 0; i
< num_ranges
; i
++) {
1143 const int j
= i
* 2;
1146 ocr_mask
= mmc_vddrange_to_ocrmask(
1147 be32_to_cpu(voltage_ranges
[j
]),
1148 be32_to_cpu(voltage_ranges
[j
+ 1]));
1150 pr_err("%pOF: voltage-range #%d is invalid\n",
1159 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1161 #endif /* CONFIG_OF */
1163 static int mmc_of_get_func_num(struct device_node
*node
)
1168 ret
= of_property_read_u32(node
, "reg", ®
);
1175 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1178 struct device_node
*node
;
1180 if (!host
->parent
|| !host
->parent
->of_node
)
1183 for_each_child_of_node(host
->parent
->of_node
, node
) {
1184 if (mmc_of_get_func_num(node
) == func_num
)
1191 #ifdef CONFIG_REGULATOR
1194 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1195 * @vdd_bit: OCR bit number
1196 * @min_uV: minimum voltage value (mV)
1197 * @max_uV: maximum voltage value (mV)
1199 * This function returns the voltage range according to the provided OCR
1200 * bit number. If conversion is not possible a negative errno value returned.
1202 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1210 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1211 * bits this regulator doesn't quite support ... don't
1212 * be too picky, most cards and regulators are OK with
1213 * a 0.1V range goof (it's a small error percentage).
1215 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1217 *min_uV
= 1650 * 1000;
1218 *max_uV
= 1950 * 1000;
1220 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1221 *max_uV
= *min_uV
+ 100 * 1000;
1228 * mmc_regulator_get_ocrmask - return mask of supported voltages
1229 * @supply: regulator to use
1231 * This returns either a negative errno, or a mask of voltages that
1232 * can be provided to MMC/SD/SDIO devices using the specified voltage
1233 * regulator. This would normally be called before registering the
1236 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1244 count
= regulator_count_voltages(supply
);
1248 for (i
= 0; i
< count
; i
++) {
1249 vdd_uV
= regulator_list_voltage(supply
, i
);
1253 vdd_mV
= vdd_uV
/ 1000;
1254 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1258 vdd_uV
= regulator_get_voltage(supply
);
1262 vdd_mV
= vdd_uV
/ 1000;
1263 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1268 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1271 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1272 * @mmc: the host to regulate
1273 * @supply: regulator to use
1274 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1276 * Returns zero on success, else negative errno.
1278 * MMC host drivers may use this to enable or disable a regulator using
1279 * a particular supply voltage. This would normally be called from the
1282 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1283 struct regulator
*supply
,
1284 unsigned short vdd_bit
)
1290 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1292 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1293 if (result
== 0 && !mmc
->regulator_enabled
) {
1294 result
= regulator_enable(supply
);
1296 mmc
->regulator_enabled
= true;
1298 } else if (mmc
->regulator_enabled
) {
1299 result
= regulator_disable(supply
);
1301 mmc
->regulator_enabled
= false;
1305 dev_err(mmc_dev(mmc
),
1306 "could not set regulator OCR (%d)\n", result
);
1309 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1311 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1312 int min_uV
, int target_uV
,
1316 * Check if supported first to avoid errors since we may try several
1317 * signal levels during power up and don't want to show errors.
1319 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1322 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1327 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1329 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1330 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1331 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1332 * SD card spec also define VQMMC in terms of VMMC.
1333 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1335 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1336 * requested voltage. This is definitely a good idea for UHS where there's a
1337 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * This function is expected to be used by a controller's
1341 * start_signal_voltage_switch() function.
1343 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1345 struct device
*dev
= mmc_dev(mmc
);
1346 int ret
, volt
, min_uV
, max_uV
;
1348 /* If no vqmmc supply then we can't change the voltage */
1349 if (IS_ERR(mmc
->supply
.vqmmc
))
1352 switch (ios
->signal_voltage
) {
1353 case MMC_SIGNAL_VOLTAGE_120
:
1354 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1355 1100000, 1200000, 1300000);
1356 case MMC_SIGNAL_VOLTAGE_180
:
1357 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1358 1700000, 1800000, 1950000);
1359 case MMC_SIGNAL_VOLTAGE_330
:
1360 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1364 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1365 __func__
, volt
, max_uV
);
1367 min_uV
= max(volt
- 300000, 2700000);
1368 max_uV
= min(max_uV
+ 200000, 3600000);
1371 * Due to a limitation in the current implementation of
1372 * regulator_set_voltage_triplet() which is taking the lowest
1373 * voltage possible if below the target, search for a suitable
1374 * voltage in two steps and try to stay close to vmmc
1375 * with a 0.3V tolerance at first.
