Linux 4.19.133
[linux/fpc-iii.git] / drivers / mmc / host / mmci.c
blobfa6268c0f12321f8a6f0c5f22074b31af93c70c3
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
42 #include <asm/io.h>
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax = 515633;
51 static struct variant_data variant_arm = {
52 .fifosize = 16 * 4,
53 .fifohalfsize = 8 * 4,
54 .datalength_bits = 16,
55 .pwrreg_powerup = MCI_PWR_UP,
56 .f_max = 100000000,
57 .reversed_irq_handling = true,
58 .mmcimask1 = true,
59 .start_err = MCI_STARTBITERR,
60 .opendrain = MCI_ROD,
63 static struct variant_data variant_arm_extended_fifo = {
64 .fifosize = 128 * 4,
65 .fifohalfsize = 64 * 4,
66 .datalength_bits = 16,
67 .pwrreg_powerup = MCI_PWR_UP,
68 .f_max = 100000000,
69 .mmcimask1 = true,
70 .start_err = MCI_STARTBITERR,
71 .opendrain = MCI_ROD,
74 static struct variant_data variant_arm_extended_fifo_hwfc = {
75 .fifosize = 128 * 4,
76 .fifohalfsize = 64 * 4,
77 .clkreg_enable = MCI_ARM_HWFCEN,
78 .datalength_bits = 16,
79 .pwrreg_powerup = MCI_PWR_UP,
80 .f_max = 100000000,
81 .mmcimask1 = true,
82 .start_err = MCI_STARTBITERR,
83 .opendrain = MCI_ROD,
86 static struct variant_data variant_u300 = {
87 .fifosize = 16 * 4,
88 .fifohalfsize = 8 * 4,
89 .clkreg_enable = MCI_ST_U300_HWFCEN,
90 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
91 .datalength_bits = 16,
92 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
93 .st_sdio = true,
94 .pwrreg_powerup = MCI_PWR_ON,
95 .f_max = 100000000,
96 .signal_direction = true,
97 .pwrreg_clkgate = true,
98 .pwrreg_nopower = true,
99 .mmcimask1 = true,
100 .start_err = MCI_STARTBITERR,
101 .opendrain = MCI_OD,
104 static struct variant_data variant_nomadik = {
105 .fifosize = 16 * 4,
106 .fifohalfsize = 8 * 4,
107 .clkreg = MCI_CLK_ENABLE,
108 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
109 .datalength_bits = 24,
110 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
111 .st_sdio = true,
112 .st_clkdiv = true,
113 .pwrreg_powerup = MCI_PWR_ON,
114 .f_max = 100000000,
115 .signal_direction = true,
116 .pwrreg_clkgate = true,
117 .pwrreg_nopower = true,
118 .mmcimask1 = true,
119 .start_err = MCI_STARTBITERR,
120 .opendrain = MCI_OD,
123 static struct variant_data variant_ux500 = {
124 .fifosize = 30 * 4,
125 .fifohalfsize = 8 * 4,
126 .clkreg = MCI_CLK_ENABLE,
127 .clkreg_enable = MCI_ST_UX500_HWFCEN,
128 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
129 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
130 .datalength_bits = 24,
131 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
132 .st_sdio = true,
133 .st_clkdiv = true,
134 .pwrreg_powerup = MCI_PWR_ON,
135 .f_max = 100000000,
136 .signal_direction = true,
137 .pwrreg_clkgate = true,
138 .busy_detect = true,
139 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
140 .busy_detect_flag = MCI_ST_CARDBUSY,
141 .busy_detect_mask = MCI_ST_BUSYENDMASK,
142 .pwrreg_nopower = true,
143 .mmcimask1 = true,
144 .start_err = MCI_STARTBITERR,
145 .opendrain = MCI_OD,
148 static struct variant_data variant_ux500v2 = {
149 .fifosize = 30 * 4,
150 .fifohalfsize = 8 * 4,
151 .clkreg = MCI_CLK_ENABLE,
152 .clkreg_enable = MCI_ST_UX500_HWFCEN,
153 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
155 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
156 .datalength_bits = 24,
157 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
158 .st_sdio = true,
159 .st_clkdiv = true,
160 .blksz_datactrl16 = true,
161 .pwrreg_powerup = MCI_PWR_ON,
162 .f_max = 100000000,
163 .signal_direction = true,
164 .pwrreg_clkgate = true,
165 .busy_detect = true,
166 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
167 .busy_detect_flag = MCI_ST_CARDBUSY,
168 .busy_detect_mask = MCI_ST_BUSYENDMASK,
169 .pwrreg_nopower = true,
170 .mmcimask1 = true,
171 .start_err = MCI_STARTBITERR,
172 .opendrain = MCI_OD,
175 static struct variant_data variant_stm32 = {
176 .fifosize = 32 * 4,
177 .fifohalfsize = 8 * 4,
178 .clkreg = MCI_CLK_ENABLE,
179 .clkreg_enable = MCI_ST_UX500_HWFCEN,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
182 .datalength_bits = 24,
183 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
184 .st_sdio = true,
185 .st_clkdiv = true,
186 .pwrreg_powerup = MCI_PWR_ON,
187 .f_max = 48000000,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
192 static struct variant_data variant_qcom = {
193 .fifosize = 16 * 4,
194 .fifohalfsize = 8 * 4,
195 .clkreg = MCI_CLK_ENABLE,
196 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
197 MCI_QCOM_CLK_SELECT_IN_FBCLK,
198 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
199 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
200 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
201 .blksz_datactrl4 = true,
202 .datalength_bits = 24,
203 .pwrreg_powerup = MCI_PWR_UP,
204 .f_max = 208000000,
205 .explicit_mclk_control = true,
206 .qcom_fifo = true,
207 .qcom_dml = true,
208 .mmcimask1 = true,
209 .start_err = MCI_STARTBITERR,
210 .opendrain = MCI_ROD,
211 .init = qcom_variant_init,
214 /* Busy detection for the ST Micro variant */
215 static int mmci_card_busy(struct mmc_host *mmc)
217 struct mmci_host *host = mmc_priv(mmc);
218 unsigned long flags;
219 int busy = 0;
221 spin_lock_irqsave(&host->lock, flags);
222 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
223 busy = 1;
224 spin_unlock_irqrestore(&host->lock, flags);
226 return busy;
230 * Validate mmc prerequisites
232 static int mmci_validate_data(struct mmci_host *host,
233 struct mmc_data *data)
235 if (!data)
236 return 0;
238 if (!is_power_of_2(data->blksz)) {
239 dev_err(mmc_dev(host->mmc),
240 "unsupported block size (%d bytes)\n", data->blksz);
241 return -EINVAL;
244 return 0;
247 static void mmci_reg_delay(struct mmci_host *host)
250 * According to the spec, at least three feedback clock cycles
251 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
252 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
253 * Worst delay time during card init is at 100 kHz => 30 us.
