Linux 4.19.133
[linux/fpc-iii.git] / drivers / mmc / host / sh_mmcif.c
blob4c2a1f8ddbf3241f50f59fb7bcf5c244f4157c67
1 /*
2 * MMCIF eMMC driver.
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
13 * The MMCIF driver is now processing MMC requests asynchronously, according
14 * to the Linux MMC API requirement.
16 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
17 * data, and optional stop. To achieve asynchronous processing each of these
18 * stages is split into two halves: a top and a bottom half. The top half
19 * initialises the hardware, installs a timeout handler to handle completion
20 * timeouts, and returns. In case of the command stage this immediately returns
21 * control to the caller, leaving all further processing to run asynchronously.
22 * All further request processing is performed by the bottom halves.
24 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
25 * thread, a DMA completion callback, if DMA is used, a timeout work, and
26 * request- and stage-specific handler methods.
28 * Each bottom half run begins with either a hardware interrupt, a DMA callback
29 * invocation, or a timeout work run. In case of an error or a successful
30 * processing completion, the MMC core is informed and the request processing is
31 * finished. In case processing has to continue, i.e., if data has to be read
32 * from or written to the card, or if a stop command has to be sent, the next
33 * top half is called, which performs the necessary hardware handling and
34 * reschedules the timeout work. This returns the driver state machine into the
35 * bottom half waiting state.
38 #include <linux/bitops.h>
39 #include <linux/clk.h>
40 #include <linux/completion.h>
41 #include <linux/delay.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/core.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sdio.h>
49 #include <linux/mmc/sh_mmcif.h>
50 #include <linux/mmc/slot-gpio.h>
51 #include <linux/mod_devicetable.h>
52 #include <linux/mutex.h>
53 #include <linux/of_device.h>
54 #include <linux/pagemap.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_qos.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/sh_dma.h>
59 #include <linux/spinlock.h>
60 #include <linux/module.h>
62 #define DRIVER_NAME "sh_mmcif"
64 /* CE_CMD_SET */
65 #define CMD_MASK 0x3f000000
66 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
67 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
68 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
69 #define CMD_SET_RBSY (1 << 21) /* R1b */
70 #define CMD_SET_CCSEN (1 << 20)
71 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
72 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
73 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
74 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
75 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
76 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
77 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
78 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
79 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
80 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
81 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
82 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
83 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
84 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
85 #define CMD_SET_CCSH (1 << 5)
86 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
87 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
88 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
89 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
91 /* CE_CMD_CTRL */
92 #define CMD_CTRL_BREAK (1 << 0)
94 /* CE_BLOCK_SET */
95 #define BLOCK_SIZE_MASK 0x0000ffff
97 /* CE_INT */
98 #define INT_CCSDE (1 << 29)
99 #define INT_CMD12DRE (1 << 26)
100 #define INT_CMD12RBE (1 << 25)
101 #define INT_CMD12CRE (1 << 24)
102 #define INT_DTRANE (1 << 23)
103 #define INT_BUFRE (1 << 22)
104 #define INT_BUFWEN (1 << 21)
105 #define INT_BUFREN (1 << 20)
106 #define INT_CCSRCV (1 << 19)
107 #define INT_RBSYE (1 << 17)
108 #define INT_CRSPE (1 << 16)
109 #define INT_CMDVIO (1 << 15)
110 #define INT_BUFVIO (1 << 14)
111 #define INT_WDATERR (1 << 11)
112 #define INT_RDATERR (1 << 10)
113 #define INT_RIDXERR (1 << 9)
114 #define INT_RSPERR (1 << 8)
115 #define INT_CCSTO (1 << 5)
116 #define INT_CRCSTO (1 << 4)
117 #define INT_WDATTO (1 << 3)
118 #define INT_RDATTO (1 << 2)
119 #define INT_RBSYTO (1 << 1)
120 #define INT_RSPTO (1 << 0)
121 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
122 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
123 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
124 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
126 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
127 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
128 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
130 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
132 /* CE_INT_MASK */
133 #define MASK_ALL 0x00000000
134 #define MASK_MCCSDE (1 << 29)
135 #define MASK_MCMD12DRE (1 << 26)
136 #define MASK_MCMD12RBE (1 << 25)
137 #define MASK_MCMD12CRE (1 << 24)
138 #define MASK_MDTRANE (1 << 23)
139 #define MASK_MBUFRE (1 << 22)
140 #define MASK_MBUFWEN (1 << 21)
141 #define MASK_MBUFREN (1 << 20)
142 #define MASK_MCCSRCV (1 << 19)
143 #define MASK_MRBSYE (1 << 17)
144 #define MASK_MCRSPE (1 << 16)
145 #define MASK_MCMDVIO (1 << 15)
146 #define MASK_MBUFVIO (1 << 14)
147 #define MASK_MWDATERR (1 << 11)
148 #define MASK_MRDATERR (1 << 10)
149 #define MASK_MRIDXERR (1 << 9)
150 #define MASK_MRSPERR (1 << 8)
151 #define MASK_MCCSTO (1 << 5)
152 #define MASK_MCRCSTO (1 << 4)
153 #define MASK_MWDATTO (1 << 3)
154 #define MASK_MRDATTO (1 << 2)
155 #define MASK_MRBSYTO (1 << 1)
156 #define MASK_MRSPTO (1 << 0)
158 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
