2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <linux/bio.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/crc7.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/scatterlist.h>
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39 #include <linux/mmc/slot-gpio.h>
41 #include <linux/spi/spi.h>
42 #include <linux/spi/mmc_spi.h>
44 #include <asm/unaligned.h>
49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
50 * controller, although some of them do have hardware support for
51 * SPI protocol. The main reason for such configs would be mmc-ish
52 * cards like DataFlash, which don't support that "native" protocol.
54 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55 * switch between driver stacks, and in any case if "native" mode
56 * is available, it will be faster and hence preferable.
58 * - MMC depends on a different chipselect management policy than the
59 * SPI interface currently supports for shared bus segments: it needs
60 * to issue multiple spi_message requests with the chipselect active,
61 * using the results of one message to decide the next one to issue.
63 * Pending updates to the programming interface, this driver expects
64 * that it not share the bus with other drivers (precluding conflicts).
66 * - We tell the controller to keep the chipselect active from the
67 * beginning of an mmc_host_ops.request until the end. So beware
68 * of SPI controller drivers that mis-handle the cs_change flag!
70 * However, many cards seem OK with chipselect flapping up/down
71 * during that time ... at least on unshared bus segments.
76 * Local protocol constants, internal to data block protocols.
79 /* Response tokens used to ack each block written: */
80 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
81 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
82 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
83 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
85 /* Read and write blocks start with these tokens and end with crc;
86 * on error, read tokens act like a subset of R2_SPI_* values.
88 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
89 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
90 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
92 #define MMC_SPI_BLOCKSIZE 512
95 /* These fixed timeouts come from the latest SD specs, which say to ignore
96 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98 * reads which takes nowhere near that long. Older cards may be able to use
99 * shorter timeouts ... but why bother?
101 #define r1b_timeout (HZ * 3)
103 /* One of the critical speed parameters is the amount of data which may
104 * be transferred in one command. If this value is too low, the SD card
105 * controller has to do multiple partial block writes (argggh!). With
106 * today (2008) SD cards there is little speed gain if we transfer more
107 * than 64 KBytes at a time. So use this value until there is any indication
108 * that we should do more here.
110 #define MMC_SPI_BLOCKSATONCE 128
112 /****************************************************************************/
115 * Local Data Structures
118 /* "scratch" is per-{command,block} data exchanged with the card */
125 struct mmc_spi_host
{
126 struct mmc_host
*mmc
;
127 struct spi_device
*spi
;
129 unsigned char power_mode
;
132 struct mmc_spi_platform_data
*pdata
;
134 /* for bulk data transfers */
135 struct spi_transfer token
, t
, crc
, early_status
;
136 struct spi_message m
;
138 /* for status readback */
139 struct spi_transfer status
;
140 struct spi_message readback
;
142 /* underlying DMA-aware controller, or null */
143 struct device
*dma_dev
;
145 /* buffer used for commands and for message "overhead" */
146 struct scratch
*data
;
149 /* Specs say to write ones most of the time, even when the card
150 * has no need to read its input data; and many cards won't care.
151 * This is our source of those ones.
158 /****************************************************************************/
161 * MMC-over-SPI protocol glue, used by the MMC stack interface
164 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
166 /* chipselect will always be inactive after setup() */
167 return spi_setup(host
->spi
);
171 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
175 if (len
> sizeof(*host
->data
)) {
180 host
->status
.len
= len
;
183 dma_sync_single_for_device(host
->dma_dev
,
184 host
->data_dma
, sizeof(*host
->data
),
187 status
= spi_sync_locked(host
->spi
, &host
->readback
);
190 dma_sync_single_for_cpu(host
->dma_dev
,
191 host
->data_dma
, sizeof(*host
->data
),
197 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
200 u8
*cp
= host
->data
->status
;
201 unsigned long start
= jiffies
;
207 status
= mmc_spi_readbytes(host
, n
);
211 for (i
= 0; i
< n
; i
++) {
216 if (time_is_before_jiffies(start
+ timeout
))
219 /* If we need long timeouts, we may release the CPU.
220 * We use jiffies here because we want to have a relation
221 * between elapsed time and the blocking of the scheduler.
223 if (time_is_before_jiffies(start
+1))
230 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
232 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
235 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
237 return mmc_spi_skip(host
, timeout
, 1, 0xff);
242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247 * newer cards R7 (IF_COND).