1377 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1378 min_uV
, volt
, max_uV
))
1381 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1382 2700000, volt
, 3600000);
1387 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1389 #endif /* CONFIG_REGULATOR */
1392 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1393 * @mmc: the host to regulate
1395 * Returns 0 or errno. errno should be handled, it is either a critical error
1396 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1397 * regulators have been found because they all are optional. If you require
1398 * certain regulators, you need to check separately in your driver if they got
1399 * populated after calling this function.
1401 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1403 struct device
*dev
= mmc_dev(mmc
);
1406 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1407 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1409 if (IS_ERR(mmc
->supply
.vmmc
)) {
1410 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1411 return -EPROBE_DEFER
;
1412 dev_dbg(dev
, "No vmmc regulator found\n");
1414 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1416 mmc
->ocr_avail
= ret
;
1418 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1421 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1422 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1423 return -EPROBE_DEFER
;
1424 dev_dbg(dev
, "No vqmmc regulator found\n");
1429 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1432 * Mask off any voltages we don't support and select
1433 * the lowest voltage
1435 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1440 * Sanity check the voltages that the card claims to
1444 dev_warn(mmc_dev(host
),
1445 "card claims to support voltages below defined range\n");
1449 ocr
&= host
->ocr_avail
;
1451 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1455 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1458 mmc_power_cycle(host
, ocr
);
1462 if (bit
!= host
->ios
.vdd
)
1463 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1469 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1472 int old_signal_voltage
= host
->ios
.signal_voltage
;
1474 host
->ios
.signal_voltage
= signal_voltage
;
1475 if (host
->ops
->start_signal_voltage_switch
)
1476 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1479 host
->ios
.signal_voltage
= old_signal_voltage
;
1485 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1487 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1488 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1489 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1490 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1491 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1492 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1493 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1496 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1501 * During a signal voltage level switch, the clock must be gated
1502 * for 5 ms according to the SD spec
1504 clock
= host
->ios
.clock
;
1505 host
->ios
.clock
= 0;
1508 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1511 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1513 host
->ios
.clock
= clock
;
1519 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1521 struct mmc_command cmd
= {};
1525 * If we cannot switch voltages, return failure so the caller
1526 * can continue without UHS mode
1528 if (!host
->ops
->start_signal_voltage_switch
)
1530 if (!host
->ops
->card_busy
)
1531 pr_warn("%s: cannot verify signal voltage switch\n",
1532 mmc_hostname(host
));
1534 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1536 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1538 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1542 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1546 * The card should drive cmd and dat[0:3] low immediately
1547 * after the response of cmd11, but wait 1 ms to be sure
1550 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1555 if (mmc_host_set_uhs_voltage(host
)) {
1557 * Voltages may not have been switched, but we've already
1558 * sent CMD11, so a power cycle is required anyway
1564 /* Wait for at least 1 ms according to spec */
1568 * Failure to switch is indicated by the card holding
1571 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1576 pr_debug("%s: Signal voltage switch failed, "
1577 "power cycling card\n", mmc_hostname(host
));
1578 mmc_power_cycle(host
, ocr
);
1585 * Select timing parameters for host.
1587 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1589 host
->ios
.timing
= timing
;
1594 * Select appropriate driver type for host.
1596 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1598 host
->ios
.drv_type
= drv_type
;
1602 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1603 int card_drv_type
, int *drv_type
)
1605 struct mmc_host
*host
= card
->host
;
1606 int host_drv_type
= SD_DRIVER_TYPE_B
;
1610 if (!host
->ops
->select_drive_strength
)
1613 /* Use SD definition of driver strength for hosts */
1614 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1615 host_drv_type
|= SD_DRIVER_TYPE_A
;
1617 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1618 host_drv_type
|= SD_DRIVER_TYPE_C
;
1620 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1621 host_drv_type
|= SD_DRIVER_TYPE_D
;
1624 * The drive strength that the hardware can support
1625 * depends on the board design. Pass the appropriate
1626 * information and let the hardware specific code
1627 * return what is possible given the options
1629 return host
->ops
->select_drive_strength(card
, max_dtr
,
1636 * Apply power to the MMC stack. This is a two-stage process.
1637 * First, we enable power to the card without the clock running.
1638 * We then wait a bit for the power to stabilise. Finally,
1639 * enable the bus drivers and clock to the card.