159 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
160 MASK_MCRCSTO | MASK_MWDATTO | \
161 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
163 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
164 MASK_MBUFREN | MASK_MBUFWEN | \
165 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
166 MASK_MCMD12RBE | MASK_MCMD12CRE)
168 /* CE_HOST_STS1 */
169 #define STS1_CMDSEQ (1 << 31)
171 /* CE_HOST_STS2 */
172 #define STS2_CRCSTE (1 << 31)
173 #define STS2_CRC16E (1 << 30)
174 #define STS2_AC12CRCE (1 << 29)
175 #define STS2_RSPCRC7E (1 << 28)
176 #define STS2_CRCSTEBE (1 << 27)
177 #define STS2_RDATEBE (1 << 26)
178 #define STS2_AC12REBE (1 << 25)
179 #define STS2_RSPEBE (1 << 24)
180 #define STS2_AC12IDXE (1 << 23)
181 #define STS2_RSPIDXE (1 << 22)
182 #define STS2_CCSTO (1 << 15)
183 #define STS2_RDATTO (1 << 14)
184 #define STS2_DATBSYTO (1 << 13)
185 #define STS2_CRCSTTO (1 << 12)
186 #define STS2_AC12BSYTO (1 << 11)
187 #define STS2_RSPBSYTO (1 << 10)
188 #define STS2_AC12RSPTO (1 << 9)
189 #define STS2_RSPTO (1 << 8)
190 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
191 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
192 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
193 STS2_DATBSYTO | STS2_CRCSTTO | \
194 STS2_AC12BSYTO | STS2_RSPBSYTO | \
195 STS2_AC12RSPTO | STS2_RSPTO)
197 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
198 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
199 #define CLKDEV_INIT 400000 /* 400 KHz */
201 enum sh_mmcif_state {
202 STATE_IDLE,
203 STATE_REQUEST,
204 STATE_IOS,
205 STATE_TIMEOUT,
208 enum sh_mmcif_wait_for {
209 MMCIF_WAIT_FOR_REQUEST,
210 MMCIF_WAIT_FOR_CMD,
211 MMCIF_WAIT_FOR_MREAD,
212 MMCIF_WAIT_FOR_MWRITE,
213 MMCIF_WAIT_FOR_READ,
214 MMCIF_WAIT_FOR_WRITE,
215 MMCIF_WAIT_FOR_READ_END,
216 MMCIF_WAIT_FOR_WRITE_END,
217 MMCIF_WAIT_FOR_STOP,
221 * difference for each SoC
223 struct sh_mmcif_host {
224 struct mmc_host *mmc;
225 struct mmc_request *mrq;
226 struct platform_device *pd;
227 struct clk *clk;
228 int bus_width;
229 unsigned char timing;
230 bool sd_error;
231 bool dying;
232 long timeout;
233 void __iomem *addr;
234 u32 *pio_ptr;
235 spinlock_t lock; /* protect sh_mmcif_host::state */
236 enum sh_mmcif_state state;
237 enum sh_mmcif_wait_for wait_for;
238 struct delayed_work timeout_work;
239 size_t blocksize;
240 int sg_idx;
241 int sg_blkidx;
242 bool power;
243 bool ccs_enable; /* Command Completion Signal support */
244 bool clk_ctrl2_enable;
245 struct mutex thread_lock;
246 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
248 /* DMA support */
249 struct dma_chan *chan_rx;
250 struct dma_chan *chan_tx;
251 struct completion dma_complete;
252 bool dma_active;
255 static const struct of_device_id sh_mmcif_of_match[] = {
256 { .compatible = "renesas,sh-mmcif" },
259 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
261 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
263 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
264 unsigned int reg, u32 val)
266 writel(val | readl(host->addr + reg), host->addr + reg);
269 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
270 unsigned int reg, u32 val)
272 writel(~val & readl(host->addr + reg), host->addr + reg);
275 static void sh_mmcif_dma_complete(void *arg)
277 struct sh_mmcif_host *host = arg;
278 struct mmc_request *mrq = host->mrq;
279 struct device *dev = sh_mmcif_host_to_dev(host);
281 dev_dbg(dev, "Command completed\n");
283 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
284 dev_name(dev)))
285 return;
287 complete(&host->dma_complete);
290 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
292 struct mmc_data *data = host->mrq->data;
293 struct scatterlist *sg = data->sg;
294 struct dma_async_tx_descriptor *desc = NULL;
295 struct dma_chan *chan = host->chan_rx;
296 struct device *dev = sh_mmcif_host_to_dev(host);
297 dma_cookie_t cookie = -EINVAL;
298 int ret;
300 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
301 DMA_FROM_DEVICE);
302 if (ret > 0) {
303 host->dma_active = true;
304 desc = dmaengine_prep_slave_sg(chan, sg, ret,
305 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
308 if (desc) {
309 desc->callback = sh_mmcif_dma_complete;
310 desc->callback_param = host;
311 cookie = dmaengine_submit(desc);
312 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
313 dma_async_issue_pending(chan);
315 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
316 __func__, data->sg_len, ret, cookie);
318 if (!desc) {
319 /* DMA failed, fall back to PIO */
320 if (ret >= 0)
321 ret = -EIO;
322 host->chan_rx = NULL;
323 host->dma_active = false;
324 dma_release_channel(chan);
325 /* Free the Tx channel too */
326 chan = host->chan_tx;
327 if (chan) {
328 host->chan_tx = NULL;
329 dma_release_channel(chan);
331 dev_warn(dev,
332 "DMA failed: %d, falling back to PIO\n", ret);
333 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
336 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
337 desc, cookie, data->sg_len);
340 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
342 struct mmc_data *data = host->mrq->data;
343 struct scatterlist *sg = data->sg;
344 struct dma_async_tx_descriptor *desc = NULL;
345 struct dma_chan *chan = host->chan_tx;
346 struct device *dev = sh_mmcif_host_to_dev(host);
347 dma_cookie_t cookie = -EINVAL;
348 int ret;
350 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
351 DMA_TO_DEVICE);
352 if (ret > 0) {
353 host->dma_active = true;
354 desc = dmaengine_prep_slave_sg(chan, sg, ret,
355 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
358 if (desc) {
359 desc->callback = sh_mmcif_dma_complete;
360 desc->callback_param = host;
361 cookie = dmaengine_submit(desc);
362 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
363 dma_async_issue_pending(chan);
365 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
