Linux 4.19.133
[linux/fpc-iii.git] / drivers / mmc / host / cqhci.c
blob2c5a6e7aadc01123f5815cfbe80030b3edf2fa57
1 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
13 #include <linux/delay.h>
14 #include <linux/highmem.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/slab.h>
20 #include <linux/scatterlist.h>
21 #include <linux/platform_device.h>
22 #include <linux/ktime.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
28 #include "cqhci.h"
30 #define DCMD_SLOT 31
31 #define NUM_SLOTS 32
33 struct cqhci_slot {
34 struct mmc_request *mrq;
35 unsigned int flags;
36 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
37 #define CQHCI_COMPLETED BIT(1)
38 #define CQHCI_HOST_CRC BIT(2)
39 #define CQHCI_HOST_TIMEOUT BIT(3)
40 #define CQHCI_HOST_OTHER BIT(4)
43 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
45 return cq_host->desc_base + (tag * cq_host->slot_sz);
48 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
50 u8 *desc = get_desc(cq_host, tag);
52 return desc + cq_host->task_desc_len;
55 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
57 return cq_host->trans_desc_dma_base +
58 (cq_host->mmc->max_segs * tag *
59 cq_host->trans_desc_len);
62 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
64 return cq_host->trans_desc_base +
65 (cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
68 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
70 u8 *link_temp;
71 dma_addr_t trans_temp;
73 link_temp = get_link_desc(cq_host, tag);
74 trans_temp = get_trans_desc_dma(cq_host, tag);
76 memset(link_temp, 0, cq_host->link_desc_len);
77 if (cq_host->link_desc_len > 8)
78 *(link_temp + 8) = 0;
80 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
81 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
82 return;
85 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
87 if (cq_host->dma64) {
88 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
90 data_addr[0] = cpu_to_le64(trans_temp);
91 } else {
92 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
94 data_addr[0] = cpu_to_le32(trans_temp);
98 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
100 cqhci_writel(cq_host, set, CQHCI_ISTE);
101 cqhci_writel(cq_host, set, CQHCI_ISGE);
104 #define DRV_NAME "cqhci"
106 #define CQHCI_DUMP(f, x...) \
107 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
109 static void cqhci_dumpregs(struct cqhci_host *cq_host)
111 struct mmc_host *mmc = cq_host->mmc;
113 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
115 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
116 cqhci_readl(cq_host, CQHCI_CAP),
117 cqhci_readl(cq_host, CQHCI_VER));
118 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
119 cqhci_readl(cq_host, CQHCI_CFG),
120 cqhci_readl(cq_host, CQHCI_CTL));
121 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
122 cqhci_readl(cq_host, CQHCI_IS),
123 cqhci_readl(cq_host, CQHCI_ISTE));
124 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
125 cqhci_readl(cq_host, CQHCI_ISGE),
126 cqhci_readl(cq_host, CQHCI_IC));
127 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
128 cqhci_readl(cq_host, CQHCI_TDLBA),
129 cqhci_readl(cq_host, CQHCI_TDLBAU));
130 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
131 cqhci_readl(cq_host, CQHCI_TDBR),
132 cqhci_readl(cq_host, CQHCI_TCN));
133 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
134 cqhci_readl(cq_host, CQHCI_DQS),
135 cqhci_readl(cq_host, CQHCI_DPT));
136 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
137 cqhci_readl(cq_host, CQHCI_TCLR),
138 cqhci_readl(cq_host, CQHCI_SSC1));
139 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
140 cqhci_readl(cq_host, CQHCI_SSC2),
141 cqhci_readl(cq_host, CQHCI_CRDCT));
142 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
143 cqhci_readl(cq_host, CQHCI_RMEM),
144 cqhci_readl(cq_host, CQHCI_TERRI));
145 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
146 cqhci_readl(cq_host, CQHCI_CRI),
147 cqhci_readl(cq_host, CQHCI_CRA));
149 if (cq_host->ops->dumpregs)
150 cq_host->ops->dumpregs(mmc);
151 else
152 CQHCI_DUMP(": ===========================================\n");
156 * The allocated descriptor table for task, link & transfer descritors
157 * looks like:
158 * |----------|
159 * |task desc | |->|----------|
160 * |----------| | |trans desc|
161 * |link desc-|->| |----------|
162 * |----------| .