250 static char *maptype(struct mmc_command
*cmd
)
252 switch (mmc_spi_resp_type(cmd
)) {
253 case MMC_RSP_SPI_R1
: return "R1";
254 case MMC_RSP_SPI_R1B
: return "R1B";
255 case MMC_RSP_SPI_R2
: return "R2/R5";
256 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
261 /* return zero, else negative errno after setting cmd->error */
262 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
263 struct mmc_command
*cmd
, int cs_on
)
265 u8
*cp
= host
->data
->status
;
266 u8
*end
= cp
+ host
->t
.len
;
270 unsigned short rotator
;
274 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
275 cmd
->opcode
, maptype(cmd
));
277 /* Except for data block reads, the whole response will already
278 * be stored in the scratch buffer. It's somewhere after the
279 * command and the first byte we read after it. We ignore that
280 * first byte. After STOP_TRANSMISSION command it may include
281 * two data bits, but otherwise it's all ones.
284 while (cp
< end
&& *cp
== 0xff)
287 /* Data block reads (R1 response types) may need more data... */
289 cp
= host
->data
->status
;
292 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 * status byte ... and we already scanned 2 bytes.
295 * REVISIT block read paths use nasty byte-at-a-time I/O
296 * so it can always DMA directly into the target buffer.
297 * It'd probably be better to memcpy() the first chunk and
298 * avoid extra i/o calls...
300 * Note we check for more than 8 bytes, because in practice,
301 * some SD cards are slow...
303 for (i
= 2; i
< 16; i
++) {
304 value
= mmc_spi_readbytes(host
, 1);
317 /* Houston, we have an ugly card with a bit-shifted response */
318 rotator
= *cp
++ << 8;
319 /* read the next byte */
321 value
= mmc_spi_readbytes(host
, 1);
324 cp
= host
->data
->status
;
328 while (rotator
& 0x8000) {
332 cmd
->resp
[0] = rotator
>> 8;
335 cmd
->resp
[0] = *cp
++;
339 /* Status byte: the entire seven-bit R1 response. */
340 if (cmd
->resp
[0] != 0) {
341 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
)
343 value
= -EFAULT
; /* Bad address */
344 else if (R1_SPI_ILLEGAL_COMMAND
& cmd
->resp
[0])
345 value
= -ENOSYS
; /* Function not implemented */
346 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
347 value
= -EILSEQ
; /* Illegal byte sequence */
348 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
350 value
= -EIO
; /* I/O error */
351 /* else R1_SPI_IDLE, "it's resetting" */
354 switch (mmc_spi_resp_type(cmd
)) {
356 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 * and less-common stuff like various erase operations.
359 case MMC_RSP_SPI_R1B
:
360 /* maybe we read all the busy tokens already */
361 while (cp
< end
&& *cp
== 0)
364 mmc_spi_wait_unbusy(host
, r1b_timeout
);
367 /* SPI R2 == R1 + second status byte; SEND_STATUS
368 * SPI R5 == R1 + data byte; IO_RW_DIRECT
371 /* read the next byte */
373 value
= mmc_spi_readbytes(host
, 1);
376 cp
= host
->data
->status
;
380 rotator
= leftover
<< 8;
381 rotator
|= *cp
<< bitshift
;
382 cmd
->resp
[0] |= (rotator
& 0xFF00);
384 cmd
->resp
[0] |= *cp
<< 8;
388 /* SPI R3, R4, or R7 == R1 + 4 bytes */
390 rotator
= leftover
<< 8;
392 for (i
= 0; i
< 4; i
++) {
394 /* read the next byte */
396 value
= mmc_spi_readbytes(host
, 1);
399 cp
= host
->data
->status
;
403 rotator
|= *cp
++ << bitshift
;
404 cmd
->resp
[1] |= (rotator
>> 8);
407 cmd
->resp
[1] |= *cp
++;
412 /* SPI R1 == just one status byte */
417 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
418 mmc_spi_resp_type(cmd
));
425 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
426 tag
, cmd
->resp
[0], cmd
->resp
[1]);
428 /* disable chipselect on errors and some success cases */
429 if (value
>= 0 && cs_on
)
438 /* Issue command and read its response.
439 * Returns zero on success, negative for error.
441 * On error, caller must cope with mmc core retry mechanism. That
442 * means immediate low-level resubmit, which affects the bus lock...
445 mmc_spi_command_send(struct mmc_spi_host
*host
,
446 struct mmc_request
*mrq
,
447 struct mmc_command
*cmd
, int cs_on
)
449 struct scratch
*data
= host
->data
;
450 u8
*cp
= data
->status
;
452 struct spi_transfer
*t
;
454 /* We can handle most commands (except block reads) in one full
455 * duplex I/O operation before either starting the next transfer
456 * (data block or command) or else deselecting the card.
458 * First, write 7 bytes:
459 * - an all-ones byte to ensure the card is ready
460 * - opcode byte (plus start and transmission bits)
461 * - four bytes of big-endian argument
462 * - crc7 (plus end bit) ... always computed, it's cheap
464 * We init the whole buffer to all-ones, which is what we need
465 * to write while we're reading (later) response data.