366 __func__, data->sg_len, ret, cookie);
368 if (!desc) {
369 /* DMA failed, fall back to PIO */
370 if (ret >= 0)
371 ret = -EIO;
372 host->chan_tx = NULL;
373 host->dma_active = false;
374 dma_release_channel(chan);
375 /* Free the Rx channel too */
376 chan = host->chan_rx;
377 if (chan) {
378 host->chan_rx = NULL;
379 dma_release_channel(chan);
381 dev_warn(dev,
382 "DMA failed: %d, falling back to PIO\n", ret);
383 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
386 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
387 desc, cookie);
390 static struct dma_chan *
391 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
393 dma_cap_mask_t mask;
395 dma_cap_zero(mask);
396 dma_cap_set(DMA_SLAVE, mask);
397 if (slave_id <= 0)
398 return NULL;
400 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
403 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
404 struct dma_chan *chan,
405 enum dma_transfer_direction direction)
407 struct resource *res;
408 struct dma_slave_config cfg = { 0, };
410 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
411 cfg.direction = direction;
413 if (direction == DMA_DEV_TO_MEM) {
414 cfg.src_addr = res->start + MMCIF_CE_DATA;
415 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 } else {
417 cfg.dst_addr = res->start + MMCIF_CE_DATA;
418 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
421 return dmaengine_slave_config(chan, &cfg);
424 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
426 struct device *dev = sh_mmcif_host_to_dev(host);
427 host->dma_active = false;
429 /* We can only either use DMA for both Tx and Rx or not use it at all */
430 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431 struct sh_mmcif_plat_data *pdata = dev->platform_data;
433 host->chan_tx = sh_mmcif_request_dma_pdata(host,
434 pdata->slave_id_tx);
435 host->chan_rx = sh_mmcif_request_dma_pdata(host,
436 pdata->slave_id_rx);
437 } else {
438 host->chan_tx = dma_request_slave_channel(dev, "tx");
439 host->chan_rx = dma_request_slave_channel(dev, "rx");
441 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
442 host->chan_rx);
444 if (!host->chan_tx || !host->chan_rx ||
445 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
446 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
447 goto error;
449 return;
451 error:
452 if (host->chan_tx)
453 dma_release_channel(host->chan_tx);
454 if (host->chan_rx)
455 dma_release_channel(host->chan_rx);
456 host->chan_tx = host->chan_rx = NULL;
459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462 /* Descriptors are freed automatically */
463 if (host->chan_tx) {
464 struct dma_chan *chan = host->chan_tx;
465 host->chan_tx = NULL;
466 dma_release_channel(chan);
468 if (host->chan_rx) {
469 struct dma_chan *chan = host->chan_rx;
470 host->chan_rx = NULL;
471 dma_release_channel(chan);
474 host->dma_active = false;
477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479 struct device *dev = sh_mmcif_host_to_dev(host);
480 struct sh_mmcif_plat_data *p = dev->platform_data;
481 bool sup_pclk = p ? p->sup_pclk : false;
482 unsigned int current_clk = clk_get_rate(host->clk);
483 unsigned int clkdiv;
485 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488 if (!clk)
489 return;
491 if (host->clkdiv_map) {
492 unsigned int freq, best_freq, myclk, div, diff_min, diff;
493 int i;
495 clkdiv = 0;
496 diff_min = ~0;
497 best_freq = 0;
498 for (i = 31; i >= 0; i--) {
499 if (!((1 << i) & host->clkdiv_map))
500 continue;
503 * clk = parent_freq / div
504 * -> parent_freq = clk x div
507 div = 1 << (i + 1);
508 freq = clk_round_rate(host->clk, clk * div);
509 myclk = freq / div;
510 diff = (myclk > clk) ? myclk - clk : clk - myclk;
512 if (diff <= diff_min) {
513 best_freq = freq;
514 clkdiv = i;
515 diff_min = diff;
519 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
520 (best_freq / (1 << (clkdiv + 1))), clk,
521 best_freq, clkdiv);
523 clk_set_rate(host->clk, best_freq);
524 clkdiv = clkdiv << 16;
525 } else if (sup_pclk && clk == current_clk) {
526 clkdiv = CLK_SUP_PCLK;
527 } else {
528 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
531 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
535 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537 u32 tmp;
539 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543 if (host->ccs_enable)
544 tmp |= SCCSTO_29;
545 if (host->clk_ctrl2_enable)
546 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549 /* byte swap on */
550 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
553 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555 struct device *dev = sh_mmcif_host_to_dev(host);
556 u32 state1, state2;
557 int ret, timeout;
559 host->sd_error = false;
561 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566 if (state1 & STS1_CMDSEQ) {
567 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569 for (timeout = 10000; timeout; timeout--) {
570 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571 & STS1_CMDSEQ))
572 break;
573 mdelay(1);
575 if (!timeout) {
576 dev_err(dev,
577 "Forced end of command sequence timeout err\n");
578 return -EIO;
580 sh_mmcif_sync_reset(host);
581 dev_dbg(dev, "Forced end of command sequence\n");
582 return -EIO;
585 if (state2 & STS2_CRC_ERR) {
586 dev_err(dev, " CRC error: state %u, wait %u\n",
587 host->state, host->wait_for);
588 ret = -EIO;
589 } else if (state2 & STS2_TIMEOUT_ERR) {
590 dev_err(dev, " Timeout: state %u, wait %u\n",
591 host->state, host->wait_for);
592 ret = -ETIMEDOUT;
593 } else {
594 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
598 return ret;
601 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
603 struct mmc_data *data = host->mrq->data;
605 host->sg_blkidx += host->blocksize;
607 /* data->sg->length must be a multiple of host->blocksize? */
608 BUG_ON(host->sg_blkidx > data->sg->length);
610 if (host->sg_blkidx == data->sg->length) {
