2 * MTD device concatenation layer
4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
7 * NAND support by Christian Gan <cgan@iders.ca>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
35 #include <asm/div64.h>
38 * Our storage structure:
39 * Subdev points to an array of pointers to struct mtd_info objects
40 * which is allocated along with this structure
46 struct mtd_info
**subdev
;
50 * how to calculate the size required for the above structure,
51 * including the pointer array subdev points to:
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
57 * Given a pointer to the MTD object in the mtd_concat structure,
58 * we can retrieve the pointer to that structure with this macro.
60 #define CONCAT(x) ((struct mtd_concat *)(x))
63 * MTD methods which look up the relevant subdevice, translate the
64 * effective address and pass through to the subdevice.
68 concat_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
69 size_t * retlen
, u_char
* buf
)
71 struct mtd_concat
*concat
= CONCAT(mtd
);
75 for (i
= 0; i
< concat
->num_subdev
; i
++) {
76 struct mtd_info
*subdev
= concat
->subdev
[i
];
79 if (from
>= subdev
->size
) {
80 /* Not destined for this subdev */
85 if (from
+ len
> subdev
->size
)
86 /* First part goes into this subdev */
87 size
= subdev
->size
- from
;
89 /* Entire transaction goes into this subdev */
92 err
= mtd_read(subdev
, from
, size
, &retsize
, buf
);
94 /* Save information about bitflips! */
96 if (mtd_is_eccerr(err
)) {
97 mtd
->ecc_stats
.failed
++;
99 } else if (mtd_is_bitflip(err
)) {
100 mtd
->ecc_stats
.corrected
++;
101 /* Do not overwrite -EBADMSG !! */
120 concat_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
121 size_t * retlen
, const u_char
* buf
)
123 struct mtd_concat
*concat
= CONCAT(mtd
);
127 for (i
= 0; i
< concat
->num_subdev
; i
++) {
128 struct mtd_info
*subdev
= concat
->subdev
[i
];
129 size_t size
, retsize
;
131 if (to
>= subdev
->size
) {
136 if (to
+ len
> subdev
->size
)
137 size
= subdev
->size
- to
;
141 err
= mtd_write(subdev
, to
, size
, &retsize
, buf
);
158 concat_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
159 unsigned long count
, loff_t to
, size_t * retlen
)
161 struct mtd_concat
*concat
= CONCAT(mtd
);
162 struct kvec
*vecs_copy
;
163 unsigned long entry_low
, entry_high
;
164 size_t total_len
= 0;
168 /* Calculate total length of data */
169 for (i
= 0; i
< count
; i
++)
170 total_len
+= vecs
[i
].iov_len
;
172 /* Check alignment */
173 if (mtd
->writesize
> 1) {
175 if (do_div(__to
, mtd
->writesize
) || (total_len
% mtd
->writesize
))
179 /* make a copy of vecs */
180 vecs_copy
= kmemdup(vecs
, sizeof(struct kvec
) * count
, GFP_KERNEL
);
185 for (i
= 0; i
< concat
->num_subdev
; i
++) {
186 struct mtd_info
*subdev
= concat
->subdev
[i
];
187 size_t size
, wsize
, retsize
, old_iov_len
;
189 if (to
>= subdev
->size
) {
194 size
= min_t(uint64_t, total_len
, subdev
->size
- to
);
195 wsize
= size
; /* store for future use */
197 entry_high
= entry_low
;
198 while (entry_high
< count
) {
199 if (size
<= vecs_copy
[entry_high
].iov_len
)
201 size
-= vecs_copy
[entry_high
++].iov_len
;
204 old_iov_len
= vecs_copy
[entry_high
].iov_len
;
205 vecs_copy
[entry_high
].iov_len
= size
;
207 err
= mtd_writev(subdev
, &vecs_copy
[entry_low
],
208 entry_high
- entry_low
+ 1, to
, &retsize
);
210 vecs_copy
[entry_high
].iov_len
= old_iov_len
- size
;
211 vecs_copy
[entry_high
].iov_base
+= size
;
213 entry_low
= entry_high
;
233 concat_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
235 struct mtd_concat
*concat
= CONCAT(mtd
);
236 struct mtd_oob_ops devops
= *ops
;
239 ops
->retlen
= ops
->oobretlen
= 0;
241 for (i
= 0; i
< concat
->num_subdev
; i
++) {
242 struct mtd_info
*subdev
= concat
->subdev
[i
];
244 if (from
>= subdev
->size
) {
245 from
-= subdev
->size
;
250 if (from
+ devops
.len
> subdev
->size
)
251 devops
.len
= subdev
->size
- from
;
253 err
= mtd_read_oob(subdev
, from
, &devops
);
254 ops
->retlen
+= devops
.retlen
;
255 ops
->oobretlen
+= devops
.oobretlen
;
257 /* Save information about bitflips! */
259 if (mtd_is_eccerr(err
)) {
260 mtd
->ecc_stats
.failed
++;
262 } else if (mtd_is_bitflip(err
)) {
263 mtd
->ecc_stats
.corrected
++;
264 /* Do not overwrite -EBADMSG !! */
272 devops
.len
= ops
->len
- ops
->retlen
;
275 devops
.datbuf
+= devops
.retlen
;
278 devops
.ooblen
= ops
->ooblen
- ops
->oobretlen
;
281 devops
.oobbuf
+= ops
->oobretlen
;
290 concat_write_oob(struct mtd_info
*mtd
, loff_t to
, struct mtd_oob_ops
*ops
)
292 struct mtd_concat
*concat
= CONCAT(mtd
);
293 struct mtd_oob_ops devops
= *ops
;
296 if (!(mtd
->flags
& MTD_WRITEABLE
))
299 ops
->retlen
= ops
->oobretlen
= 0;
301 for (i
= 0; i
< concat
->num_subdev
; i
++) {
302 struct mtd_info
*subdev
= concat
->subdev
[i
];
304 if (to
>= subdev
->size
) {
309 /* partial write ? */
310 if (to
+ devops
.len
> subdev
->size
)
311 devops
.len
= subdev
->size
- to
;
313 err
= mtd_write_oob(subdev
, to
, &devops
);
314 ops
->retlen
+= devops
.retlen
;
315 ops
->oobretlen
+= devops
.oobretlen
;
320 devops
.len
= ops
->len
- ops
->retlen
;
323 devops
.datbuf
+= devops
.retlen
;
326 devops
.ooblen
= ops
->ooblen
- ops
->oobretlen
;
329 devops
.oobbuf
+= devops
.oobretlen
;
336 static int concat_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
338 struct mtd_concat
*concat
= CONCAT(mtd
);
339 struct mtd_info
*subdev
;
341 uint64_t length
, offset
= 0;
342 struct erase_info
*erase
;
345 * Check for proper erase block alignment of the to-be-erased area.