163 * . .
164 * no. of slots max-segs
165 * . |----------|
166 * |----------|
167 * The idea here is to create the [task+trans] table and mark & point the
168 * link desc to the transfer desc table on a per slot basis.
170 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
172 int i = 0;
174 /* task descriptor can be 64/128 bit irrespective of arch */
175 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
176 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
177 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
178 cq_host->task_desc_len = 16;
179 } else {
180 cq_host->task_desc_len = 8;
184 * 96 bits length of transfer desc instead of 128 bits which means
185 * ADMA would expect next valid descriptor at the 96th bit
186 * or 128th bit
188 if (cq_host->dma64) {
189 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
190 cq_host->trans_desc_len = 12;
191 else
192 cq_host->trans_desc_len = 16;
193 cq_host->link_desc_len = 16;
194 } else {
195 cq_host->trans_desc_len = 8;
196 cq_host->link_desc_len = 8;
199 /* total size of a slot: 1 task & 1 transfer (link) */
200 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
202 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
204 cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
205 cq_host->mmc->cqe_qdepth;
207 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
208 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
209 cq_host->slot_sz);
212 * allocate a dma-mapped chunk of memory for the descriptors
213 * allocate a dma-mapped chunk of memory for link descriptors
214 * setup each link-desc memory offset per slot-number to
215 * the descriptor table.
217 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
218 cq_host->desc_size,
219 &cq_host->desc_dma_base,
220 GFP_KERNEL);
221 if (!cq_host->desc_base)
222 return -ENOMEM;
224 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
225 cq_host->data_size,
226 &cq_host->trans_desc_dma_base,
227 GFP_KERNEL);
228 if (!cq_host->trans_desc_base) {
229 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
230 cq_host->desc_base,
231 cq_host->desc_dma_base);
232 cq_host->desc_base = NULL;
233 cq_host->desc_dma_base = 0;
234 return -ENOMEM;
237 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
238 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
239 (unsigned long long)cq_host->desc_dma_base,
240 (unsigned long long)cq_host->trans_desc_dma_base);
242 for (; i < (cq_host->num_slots); i++)
243 setup_trans_desc(cq_host, i);
245 return 0;
248 static void __cqhci_enable(struct cqhci_host *cq_host)
250 struct mmc_host *mmc = cq_host->mmc;
251 u32 cqcfg;
253 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
255 /* Configuration must not be changed while enabled */
256 if (cqcfg & CQHCI_ENABLE) {
257 cqcfg &= ~CQHCI_ENABLE;
258 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
261 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
263 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
264 cqcfg |= CQHCI_DCMD;
266 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
267 cqcfg |= CQHCI_TASK_DESC_SZ;
269 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
271 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
272 CQHCI_TDLBA);
273 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
274 CQHCI_TDLBAU);
276 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
278 cqhci_set_irqs(cq_host, 0);
280 cqcfg |= CQHCI_ENABLE;
282 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
284 mmc->cqe_on = true;
286 if (cq_host->ops->enable)
287 cq_host->ops->enable(mmc);
289 /* Ensure all writes are done before interrupts are enabled */
290 wmb();
292 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
294 cq_host->activated = true;
297 static void __cqhci_disable(struct cqhci_host *cq_host)
299 u32 cqcfg;
301 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
302 cqcfg &= ~CQHCI_ENABLE;
303 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
305 cq_host->mmc->cqe_on = false;
307 cq_host->activated = false;
310 int cqhci_suspend(struct mmc_host *mmc)
312 struct cqhci_host *cq_host = mmc->cqe_private;
314 if (cq_host->enabled)
315 __cqhci_disable(cq_host);
317 return 0;
319 EXPORT_SYMBOL(cqhci_suspend);
321 int cqhci_resume(struct mmc_host *mmc)
323 /* Re-enable is done upon first request */
324 return 0;
326 EXPORT_SYMBOL(cqhci_resume);
328 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
330 struct cqhci_host *cq_host = mmc->cqe_private;
331 int err;
333 if (cq_host->enabled)
334 return 0;
336 cq_host->rca = card->rca;
338 err = cqhci_host_alloc_tdl(cq_host);
339 if (err)
340 return err;
342 __cqhci_enable(cq_host);
344 cq_host->enabled = true;
346 #ifdef DEBUG
347 cqhci_dumpregs(cq_host);
348 #endif
349 return 0;
352 /* CQHCI is idle and should halt immediately, so set a small timeout */
353 #define CQHCI_OFF_TIMEOUT 100
355 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