254 * Worst delay time when up and running is at 25 MHz => 120 ns.
256 if (host->cclk < 25000000)
257 udelay(30);
258 else
259 ndelay(120);
263 * This must be called with host->lock held
265 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
267 if (host->clk_reg != clk) {
268 host->clk_reg = clk;
269 writel(clk, host->base + MMCICLOCK);
274 * This must be called with host->lock held
276 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
278 if (host->pwr_reg != pwr) {
279 host->pwr_reg = pwr;
280 writel(pwr, host->base + MMCIPOWER);
285 * This must be called with host->lock held
287 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
289 /* Keep busy mode in DPSM if enabled */
290 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
292 if (host->datactrl_reg != datactrl) {
293 host->datactrl_reg = datactrl;
294 writel(datactrl, host->base + MMCIDATACTRL);
299 * This must be called with host->lock held
301 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
303 struct variant_data *variant = host->variant;
304 u32 clk = variant->clkreg;
306 /* Make sure cclk reflects the current calculated clock */
307 host->cclk = 0;
309 if (desired) {
310 if (variant->explicit_mclk_control) {
311 host->cclk = host->mclk;
312 } else if (desired >= host->mclk) {
313 clk = MCI_CLK_BYPASS;
314 if (variant->st_clkdiv)
315 clk |= MCI_ST_UX500_NEG_EDGE;
316 host->cclk = host->mclk;
317 } else if (variant->st_clkdiv) {
319 * DB8500 TRM says f = mclk / (clkdiv + 2)
320 * => clkdiv = (mclk / f) - 2
321 * Round the divider up so we don't exceed the max
322 * frequency
324 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
325 if (clk >= 256)
326 clk = 255;
327 host->cclk = host->mclk / (clk + 2);
328 } else {
330 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
331 * => clkdiv = mclk / (2 * f) - 1
333 clk = host->mclk / (2 * desired) - 1;
334 if (clk >= 256)
335 clk = 255;
336 host->cclk = host->mclk / (2 * (clk + 1));
339 clk |= variant->clkreg_enable;
340 clk |= MCI_CLK_ENABLE;
341 /* This hasn't proven to be worthwhile */
342 /* clk |= MCI_CLK_PWRSAVE; */
345 /* Set actual clock for debug */
346 host->mmc->actual_clock = host->cclk;
348 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
349 clk |= MCI_4BIT_BUS;
350 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
351 clk |= variant->clkreg_8bit_bus_enable;
353 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
354 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
355 clk |= variant->clkreg_neg_edge_enable;
357 mmci_write_clkreg(host, clk);
360 static void
361 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
363 writel(0, host->base + MMCICOMMAND);
365 BUG_ON(host->data);
367 host->mrq = NULL;
368 host->cmd = NULL;
370 mmc_request_done(host->mmc, mrq);
373 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
375 void __iomem *base = host->base;
376 struct variant_data *variant = host->variant;
378 if (host->singleirq) {
379 unsigned int mask0 = readl(base + MMCIMASK0);
381 mask0 &= ~MCI_IRQ1MASK;
382 mask0 |= mask;
384 writel(mask0, base + MMCIMASK0);
387 if (variant->mmcimask1)
388 writel(mask, base + MMCIMASK1);
390 host->mask1_reg = mask;
393 static void mmci_stop_data(struct mmci_host *host)
395 mmci_write_datactrlreg(host, 0);
396 mmci_set_mask1(host, 0);
397 host->data = NULL;
400 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
402 unsigned int flags = SG_MITER_ATOMIC;
404 if (data->flags & MMC_DATA_READ)
405 flags |= SG_MITER_TO_SG;
406 else
407 flags |= SG_MITER_FROM_SG;
409 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
413 * All the DMA operation mode stuff goes inside this ifdef.
414 * This assumes that you have a generic DMA device interface,
415 * no custom DMA interfaces are supported.
417 #ifdef CONFIG_DMA_ENGINE
418 static void mmci_dma_setup(struct mmci_host *host)
420 const char *rxname, *txname;
422 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
423 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
425 /* initialize pre request cookie */
426 host->next_data.cookie = 1;
429 * If only an RX channel is specified, the driver will
430 * attempt to use it bidirectionally, however if it is
431 * is specified but cannot be located, DMA will be disabled.
433 if (host->dma_rx_channel && !host->dma_tx_channel)
434 host->dma_tx_channel = host->dma_rx_channel;
436 if (host->dma_rx_channel)
437 rxname = dma_chan_name(host->dma_rx_channel);
438 else
439 rxname = "none";
441 if (host->dma_tx_channel)
442 txname = dma_chan_name(host->dma_tx_channel);
443 else
444 txname = "none";
446 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
447 rxname, txname);
450 * Limit the maximum segment size in any SG entry according to
451 * the parameters of the DMA engine device.
453 if (host->dma_tx_channel) {
454 struct device *dev = host->dma_tx_channel->device->dev;
455 unsigned int max_seg_size = dma_get_max_seg_size(dev);
457 if (max_seg_size < host->mmc->max_seg_size)
458 host->mmc->max_seg_size = max_seg_size;
460 if (host->dma_rx_channel) {
461 struct device *dev = host->dma_rx_channel->device->dev;
462 unsigned int max_seg_size = dma_get_max_seg_size(dev);
464 if (max_seg_size < host->mmc->max_seg_size)
465 host->mmc->max_seg_size = max_seg_size;
468 if (host->ops && host->ops->dma_setup)
469 host->ops->dma_setup(host);
473 * This is used in or so inline it
474 * so it can be discarded.