1641 * We must _NOT_ enable the clock prior to power stablising.
1643 * If a host does all the power sequencing itself, ignore the
1644 * initial MMC_POWER_UP stage.
1646 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1648 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1651 mmc_pwrseq_pre_power_on(host
);
1653 host
->ios
.vdd
= fls(ocr
) - 1;
1654 host
->ios
.power_mode
= MMC_POWER_UP
;
1655 /* Set initial state and call mmc_set_ios */
1656 mmc_set_initial_state(host
);
1658 mmc_set_initial_signal_voltage(host
);
1661 * This delay should be sufficient to allow the power supply
1662 * to reach the minimum voltage.
1664 mmc_delay(host
->ios
.power_delay_ms
);
1666 mmc_pwrseq_post_power_on(host
);
1668 host
->ios
.clock
= host
->f_init
;
1670 host
->ios
.power_mode
= MMC_POWER_ON
;
1674 * This delay must be at least 74 clock sizes, or 1 ms, or the
1675 * time required to reach a stable voltage.
1677 mmc_delay(host
->ios
.power_delay_ms
);
1680 void mmc_power_off(struct mmc_host
*host
)
1682 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1685 mmc_pwrseq_power_off(host
);
1687 host
->ios
.clock
= 0;
1690 host
->ios
.power_mode
= MMC_POWER_OFF
;
1691 /* Set initial state and call mmc_set_ios */
1692 mmc_set_initial_state(host
);
1695 * Some configurations, such as the 802.11 SDIO card in the OLPC
1696 * XO-1.5, require a short delay after poweroff before the card
1697 * can be successfully turned on again.
1702 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1704 mmc_power_off(host
);
1705 /* Wait at least 1 ms according to SD spec */
1707 mmc_power_up(host
, ocr
);
1711 * Cleanup when the last reference to the bus operator is dropped.
1713 static void __mmc_release_bus(struct mmc_host
*host
)
1715 WARN_ON(!host
->bus_dead
);
1717 host
->bus_ops
= NULL
;
1721 * Increase reference count of bus operator
1723 static inline void mmc_bus_get(struct mmc_host
*host
)
1725 unsigned long flags
;
1727 spin_lock_irqsave(&host
->lock
, flags
);
1729 spin_unlock_irqrestore(&host
->lock
, flags
);
1733 * Decrease reference count of bus operator and free it if
1734 * it is the last reference.
1736 static inline void mmc_bus_put(struct mmc_host
*host
)
1738 unsigned long flags
;
1740 spin_lock_irqsave(&host
->lock
, flags
);
1742 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1743 __mmc_release_bus(host
);
1744 spin_unlock_irqrestore(&host
->lock
, flags
);
1748 * Assign a mmc bus handler to a host. Only one bus handler may control a
1749 * host at any given time.
1751 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1753 unsigned long flags
;
1755 WARN_ON(!host
->claimed
);
1757 spin_lock_irqsave(&host
->lock
, flags
);
1759 WARN_ON(host
->bus_ops
);
1760 WARN_ON(host
->bus_refs
);
1762 host
->bus_ops
= ops
;
1766 spin_unlock_irqrestore(&host
->lock
, flags
);
1770 * Remove the current bus handler from a host.
1772 void mmc_detach_bus(struct mmc_host
*host
)
1774 unsigned long flags
;
1776 WARN_ON(!host
->claimed
);
1777 WARN_ON(!host
->bus_ops
);
1779 spin_lock_irqsave(&host
->lock
, flags
);
1783 spin_unlock_irqrestore(&host
->lock
, flags
);
1788 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1792 * If the device is configured as wakeup, we prevent a new sleep for
1793 * 5 s to give provision for user space to consume the event.
1795 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1796 device_can_wakeup(mmc_dev(host
)))
1797 pm_wakeup_event(mmc_dev(host
), 5000);
1799 host
->detect_change
= 1;
1800 mmc_schedule_delayed_work(&host
->detect
, delay
);
1804 * mmc_detect_change - process change of state on a MMC socket
1805 * @host: host which changed state.
1806 * @delay: optional delay to wait before detection (jiffies)
1808 * MMC drivers should call this when they detect a card has been
1809 * inserted or removed. The MMC layer will confirm that any
1810 * present card is still functional, and initialize any newly
1813 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1815 _mmc_detect_change(host
, delay
, true);
1817 EXPORT_SYMBOL(mmc_detect_change
);
1819 void mmc_init_erase(struct mmc_card
*card
)
1823 if (is_power_of_2(card
->erase_size
))
1824 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1826 card
->erase_shift
= 0;
1829 * It is possible to erase an arbitrarily large area of an SD or MMC
1830 * card. That is not desirable because it can take a long time
1831 * (minutes) potentially delaying more important I/O, and also the
1832 * timeout calculations become increasingly hugely over-estimated.