357 return cqhci_readl(cq_host, CQHCI_CTL);
360 static void cqhci_off(struct mmc_host *mmc)
362 struct cqhci_host *cq_host = mmc->cqe_private;
363 u32 reg;
364 int err;
366 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
367 return;
369 if (cq_host->ops->disable)
370 cq_host->ops->disable(mmc, false);
372 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
374 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
375 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
376 if (err < 0)
377 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
378 else
379 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
381 mmc->cqe_on = false;
384 static void cqhci_disable(struct mmc_host *mmc)
386 struct cqhci_host *cq_host = mmc->cqe_private;
388 if (!cq_host->enabled)
389 return;
391 cqhci_off(mmc);
393 __cqhci_disable(cq_host);
395 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
396 cq_host->trans_desc_base,
397 cq_host->trans_desc_dma_base);
399 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
400 cq_host->desc_base,
401 cq_host->desc_dma_base);
403 cq_host->trans_desc_base = NULL;
404 cq_host->desc_base = NULL;
406 cq_host->enabled = false;
409 static void cqhci_prep_task_desc(struct mmc_request *mrq,
410 u64 *data, bool intr)
412 u32 req_flags = mrq->data->flags;
414 *data = CQHCI_VALID(1) |
415 CQHCI_END(1) |
416 CQHCI_INT(intr) |
417 CQHCI_ACT(0x5) |
418 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
419 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
420 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
421 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
422 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
423 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
424 CQHCI_BLK_COUNT(mrq->data->blocks) |
425 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
427 pr_debug("%s: cqhci: tag %d task descriptor 0x016%llx\n",
428 mmc_hostname(mrq->host), mrq->tag, (unsigned long long)*data);
431 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
433 int sg_count;
434 struct mmc_data *data = mrq->data;
436 if (!data)
437 return -EINVAL;
439 sg_count = dma_map_sg(mmc_dev(host), data->sg,
440 data->sg_len,
441 (data->flags & MMC_DATA_WRITE) ?
442 DMA_TO_DEVICE : DMA_FROM_DEVICE);
443 if (!sg_count) {
444 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
445 return -ENOMEM;
448 return sg_count;
451 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
452 bool dma64)
454 __le32 *attr = (__le32 __force *)desc;
456 *attr = (CQHCI_VALID(1) |
457 CQHCI_END(end ? 1 : 0) |
458 CQHCI_INT(0) |
459 CQHCI_ACT(0x4) |
460 CQHCI_DAT_LENGTH(len));
462 if (dma64) {
463 __le64 *dataddr = (__le64 __force *)(desc + 4);
465 dataddr[0] = cpu_to_le64(addr);
466 } else {
467 __le32 *dataddr = (__le32 __force *)(desc + 4);
469 dataddr[0] = cpu_to_le32(addr);
473 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
474 struct cqhci_host *cq_host, int tag)
476 struct mmc_data *data = mrq->data;
477 int i, sg_count, len;
478 bool end = false;
479 bool dma64 = cq_host->dma64;
480 dma_addr_t addr;
481 u8 *desc;
482 struct scatterlist *sg;
484 sg_count = cqhci_dma_map(mrq->host, mrq);
485 if (sg_count < 0) {
486 pr_err("%s: %s: unable to map sg lists, %d\n",
487 mmc_hostname(mrq->host), __func__, sg_count);
488 return sg_count;
491 desc = get_trans_desc(cq_host, tag);
493 for_each_sg(data->sg, sg, sg_count, i) {
494 addr = sg_dma_address(sg);
495 len = sg_dma_len(sg);
497 if ((i+1) == sg_count)
498 end = true;
499 cqhci_set_tran_desc(desc, addr, len, end, dma64);
500 desc += cq_host->trans_desc_len;
503 return 0;
506 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
507 struct mmc_request *mrq)
509 u64 *task_desc = NULL;
510 u64 data = 0;
511 u8 resp_type;
512 u8 *desc;
513 __le64 *dataddr;
514 struct cqhci_host *cq_host = mmc->cqe_private;
515 u8 timing;
517 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
518 resp_type = 0x0;
519 timing = 0x1;
520 } else {
521 if (mrq->cmd->flags & MMC_RSP_R1B) {
522 resp_type = 0x3;
523 timing = 0x0;
524 } else {
525 resp_type = 0x2;
526 timing = 0x1;
530 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
531 memset(task_desc, 0, cq_host->task_desc_len);
532 data |= (CQHCI_VALID(1) |
533 CQHCI_END(1) |
534 CQHCI_INT(1) |
535 CQHCI_QBAR(1) |
536 CQHCI_ACT(0x5) |
537 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
538 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
539 *task_desc |= data;
540 desc = (u8 *)task_desc;
541 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
542 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
543 dataddr = (__le64 __force *)(desc + 4);
544 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
548 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
550 struct mmc_data *data = mrq->data;
552 if (data) {
553 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
554 (data->flags & MMC_DATA_READ) ?