476 static inline void mmci_dma_release(struct mmci_host *host)
478 if (host->dma_rx_channel)
479 dma_release_channel(host->dma_rx_channel);
480 if (host->dma_tx_channel)
481 dma_release_channel(host->dma_tx_channel);
482 host->dma_rx_channel = host->dma_tx_channel = NULL;
485 static void mmci_dma_data_error(struct mmci_host *host)
487 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
488 dmaengine_terminate_all(host->dma_current);
489 host->dma_in_progress = false;
490 host->dma_current = NULL;
491 host->dma_desc_current = NULL;
492 host->data->host_cookie = 0;
495 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
497 struct dma_chan *chan;
499 if (data->flags & MMC_DATA_READ)
500 chan = host->dma_rx_channel;
501 else
502 chan = host->dma_tx_channel;
504 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
505 mmc_get_dma_dir(data));
508 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
510 u32 status;
511 int i;
513 /* Wait up to 1ms for the DMA to complete */
514 for (i = 0; ; i++) {
515 status = readl(host->base + MMCISTATUS);
516 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
517 break;
518 udelay(10);
522 * Check to see whether we still have some data left in the FIFO -
523 * this catches DMA controllers which are unable to monitor the
524 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
525 * contiguous buffers. On TX, we'll get a FIFO underrun error.
527 if (status & MCI_RXDATAAVLBLMASK) {
528 mmci_dma_data_error(host);
529 if (!data->error)
530 data->error = -EIO;
533 if (!data->host_cookie)
534 mmci_dma_unmap(host, data);
537 * Use of DMA with scatter-gather is impossible.
538 * Give up with DMA and switch back to PIO mode.
540 if (status & MCI_RXDATAAVLBLMASK) {
541 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
542 mmci_dma_release(host);
545 host->dma_in_progress = false;
546 host->dma_current = NULL;
547 host->dma_desc_current = NULL;
550 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
551 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
552 struct dma_chan **dma_chan,
553 struct dma_async_tx_descriptor **dma_desc)
555 struct variant_data *variant = host->variant;
556 struct dma_slave_config conf = {
557 .src_addr = host->phybase + MMCIFIFO,
558 .dst_addr = host->phybase + MMCIFIFO,
559 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
560 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
561 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
562 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
563 .device_fc = false,
565 struct dma_chan *chan;
566 struct dma_device *device;
567 struct dma_async_tx_descriptor *desc;
568 int nr_sg;
569 unsigned long flags = DMA_CTRL_ACK;
571 if (data->flags & MMC_DATA_READ) {
572 conf.direction = DMA_DEV_TO_MEM;
573 chan = host->dma_rx_channel;
574 } else {
575 conf.direction = DMA_MEM_TO_DEV;
576 chan = host->dma_tx_channel;
579 /* If there's no DMA channel, fall back to PIO */
580 if (!chan)
581 return -EINVAL;
583 /* If less than or equal to the fifo size, don't bother with DMA */
584 if (data->blksz * data->blocks <= variant->fifosize)
585 return -EINVAL;
587 device = chan->device;
588 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
589 mmc_get_dma_dir(data));
590 if (nr_sg == 0)
591 return -EINVAL;
593 if (host->variant->qcom_dml)
594 flags |= DMA_PREP_INTERRUPT;
596 dmaengine_slave_config(chan, &conf);
597 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
598 conf.direction, flags);
599 if (!desc)
600 goto unmap_exit;
602 *dma_chan = chan;
603 *dma_desc = desc;
605 return 0;
607 unmap_exit:
608 dma_unmap_sg(device->dev, data->sg, data->sg_len,
609 mmc_get_dma_dir(data));
610 return -ENOMEM;
613 static inline int mmci_dma_prep_data(struct mmci_host *host,
614 struct mmc_data *data)
616 /* Check if next job is already prepared. */
617 if (host->dma_current && host->dma_desc_current)
618 return 0;
620 /* No job were prepared thus do it now. */
621 return __mmci_dma_prep_data(host, data, &host->dma_current,
622 &host->dma_desc_current);
625 static inline int mmci_dma_prep_next(struct mmci_host *host,
626 struct mmc_data *data)
628 struct mmci_host_next *nd = &host->next_data;
629 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
632 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
634 int ret;
635 struct mmc_data *data = host->data;
637 ret = mmci_dma_prep_data(host, host->data);
638 if (ret)
639 return ret;
641 /* Okay, go for it. */
642 dev_vdbg(mmc_dev(host->mmc),
643 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
644 data->sg_len, data->blksz, data->blocks, data->flags);
645 host->dma_in_progress = true;
646 dmaengine_submit(host->dma_desc_current);
647 dma_async_issue_pending(host->dma_current);
649 if (host->variant->qcom_dml)
650 dml_start_xfer(host, data);
652 datactrl |= MCI_DPSM_DMAENABLE;
654 /* Trigger the DMA transfer */
655 mmci_write_datactrlreg(host, datactrl);
658 * Let the MMCI say when the data is ended and it's time
659 * to fire next DMA request. When that happens, MMCI will
660 * call mmci_data_end()
662 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
663 host->base + MMCIMASK0);
664 return 0;
667 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
669 struct mmci_host_next *next = &host->next_data;
671 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
672 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
674 host->dma_desc_current = next->dma_desc;
675 host->dma_current = next->dma_chan;
676 next->dma_desc = NULL;
677 next->dma_chan = NULL;
680 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
682 struct mmci_host *host = mmc_priv(mmc);
683 struct mmc_data *data = mrq->data;
684 struct mmci_host_next *nd = &host->next_data;
686 if (!data)
687 return;
689 BUG_ON(data->host_cookie);
691 if (mmci_validate_data(host, data))
692 return;
694 if (!mmci_dma_prep_next(host, data))
695 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
698 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
699 int err)
701 struct mmci_host *host = mmc_priv(mmc);
702 struct mmc_data *data = mrq->data;
704 if (!data || !data->host_cookie)
705 return;
707 mmci_dma_unmap(host, data);
709 if (err) {
710 struct mmci_host_next *next = &host->next_data;
711 struct dma_chan *chan;
712 if (data->flags & MMC_DATA_READ)
713 chan = host->dma_rx_channel;
714 else
715 chan = host->dma_tx_channel;
716 dmaengine_terminate_all(chan);
718 if (host->dma_desc_current == next->dma_desc)
719 host->dma_desc_current = NULL;
721 if (host->dma_current == next->dma_chan) {
722 host->dma_in_progress = false;
723 host->dma_current = NULL;
726 next->dma_desc = NULL;
727 next->dma_chan = NULL;
728 data->host_cookie = 0;
732 #else
733 /* Blank functions if the DMA engine is not available */
734 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
737 static inline void mmci_dma_setup(struct mmci_host *host)
741 static inline void mmci_dma_release(struct mmci_host *host)
745 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
749 static inline void mmci_dma_finalize(struct mmci_host *host,
750 struct mmc_data *data)
754 static inline void mmci_dma_data_error(struct mmci_host *host)
758 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
760 return -ENOSYS;
763 #define mmci_pre_request NULL
764 #define mmci_post_request NULL
766 #endif
768 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
770 struct variant_data *variant = host->variant;
771 unsigned int datactrl, timeout, irqmask;
772 unsigned long long clks;
773 void __iomem *base;
774 int blksz_bits;
776 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
777 data->blksz, data->blocks, data->flags);
779 host->data = data;
780 host->size = data->blksz * data->blocks;
781 data->bytes_xfered = 0;
783 clks = (unsigned long long)data->timeout_ns * host->cclk;
784 do_div(clks, NSEC_PER_SEC);
786 timeout = data->timeout_clks + (unsigned int)clks;
788 base = host->base;
789 writel(timeout, base + MMCIDATATIMER);
790 writel(host->size, base + MMCIDATALENGTH);
792 blksz_bits = ffs(data->blksz) - 1;
793 BUG_ON(1 << blksz_bits != data->blksz);
795 if (variant->blksz_datactrl16)
796 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
797 else if (variant->blksz_datactrl4)
798 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
799 else
800 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
802 if (data->flags & MMC_DATA_READ)
803 datactrl |= MCI_DPSM_DIRECTION;
805 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
806 u32 clk;
808 datactrl |= variant->datactrl_mask_sdio;
811 * The ST Micro variant for SDIO small write transfers
812 * needs to have clock H/W flow control disabled,
813 * otherwise the transfer will not start. The threshold
814 * depends on the rate of MCLK.