1833 * Consequently, 'pref_erase' is defined as a guide to limit erases
1834 * to that size and alignment.
1836 * For SD cards that define Allocation Unit size, limit erases to one
1837 * Allocation Unit at a time.
1838 * For MMC, have a stab at ai good value and for modern cards it will
1839 * end up being 4MiB. Note that if the value is too small, it can end
1840 * up taking longer to erase. Also note, erase_size is already set to
1841 * High Capacity Erase Size if available when this function is called.
1843 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1844 card
->pref_erase
= card
->ssr
.au
;
1845 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1846 } else if (card
->erase_size
) {
1847 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1849 card
->pref_erase
= 512 * 1024 / 512;
1851 card
->pref_erase
= 1024 * 1024 / 512;
1853 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1855 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1856 if (card
->pref_erase
< card
->erase_size
)
1857 card
->pref_erase
= card
->erase_size
;
1859 sz
= card
->pref_erase
% card
->erase_size
;
1861 card
->pref_erase
+= card
->erase_size
- sz
;
1864 card
->pref_erase
= 0;
1867 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1868 unsigned int arg
, unsigned int qty
)
1870 unsigned int erase_timeout
;
1872 if (arg
== MMC_DISCARD_ARG
||
1873 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1874 erase_timeout
= card
->ext_csd
.trim_timeout
;
1875 } else if (card
->ext_csd
.erase_group_def
& 1) {
1876 /* High Capacity Erase Group Size uses HC timeouts */
1877 if (arg
== MMC_TRIM_ARG
)
1878 erase_timeout
= card
->ext_csd
.trim_timeout
;
1880 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1882 /* CSD Erase Group Size uses write timeout */
1883 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1884 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1885 unsigned int timeout_us
;
1887 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1888 if (card
->csd
.taac_ns
< 1000000)
1889 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1891 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1894 * ios.clock is only a target. The real clock rate might be
1895 * less but not that much less, so fudge it by multiplying by 2.
1898 timeout_us
+= (timeout_clks
* 1000) /
1899 (card
->host
->ios
.clock
/ 1000);
1901 erase_timeout
= timeout_us
/ 1000;
1904 * Theoretically, the calculation could underflow so round up
1905 * to 1ms in that case.
1911 /* Multiplier for secure operations */
1912 if (arg
& MMC_SECURE_ARGS
) {
1913 if (arg
== MMC_SECURE_ERASE_ARG
)
1914 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1916 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1919 erase_timeout
*= qty
;
1922 * Ensure at least a 1 second timeout for SPI as per
1923 * 'mmc_set_data_timeout()'
1925 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1926 erase_timeout
= 1000;
1928 return erase_timeout
;
1931 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1935 unsigned int erase_timeout
;
1937 if (card
->ssr
.erase_timeout
) {
1938 /* Erase timeout specified in SD Status Register (SSR) */
1939 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1940 card
->ssr
.erase_offset
;
1943 * Erase timeout not specified in SD Status Register (SSR) so
1944 * use 250ms per write block.
1946 erase_timeout
= 250 * qty
;
1949 /* Must not be less than 1 second */
1950 if (erase_timeout
< 1000)
1951 erase_timeout
= 1000;
1953 return erase_timeout
;
1956 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1960 if (mmc_card_sd(card
))
1961 return mmc_sd_erase_timeout(card
, arg
, qty
);
1963 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1966 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1967 unsigned int to
, unsigned int arg
)
1969 struct mmc_command cmd
= {};
1970 unsigned int qty
= 0, busy_timeout
= 0;
1971 bool use_r1b_resp
= false;
1972 unsigned long timeout
;
1973 int loop_udelay
=64, udelay_max
=32768;
1976 mmc_retune_hold(card
->host
);
1979 * qty is used to calculate the erase timeout which depends on how many
1980 * erase groups (or allocation units in SD terminology) are affected.
1981 * We count erasing part of an erase group as one erase group.
1982 * For SD, the allocation units are always a power of 2. For MMC, the
1983 * erase group size is almost certainly also power of 2, but it does not
1984 * seem to insist on that in the JEDEC standard, so we fall back to
1985 * division in that case. SD may not specify an allocation unit size,
1986 * in which case the timeout is based on the number of write blocks.