555 DMA_FROM_DEVICE : DMA_TO_DEVICE);
559 static inline int cqhci_tag(struct mmc_request *mrq)
561 return mrq->cmd ? DCMD_SLOT : mrq->tag;
564 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
566 int err = 0;
567 u64 data = 0;
568 u64 *task_desc = NULL;
569 int tag = cqhci_tag(mrq);
570 struct cqhci_host *cq_host = mmc->cqe_private;
571 unsigned long flags;
573 if (!cq_host->enabled) {
574 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
575 return -EINVAL;
578 /* First request after resume has to re-enable */
579 if (!cq_host->activated)
580 __cqhci_enable(cq_host);
582 if (!mmc->cqe_on) {
583 cqhci_writel(cq_host, 0, CQHCI_CTL);
584 mmc->cqe_on = true;
585 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
586 if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
587 pr_err("%s: cqhci: CQE failed to exit halt state\n",
588 mmc_hostname(mmc));
590 if (cq_host->ops->enable)
591 cq_host->ops->enable(mmc);
594 if (mrq->data) {
595 task_desc = (__le64 __force *)get_desc(cq_host, tag);
596 cqhci_prep_task_desc(mrq, &data, 1);
597 *task_desc = cpu_to_le64(data);
598 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
599 if (err) {
600 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
601 mmc_hostname(mmc), err);
602 return err;
604 } else {
605 cqhci_prep_dcmd_desc(mmc, mrq);
608 spin_lock_irqsave(&cq_host->lock, flags);
610 if (cq_host->recovery_halt) {
611 err = -EBUSY;
612 goto out_unlock;
615 cq_host->slot[tag].mrq = mrq;
616 cq_host->slot[tag].flags = 0;
618 cq_host->qcnt += 1;
619 /* Make sure descriptors are ready before ringing the doorbell */
620 wmb();
621 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
622 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
623 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
624 mmc_hostname(mmc), tag);
625 out_unlock:
626 spin_unlock_irqrestore(&cq_host->lock, flags);
628 if (err)
629 cqhci_post_req(mmc, mrq);
631 return err;
634 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
635 bool notify)
637 struct cqhci_host *cq_host = mmc->cqe_private;
639 if (!cq_host->recovery_halt) {
640 cq_host->recovery_halt = true;
641 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
642 wake_up(&cq_host->wait_queue);
643 if (notify && mrq->recovery_notifier)
644 mrq->recovery_notifier(mrq);
648 static unsigned int cqhci_error_flags(int error1, int error2)
650 int error = error1 ? error1 : error2;
652 switch (error) {
653 case -EILSEQ:
654 return CQHCI_HOST_CRC;
655 case -ETIMEDOUT:
656 return CQHCI_HOST_TIMEOUT;
657 default:
658 return CQHCI_HOST_OTHER;
662 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
663 int data_error)
665 struct cqhci_host *cq_host = mmc->cqe_private;
666 struct cqhci_slot *slot;
667 u32 terri;
668 int tag;
670 spin_lock(&cq_host->lock);
672 terri = cqhci_readl(cq_host, CQHCI_TERRI);
674 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
675 mmc_hostname(mmc), status, cmd_error, data_error, terri);
677 /* Forget about errors when recovery has already been triggered */
678 if (cq_host->recovery_halt)
679 goto out_unlock;
681 if (!cq_host->qcnt) {
682 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
683 mmc_hostname(mmc), status, cmd_error, data_error,
684 terri);
685 goto out_unlock;
688 if (CQHCI_TERRI_C_VALID(terri)) {
689 tag = CQHCI_TERRI_C_TASK(terri);
690 slot = &cq_host->slot[tag];
691 if (slot->mrq) {
692 slot->flags = cqhci_error_flags(cmd_error, data_error);
693 cqhci_recovery_needed(mmc, slot->mrq, true);
697 if (CQHCI_TERRI_D_VALID(terri)) {
698 tag = CQHCI_TERRI_D_TASK(terri);