467 memset(cp
, 0xff, sizeof(data
->status
));
469 cp
[1] = 0x40 | cmd
->opcode
;
470 put_unaligned_be32(cmd
->arg
, cp
+2);
471 cp
[6] = crc7_be(0, cp
+1, 5) | 0x01;
474 /* Then, read up to 13 bytes (while writing all-ones):
475 * - N(CR) (== 1..8) bytes of all-ones
476 * - status byte (for all response types)
477 * - the rest of the response, either:
478 * + nothing, for R1 or R1B responses
479 * + second status byte, for R2 responses
480 * + four data bytes, for R3 and R7 responses
482 * Finally, read some more bytes ... in the nice cases we know in
483 * advance how many, and reading 1 more is always OK:
484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 * - N(RC) (== 1..N) bytes of all-ones, before next command
486 * - N(WR) (== 1..N) bytes of all-ones, before data write
488 * So in those cases one full duplex I/O of at most 21 bytes will
489 * handle the whole command, leaving the card ready to receive a
490 * data block or new command. We do that whenever we can, shaving
491 * CPU and IRQ costs (especially when using DMA or FIFOs).
493 * There are two other cases, where it's not generally practical
494 * to rely on a single I/O:
496 * - R1B responses need at least N(EC) bytes of all-zeroes.
498 * In this case we can *try* to fit it into one I/O, then
499 * maybe read more data later.
501 * - Data block reads are more troublesome, since a variable
502 * number of padding bytes precede the token and data.
503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 * + N(AC) (== 1..many) bytes of all-ones
506 * In this case we currently only have minimal speedups here:
507 * when N(CR) == 1 we can avoid I/O in response_get().
509 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
510 cp
+= 2; /* min(N(CR)) + status */
513 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
514 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
516 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
518 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
519 cp
= data
->status
+ sizeof(data
->status
);
520 /* else: R1 (most commands) */
523 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
524 cmd
->opcode
, maptype(cmd
));
526 /* send command, leaving chipselect active */
527 spi_message_init(&host
->m
);
530 memset(t
, 0, sizeof(*t
));
531 t
->tx_buf
= t
->rx_buf
= data
->status
;
532 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
533 t
->len
= cp
- data
->status
;
535 spi_message_add_tail(t
, &host
->m
);
538 host
->m
.is_dma_mapped
= 1;
539 dma_sync_single_for_device(host
->dma_dev
,
540 host
->data_dma
, sizeof(*host
->data
),
543 status
= spi_sync_locked(host
->spi
, &host
->m
);
546 dma_sync_single_for_cpu(host
->dma_dev
,
547 host
->data_dma
, sizeof(*host
->data
),
550 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 return mmc_spi_response_get(host
, cmd
, cs_on
);
559 /* Build data message with up to four separate transfers. For TX, we
560 * start by writing the data token. And in most cases, we finish with
563 * We always provide TX data for data and CRC. The MMC/SD protocol
564 * requires us to write ones; but Linux defaults to writing zeroes;
565 * so we explicitly initialize it to all ones on RX paths.
567 * We also handle DMA mapping, so the underlying SPI controller does
568 * not need to (re)do it for each message.
571 mmc_spi_setup_data_message(
572 struct mmc_spi_host
*host
,
574 enum dma_data_direction direction
)
576 struct spi_transfer
*t
;
577 struct scratch
*scratch
= host
->data
;
578 dma_addr_t dma
= host
->data_dma
;
580 spi_message_init(&host
->m
);
582 host
->m
.is_dma_mapped
= 1;
584 /* for reads, readblock() skips 0xff bytes before finding
585 * the token; for writes, this transfer issues that token.
587 if (direction
== DMA_TO_DEVICE
) {
589 memset(t
, 0, sizeof(*t
));
592 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
594 scratch
->data_token
= SPI_TOKEN_SINGLE
;
595 t
->tx_buf
= &scratch
->data_token
;
597 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
598 spi_message_add_tail(t
, &host
->m
);
601 /* Body of transfer is buffer, then CRC ...
602 * either TX-only, or RX with TX-ones.
605 memset(t
, 0, sizeof(*t
));
606 t
->tx_buf
= host
->ones
;
607 t
->tx_dma
= host
->ones_dma
;
608 /* length and actual buffer info are written later */
609 spi_message_add_tail(t
, &host
->m
);
612 memset(t
, 0, sizeof(*t
));
614 if (direction
== DMA_TO_DEVICE
) {
615 /* the actual CRC may get written later */
616 t
->tx_buf
= &scratch
->crc_val
;
618 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
620 t
->tx_buf
= host
->ones
;
621 t
->tx_dma
= host
->ones_dma
;
622 t
->rx_buf
= &scratch
->crc_val
;
624 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
626 spi_message_add_tail(t
, &host
->m
);
629 * A single block read is followed by N(EC) [0+] all-ones bytes
630 * before deselect ... don't bother.