611 host->sg_blkidx = 0;
612 if (++host->sg_idx < data->sg_len)
613 host->pio_ptr = sg_virt(++data->sg);
614 } else {
615 host->pio_ptr = p;
618 return host->sg_idx != data->sg_len;
621 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
622 struct mmc_request *mrq)
624 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 BLOCK_SIZE_MASK) + 3;
627 host->wait_for = MMCIF_WAIT_FOR_READ;
629 /* buf read enable */
630 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
635 struct device *dev = sh_mmcif_host_to_dev(host);
636 struct mmc_data *data = host->mrq->data;
637 u32 *p = sg_virt(data->sg);
638 int i;
640 if (host->sd_error) {
641 data->error = sh_mmcif_error_manage(host);
642 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
643 return false;
646 for (i = 0; i < host->blocksize / 4; i++)
647 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
649 /* buffer read end */
650 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
651 host->wait_for = MMCIF_WAIT_FOR_READ_END;
653 return true;
656 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
657 struct mmc_request *mrq)
659 struct mmc_data *data = mrq->data;
661 if (!data->sg_len || !data->sg->length)
662 return;
664 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665 BLOCK_SIZE_MASK;
667 host->wait_for = MMCIF_WAIT_FOR_MREAD;
668 host->sg_idx = 0;
669 host->sg_blkidx = 0;
670 host->pio_ptr = sg_virt(data->sg);
672 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
675 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
677 struct device *dev = sh_mmcif_host_to_dev(host);
678 struct mmc_data *data = host->mrq->data;
679 u32 *p = host->pio_ptr;
680 int i;
682 if (host->sd_error) {
683 data->error = sh_mmcif_error_manage(host);
684 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
685 return false;
688 BUG_ON(!data->sg->length);
690 for (i = 0; i < host->blocksize / 4; i++)
691 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
693 if (!sh_mmcif_next_block(host, p))
694 return false;
696 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
698 return true;
701 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
702 struct mmc_request *mrq)
704 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
705 BLOCK_SIZE_MASK) + 3;
707 host->wait_for = MMCIF_WAIT_FOR_WRITE;
709 /* buf write enable */
710 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
715 struct device *dev = sh_mmcif_host_to_dev(host);
716 struct mmc_data *data = host->mrq->data;
717 u32 *p = sg_virt(data->sg);
718 int i;
720 if (host->sd_error) {
721 data->error = sh_mmcif_error_manage(host);
722 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
723 return false;
726 for (i = 0; i < host->blocksize / 4; i++)
727 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729 /* buffer write end */
730 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
731 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
733 return true;
736 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
737 struct mmc_request *mrq)
739 struct mmc_data *data = mrq->data;
741 if (!data->sg_len || !data->sg->length)
742 return;
744 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
745 BLOCK_SIZE_MASK;
747 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
748 host->sg_idx = 0;
749 host->sg_blkidx = 0;
750 host->pio_ptr = sg_virt(data->sg);
752 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
755 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
757 struct device *dev = sh_mmcif_host_to_dev(host);
758 struct mmc_data *data = host->mrq->data;
759 u32 *p = host->pio_ptr;
760 int i;
762 if (host->sd_error) {
763 data->error = sh_mmcif_error_manage(host);
764 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
765 return false;
768 BUG_ON(!data->sg->length);
770 for (i = 0; i < host->blocksize / 4; i++)
771 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
773 if (!sh_mmcif_next_block(host, p))
774 return false;
776 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
778 return true;
781 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
782 struct mmc_command *cmd)
784 if (cmd->flags & MMC_RSP_136) {
785 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
786 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
787 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
788 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
789 } else
790 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
794 struct mmc_command *cmd)
796 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
799 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
800 struct mmc_request *mrq)
802 struct device *dev = sh_mmcif_host_to_dev(host);
803 struct mmc_data *data = mrq->data;
804 struct mmc_command *cmd = mrq->cmd;
805 u32 opc = cmd->opcode;
806 u32 tmp = 0;
808 /* Response Type check */
809 switch (mmc_resp_type(cmd)) {
810 case MMC_RSP_NONE:
811 tmp |= CMD_SET_RTYP_NO;
812 break;
813 case MMC_RSP_R1:
814 case MMC_RSP_R3:
815 tmp |= CMD_SET_RTYP_6B;
816 break;
817 case MMC_RSP_R1B:
818 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
819 break;
820 case MMC_RSP_R2:
821 tmp |= CMD_SET_RTYP_17B;
822 break;
823 default:
824 dev_err(dev, "Unsupported response type.\n");
825 break;
828 /* WDAT / DATW */
829 if (data) {
830 tmp |= CMD_SET_WDAT;
831 switch (host->bus_width) {
832 case MMC_BUS_WIDTH_1:
833 tmp |= CMD_SET_DATW_1;
834 break;
835 case MMC_BUS_WIDTH_4:
836 tmp |= CMD_SET_DATW_4;
837 break;
838 case MMC_BUS_WIDTH_8:
839 tmp |= CMD_SET_DATW_8;
840 break;
841 default:
842 dev_err(dev, "Unsupported bus width.\n");
843 break;
845 switch (host->timing) {
846 case MMC_TIMING_MMC_DDR52:
848 * MMC core will only set this timing, if the host
849 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
850 * capability. MMCIF implementations with this
851 * capability, e.g. sh73a0, will have to set it
852 * in their platform data.