1988 * Note that the timeout for secure trim 2 will only be correct if the
1989 * number of erase groups specified is the same as the total of all
1990 * preceding secure trim 1 commands. Since the power may have been
1991 * lost since the secure trim 1 commands occurred, it is generally
1992 * impossible to calculate the secure trim 2 timeout correctly.
1994 if (card
->erase_shift
)
1995 qty
+= ((to
>> card
->erase_shift
) -
1996 (from
>> card
->erase_shift
)) + 1;
1997 else if (mmc_card_sd(card
))
1998 qty
+= to
- from
+ 1;
2000 qty
+= ((to
/ card
->erase_size
) -
2001 (from
/ card
->erase_size
)) + 1;
2003 if (!mmc_card_blockaddr(card
)) {
2008 if (mmc_card_sd(card
))
2009 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2011 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2013 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2014 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2016 pr_err("mmc_erase: group start error %d, "
2017 "status %#x\n", err
, cmd
.resp
[0]);
2022 memset(&cmd
, 0, sizeof(struct mmc_command
));
2023 if (mmc_card_sd(card
))
2024 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2026 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2028 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2029 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2031 pr_err("mmc_erase: group end error %d, status %#x\n",
2037 memset(&cmd
, 0, sizeof(struct mmc_command
));
2038 cmd
.opcode
= MMC_ERASE
;
2040 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2042 * If the host controller supports busy signalling and the timeout for
2043 * the erase operation does not exceed the max_busy_timeout, we should
2044 * use R1B response. Or we need to prevent the host from doing hw busy
2045 * detection, which is done by converting to a R1 response instead.
2046 * Note, some hosts requires R1B, which also means they are on their own
2047 * when it comes to deal with the busy timeout.
2049 if (!(card
->host
->caps
& MMC_CAP_NEED_RSP_BUSY
) &&
2050 card
->host
->max_busy_timeout
&&
2051 busy_timeout
> card
->host
->max_busy_timeout
) {
2052 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2054 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2055 cmd
.busy_timeout
= busy_timeout
;
2056 use_r1b_resp
= true;
2059 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2061 pr_err("mmc_erase: erase error %d, status %#x\n",
2067 if (mmc_host_is_spi(card
->host
))
2071 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2074 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2077 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2079 memset(&cmd
, 0, sizeof(struct mmc_command
));
2080 cmd
.opcode
= MMC_SEND_STATUS
;
2081 cmd
.arg
= card
->rca
<< 16;
2082 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2083 /* Do not retry else we can't see errors */
2084 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2085 if (err
|| R1_STATUS(cmd
.resp
[0])) {
2086 pr_err("error %d requesting status %#x\n",
2092 /* Timeout if the device never becomes ready for data and
2093 * never leaves the program state.
2095 if (time_after(jiffies
, timeout
)) {
2096 pr_err("%s: Card stuck in programming state! %s\n",
2097 mmc_hostname(card
->host
), __func__
);
2101 if ((cmd
.resp
[0] & R1_READY_FOR_DATA
) &&
2102 R1_CURRENT_STATE(cmd
.resp
[0]) != R1_STATE_PRG
)
2105 usleep_range(loop_udelay
, loop_udelay
*2);
2106 if (loop_udelay
< udelay_max
)
2111 mmc_retune_release(card
->host
);
2115 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2120 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2123 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2124 * to align the erase size efficiently.
2126 if (is_power_of_2(card
->erase_size
)) {
2127 unsigned int temp
= from_new
;
2129 from_new
= round_up(temp
, card
->erase_size
);
2130 rem
= from_new
- temp
;
2137 nr_new
= round_down(nr_new
, card
->erase_size
);
2139 rem
= from_new
% card
->erase_size
;
2141 rem
= card
->erase_size
- rem
;
2149 rem
= nr_new
% card
->erase_size
;
2157 *to
= from_new
+ nr_new
;
2164 * mmc_erase - erase sectors.
2165 * @card: card to erase
2166 * @from: first sector to erase
2167 * @nr: number of sectors to erase
2168 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2170 * Caller must claim host before calling this function.