816 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
817 (host->size < 8 ||
818 (host->size <= 8 && host->mclk > 50000000)))
819 clk = host->clk_reg & ~variant->clkreg_enable;
820 else
821 clk = host->clk_reg | variant->clkreg_enable;
823 mmci_write_clkreg(host, clk);
826 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
827 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
828 datactrl |= variant->datactrl_mask_ddrmode;
831 * Attempt to use DMA operation mode, if this
832 * should fail, fall back to PIO mode
834 if (!mmci_dma_start_data(host, datactrl))
835 return;
837 /* IRQ mode, map the SG list for CPU reading/writing */
838 mmci_init_sg(host, data);
840 if (data->flags & MMC_DATA_READ) {
841 irqmask = MCI_RXFIFOHALFFULLMASK;
844 * If we have less than the fifo 'half-full' threshold to
845 * transfer, trigger a PIO interrupt as soon as any data
846 * is available.
848 if (host->size < variant->fifohalfsize)
849 irqmask |= MCI_RXDATAAVLBLMASK;
850 } else {
852 * We don't actually need to include "FIFO empty" here
853 * since its implicit in "FIFO half empty".
855 irqmask = MCI_TXFIFOHALFEMPTYMASK;
858 mmci_write_datactrlreg(host, datactrl);
859 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
860 mmci_set_mask1(host, irqmask);
863 static void
864 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
866 void __iomem *base = host->base;
868 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
869 cmd->opcode, cmd->arg, cmd->flags);
871 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
872 writel(0, base + MMCICOMMAND);
873 mmci_reg_delay(host);
876 c |= cmd->opcode | MCI_CPSM_ENABLE;
877 if (cmd->flags & MMC_RSP_PRESENT) {
878 if (cmd->flags & MMC_RSP_136)
879 c |= MCI_CPSM_LONGRSP;
880 c |= MCI_CPSM_RESPONSE;
882 if (/*interrupt*/0)
883 c |= MCI_CPSM_INTERRUPT;
885 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
886 c |= host->variant->data_cmd_enable;
888 host->cmd = cmd;
890 writel(cmd->arg, base + MMCIARGUMENT);
891 writel(c, base + MMCICOMMAND);
894 static void
895 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
896 unsigned int status)
898 unsigned int status_err;
900 /* Make sure we have data to handle */
901 if (!data)
902 return;
904 /* First check for errors */
905 status_err = status & (host->variant->start_err |
906 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
907 MCI_TXUNDERRUN | MCI_RXOVERRUN);
909 if (status_err) {
910 u32 remain, success;
912 /* Terminate the DMA transfer */
913 if (dma_inprogress(host)) {
914 mmci_dma_data_error(host);
915 mmci_dma_unmap(host, data);
919 * Calculate how far we are into the transfer. Note that
920 * the data counter gives the number of bytes transferred
921 * on the MMC bus, not on the host side. On reads, this
922 * can be as much as a FIFO-worth of data ahead. This
923 * matters for FIFO overruns only.
925 remain = readl(host->base + MMCIDATACNT);
926 success = data->blksz * data->blocks - remain;
928 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
929 status_err, success);
930 if (status_err & MCI_DATACRCFAIL) {
931 /* Last block was not successful */
932 success -= 1;
933 data->error = -EILSEQ;
934 } else if (status_err & MCI_DATATIMEOUT) {
935 data->error = -ETIMEDOUT;
936 } else if (status_err & MCI_STARTBITERR) {
937 data->error = -ECOMM;
938 } else if (status_err & MCI_TXUNDERRUN) {
939 data->error = -EIO;
940 } else if (status_err & MCI_RXOVERRUN) {
941 if (success > host->variant->fifosize)
942 success -= host->variant->fifosize;
943 else
944 success = 0;
945 data->error = -EIO;
947 data->bytes_xfered = round_down(success, data->blksz);
950 if (status & MCI_DATABLOCKEND)
951 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
953 if (status & MCI_DATAEND || data->error) {
954 if (dma_inprogress(host))
955 mmci_dma_finalize(host, data);
956 mmci_stop_data(host);
958 if (!data->error)
959 /* The error clause is handled above, success! */
960 data->bytes_xfered = data->blksz * data->blocks;
962 if (!data->stop || host->mrq->sbc) {
963 mmci_request_end(host, data->mrq);
964 } else {
965 mmci_start_command(host, data->stop, 0);
970 static void
971 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
972 unsigned int status)
974 void __iomem *base = host->base;
975 bool sbc;
977 if (!cmd)
978 return;
980 sbc = (cmd == host->mrq->sbc);
983 * We need to be one of these interrupts to be considered worth
984 * handling. Note that we tag on any latent IRQs postponed
985 * due to waiting for busy status.
987 if (!((status|host->busy_status) &
988 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
989 return;
992 * ST Micro variant: handle busy detection.
994 if (host->variant->busy_detect) {
995 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
997 /* We are busy with a command, return */
998 if (host->busy_status &&
999 (status & host->variant->busy_detect_flag))
1000 return;
1003 * We were not busy, but we now got a busy response on
1004 * something that was not an error, and we double-check
1005 * that the special busy status bit is still set before
1006 * proceeding.