854 tmp |= CMD_SET_DARS;
855 break;
858 /* DWEN */
859 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
860 tmp |= CMD_SET_DWEN;
861 /* CMLTE/CMD12EN */
862 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
863 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
864 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
865 data->blocks << 16);
867 /* RIDXC[1:0] check bits */
868 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
869 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
870 tmp |= CMD_SET_RIDXC_BITS;
871 /* RCRC7C[1:0] check bits */
872 if (opc == MMC_SEND_OP_COND)
873 tmp |= CMD_SET_CRC7C_BITS;
874 /* RCRC7C[1:0] internal CRC7 */
875 if (opc == MMC_ALL_SEND_CID ||
876 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
877 tmp |= CMD_SET_CRC7C_INTERNAL;
879 return (opc << 24) | tmp;
882 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
883 struct mmc_request *mrq, u32 opc)
885 struct device *dev = sh_mmcif_host_to_dev(host);
887 switch (opc) {
888 case MMC_READ_MULTIPLE_BLOCK:
889 sh_mmcif_multi_read(host, mrq);
890 return 0;
891 case MMC_WRITE_MULTIPLE_BLOCK:
892 sh_mmcif_multi_write(host, mrq);
893 return 0;
894 case MMC_WRITE_BLOCK:
895 sh_mmcif_single_write(host, mrq);
896 return 0;
897 case MMC_READ_SINGLE_BLOCK:
898 case MMC_SEND_EXT_CSD:
899 sh_mmcif_single_read(host, mrq);
900 return 0;
901 default:
902 dev_err(dev, "Unsupported CMD%d\n", opc);
903 return -EINVAL;
907 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
908 struct mmc_request *mrq)
910 struct mmc_command *cmd = mrq->cmd;
911 u32 opc;
912 u32 mask = 0;
913 unsigned long flags;
915 if (cmd->flags & MMC_RSP_BUSY)
916 mask = MASK_START_CMD | MASK_MRBSYE;
917 else
918 mask = MASK_START_CMD | MASK_MCRSPE;
920 if (host->ccs_enable)
921 mask |= MASK_MCCSTO;
923 if (mrq->data) {
924 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
925 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
926 mrq->data->blksz);
928 opc = sh_mmcif_set_cmd(host, mrq);
930 if (host->ccs_enable)
931 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
932 else
933 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
934 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
935 /* set arg */
936 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
937 /* set cmd */
938 spin_lock_irqsave(&host->lock, flags);
939 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
941 host->wait_for = MMCIF_WAIT_FOR_CMD;
942 schedule_delayed_work(&host->timeout_work, host->timeout);
943 spin_unlock_irqrestore(&host->lock, flags);
946 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
947 struct mmc_request *mrq)
949 struct device *dev = sh_mmcif_host_to_dev(host);
951 switch (mrq->cmd->opcode) {
952 case MMC_READ_MULTIPLE_BLOCK:
953 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
954 break;
955 case MMC_WRITE_MULTIPLE_BLOCK:
956 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
957 break;
958 default:
959 dev_err(dev, "unsupported stop cmd\n");
960 mrq->stop->error = sh_mmcif_error_manage(host);
961 return;
964 host->wait_for = MMCIF_WAIT_FOR_STOP;
967 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
969 struct sh_mmcif_host *host = mmc_priv(mmc);
970 struct device *dev = sh_mmcif_host_to_dev(host);
971 unsigned long flags;
973 spin_lock_irqsave(&host->lock, flags);
974 if (host->state != STATE_IDLE) {
975 dev_dbg(dev, "%s() rejected, state %u\n",
976 __func__, host->state);
977 spin_unlock_irqrestore(&host->lock, flags);
978 mrq->cmd->error = -EAGAIN;
979 mmc_request_done(mmc, mrq);
980 return;
983 host->state = STATE_REQUEST;
984 spin_unlock_irqrestore(&host->lock, flags);
986 host->mrq = mrq;
988 sh_mmcif_start_cmd(host, mrq);
991 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
993 struct device *dev = sh_mmcif_host_to_dev(host);
995 if (host->mmc->f_max) {
996 unsigned int f_max, f_min = 0, f_min_old;
998 f_max = host->mmc->f_max;
999 for (f_min_old = f_max; f_min_old > 2;) {
1000 f_min = clk_round_rate(host->clk, f_min_old / 2);
1001 if (f_min == f_min_old)
1002 break;
1003 f_min_old = f_min;
1007 * This driver assumes this SoC is R-Car Gen2 or later
1009 host->clkdiv_map = 0x3ff;
1011 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1012 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1013 } else {
1014 unsigned int clk = clk_get_rate(host->clk);
1016 host->mmc->f_max = clk / 2;
1017 host->mmc->f_min = clk / 512;
1020 dev_dbg(dev, "clk max/min = %d/%d\n",
1021 host->mmc->f_max, host->mmc->f_min);
1024 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026 struct sh_mmcif_host *host = mmc_priv(mmc);
1027 struct device *dev = sh_mmcif_host_to_dev(host);
1028 unsigned long flags;
1030 spin_lock_irqsave(&host->lock, flags);
1031 if (host->state != STATE_IDLE) {