2172 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2175 unsigned int rem
, to
= from
+ nr
;
2178 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2179 !(card
->csd
.cmdclass
& CCC_ERASE
))
2182 if (!card
->erase_size
)
2185 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2188 if ((arg
& MMC_SECURE_ARGS
) &&
2189 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2192 if ((arg
& MMC_TRIM_ARGS
) &&
2193 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2196 if (arg
== MMC_SECURE_ERASE_ARG
) {
2197 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2201 if (arg
== MMC_ERASE_ARG
)
2202 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2210 /* 'from' and 'to' are inclusive */
2214 * Special case where only one erase-group fits in the timeout budget:
2215 * If the region crosses an erase-group boundary on this particular
2216 * case, we will be trimming more than one erase-group which, does not
2217 * fit in the timeout budget of the controller, so we need to split it
2218 * and call mmc_do_erase() twice if necessary. This special case is
2219 * identified by the card->eg_boundary flag.
2221 rem
= card
->erase_size
- (from
% card
->erase_size
);
2222 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2223 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2225 if ((err
) || (to
<= from
))
2229 return mmc_do_erase(card
, from
, to
, arg
);
2231 EXPORT_SYMBOL(mmc_erase
);
2233 int mmc_can_erase(struct mmc_card
*card
)
2235 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2236 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2240 EXPORT_SYMBOL(mmc_can_erase
);
2242 int mmc_can_trim(struct mmc_card
*card
)
2244 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2245 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2249 EXPORT_SYMBOL(mmc_can_trim
);
2251 int mmc_can_discard(struct mmc_card
*card
)
2254 * As there's no way to detect the discard support bit at v4.5
2255 * use the s/w feature support filed.
2257 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2261 EXPORT_SYMBOL(mmc_can_discard
);
2263 int mmc_can_sanitize(struct mmc_card
*card
)
2265 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2267 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2271 EXPORT_SYMBOL(mmc_can_sanitize
);
2273 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2275 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2276 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2280 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2282 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2285 if (!card
->erase_size
)
2287 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2291 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2293 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2296 struct mmc_host
*host
= card
->host
;
2297 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2298 unsigned int last_timeout
= 0;
2299 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2300 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2302 if (card
->erase_shift
) {
2303 max_qty
= UINT_MAX
>> card
->erase_shift
;
2304 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2305 } else if (mmc_card_sd(card
)) {
2307 min_qty
= card
->pref_erase
;
2309 max_qty
= UINT_MAX
/ card
->erase_size
;
2310 min_qty
= card
->pref_erase
/ card
->erase_size
;
2314 * We should not only use 'host->max_busy_timeout' as the limitation
2315 * when deciding the max discard sectors. We should set a balance value
2316 * to improve the erase speed, and it can not get too long timeout at
2319 * Here we set 'card->pref_erase' as the minimal discard sectors no
2320 * matter what size of 'host->max_busy_timeout', but if the
2321 * 'host->max_busy_timeout' is large enough for more discard sectors,
2322 * then we can continue to increase the max discard sectors until we
2323 * get a balance value. In cases when the 'host->max_busy_timeout'
2324 * isn't specified, use the default max erase timeout.
2328 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2329 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2331 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2334 if (timeout
< last_timeout
)
2336 last_timeout
= timeout
;
2346 * When specifying a sector range to trim, chances are we might cross
2347 * an erase-group boundary even if the amount of sectors is less than
2349 * If we can only fit one erase-group in the controller timeout budget,
2350 * we have to care that erase-group boundaries are not crossed by a
2351 * single trim operation. We flag that special case with "eg_boundary".
2352 * In all other cases we can just decrement qty and pretend that we
2353 * always touch (qty + 1) erase-groups as a simple optimization.
2356 card
->eg_boundary
= 1;
2360 /* Convert qty to sectors */
2361 if (card
->erase_shift
)
2362 max_discard
= qty
<< card
->erase_shift
;
2363 else if (mmc_card_sd(card
))
2364 max_discard
= qty
+ 1;
2366 max_discard
= qty
* card
->erase_size
;
2371 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2373 struct mmc_host
*host
= card
->host
;
2374 unsigned int max_discard
, max_trim
;
2377 * Without erase_group_def set, MMC erase timeout depends on clock
2378 * frequence which can change. In that case, the best choice is
2379 * just the preferred erase size.