1008 if (!host->busy_status && busy_resp &&
1009 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1010 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1012 /* Clear the busy start IRQ */
1013 writel(host->variant->busy_detect_mask,
1014 host->base + MMCICLEAR);
1016 /* Unmask the busy end IRQ */
1017 writel(readl(base + MMCIMASK0) |
1018 host->variant->busy_detect_mask,
1019 base + MMCIMASK0);
1021 * Now cache the last response status code (until
1022 * the busy bit goes low), and return.
1024 host->busy_status =
1025 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1026 return;
1030 * At this point we are not busy with a command, we have
1031 * not received a new busy request, clear and mask the busy
1032 * end IRQ and fall through to process the IRQ.
1034 if (host->busy_status) {
1036 writel(host->variant->busy_detect_mask,
1037 host->base + MMCICLEAR);
1039 writel(readl(base + MMCIMASK0) &
1040 ~host->variant->busy_detect_mask,
1041 base + MMCIMASK0);
1042 host->busy_status = 0;
1046 host->cmd = NULL;
1048 if (status & MCI_CMDTIMEOUT) {
1049 cmd->error = -ETIMEDOUT;
1050 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1051 cmd->error = -EILSEQ;
1052 } else {
1053 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1054 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1055 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1056 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1059 if ((!sbc && !cmd->data) || cmd->error) {
1060 if (host->data) {
1061 /* Terminate the DMA transfer */
1062 if (dma_inprogress(host)) {
1063 mmci_dma_data_error(host);
1064 mmci_dma_unmap(host, host->data);
1066 mmci_stop_data(host);
1068 mmci_request_end(host, host->mrq);
1069 } else if (sbc) {
1070 mmci_start_command(host, host->mrq->cmd, 0);
1071 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1072 mmci_start_data(host, cmd->data);
1076 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1078 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1081 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1084 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1085 * from the fifo range should be used
1087 if (status & MCI_RXFIFOHALFFULL)
1088 return host->variant->fifohalfsize;
1089 else if (status & MCI_RXDATAAVLBL)
1090 return 4;
1092 return 0;
1095 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1097 void __iomem *base = host->base;
1098 char *ptr = buffer;
1099 u32 status = readl(host->base + MMCISTATUS);
1100 int host_remain = host->size;
1102 do {
1103 int count = host->get_rx_fifocnt(host, status, host_remain);
1105 if (count > remain)
1106 count = remain;
1108 if (count <= 0)
1109 break;
1112 * SDIO especially may want to send something that is
1113 * not divisible by 4 (as opposed to card sectors
1114 * etc). Therefore make sure to always read the last bytes
1115 * while only doing full 32-bit reads towards the FIFO.
1117 if (unlikely(count & 0x3)) {
1118 if (count < 4) {
1119 unsigned char buf[4];
1120 ioread32_rep(base + MMCIFIFO, buf, 1);
1121 memcpy(ptr, buf, count);
1122 } else {
1123 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1124 count &= ~0x3;
1126 } else {
1127 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1130 ptr += count;
1131 remain -= count;
1132 host_remain -= count;
1134 if (remain == 0)
1135 break;
1137 status = readl(base + MMCISTATUS);
1138 } while (status & MCI_RXDATAAVLBL);
1140 return ptr - buffer;
1143 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1145 struct variant_data *variant = host->variant;
1146 void __iomem *base = host->base;
1147 char *ptr = buffer;
1149 do {
1150 unsigned int count, maxcnt;
1152 maxcnt = status & MCI_TXFIFOEMPTY ?
1153 variant->fifosize : variant->fifohalfsize;
1154 count = min(remain, maxcnt);
1157 * SDIO especially may want to send something that is
1158 * not divisible by 4 (as opposed to card sectors
1159 * etc), and the FIFO only accept full 32-bit writes.
1160 * So compensate by adding +3 on the count, a single
1161 * byte become a 32bit write, 7 bytes will be two
1162 * 32bit writes etc.
1164 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1166 ptr += count;
1167 remain -= count;
1169 if (remain == 0)
1170 break;
1172 status = readl(base + MMCISTATUS);
1173 } while (status & MCI_TXFIFOHALFEMPTY);
1175 return ptr - buffer;
1179 * PIO data transfer IRQ handler.
1181 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1183 struct mmci_host *host = dev_id;
1184 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1185 struct variant_data *variant = host->variant;
1186 void __iomem *base = host->base;
1187 u32 status;
1189 status = readl(base + MMCISTATUS);
1191 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1193 do {
1194 unsigned int remain, len;
1195 char *buffer;
1198 * For write, we only need to test the half-empty flag
1199 * here - if the FIFO is completely empty, then by
1200 * definition it is more than half empty.
1202 * For read, check for data available.
1204 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1205 break;
1207 if (!sg_miter_next(sg_miter))
1208 break;
1210 buffer = sg_miter->addr;
1211 remain = sg_miter->length;
1213 len = 0;
1214 if (status & MCI_RXACTIVE)
1215 len = mmci_pio_read(host, buffer, remain);
1216 if (status & MCI_TXACTIVE)
1217 len = mmci_pio_write(host, buffer, remain, status);
1219 sg_miter->consumed = len;
1221 host->size -= len;
1222 remain -= len;
1224 if (remain)
1225 break;
1227 status = readl(base + MMCISTATUS);
1228 } while (1);
1230 sg_miter_stop(sg_miter);
1233 * If we have less than the fifo 'half-full' threshold to transfer,
1234 * trigger a PIO interrupt as soon as any data is available.
1236 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1237 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1240 * If we run out of data, disable the data IRQs; this
1241 * prevents a race where the FIFO becomes empty before
1242 * the chip itself has disabled the data path, and
1243 * stops us racing with our data end IRQ.
1245 if (host->size == 0) {
1246 mmci_set_mask1(host, 0);
1247 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1250 return IRQ_HANDLED;
1254 * Handle completion of command and data transfers.
1256 static irqreturn_t mmci_irq(int irq, void *dev_id)
1258 struct mmci_host *host = dev_id;
1259 u32 status;
1260 int ret = 0;
1262 spin_lock(&host->lock);
1264 do {
1265 status = readl(host->base + MMCISTATUS);
1267 if (host->singleirq) {
1268 if (status & host->mask1_reg)
1269 mmci_pio_irq(irq, dev_id);
1271 status &= ~MCI_IRQ1MASK;
1275 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1276 * enabled) in mmci_cmd_irq() function where ST Micro busy
1277 * detection variant is handled. Considering the HW seems to be
1278 * triggering the IRQ on both edges while monitoring DAT0 for
1279 * busy completion and that same status bit is used to monitor
1280 * start and end of busy detection, special care must be taken
1281 * to make sure that both start and end interrupts are always
1282 * cleared one after the other.