632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
634 * collect that single byte, so readblock() doesn't need to.
636 * For a write, the one-byte data response follows immediately, then
637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 * Then single block reads may deselect, and multiblock ones issue
639 * the next token (next data block, or STOP_TRAN). We can try to
640 * minimize I/O ops by using a single read to collect end-of-busy.
642 if (multiple
|| direction
== DMA_TO_DEVICE
) {
643 t
= &host
->early_status
;
644 memset(t
, 0, sizeof(*t
));
645 t
->len
= (direction
== DMA_TO_DEVICE
)
646 ? sizeof(scratch
->status
)
648 t
->tx_buf
= host
->ones
;
649 t
->tx_dma
= host
->ones_dma
;
650 t
->rx_buf
= scratch
->status
;
652 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
654 spi_message_add_tail(t
, &host
->m
);
660 * - caller handled preceding N(WR) [1+] all-ones bytes
665 * - an all-ones byte ... card writes a data-response byte
666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668 * Return negative errno, else success.
671 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
672 unsigned long timeout
)
674 struct spi_device
*spi
= host
->spi
;
676 struct scratch
*scratch
= host
->data
;
679 if (host
->mmc
->use_spi_crc
)
680 scratch
->crc_val
= cpu_to_be16(
681 crc_itu_t(0, t
->tx_buf
, t
->len
));
683 dma_sync_single_for_device(host
->dma_dev
,
684 host
->data_dma
, sizeof(*scratch
),
687 status
= spi_sync_locked(spi
, &host
->m
);
690 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
695 dma_sync_single_for_cpu(host
->dma_dev
,
696 host
->data_dma
, sizeof(*scratch
),
700 * Get the transmission data-response reply. It must follow
701 * immediately after the data block we transferred. This reply
702 * doesn't necessarily tell whether the write operation succeeded;
703 * it just says if the transmission was ok and whether *earlier*
704 * writes succeeded; see the standard.
706 * In practice, there are (even modern SDHC-)cards which are late
707 * in sending the response, and miss the time frame by a few bits,
708 * so we have to cope with this situation and check the response
709 * bit-by-bit. Arggh!!!
711 pattern
= get_unaligned_be32(scratch
->status
);
713 /* First 3 bit of pattern are undefined */
714 pattern
|= 0xE0000000;
716 /* left-adjust to leading 0 bit */
717 while (pattern
& 0x80000000)
719 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
723 case SPI_RESPONSE_ACCEPTED
:
726 case SPI_RESPONSE_CRC_ERR
:
727 /* host shall then issue MMC_STOP_TRANSMISSION */
730 case SPI_RESPONSE_WRITE_ERR
:
731 /* host shall then issue MMC_STOP_TRANSMISSION,
732 * and should MMC_SEND_STATUS to sort it out
741 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
742 scratch
->status
[0], status
);
750 /* Return when not busy. If we didn't collect that status yet,
751 * we'll need some more I/O.
753 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
754 /* card is non-busy if the most recent bit is 1 */
755 if (scratch
->status
[i
] & 0x01)
758 return mmc_spi_wait_unbusy(host
, timeout
);
763 * - skip leading all-ones bytes ... either
764 * + N(AC) [1..f(clock,CSD)] usually, else
765 * + N(CX) [0..8] when reading CSD or CID
767 * + token ... if error token, no data or crc
771 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
772 * before dropping chipselect.
774 * For multiblock reads, caller either reads the next block or issues a
775 * STOP_TRANSMISSION command.
778 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
779 unsigned long timeout
)
781 struct spi_device
*spi
= host
->spi
;
783 struct scratch
*scratch
= host
->data
;
784 unsigned int bitshift
;
787 /* At least one SD card sends an all-zeroes byte when N(CX)
788 * applies, before the all-ones bytes ... just cope with that.
790 status
= mmc_spi_readbytes(host
, 1);
793 status
= scratch
->status
[0];
794 if (status
== 0xff || status
== 0)
795 status
= mmc_spi_readtoken(host
, timeout
);
798 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
802 /* The token may be bit-shifted...
803 * the first 0-bit precedes the data stream.
806 while (status
& 0x80) {
810 leftover
= status
<< 1;
813 dma_sync_single_for_device(host
->dma_dev
,
814 host
->data_dma
, sizeof(*scratch
),
816 dma_sync_single_for_device(host
->dma_dev
,
821 status
= spi_sync_locked(spi
, &host
->m
);
823 dev_dbg(&spi
->dev
, "read error %d\n", status
);
828 dma_sync_single_for_cpu(host
->dma_dev
,
829 host
->data_dma
, sizeof(*scratch
),
831 dma_sync_single_for_cpu(host
->dma_dev
,
837 /* Walk through the data and the crc and do
838 * all the magic to get byte-aligned data.