1032 dev_dbg(dev, "%s() rejected, state %u\n",
1033 __func__, host->state);
1034 spin_unlock_irqrestore(&host->lock, flags);
1035 return;
1038 host->state = STATE_IOS;
1039 spin_unlock_irqrestore(&host->lock, flags);
1041 switch (ios->power_mode) {
1042 case MMC_POWER_UP:
1043 if (!IS_ERR(mmc->supply.vmmc))
1044 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1045 if (!host->power) {
1046 clk_prepare_enable(host->clk);
1047 pm_runtime_get_sync(dev);
1048 sh_mmcif_sync_reset(host);
1049 sh_mmcif_request_dma(host);
1050 host->power = true;
1052 break;
1053 case MMC_POWER_OFF:
1054 if (!IS_ERR(mmc->supply.vmmc))
1055 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1056 if (host->power) {
1057 sh_mmcif_clock_control(host, 0);
1058 sh_mmcif_release_dma(host);
1059 pm_runtime_put(dev);
1060 clk_disable_unprepare(host->clk);
1061 host->power = false;
1063 break;
1064 case MMC_POWER_ON:
1065 sh_mmcif_clock_control(host, ios->clock);
1066 break;
1069 host->timing = ios->timing;
1070 host->bus_width = ios->bus_width;
1071 host->state = STATE_IDLE;
1074 static const struct mmc_host_ops sh_mmcif_ops = {
1075 .request = sh_mmcif_request,
1076 .set_ios = sh_mmcif_set_ios,
1077 .get_cd = mmc_gpio_get_cd,
1080 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082 struct mmc_command *cmd = host->mrq->cmd;
1083 struct mmc_data *data = host->mrq->data;
1084 struct device *dev = sh_mmcif_host_to_dev(host);
1085 long time;
1087 if (host->sd_error) {
1088 switch (cmd->opcode) {
1089 case MMC_ALL_SEND_CID:
1090 case MMC_SELECT_CARD:
1091 case MMC_APP_CMD:
1092 cmd->error = -ETIMEDOUT;
1093 break;
1094 default:
1095 cmd->error = sh_mmcif_error_manage(host);
1096 break;
1098 dev_dbg(dev, "CMD%d error %d\n",
1099 cmd->opcode, cmd->error);
1100 host->sd_error = false;
1101 return false;
1103 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1104 cmd->error = 0;
1105 return false;
1108 sh_mmcif_get_response(host, cmd);
1110 if (!data)
1111 return false;
1114 * Completion can be signalled from DMA callback and error, so, have to
1115 * reset here, before setting .dma_active
1117 init_completion(&host->dma_complete);
1119 if (data->flags & MMC_DATA_READ) {
1120 if (host->chan_rx)
1121 sh_mmcif_start_dma_rx(host);
1122 } else {
1123 if (host->chan_tx)
1124 sh_mmcif_start_dma_tx(host);
1127 if (!host->dma_active) {
1128 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1129 return !data->error;
1132 /* Running in the IRQ thread, can sleep */
1133 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1134 host->timeout);
1136 if (data->flags & MMC_DATA_READ)
1137 dma_unmap_sg(host->chan_rx->device->dev,
1138 data->sg, data->sg_len,
1139 DMA_FROM_DEVICE);
1140 else
1141 dma_unmap_sg(host->chan_tx->device->dev,
1142 data->sg, data->sg_len,
1143 DMA_TO_DEVICE);
1145 if (host->sd_error) {
1146 dev_err(host->mmc->parent,
1147 "Error IRQ while waiting for DMA completion!\n");
1148 /* Woken up by an error IRQ: abort DMA */
1149 data->error = sh_mmcif_error_manage(host);
1150 } else if (!time) {
1151 dev_err(host->mmc->parent, "DMA timeout!\n");
1152 data->error = -ETIMEDOUT;
1153 } else if (time < 0) {
1154 dev_err(host->mmc->parent,
1155 "wait_for_completion_...() error %ld!\n", time);
1156 data->error = time;
1158 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1159 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1160 host->dma_active = false;
1162 if (data->error) {
1163 data->bytes_xfered = 0;
1164 /* Abort DMA */
1165 if (data->flags & MMC_DATA_READ)
1166 dmaengine_terminate_all(host->chan_rx);
1167 else
1168 dmaengine_terminate_all(host->chan_tx);
1171 return false;
1174 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176 struct sh_mmcif_host *host = dev_id;
1177 struct mmc_request *mrq;
1178 struct device *dev = sh_mmcif_host_to_dev(host);
1179 bool wait = false;
1180 unsigned long flags;
1181 int wait_work;
1183 spin_lock_irqsave(&host->lock, flags);
1184 wait_work = host->wait_for;
1185 spin_unlock_irqrestore(&host->lock, flags);
1187 cancel_delayed_work_sync(&host->timeout_work);
1189 mutex_lock(&host->thread_lock);
1191 mrq = host->mrq;
1192 if (!mrq) {
1193 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194 host->state, host->wait_for);
1195 mutex_unlock(&host->thread_lock);
1196 return IRQ_HANDLED;
1200 * All handlers return true, if processing continues, and false, if the
1201 * request has to be completed - successfully or not
1203 switch (wait_work) {
1204 case MMCIF_WAIT_FOR_REQUEST:
1205 /* We're too late, the timeout has already kicked in */
1206 mutex_unlock(&host->thread_lock);
1207 return IRQ_HANDLED;
1208 case MMCIF_WAIT_FOR_CMD:
1209 /* Wait for data? */
1210 wait = sh_mmcif_end_cmd(host);
1211 break;
1212 case MMCIF_WAIT_FOR_MREAD:
1213 /* Wait for more data? */
1214 wait = sh_mmcif_mread_block(host);