1284 status &= readl(host->base + MMCIMASK0);
1285 if (host->variant->busy_detect)
1286 writel(status & ~host->variant->busy_detect_mask,
1287 host->base + MMCICLEAR);
1288 else
1289 writel(status, host->base + MMCICLEAR);
1291 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1293 if (host->variant->reversed_irq_handling) {
1294 mmci_data_irq(host, host->data, status);
1295 mmci_cmd_irq(host, host->cmd, status);
1296 } else {
1297 mmci_cmd_irq(host, host->cmd, status);
1298 mmci_data_irq(host, host->data, status);
1302 * Busy detection has been handled by mmci_cmd_irq() above.
1303 * Clear the status bit to prevent polling in IRQ context.
1305 if (host->variant->busy_detect_flag)
1306 status &= ~host->variant->busy_detect_flag;
1308 ret = 1;
1309 } while (status);
1311 spin_unlock(&host->lock);
1313 return IRQ_RETVAL(ret);
1316 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1318 struct mmci_host *host = mmc_priv(mmc);
1319 unsigned long flags;
1321 WARN_ON(host->mrq != NULL);
1323 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1324 if (mrq->cmd->error) {
1325 mmc_request_done(mmc, mrq);
1326 return;
1329 spin_lock_irqsave(&host->lock, flags);
1331 host->mrq = mrq;
1333 if (mrq->data)
1334 mmci_get_next_data(host, mrq->data);
1336 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1337 mmci_start_data(host, mrq->data);
1339 if (mrq->sbc)
1340 mmci_start_command(host, mrq->sbc, 0);
1341 else
1342 mmci_start_command(host, mrq->cmd, 0);
1344 spin_unlock_irqrestore(&host->lock, flags);
1347 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1349 struct mmci_host *host = mmc_priv(mmc);
1350 struct variant_data *variant = host->variant;
1351 u32 pwr = 0;
1352 unsigned long flags;
1353 int ret;
1355 if (host->plat->ios_handler &&
1356 host->plat->ios_handler(mmc_dev(mmc), ios))
1357 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1359 switch (ios->power_mode) {
1360 case MMC_POWER_OFF:
1361 if (!IS_ERR(mmc->supply.vmmc))
1362 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1364 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1365 regulator_disable(mmc->supply.vqmmc);
1366 host->vqmmc_enabled = false;
1369 break;
1370 case MMC_POWER_UP:
1371 if (!IS_ERR(mmc->supply.vmmc))
1372 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1375 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1376 * and instead uses MCI_PWR_ON so apply whatever value is
1377 * configured in the variant data.
1379 pwr |= variant->pwrreg_powerup;
1381 break;
1382 case MMC_POWER_ON:
1383 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1384 ret = regulator_enable(mmc->supply.vqmmc);
1385 if (ret < 0)
1386 dev_err(mmc_dev(mmc),
1387 "failed to enable vqmmc regulator\n");
1388 else
1389 host->vqmmc_enabled = true;
1392 pwr |= MCI_PWR_ON;
1393 break;
1396 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1398 * The ST Micro variant has some additional bits
1399 * indicating signal direction for the signals in
1400 * the SD/MMC bus and feedback-clock usage.
1402 pwr |= host->pwr_reg_add;
1404 if (ios->bus_width == MMC_BUS_WIDTH_4)
1405 pwr &= ~MCI_ST_DATA74DIREN;
1406 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1407 pwr &= (~MCI_ST_DATA74DIREN &
1408 ~MCI_ST_DATA31DIREN &
1409 ~MCI_ST_DATA2DIREN);
1412 if (variant->opendrain) {
1413 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1414 pwr |= variant->opendrain;
1415 } else {
1417 * If the variant cannot configure the pads by its own, then we
1418 * expect the pinctrl to be able to do that for us
1420 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1421 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1422 else
1423 pinctrl_select_state(host->pinctrl, host->pins_default);
1427 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1428 * gating the clock, the MCI_PWR_ON bit is cleared.
1430 if (!ios->clock && variant->pwrreg_clkgate)
1431 pwr &= ~MCI_PWR_ON;
1433 if (host->variant->explicit_mclk_control &&
1434 ios->clock != host->clock_cache) {
1435 ret = clk_set_rate(host->clk, ios->clock);
1436 if (ret < 0)
1437 dev_err(mmc_dev(host->mmc),
1438 "Error setting clock rate (%d)\n", ret);
1439 else
1440 host->mclk = clk_get_rate(host->clk);
1442 host->clock_cache = ios->clock;
1444 spin_lock_irqsave(&host->lock, flags);
1446 mmci_set_clkreg(host, ios->clock);
1447 mmci_write_pwrreg(host, pwr);
1448 mmci_reg_delay(host);
1450 spin_unlock_irqrestore(&host->lock, flags);
1453 static int mmci_get_cd(struct mmc_host *mmc)
1455 struct mmci_host *host = mmc_priv(mmc);
1456 struct mmci_platform_data *plat = host->plat;
1457 unsigned int status = mmc_gpio_get_cd(mmc);
1459 if (status == -ENOSYS) {
1460 if (!plat->status)
1461 return 1; /* Assume always present */
1463 status = plat->status(mmc_dev(host->mmc));
1465 return status;
1468 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1470 int ret = 0;
1472 if (!IS_ERR(mmc->supply.vqmmc)) {
1474 switch (ios->signal_voltage) {
1475 case MMC_SIGNAL_VOLTAGE_330:
1476 ret = regulator_set_voltage(mmc->supply.vqmmc,
1477 2700000, 3600000);
1478 break;
1479 case MMC_SIGNAL_VOLTAGE_180:
1480 ret = regulator_set_voltage(mmc->supply.vqmmc,
1481 1700000, 1950000);
1482 break;
1483 case MMC_SIGNAL_VOLTAGE_120:
1484 ret = regulator_set_voltage(mmc->supply.vqmmc,
1485 1100000, 1300000);
1486 break;
1489 if (ret)
1490 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1493 return ret;
1496 static struct mmc_host_ops mmci_ops = {
1497 .request = mmci_request,
1498 .pre_req = mmci_pre_request,
1499 .post_req = mmci_post_request,
1500 .set_ios = mmci_set_ios,
1501 .get_ro = mmc_gpio_get_ro,
1502 .get_cd = mmci_get_cd,
1503 .start_signal_voltage_switch = mmci_sig_volt_switch,
1506 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1508 struct mmci_host *host = mmc_priv(mmc);
1509 int ret = mmc_of_parse(mmc);
1511 if (ret)
1512 return ret;