699 slot = &cq_host->slot[tag];
700 if (slot->mrq) {
701 slot->flags = cqhci_error_flags(data_error, cmd_error);
702 cqhci_recovery_needed(mmc, slot->mrq, true);
706 if (!cq_host->recovery_halt) {
708 * The only way to guarantee forward progress is to mark at
709 * least one task in error, so if none is indicated, pick one.
711 for (tag = 0; tag < NUM_SLOTS; tag++) {
712 slot = &cq_host->slot[tag];
713 if (!slot->mrq)
714 continue;
715 slot->flags = cqhci_error_flags(data_error, cmd_error);
716 cqhci_recovery_needed(mmc, slot->mrq, true);
717 break;
721 out_unlock:
722 spin_unlock(&cq_host->lock);
725 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
727 struct cqhci_host *cq_host = mmc->cqe_private;
728 struct cqhci_slot *slot = &cq_host->slot[tag];
729 struct mmc_request *mrq = slot->mrq;
730 struct mmc_data *data;
732 if (!mrq) {
733 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
734 mmc_hostname(mmc), tag);
735 return;
738 /* No completions allowed during recovery */
739 if (cq_host->recovery_halt) {
740 slot->flags |= CQHCI_COMPLETED;
741 return;
744 slot->mrq = NULL;
746 cq_host->qcnt -= 1;
748 data = mrq->data;
749 if (data) {
750 if (data->error)
751 data->bytes_xfered = 0;
752 else
753 data->bytes_xfered = data->blksz * data->blocks;
756 mmc_cqe_request_done(mmc, mrq);
759 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
760 int data_error)
762 u32 status;
763 unsigned long tag = 0, comp_status;
764 struct cqhci_host *cq_host = mmc->cqe_private;
766 status = cqhci_readl(cq_host, CQHCI_IS);
767 cqhci_writel(cq_host, status, CQHCI_IS);
769 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
771 if ((status & CQHCI_IS_RED) || cmd_error || data_error)
772 cqhci_error_irq(mmc, status, cmd_error, data_error);
774 if (status & CQHCI_IS_TCC) {
775 /* read TCN and complete the request */
776 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
777 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
778 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
779 mmc_hostname(mmc), comp_status);
781 spin_lock(&cq_host->lock);
783 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
784 /* complete the corresponding mrq */
785 pr_debug("%s: cqhci: completing tag %lu\n",
786 mmc_hostname(mmc), tag);
787 cqhci_finish_mrq(mmc, tag);
790 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
791 cq_host->waiting_for_idle = false;
792 wake_up(&cq_host->wait_queue);
795 spin_unlock(&cq_host->lock);
798 if (status & CQHCI_IS_TCL)
799 wake_up(&cq_host->wait_queue);
801 if (status & CQHCI_IS_HAC)
802 wake_up(&cq_host->wait_queue);
804 return IRQ_HANDLED;
806 EXPORT_SYMBOL(cqhci_irq);
808 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
810 unsigned long flags;
811 bool is_idle;
813 spin_lock_irqsave(&cq_host->lock, flags);
814 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
815 *ret = cq_host->recovery_halt ? -EBUSY : 0;
816 cq_host->waiting_for_idle = !is_idle;
817 spin_unlock_irqrestore(&cq_host->lock, flags);
819 return is_idle;
822 static int cqhci_wait_for_idle(struct mmc_host *mmc)
824 struct cqhci_host *cq_host = mmc->cqe_private;
825 int ret;
827 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
829 return ret;
832 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
833 bool *recovery_needed)
835 struct cqhci_host *cq_host = mmc->cqe_private;
836 int tag = cqhci_tag(mrq);
837 struct cqhci_slot *slot = &cq_host->slot[tag];
838 unsigned long flags;
839 bool timed_out;
841 spin_lock_irqsave(&cq_host->lock, flags);
842 timed_out = slot->mrq == mrq;
843 if (timed_out) {