842 unsigned int bitright
= 8 - bitshift
;
844 for (len
= t
->len
; len
; len
--) {
846 *cp
++ = leftover
| (temp
>> bitshift
);
847 leftover
= temp
<< bitright
;
849 cp
= (u8
*) &scratch
->crc_val
;
851 *cp
++ = leftover
| (temp
>> bitshift
);
852 leftover
= temp
<< bitright
;
854 *cp
= leftover
| (temp
>> bitshift
);
857 if (host
->mmc
->use_spi_crc
) {
858 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
860 be16_to_cpus(&scratch
->crc_val
);
861 if (scratch
->crc_val
!= crc
) {
862 dev_dbg(&spi
->dev
, "read - crc error: crc_val=0x%04x, "
863 "computed=0x%04x len=%d\n",
864 scratch
->crc_val
, crc
, t
->len
);
877 * An MMC/SD data stage includes one or more blocks, optional CRCs,
878 * and inline handshaking. That handhaking makes it unlike most
879 * other SPI protocol stacks.
882 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
883 struct mmc_data
*data
, u32 blk_size
)
885 struct spi_device
*spi
= host
->spi
;
886 struct device
*dma_dev
= host
->dma_dev
;
887 struct spi_transfer
*t
;
888 enum dma_data_direction direction
;
889 struct scatterlist
*sg
;
891 int multiple
= (data
->blocks
> 1);
893 unsigned long timeout
;
895 direction
= mmc_get_dma_dir(data
);
896 mmc_spi_setup_data_message(host
, multiple
, direction
);
900 clock_rate
= t
->speed_hz
;
902 clock_rate
= spi
->max_speed_hz
;
904 timeout
= data
->timeout_ns
+
905 data
->timeout_clks
* 1000000 / clock_rate
;
906 timeout
= usecs_to_jiffies((unsigned int)(timeout
/ 1000)) + 1;
908 /* Handle scatterlist segments one at a time, with synch for
909 * each 512-byte block
911 for (sg
= data
->sg
, n_sg
= data
->sg_len
; n_sg
; n_sg
--, sg
++) {
913 dma_addr_t dma_addr
= 0;
915 unsigned length
= sg
->length
;
916 enum dma_data_direction dir
= direction
;
918 /* set up dma mapping for controller drivers that might
919 * use DMA ... though they may fall back to PIO
922 /* never invalidate whole *shared* pages ... */
923 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
924 && dir
== DMA_FROM_DEVICE
)
925 dir
= DMA_BIDIRECTIONAL
;
927 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
929 if (dma_mapping_error(dma_dev
, dma_addr
)) {
930 data
->error
= -EFAULT
;
933 if (direction
== DMA_TO_DEVICE
)
934 t
->tx_dma
= dma_addr
+ sg
->offset
;
936 t
->rx_dma
= dma_addr
+ sg
->offset
;
939 /* allow pio too; we don't allow highmem */
940 kmap_addr
= kmap(sg_page(sg
));
941 if (direction
== DMA_TO_DEVICE
)
942 t
->tx_buf
= kmap_addr
+ sg
->offset
;
944 t
->rx_buf
= kmap_addr
+ sg
->offset
;
946 /* transfer each block, and update request status */
948 t
->len
= min(length
, blk_size
);
950 dev_dbg(&host
->spi
->dev
,
951 " mmc_spi: %s block, %d bytes\n",
952 (direction
== DMA_TO_DEVICE
)
957 if (direction
== DMA_TO_DEVICE
)
958 status
= mmc_spi_writeblock(host
, t
, timeout
);
960 status
= mmc_spi_readblock(host
, t
, timeout
);
964 data
->bytes_xfered
+= t
->len
;
971 /* discard mappings */
972 if (direction
== DMA_FROM_DEVICE
)
973 flush_kernel_dcache_page(sg_page(sg
));
976 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
979 data
->error
= status
;
980 dev_dbg(&spi
->dev
, "%s status %d\n",
981 (direction
== DMA_TO_DEVICE
)
988 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
989 * can be issued before multiblock writes. Unlike its more widely
990 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
991 * that can affect the STOP_TRAN logic. Complete (and current)
992 * MMC specs should sort that out before Linux starts using CMD23.
994 if (direction
== DMA_TO_DEVICE
&& multiple
) {
995 struct scratch
*scratch
= host
->data
;
997 const unsigned statlen
= sizeof(scratch
->status
);
999 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
1001 /* Tweak the per-block message we set up earlier by morphing
1002 * it to hold single buffer with the token followed by some
1003 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1004 * "not busy any longer" status, and leave chip selected.