1514 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1515 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1516 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1517 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1518 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1519 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1520 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1521 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1522 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1523 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1524 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1525 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1527 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1528 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1529 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1530 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1532 return 0;
1535 static int mmci_probe(struct amba_device *dev,
1536 const struct amba_id *id)
1538 struct mmci_platform_data *plat = dev->dev.platform_data;
1539 struct device_node *np = dev->dev.of_node;
1540 struct variant_data *variant = id->data;
1541 struct mmci_host *host;
1542 struct mmc_host *mmc;
1543 int ret;
1545 /* Must have platform data or Device Tree. */
1546 if (!plat && !np) {
1547 dev_err(&dev->dev, "No plat data or DT found\n");
1548 return -EINVAL;
1551 if (!plat) {
1552 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1553 if (!plat)
1554 return -ENOMEM;
1557 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1558 if (!mmc)
1559 return -ENOMEM;
1561 ret = mmci_of_parse(np, mmc);
1562 if (ret)
1563 goto host_free;
1565 host = mmc_priv(mmc);
1566 host->mmc = mmc;
1569 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1570 * pins can be set accordingly using pinctrl
1572 if (!variant->opendrain) {
1573 host->pinctrl = devm_pinctrl_get(&dev->dev);
1574 if (IS_ERR(host->pinctrl)) {
1575 dev_err(&dev->dev, "failed to get pinctrl");
1576 ret = PTR_ERR(host->pinctrl);
1577 goto host_free;
1580 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1581 PINCTRL_STATE_DEFAULT);
1582 if (IS_ERR(host->pins_default)) {
1583 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1584 ret = PTR_ERR(host->pins_default);
1585 goto host_free;
1588 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1589 MMCI_PINCTRL_STATE_OPENDRAIN);
1590 if (IS_ERR(host->pins_opendrain)) {
1591 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1592 ret = PTR_ERR(host->pins_opendrain);
1593 goto host_free;
1597 host->hw_designer = amba_manf(dev);
1598 host->hw_revision = amba_rev(dev);
1599 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1600 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1602 host->clk = devm_clk_get(&dev->dev, NULL);
1603 if (IS_ERR(host->clk)) {
1604 ret = PTR_ERR(host->clk);
1605 goto host_free;
1608 ret = clk_prepare_enable(host->clk);
1609 if (ret)
1610 goto host_free;
1612 if (variant->qcom_fifo)
1613 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1614 else
1615 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1617 host->plat = plat;
1618 host->variant = variant;
1619 host->mclk = clk_get_rate(host->clk);
1621 * According to the spec, mclk is max 100 MHz,
1622 * so we try to adjust the clock down to this,
1623 * (if possible).
1625 if (host->mclk > variant->f_max) {
1626 ret = clk_set_rate(host->clk, variant->f_max);
1627 if (ret < 0)
1628 goto clk_disable;
1629 host->mclk = clk_get_rate(host->clk);
1630 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1631 host->mclk);
1634 host->phybase = dev->res.start;
1635 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1636 if (IS_ERR(host->base)) {
1637 ret = PTR_ERR(host->base);
1638 goto clk_disable;
1641 if (variant->init)
1642 variant->init(host);
1645 * The ARM and ST versions of the block have slightly different
1646 * clock divider equations which means that the minimum divider
1647 * differs too.
1648 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1650 if (variant->st_clkdiv)
1651 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1652 else if (variant->explicit_mclk_control)
1653 mmc->f_min = clk_round_rate(host->clk, 100000);
1654 else
1655 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1657 * If no maximum operating frequency is supplied, fall back to use
1658 * the module parameter, which has a (low) default value in case it
1659 * is not specified. Either value must not exceed the clock rate into
1660 * the block, of course.
1662 if (mmc->f_max)
1663 mmc->f_max = variant->explicit_mclk_control ?
1664 min(variant->f_max, mmc->f_max) :
1665 min(host->mclk, mmc->f_max);
1666 else
1667 mmc->f_max = variant->explicit_mclk_control ?
1668 fmax : min(host->mclk, fmax);
1671 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1673 /* Get regulators and the supported OCR mask */
1674 ret = mmc_regulator_get_supply(mmc);
1675 if (ret)
1676 goto clk_disable;
1678 if (!mmc->ocr_avail)
1679 mmc->ocr_avail = plat->ocr_mask;
1680 else if (plat->ocr_mask)
1681 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1683 /* DT takes precedence over platform data. */
1684 if (!np) {
1685 if (!plat->cd_invert)
1686 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1687 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1690 /* We support these capabilities. */
1691 mmc->caps |= MMC_CAP_CMD23;
1694 * Enable busy detection.
1696 if (variant->busy_detect) {
1697 mmci_ops.card_busy = mmci_card_busy;
1699 * Not all variants have a flag to enable busy detection
1700 * in the DPSM, but if they do, set it here.
1702 if (variant->busy_dpsm_flag)
1703 mmci_write_datactrlreg(host,
1704 host->variant->busy_dpsm_flag);
1705 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1706 mmc->max_busy_timeout = 0;
1709 mmc->ops = &mmci_ops;
1711 /* We support these PM capabilities. */
1712 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1715 * We can do SGIO
1717 mmc->max_segs = NR_SG;
1720 * Since only a certain number of bits are valid in the data length
1721 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1722 * single request.
1724 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1727 * Set the maximum segment size. Since we aren't doing DMA
1728 * (yet) we are only limited by the data length register.
1730 mmc->max_seg_size = mmc->max_req_size;
1733 * Block size can be up to 2048 bytes, but must be a power of two.
1735 mmc->max_blk_size = 1 << 11;
1738 * Limit the number of blocks transferred so that we don't overflow
1739 * the maximum request size.