844 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
845 cqhci_recovery_needed(mmc, mrq, false);
846 *recovery_needed = cq_host->recovery_halt;
848 spin_unlock_irqrestore(&cq_host->lock, flags);
850 if (timed_out) {
851 pr_err("%s: cqhci: timeout for tag %d\n",
852 mmc_hostname(mmc), tag);
853 cqhci_dumpregs(cq_host);
856 return timed_out;
859 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
861 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
864 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
866 struct cqhci_host *cq_host = mmc->cqe_private;
867 bool ret;
868 u32 ctl;
870 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
872 ctl = cqhci_readl(cq_host, CQHCI_CTL);
873 ctl |= CQHCI_CLEAR_ALL_TASKS;
874 cqhci_writel(cq_host, ctl, CQHCI_CTL);
876 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
877 msecs_to_jiffies(timeout) + 1);
879 cqhci_set_irqs(cq_host, 0);
881 ret = cqhci_tasks_cleared(cq_host);
883 if (!ret)
884 pr_debug("%s: cqhci: Failed to clear tasks\n",
885 mmc_hostname(mmc));
887 return ret;
890 static bool cqhci_halted(struct cqhci_host *cq_host)
892 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
895 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
897 struct cqhci_host *cq_host = mmc->cqe_private;
898 bool ret;
899 u32 ctl;
901 if (cqhci_halted(cq_host))
902 return true;
904 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
906 ctl = cqhci_readl(cq_host, CQHCI_CTL);
907 ctl |= CQHCI_HALT;
908 cqhci_writel(cq_host, ctl, CQHCI_CTL);
910 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
911 msecs_to_jiffies(timeout) + 1);
913 cqhci_set_irqs(cq_host, 0);
915 ret = cqhci_halted(cq_host);
917 if (!ret)
918 pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
920 return ret;
924 * After halting we expect to be able to use the command line. We interpret the
925 * failure to halt to mean the data lines might still be in use (and the upper
926 * layers will need to send a STOP command), so we set the timeout based on a
927 * generous command timeout.
929 #define CQHCI_START_HALT_TIMEOUT 5
931 static void cqhci_recovery_start(struct mmc_host *mmc)
933 struct cqhci_host *cq_host = mmc->cqe_private;
935 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
937 WARN_ON(!cq_host->recovery_halt);
939 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
941 if (cq_host->ops->disable)
942 cq_host->ops->disable(mmc, true);
944 mmc->cqe_on = false;
947 static int cqhci_error_from_flags(unsigned int flags)
949 if (!flags)
950 return 0;
952 /* CRC errors might indicate re-tuning so prefer to report that */
953 if (flags & CQHCI_HOST_CRC)
954 return -EILSEQ;
956 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
957 return -ETIMEDOUT;
959 return -EIO;
962 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
964 struct cqhci_slot *slot = &cq_host->slot[tag];
965 struct mmc_request *mrq = slot->mrq;
966 struct mmc_data *data;
968 if (!mrq)
969 return;
971 slot->mrq = NULL;
973 cq_host->qcnt -= 1;
975 data = mrq->data;
976 if (data) {
977 data->bytes_xfered = 0;
978 data->error = cqhci_error_from_flags(slot->flags);
979 } else {
980 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
983 mmc_cqe_request_done(cq_host->mmc, mrq);
986 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
988 int i;
990 for (i = 0; i < cq_host->num_slots; i++)
991 cqhci_recover_mrq(cq_host, i);
995 * By now the command and data lines should be unused so there is no reason for
996 * CQHCI to take a long time to halt, but if it doesn't halt there could be
997 * problems clearing tasks, so be generous.