2381 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2382 return card
->pref_erase
;
2384 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2385 if (mmc_can_trim(card
)) {
2386 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2387 if (max_trim
< max_discard
|| max_discard
== 0)
2388 max_discard
= max_trim
;
2389 } else if (max_discard
< card
->erase_size
) {
2392 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2393 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2394 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2397 EXPORT_SYMBOL(mmc_calc_max_discard
);
2399 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2401 return card
? mmc_card_blockaddr(card
) : false;
2403 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2405 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2407 struct mmc_command cmd
= {};
2409 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2410 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2413 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2415 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2416 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2418 EXPORT_SYMBOL(mmc_set_blocklen
);
2420 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2423 struct mmc_command cmd
= {};
2425 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2426 cmd
.arg
= blockcount
& 0x0000FFFF;
2429 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2430 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2432 EXPORT_SYMBOL(mmc_set_blockcount
);
2434 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2436 mmc_pwrseq_reset(host
);
2438 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2440 host
->ops
->hw_reset(host
);
2443 int mmc_hw_reset(struct mmc_host
*host
)
2451 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->hw_reset
) {
2456 ret
= host
->bus_ops
->hw_reset(host
);
2460 pr_warn("%s: tried to HW reset card, got error %d\n",
2461 mmc_hostname(host
), ret
);
2465 EXPORT_SYMBOL(mmc_hw_reset
);
2467 int mmc_sw_reset(struct mmc_host
*host
)
2475 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->sw_reset
) {
2480 ret
= host
->bus_ops
->sw_reset(host
);
2484 pr_warn("%s: tried to SW reset card, got error %d\n",
2485 mmc_hostname(host
), ret
);
2489 EXPORT_SYMBOL(mmc_sw_reset
);
2491 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2493 host
->f_init
= freq
;
2495 pr_debug("%s: %s: trying to init card at %u Hz\n",
2496 mmc_hostname(host
), __func__
, host
->f_init
);
2498 mmc_power_up(host
, host
->ocr_avail
);
2501 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2502 * do a hardware reset if possible.
2504 mmc_hw_reset_for_init(host
);
2507 * sdio_reset sends CMD52 to reset card. Since we do not know
2508 * if the card is being re-initialized, just send it. CMD52
2509 * should be ignored by SD/eMMC cards.
2510 * Skip it if we already know that we do not support SDIO commands
2512 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2517 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2518 mmc_send_if_cond(host
, host
->ocr_avail
);
2520 /* Order's important: probe SDIO, then SD, then MMC */
2521 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2522 if (!mmc_attach_sdio(host
))
2525 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2526 if (!mmc_attach_sd(host
))
2529 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2530 if (!mmc_attach_mmc(host
))
2533 mmc_power_off(host
);
2537 int _mmc_detect_card_removed(struct mmc_host
*host
)
2541 if (!host
->card
|| mmc_card_removed(host
->card
))
2544 ret
= host
->bus_ops
->alive(host
);
2547 * Card detect status and alive check may be out of sync if card is
2548 * removed slowly, when card detect switch changes while card/slot
2549 * pads are still contacted in hardware (refer to "SD Card Mechanical
2550 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2551 * detect work 200ms later for this case.
2553 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2554 mmc_detect_change(host
, msecs_to_jiffies(200));
2555 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2559 mmc_card_set_removed(host
->card
);
2560 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2566 int mmc_detect_card_removed(struct mmc_host
*host
)
2568 struct mmc_card
*card
= host
->card
;
2571 WARN_ON(!host
->claimed
);
2576 if (!mmc_card_is_removable(host
))
2579 ret
= mmc_card_removed(card
);
2581 * The card will be considered unchanged unless we have been asked to
2582 * detect a change or host requires polling to provide card detection.
2584 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2587 host
->detect_change
= 0;
2589 ret
= _mmc_detect_card_removed(host
);
2590 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2592 * Schedule a detect work as soon as possible to let a
2593 * rescan handle the card removal.
2595 cancel_delayed_work(&host
->detect
);
2596 _mmc_detect_change(host
, 0, false);
2602 EXPORT_SYMBOL(mmc_detect_card_removed
);
2604 void mmc_rescan(struct work_struct
*work
)
2606 struct mmc_host
*host
=
2607 container_of(work
, struct mmc_host
, detect
.work
);
2610 if (host
->rescan_disable
)
2613 /* If there is a non-removable card registered, only scan once */
2614 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2616 host
->rescan_entered
= 1;
2618 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2619 mmc_claim_host(host
);
2620 host
->ops
->card_event(host
);
2621 mmc_release_host(host
);
2622 host
->trigger_card_event
= false;
2628 * if there is a _removable_ card registered, check whether it is
2631 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2632 host
->bus_ops
->detect(host
);
2634 host
->detect_change
= 0;
2637 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2638 * the card is no longer present.