1741 mmc->max_blk_count = mmc->max_req_size >> 11;
1743 spin_lock_init(&host->lock);
1745 writel(0, host->base + MMCIMASK0);
1747 if (variant->mmcimask1)
1748 writel(0, host->base + MMCIMASK1);
1750 writel(0xfff, host->base + MMCICLEAR);
1753 * If:
1754 * - not using DT but using a descriptor table, or
1755 * - using a table of descriptors ALONGSIDE DT, or
1756 * look up these descriptors named "cd" and "wp" right here, fail
1757 * silently of these do not exist and proceed to try platform data
1759 if (!np) {
1760 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1761 if (ret < 0) {
1762 if (ret == -EPROBE_DEFER)
1763 goto clk_disable;
1764 else if (gpio_is_valid(plat->gpio_cd)) {
1765 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1766 if (ret)
1767 goto clk_disable;
1771 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1772 if (ret < 0) {
1773 if (ret == -EPROBE_DEFER)
1774 goto clk_disable;
1775 else if (gpio_is_valid(plat->gpio_wp)) {
1776 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1777 if (ret)
1778 goto clk_disable;
1783 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1784 DRIVER_NAME " (cmd)", host);
1785 if (ret)
1786 goto clk_disable;
1788 if (!dev->irq[1])
1789 host->singleirq = true;
1790 else {
1791 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1792 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1793 if (ret)
1794 goto clk_disable;
1797 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
1799 amba_set_drvdata(dev, mmc);
1801 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1802 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1803 amba_rev(dev), (unsigned long long)dev->res.start,
1804 dev->irq[0], dev->irq[1]);
1806 mmci_dma_setup(host);
1808 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1809 pm_runtime_use_autosuspend(&dev->dev);
1811 mmc_add_host(mmc);
1813 pm_runtime_put(&dev->dev);
1814 return 0;
1816 clk_disable:
1817 clk_disable_unprepare(host->clk);
1818 host_free:
1819 mmc_free_host(mmc);
1820 return ret;
1823 static int mmci_remove(struct amba_device *dev)
1825 struct mmc_host *mmc = amba_get_drvdata(dev);
1827 if (mmc) {
1828 struct mmci_host *host = mmc_priv(mmc);
1829 struct variant_data *variant = host->variant;
1832 * Undo pm_runtime_put() in probe. We use the _sync
1833 * version here so that we can access the primecell.
1835 pm_runtime_get_sync(&dev->dev);
1837 mmc_remove_host(mmc);
1839 writel(0, host->base + MMCIMASK0);
1841 if (variant->mmcimask1)
1842 writel(0, host->base + MMCIMASK1);
1844 writel(0, host->base + MMCICOMMAND);
1845 writel(0, host->base + MMCIDATACTRL);
1847 mmci_dma_release(host);
1848 clk_disable_unprepare(host->clk);
1849 mmc_free_host(mmc);
1852 return 0;
1855 #ifdef CONFIG_PM
1856 static void mmci_save(struct mmci_host *host)
1858 unsigned long flags;
1860 spin_lock_irqsave(&host->lock, flags);
1862 writel(0, host->base + MMCIMASK0);
1863 if (host->variant->pwrreg_nopower) {
1864 writel(0, host->base + MMCIDATACTRL);
1865 writel(0, host->base + MMCIPOWER);
1866 writel(0, host->base + MMCICLOCK);
1868 mmci_reg_delay(host);
1870 spin_unlock_irqrestore(&host->lock, flags);
1873 static void mmci_restore(struct mmci_host *host)
1875 unsigned long flags;
1877 spin_lock_irqsave(&host->lock, flags);
1879 if (host->variant->pwrreg_nopower) {
1880 writel(host->clk_reg, host->base + MMCICLOCK);
1881 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1882 writel(host->pwr_reg, host->base + MMCIPOWER);
1884 writel(MCI_IRQENABLE | host->variant->start_err,
1885 host->base + MMCIMASK0);
1886 mmci_reg_delay(host);
1888 spin_unlock_irqrestore(&host->lock, flags);
1891 static int mmci_runtime_suspend(struct device *dev)
1893 struct amba_device *adev = to_amba_device(dev);
1894 struct mmc_host *mmc = amba_get_drvdata(adev);
1896 if (mmc) {
1897 struct mmci_host *host = mmc_priv(mmc);
1898 pinctrl_pm_select_sleep_state(dev);
1899 mmci_save(host);
1900 clk_disable_unprepare(host->clk);
1903 return 0;
1906 static int mmci_runtime_resume(struct device *dev)
1908 struct amba_device *adev = to_amba_device(dev);
1909 struct mmc_host *mmc = amba_get_drvdata(adev);
1911 if (mmc) {
1912 struct mmci_host *host = mmc_priv(mmc);
1913 clk_prepare_enable(host->clk);
1914 mmci_restore(host);
1915 pinctrl_pm_select_default_state(dev);
1918 return 0;
1920 #endif
1922 static const struct dev_pm_ops mmci_dev_pm_ops = {
1923 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1924 pm_runtime_force_resume)
1925 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1928 static const struct amba_id mmci_ids[] = {
1930 .id = 0x00041180,
1931 .mask = 0xff0fffff,
1932 .data = &variant_arm,
1935 .id = 0x01041180,
1936 .mask = 0xff0fffff,
1937 .data = &variant_arm_extended_fifo,
1940 .id = 0x02041180,
1941 .mask = 0xff0fffff,
1942 .data = &variant_arm_extended_fifo_hwfc,
1945 .id = 0x00041181,
1946 .mask = 0x000fffff,
1947 .data = &variant_arm,
1949 /* ST Micro variants */
1951 .id = 0x00180180,
1952 .mask = 0x00ffffff,
1953 .data = &variant_u300,
1956 .id = 0x10180180,
1957 .mask = 0xf0ffffff,
1958 .data = &variant_nomadik,
1961 .id = 0x00280180,
1962 .mask = 0x00ffffff,
1963 .data = &variant_nomadik,
1966 .id = 0x00480180,
1967 .mask = 0xf0ffffff,
1968 .data = &variant_ux500,
1971 .id = 0x10480180,
1972 .mask = 0xf0ffffff,
1973 .data = &variant_ux500v2,
1976 .id = 0x00880180,
1977 .mask = 0x00ffffff,
1978 .data = &variant_stm32,
1980 /* Qualcomm variants */
1982 .id = 0x00051180,
1983 .mask = 0x000fffff,
1984 .data = &variant_qcom,
1986 { 0, 0 },
1989 MODULE_DEVICE_TABLE(amba, mmci_ids);
1991 static struct amba_driver mmci_driver = {
1992 .drv = {
1993 .name = DRIVER_NAME,
1994 .pm = &mmci_dev_pm_ops,
1996 .probe = mmci_probe,
1997 .remove = mmci_remove,
1998 .id_table = mmci_ids,
2001 module_amba_driver(mmci_driver);
2003 module_param(fmax, uint, 0444);
2005 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2006 MODULE_LICENSE("GPL");