999 #define CQHCI_FINISH_HALT_TIMEOUT 20
1001 /* CQHCI could be expected to clear it's internal state pretty quickly */
1002 #define CQHCI_CLEAR_TIMEOUT 20
1004 static void cqhci_recovery_finish(struct mmc_host *mmc)
1006 struct cqhci_host *cq_host = mmc->cqe_private;
1007 unsigned long flags;
1008 u32 cqcfg;
1009 bool ok;
1011 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1013 WARN_ON(!cq_host->recovery_halt);
1015 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1017 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1018 ok = false;
1021 * The specification contradicts itself, by saying that tasks cannot be
1022 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1023 * be disabled/re-enabled, but not to disable before clearing tasks.
1024 * Have a go anyway.
1026 if (!ok) {
1027 pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1028 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1029 cqcfg &= ~CQHCI_ENABLE;
1030 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1031 cqcfg |= CQHCI_ENABLE;
1032 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1033 /* Be sure that there are no tasks */
1034 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1035 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1036 ok = false;
1037 WARN_ON(!ok);
1040 cqhci_recover_mrqs(cq_host);
1042 WARN_ON(cq_host->qcnt);
1044 spin_lock_irqsave(&cq_host->lock, flags);
1045 cq_host->qcnt = 0;
1046 cq_host->recovery_halt = false;
1047 mmc->cqe_on = false;
1048 spin_unlock_irqrestore(&cq_host->lock, flags);
1050 /* Ensure all writes are done before interrupts are re-enabled */
1051 wmb();
1053 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1055 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1057 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1060 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1061 .cqe_enable = cqhci_enable,
1062 .cqe_disable = cqhci_disable,
1063 .cqe_request = cqhci_request,
1064 .cqe_post_req = cqhci_post_req,
1065 .cqe_off = cqhci_off,
1066 .cqe_wait_for_idle = cqhci_wait_for_idle,
1067 .cqe_timeout = cqhci_timeout,
1068 .cqe_recovery_start = cqhci_recovery_start,
1069 .cqe_recovery_finish = cqhci_recovery_finish,
1072 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1074 struct cqhci_host *cq_host;
1075 struct resource *cqhci_memres = NULL;
1077 /* check and setup CMDQ interface */
1078 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1079 "cqhci_mem");
1080 if (!cqhci_memres) {
1081 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1082 return ERR_PTR(-EINVAL);
1085 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1086 if (!cq_host)
1087 return ERR_PTR(-ENOMEM);
1088 cq_host->mmio = devm_ioremap(&pdev->dev,
1089 cqhci_memres->start,
1090 resource_size(cqhci_memres));
1091 if (!cq_host->mmio) {
1092 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1093 return ERR_PTR(-EBUSY);
1095 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1097 return cq_host;
1099 EXPORT_SYMBOL(cqhci_pltfm_init);
1101 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1103 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1106 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1108 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1110 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1113 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1114 bool dma64)
1116 int err;
1118 cq_host->dma64 = dma64;
1119 cq_host->mmc = mmc;
1120 cq_host->mmc->cqe_private = cq_host;
1122 cq_host->num_slots = NUM_SLOTS;
1123 cq_host->dcmd_slot = DCMD_SLOT;
1125 mmc->cqe_ops = &cqhci_cqe_ops;
1127 mmc->cqe_qdepth = NUM_SLOTS;
1128 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1129 mmc->cqe_qdepth -= 1;
1131 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1132 sizeof(*cq_host->slot), GFP_KERNEL);
1133 if (!cq_host->slot) {
1134 err = -ENOMEM;
1135 goto out_err;
1138 spin_lock_init(&cq_host->lock);
1140 init_completion(&cq_host->halt_comp);
1141 init_waitqueue_head(&cq_host->wait_queue);
1143 pr_info("%s: CQHCI version %u.%02u\n",
1144 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1145 cqhci_ver_minor(cq_host));
1147 return 0;
1149 out_err:
1150 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1151 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1152 cqhci_ver_minor(cq_host), err);
1153 return err;
1155 EXPORT_SYMBOL(cqhci_init);
1157 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1158 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1159 MODULE_LICENSE("GPL v2");