1215 break;
1216 case MMCIF_WAIT_FOR_READ:
1217 /* Wait for data end? */
1218 wait = sh_mmcif_read_block(host);
1219 break;
1220 case MMCIF_WAIT_FOR_MWRITE:
1221 /* Wait data to write? */
1222 wait = sh_mmcif_mwrite_block(host);
1223 break;
1224 case MMCIF_WAIT_FOR_WRITE:
1225 /* Wait for data end? */
1226 wait = sh_mmcif_write_block(host);
1227 break;
1228 case MMCIF_WAIT_FOR_STOP:
1229 if (host->sd_error) {
1230 mrq->stop->error = sh_mmcif_error_manage(host);
1231 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1232 break;
1234 sh_mmcif_get_cmd12response(host, mrq->stop);
1235 mrq->stop->error = 0;
1236 break;
1237 case MMCIF_WAIT_FOR_READ_END:
1238 case MMCIF_WAIT_FOR_WRITE_END:
1239 if (host->sd_error) {
1240 mrq->data->error = sh_mmcif_error_manage(host);
1241 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243 break;
1244 default:
1245 BUG();
1248 if (wait) {
1249 schedule_delayed_work(&host->timeout_work, host->timeout);
1250 /* Wait for more data */
1251 mutex_unlock(&host->thread_lock);
1252 return IRQ_HANDLED;
1255 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1256 struct mmc_data *data = mrq->data;
1257 if (!mrq->cmd->error && data && !data->error)
1258 data->bytes_xfered =
1259 data->blocks * data->blksz;
1261 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1262 sh_mmcif_stop_cmd(host, mrq);
1263 if (!mrq->stop->error) {
1264 schedule_delayed_work(&host->timeout_work, host->timeout);
1265 mutex_unlock(&host->thread_lock);
1266 return IRQ_HANDLED;
1271 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1272 host->state = STATE_IDLE;
1273 host->mrq = NULL;
1274 mmc_request_done(host->mmc, mrq);
1276 mutex_unlock(&host->thread_lock);
1278 return IRQ_HANDLED;
1281 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283 struct sh_mmcif_host *host = dev_id;
1284 struct device *dev = sh_mmcif_host_to_dev(host);
1285 u32 state, mask;
1287 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1288 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1289 if (host->ccs_enable)
1290 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1291 else
1292 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1293 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295 if (state & ~MASK_CLEAN)
1296 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1297 state);
1299 if (state & INT_ERR_STS || state & ~INT_ALL) {
1300 host->sd_error = true;
1301 dev_dbg(dev, "int err state = 0x%08x\n", state);
1303 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1304 if (!host->mrq)
1305 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1306 if (!host->dma_active)
1307 return IRQ_WAKE_THREAD;
1308 else if (host->sd_error)
1309 sh_mmcif_dma_complete(host);
1310 } else {
1311 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1314 return IRQ_HANDLED;
1317 static void sh_mmcif_timeout_work(struct work_struct *work)
1319 struct delayed_work *d = to_delayed_work(work);
1320 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1321 struct mmc_request *mrq = host->mrq;
1322 struct device *dev = sh_mmcif_host_to_dev(host);
1323 unsigned long flags;
1325 if (host->dying)
1326 /* Don't run after mmc_remove_host() */
1327 return;
1329 spin_lock_irqsave(&host->lock, flags);
1330 if (host->state == STATE_IDLE) {
1331 spin_unlock_irqrestore(&host->lock, flags);
1332 return;
1335 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1336 host->wait_for, mrq->cmd->opcode);
1338 host->state = STATE_TIMEOUT;
1339 spin_unlock_irqrestore(&host->lock, flags);
1342 * Handle races with cancel_delayed_work(), unless
1343 * cancel_delayed_work_sync() is used
1345 switch (host->wait_for) {
1346 case MMCIF_WAIT_FOR_CMD:
1347 mrq->cmd->error = sh_mmcif_error_manage(host);
1348 break;
1349 case MMCIF_WAIT_FOR_STOP:
1350 mrq->stop->error = sh_mmcif_error_manage(host);
1351 break;
1352 case MMCIF_WAIT_FOR_MREAD:
1353 case MMCIF_WAIT_FOR_MWRITE:
1354 case MMCIF_WAIT_FOR_READ:
1355 case MMCIF_WAIT_FOR_WRITE:
1356 case MMCIF_WAIT_FOR_READ_END:
1357 case MMCIF_WAIT_FOR_WRITE_END:
1358 mrq->data->error = sh_mmcif_error_manage(host);
1359 break;
1360 default:
1361 BUG();
1364 host->state = STATE_IDLE;
1365 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1366 host->mrq = NULL;
1367 mmc_request_done(host->mmc, mrq);
1370 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372 struct device *dev = sh_mmcif_host_to_dev(host);
1373 struct sh_mmcif_plat_data *pd = dev->platform_data;
1374 struct mmc_host *mmc = host->mmc;
1376 mmc_regulator_get_supply(mmc);
1378 if (!pd)
1379 return;
1381 if (!mmc->ocr_avail)
1382 mmc->ocr_avail = pd->ocr;
1383 else if (pd->ocr)
1384 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1387 static int sh_mmcif_probe(struct platform_device *pdev)
1389 int ret = 0, irq[2];