1006 INIT_LIST_HEAD(&host
->m
.transfers
);
1007 list_add(&host
->early_status
.transfer_list
,
1008 &host
->m
.transfers
);
1010 memset(scratch
->status
, 0xff, statlen
);
1011 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
1013 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
1014 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
1015 host
->early_status
.len
= statlen
;
1018 dma_sync_single_for_device(host
->dma_dev
,
1019 host
->data_dma
, sizeof(*scratch
),
1022 tmp
= spi_sync_locked(spi
, &host
->m
);
1025 dma_sync_single_for_cpu(host
->dma_dev
,
1026 host
->data_dma
, sizeof(*scratch
),
1035 /* Ideally we collected "not busy" status with one I/O,
1036 * avoiding wasteful byte-at-a-time scanning... but more
1037 * I/O is often needed.
1039 for (tmp
= 2; tmp
< statlen
; tmp
++) {
1040 if (scratch
->status
[tmp
] != 0)
1043 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
1044 if (tmp
< 0 && !data
->error
)
1049 /****************************************************************************/
1052 * MMC driver implementation -- the interface to the MMC stack
1055 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1057 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1058 int status
= -EINVAL
;
1060 struct mmc_command stop
;
1063 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1065 struct mmc_command
*cmd
;
1069 if (!mmc_spi_resp_type(cmd
)) {
1070 dev_dbg(&host
->spi
->dev
, "bogus command\n");
1071 cmd
->error
= -EINVAL
;
1076 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
1077 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
1078 cmd
->error
= -EINVAL
;
1084 mmc_request_done(host
->mmc
, mrq
);
1090 /* request exclusive bus access */
1091 spi_bus_lock(host
->spi
->master
);
1094 /* issue command; then optionally data and stop */
1095 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
1096 if (status
== 0 && mrq
->data
) {
1097 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
1100 * The SPI bus is not always reliable for large data transfers.
1101 * If an occasional crc error is reported by the SD device with
1102 * data read/write over SPI, it may be recovered by repeating
1103 * the last SD command again. The retry count is set to 5 to
1104 * ensure the driver passes stress tests.
1106 if (mrq
->data
->error
== -EILSEQ
&& crc_retry
) {
1107 stop
.opcode
= MMC_STOP_TRANSMISSION
;
1109 stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1110 status
= mmc_spi_command_send(host
, mrq
, &stop
, 0);
1112 mrq
->data
->error
= 0;
1117 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
1122 /* release the bus */
1123 spi_bus_unlock(host
->spi
->master
);
1125 mmc_request_done(host
->mmc
, mrq
);
1128 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1130 * NOTE that here we can't know that the card has just been powered up;
1131 * not all MMC/SD sockets support power switching.
1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1134 * this doesn't seem to do the right thing at all...
1136 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
1138 /* Try to be very sure any previous command has completed;
1139 * wait till not-busy, skip debris from any old commands.
1141 mmc_spi_wait_unbusy(host
, r1b_timeout
);
1142 mmc_spi_readbytes(host
, 10);
1145 * Do a burst with chipselect active-high. We need to do this to
1146 * meet the requirement of 74 clock cycles with both chipselect
1147 * and CMD (MOSI) high before CMD0 ... after the card has been
1148 * powered up to Vdd(min), and so is ready to take commands.
1150 * Some cards are particularly needy of this (e.g. Viking "SD256")
1151 * while most others don't seem to care.
1153 * Note that this is one of the places MMC/SD plays games with the
1154 * SPI protocol. Another is that when chipselect is released while
1155 * the card returns BUSY status, the clock must issue several cycles
1156 * with chipselect high before the card will stop driving its output.
1158 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1159 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1160 * inverted by gpiolib, so if we want to ascertain to drive it high
1161 * we should toggle the default with an XOR as we do here.
1163 host
->spi
->mode
^= SPI_CS_HIGH
;
1164 if (spi_setup(host
->spi
) != 0) {
1165 /* Just warn; most cards work without it. */
1166 dev_warn(&host
->spi
->dev
,
1167 "can't change chip-select polarity\n");
1168 host
->spi
->mode
^= SPI_CS_HIGH
;
1170 mmc_spi_readbytes(host
, 18);
1172 host
->spi
->mode
^= SPI_CS_HIGH
;
1173 if (spi_setup(host
->spi
) != 0) {
1174 /* Wot, we can't get the same setup we had before? */
1175 dev_err(&host
->spi
->dev
,
1176 "can't restore chip-select polarity\n");
1181 static char *mmc_powerstring(u8 power_mode
)
1183 switch (power_mode
) {
1184 case MMC_POWER_OFF
: return "off";
1185 case MMC_POWER_UP
: return "up";
1186 case MMC_POWER_ON
: return "on";
1191 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1193 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1195 if (host
->power_mode
!= ios
->power_mode
) {
1198 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1200 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1201 mmc_powerstring(ios
->power_mode
),
1203 canpower
? ", can switch" : "");
1205 /* switch power on/off if possible, accounting for
1206 * max 250msec powerup time if needed.