2643 /* if there still is a card present, stop here */
2644 if (host
->bus_ops
!= NULL
) {
2650 * Only we can add a new handler, so it's safe to
2651 * release the lock here.
2655 mmc_claim_host(host
);
2656 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2657 host
->ops
->get_cd(host
) == 0) {
2658 mmc_power_off(host
);
2659 mmc_release_host(host
);
2663 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2664 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2666 if (freqs
[i
] <= host
->f_min
)
2669 mmc_release_host(host
);
2672 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2673 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2676 void mmc_start_host(struct mmc_host
*host
)
2678 host
->f_init
= max(freqs
[0], host
->f_min
);
2679 host
->rescan_disable
= 0;
2680 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2682 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2683 mmc_claim_host(host
);
2684 mmc_power_up(host
, host
->ocr_avail
);
2685 mmc_release_host(host
);
2688 mmc_gpiod_request_cd_irq(host
);
2689 _mmc_detect_change(host
, 0, false);
2692 void mmc_stop_host(struct mmc_host
*host
)
2694 if (host
->slot
.cd_irq
>= 0) {
2695 mmc_gpio_set_cd_wake(host
, false);
2696 disable_irq(host
->slot
.cd_irq
);
2699 host
->rescan_disable
= 1;
2700 cancel_delayed_work_sync(&host
->detect
);
2702 /* clear pm flags now and let card drivers set them as needed */
2706 if (host
->bus_ops
&& !host
->bus_dead
) {
2707 /* Calling bus_ops->remove() with a claimed host can deadlock */
2708 host
->bus_ops
->remove(host
);
2709 mmc_claim_host(host
);
2710 mmc_detach_bus(host
);
2711 mmc_power_off(host
);
2712 mmc_release_host(host
);
2718 mmc_claim_host(host
);
2719 mmc_power_off(host
);
2720 mmc_release_host(host
);
2723 #ifdef CONFIG_PM_SLEEP
2724 /* Do the card removal on suspend if card is assumed removeable
2725 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2728 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2729 unsigned long mode
, void *unused
)
2731 struct mmc_host
*host
= container_of(
2732 notify_block
, struct mmc_host
, pm_notify
);
2733 unsigned long flags
;
2737 case PM_HIBERNATION_PREPARE
:
2738 case PM_SUSPEND_PREPARE
:
2739 case PM_RESTORE_PREPARE
:
2740 spin_lock_irqsave(&host
->lock
, flags
);
2741 host
->rescan_disable
= 1;
2742 spin_unlock_irqrestore(&host
->lock
, flags
);
2743 cancel_delayed_work_sync(&host
->detect
);
2748 /* Validate prerequisites for suspend */
2749 if (host
->bus_ops
->pre_suspend
)
2750 err
= host
->bus_ops
->pre_suspend(host
);
2754 if (!mmc_card_is_removable(host
)) {
2755 dev_warn(mmc_dev(host
),
2756 "pre_suspend failed for non-removable host: "
2758 /* Avoid removing non-removable hosts */
2762 /* Calling bus_ops->remove() with a claimed host can deadlock */
2763 host
->bus_ops
->remove(host
);
2764 mmc_claim_host(host
);
2765 mmc_detach_bus(host
);
2766 mmc_power_off(host
);
2767 mmc_release_host(host
);
2771 case PM_POST_SUSPEND
:
2772 case PM_POST_HIBERNATION
:
2773 case PM_POST_RESTORE
:
2775 spin_lock_irqsave(&host
->lock
, flags
);
2776 host
->rescan_disable
= 0;
2777 spin_unlock_irqrestore(&host
->lock
, flags
);
2778 _mmc_detect_change(host
, 0, false);
2785 void mmc_register_pm_notifier(struct mmc_host
*host
)
2787 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2788 register_pm_notifier(&host
->pm_notify
);
2791 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2793 unregister_pm_notifier(&host
->pm_notify
);
2797 static int __init
mmc_init(void)
2801 ret
= mmc_register_bus();
2805 ret
= mmc_register_host_class();
2807 goto unregister_bus
;
2809 ret
= sdio_register_bus();
2811 goto unregister_host_class
;
2815 unregister_host_class
:
2816 mmc_unregister_host_class();
2818 mmc_unregister_bus();
2822 static void __exit
mmc_exit(void)
2824 sdio_unregister_bus();
2825 mmc_unregister_host_class();
2826 mmc_unregister_bus();
2829 subsys_initcall(mmc_init
);
2830 module_exit(mmc_exit
);
2832 MODULE_LICENSE("GPL");