1390 struct mmc_host *mmc;
1391 struct sh_mmcif_host *host;
1392 struct device *dev = &pdev->dev;
1393 struct sh_mmcif_plat_data *pd = dev->platform_data;
1394 struct resource *res;
1395 void __iomem *reg;
1396 const char *name;
1398 irq[0] = platform_get_irq(pdev, 0);
1399 irq[1] = platform_get_irq(pdev, 1);
1400 if (irq[0] < 0) {
1401 dev_err(dev, "Get irq error\n");
1402 return -ENXIO;
1405 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406 reg = devm_ioremap_resource(dev, res);
1407 if (IS_ERR(reg))
1408 return PTR_ERR(reg);
1410 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1411 if (!mmc)
1412 return -ENOMEM;
1414 ret = mmc_of_parse(mmc);
1415 if (ret < 0)
1416 goto err_host;
1418 host = mmc_priv(mmc);
1419 host->mmc = mmc;
1420 host->addr = reg;
1421 host->timeout = msecs_to_jiffies(10000);
1422 host->ccs_enable = true;
1423 host->clk_ctrl2_enable = false;
1425 host->pd = pdev;
1427 spin_lock_init(&host->lock);
1429 mmc->ops = &sh_mmcif_ops;
1430 sh_mmcif_init_ocr(host);
1432 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1433 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1434 mmc->max_busy_timeout = 10000;
1436 if (pd && pd->caps)
1437 mmc->caps |= pd->caps;
1438 mmc->max_segs = 32;
1439 mmc->max_blk_size = 512;
1440 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1441 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1442 mmc->max_seg_size = mmc->max_req_size;
1444 platform_set_drvdata(pdev, host);
1446 host->clk = devm_clk_get(dev, NULL);
1447 if (IS_ERR(host->clk)) {
1448 ret = PTR_ERR(host->clk);
1449 dev_err(dev, "cannot get clock: %d\n", ret);
1450 goto err_host;
1453 ret = clk_prepare_enable(host->clk);
1454 if (ret < 0)
1455 goto err_host;
1457 sh_mmcif_clk_setup(host);
1459 pm_runtime_enable(dev);
1460 host->power = false;
1462 ret = pm_runtime_get_sync(dev);
1463 if (ret < 0)
1464 goto err_clk;
1466 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1468 sh_mmcif_sync_reset(host);
1469 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1471 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1472 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1473 sh_mmcif_irqt, 0, name, host);
1474 if (ret) {
1475 dev_err(dev, "request_irq error (%s)\n", name);
1476 goto err_clk;
1478 if (irq[1] >= 0) {
1479 ret = devm_request_threaded_irq(dev, irq[1],
1480 sh_mmcif_intr, sh_mmcif_irqt,
1481 0, "sh_mmc:int", host);
1482 if (ret) {
1483 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1484 goto err_clk;
1488 mutex_init(&host->thread_lock);
1490 ret = mmc_add_host(mmc);
1491 if (ret < 0)
1492 goto err_clk;
1494 dev_pm_qos_expose_latency_limit(dev, 100);
1496 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1497 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1498 clk_get_rate(host->clk) / 1000000UL);
1500 pm_runtime_put(dev);
1501 clk_disable_unprepare(host->clk);
1502 return ret;
1504 err_clk:
1505 clk_disable_unprepare(host->clk);
1506 pm_runtime_put_sync(dev);
1507 pm_runtime_disable(dev);
1508 err_host:
1509 mmc_free_host(mmc);
1510 return ret;
1513 static int sh_mmcif_remove(struct platform_device *pdev)
1515 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1517 host->dying = true;
1518 clk_prepare_enable(host->clk);
1519 pm_runtime_get_sync(&pdev->dev);
1521 dev_pm_qos_hide_latency_limit(&pdev->dev);
1523 mmc_remove_host(host->mmc);
1524 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1527 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528 * mmc_remove_host() call above. But swapping order doesn't help either
1529 * (a query on the linux-mmc mailing list didn't bring any replies).
1531 cancel_delayed_work_sync(&host->timeout_work);
1533 clk_disable_unprepare(host->clk);
1534 mmc_free_host(host->mmc);
1535 pm_runtime_put_sync(&pdev->dev);
1536 pm_runtime_disable(&pdev->dev);
1538 return 0;
1541 #ifdef CONFIG_PM_SLEEP
1542 static int sh_mmcif_suspend(struct device *dev)
1544 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1546 pm_runtime_get_sync(dev);
1547 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1548 pm_runtime_put(dev);
1550 return 0;
1553 static int sh_mmcif_resume(struct device *dev)
1555 return 0;
1557 #endif
1559 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1560 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1563 static struct platform_driver sh_mmcif_driver = {
1564 .probe = sh_mmcif_probe,
1565 .remove = sh_mmcif_remove,
1566 .driver = {
1567 .name = DRIVER_NAME,
1568 .pm = &sh_mmcif_dev_pm_ops,
1569 .of_match_table = sh_mmcif_of_match,
1573 module_platform_driver(sh_mmcif_driver);
1575 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576 MODULE_LICENSE("GPL");
1577 MODULE_ALIAS("platform:" DRIVER_NAME);
1578 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");