1209 switch (ios
->power_mode
) {
1212 host
->pdata
->setpower(&host
->spi
->dev
,
1214 if (ios
->power_mode
== MMC_POWER_UP
)
1215 msleep(host
->powerup_msecs
);
1219 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1220 if (ios
->power_mode
== MMC_POWER_ON
)
1221 mmc_spi_initsequence(host
);
1223 /* If powering down, ground all card inputs to avoid power
1224 * delivery from data lines! On a shared SPI bus, this
1225 * will probably be temporary; 6.4.2 of the simplified SD
1226 * spec says this must last at least 1msec.
1228 * - Clock low means CPOL 0, e.g. mode 0
1229 * - MOSI low comes from writing zero
1230 * - Chipselect is usually active low...
1232 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1236 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1237 mres
= spi_setup(host
->spi
);
1239 dev_dbg(&host
->spi
->dev
,
1240 "switch to SPI mode 0 failed\n");
1242 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1243 dev_dbg(&host
->spi
->dev
,
1244 "put spi signals to low failed\n");
1247 * Now clock should be low due to spi mode 0;
1248 * MOSI should be low because of written 0x00;
1249 * chipselect should be low (it is active low)
1250 * power supply is off, so now MMC is off too!
1252 * FIXME no, chipselect can be high since the
1253 * device is inactive and SPI_CS_HIGH is clear...
1257 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1258 mres
= spi_setup(host
->spi
);
1260 dev_dbg(&host
->spi
->dev
,
1261 "switch back to SPI mode 3"
1266 host
->power_mode
= ios
->power_mode
;
1269 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1272 host
->spi
->max_speed_hz
= ios
->clock
;
1273 status
= spi_setup(host
->spi
);
1274 dev_dbg(&host
->spi
->dev
,
1275 "mmc_spi: clock to %d Hz, %d\n",
1276 host
->spi
->max_speed_hz
, status
);
1280 static const struct mmc_host_ops mmc_spi_ops
= {
1281 .request
= mmc_spi_request
,
1282 .set_ios
= mmc_spi_set_ios
,
1283 .get_ro
= mmc_gpio_get_ro
,
1284 .get_cd
= mmc_gpio_get_cd
,
1288 /****************************************************************************/
1291 * SPI driver implementation
1295 mmc_spi_detect_irq(int irq
, void *mmc
)
1297 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1298 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1300 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1304 static int mmc_spi_probe(struct spi_device
*spi
)
1307 struct mmc_host
*mmc
;
1308 struct mmc_spi_host
*host
;
1310 bool has_ro
= false;
1312 /* We rely on full duplex transfers, mostly to reduce
1313 * per-transfer overheads (by making fewer transfers).
1315 if (spi
->master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1318 /* MMC and SD specs only seem to care that sampling is on the
1319 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1320 * should be legit. We'll use mode 0 since the steady state is 0,
1321 * which is appropriate for hotplugging, unless the platform data
1322 * specify mode 3 (if hardware is not compatible to mode 0).
1324 if (spi
->mode
!= SPI_MODE_3
)
1325 spi
->mode
= SPI_MODE_0
;
1326 spi
->bits_per_word
= 8;
1328 status
= spi_setup(spi
);
1330 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1331 spi
->mode
, spi
->max_speed_hz
/ 1000,
1336 /* We need a supply of ones to transmit. This is the only time
1337 * the CPU touches these, so cache coherency isn't a concern.
1339 * NOTE if many systems use more than one MMC-over-SPI connector
1340 * it'd save some memory to share this. That's evidently rare.
1343 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1346 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1348 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1352 mmc
->ops
= &mmc_spi_ops
;
1353 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1354 mmc
->max_segs
= MMC_SPI_BLOCKSATONCE
;
1355 mmc
->max_req_size
= MMC_SPI_BLOCKSATONCE
* MMC_SPI_BLOCKSIZE
;
1356 mmc
->max_blk_count
= MMC_SPI_BLOCKSATONCE
;
1358 mmc
->caps
= MMC_CAP_SPI
;
1360 /* SPI doesn't need the lowspeed device identification thing for
1361 * MMC or SD cards, since it never comes up in open drain mode.
1362 * That's good; some SPI masters can't handle very low speeds!
1364 * However, low speed SDIO cards need not handle over 400 KHz;
1365 * that's the only reason not to use a few MHz for f_min (until
1366 * the upper layer reads the target frequency from the CSD).
1368 mmc
->f_min
= 400000;
1369 mmc
->f_max
= spi
->max_speed_hz
;
1371 host
= mmc_priv(mmc
);
1377 /* Platform data is used to hook up things like card sensing
1378 * and power switching gpios.
1380 host
->pdata
= mmc_spi_get_pdata(spi
);
1382 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1383 if (!mmc
->ocr_avail
) {
1384 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1385 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1387 if (host
->pdata
&& host
->pdata
->setpower
) {
1388 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1389 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1390 host
->powerup_msecs
= 250;
1393 dev_set_drvdata(&spi
->dev
, mmc
);
1395 /* preallocate dma buffers */
1396 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1400 if (spi
->master
->dev
.parent
->dma_mask
) {
1401 struct device
*dev
= spi
->master
->dev
.parent
;
1403 host
->dma_dev
= dev
;
1404 host
->ones_dma
= dma_map_single(dev
, ones
,
1405 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1406 if (dma_mapping_error(dev
, host
->ones_dma
))
1408 host
->data_dma
= dma_map_single(dev
, host
->data
,
1409 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1410 if (dma_mapping_error(dev
, host
->data_dma
))
1413 dma_sync_single_for_cpu(host
->dma_dev
,
1414 host
->data_dma
, sizeof(*host
->data
),
1418 /* setup message for status/busy readback */
1419 spi_message_init(&host
->readback
);
1420 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1422 spi_message_add_tail(&host
->status
, &host
->readback
);
1423 host
->status
.tx_buf
= host
->ones
;
1424 host
->status
.tx_dma
= host
->ones_dma
;
1425 host
->status
.rx_buf
= &host
->data
->status
;
1426 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1427 host
->status
.cs_change
= 1;
1429 /* register card detect irq */
1430 if (host
->pdata
&& host
->pdata
->init
) {
1431 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1433 goto fail_glue_init
;
1436 /* pass platform capabilities, if any */
1438 mmc
->caps
|= host
->pdata
->caps
;
1439 mmc
->caps2
|= host
->pdata
->caps2
;
1442 status
= mmc_add_host(mmc
);
1446 if (host
->pdata
&& host
->pdata
->flags
& MMC_SPI_USE_CD_GPIO
) {
1447 status
= mmc_gpio_request_cd(mmc
, host
->pdata
->cd_gpio
,
1448 host
->pdata
->cd_debounce
);
1452 /* The platform has a CD GPIO signal that may support
1453 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1454 * if polling is needed or not.
1456 mmc
->caps
&= ~MMC_CAP_NEEDS_POLL
;
1457 mmc_gpiod_request_cd_irq(mmc
);
1459 mmc_detect_change(mmc
, 0);
1461 if (host
->pdata
&& host
->pdata
->flags
& MMC_SPI_USE_RO_GPIO
) {
1463 status
= mmc_gpio_request_ro(mmc
, host
->pdata
->ro_gpio
);
1468 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s%s\n",
1469 dev_name(&mmc
->class_dev
),
1470 host
->dma_dev
? "" : ", no DMA",
1471 has_ro
? "" : ", no WP",
1472 (host
->pdata
&& host
->pdata
->setpower
)
1473 ? "" : ", no poweroff",
1474 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1475 ? ", cd polling" : "");
1479 mmc_remove_host (mmc
);
1482 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1483 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1486 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1487 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1493 mmc_spi_put_pdata(spi
);
1494 dev_set_drvdata(&spi
->dev
, NULL
);
1502 static int mmc_spi_remove(struct spi_device
*spi
)
1504 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1505 struct mmc_spi_host
*host
;
1508 host
= mmc_priv(mmc
);
1510 /* prevent new mmc_detect_change() calls */
1511 if (host
->pdata
&& host
->pdata
->exit
)
1512 host
->pdata
->exit(&spi
->dev
, mmc
);
1514 mmc_remove_host(mmc
);
1516 if (host
->dma_dev
) {
1517 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1518 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1519 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1520 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1526 spi
->max_speed_hz
= mmc
->f_max
;
1528 mmc_spi_put_pdata(spi
);
1529 dev_set_drvdata(&spi
->dev
, NULL
);
1534 static const struct of_device_id mmc_spi_of_match_table
[] = {
1535 { .compatible
= "mmc-spi-slot", },
1538 MODULE_DEVICE_TABLE(of
, mmc_spi_of_match_table
);
1540 static struct spi_driver mmc_spi_driver
= {
1543 .of_match_table
= mmc_spi_of_match_table
,
1545 .probe
= mmc_spi_probe
,
1546 .remove
= mmc_spi_remove
,
1549 module_spi_driver(mmc_spi_driver
);
1551 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1552 "Hans-Peter Nilsson, Jan Nikitenko");
1553 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1554 MODULE_LICENSE("GPL");
1555 MODULE_ALIAS("spi:mmc_spi");