346 * It is easier to do this based on the super device's erase
347 * region info rather than looking at each particular sub-device
350 if (!concat
->mtd
.numeraseregions
) {
351 /* the easy case: device has uniform erase block size */
352 if (instr
->addr
& (concat
->mtd
.erasesize
- 1))
354 if (instr
->len
& (concat
->mtd
.erasesize
- 1))
357 /* device has variable erase size */
358 struct mtd_erase_region_info
*erase_regions
=
359 concat
->mtd
.eraseregions
;
362 * Find the erase region where the to-be-erased area begins:
364 for (i
= 0; i
< concat
->mtd
.numeraseregions
&&
365 instr
->addr
>= erase_regions
[i
].offset
; i
++) ;
369 * Now erase_regions[i] is the region in which the
370 * to-be-erased area begins. Verify that the starting
371 * offset is aligned to this region's erase size:
373 if (i
< 0 || instr
->addr
& (erase_regions
[i
].erasesize
- 1))
377 * now find the erase region where the to-be-erased area ends:
379 for (; i
< concat
->mtd
.numeraseregions
&&
380 (instr
->addr
+ instr
->len
) >= erase_regions
[i
].offset
;
384 * check if the ending offset is aligned to this region's erase size
386 if (i
< 0 || ((instr
->addr
+ instr
->len
) &
387 (erase_regions
[i
].erasesize
- 1)))
391 /* make a local copy of instr to avoid modifying the caller's struct */
392 erase
= kmalloc(sizeof (struct erase_info
), GFP_KERNEL
);
401 * find the subdevice where the to-be-erased area begins, adjust
402 * starting offset to be relative to the subdevice start
404 for (i
= 0; i
< concat
->num_subdev
; i
++) {
405 subdev
= concat
->subdev
[i
];
406 if (subdev
->size
<= erase
->addr
) {
407 erase
->addr
-= subdev
->size
;
408 offset
+= subdev
->size
;
414 /* must never happen since size limit has been verified above */
415 BUG_ON(i
>= concat
->num_subdev
);
417 /* now do the erase: */
419 for (; length
> 0; i
++) {
420 /* loop for all subdevices affected by this request */
421 subdev
= concat
->subdev
[i
]; /* get current subdevice */
423 /* limit length to subdevice's size: */
424 if (erase
->addr
+ length
> subdev
->size
)
425 erase
->len
= subdev
->size
- erase
->addr
;
429 length
-= erase
->len
;
430 if ((err
= mtd_erase(subdev
, erase
))) {
431 /* sanity check: should never happen since
432 * block alignment has been checked above */
433 BUG_ON(err
== -EINVAL
);
434 if (erase
->fail_addr
!= MTD_FAIL_ADDR_UNKNOWN
)
435 instr
->fail_addr
= erase
->fail_addr
+ offset
;
439 * erase->addr specifies the offset of the area to be
440 * erased *within the current subdevice*. It can be
441 * non-zero only the first time through this loop, i.e.
442 * for the first subdevice where blocks need to be erased.
443 * All the following erases must begin at the start of the
444 * current subdevice, i.e. at offset zero.
447 offset
+= subdev
->size
;
454 static int concat_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
456 struct mtd_concat
*concat
= CONCAT(mtd
);
457 int i
, err
= -EINVAL
;
459 for (i
= 0; i
< concat
->num_subdev
; i
++) {
460 struct mtd_info
*subdev
= concat
->subdev
[i
];
463 if (ofs
>= subdev
->size
) {
468 if (ofs
+ len
> subdev
->size
)
469 size
= subdev
->size
- ofs
;
473 err
= mtd_lock(subdev
, ofs
, size
);
488 static int concat_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
490 struct mtd_concat
*concat
= CONCAT(mtd
);
493 for (i
= 0; i
< concat
->num_subdev
; i
++) {
494 struct mtd_info
*subdev
= concat
->subdev
[i
];
497 if (ofs
>= subdev
->size
) {
502 if (ofs
+ len
> subdev
->size
)
503 size
= subdev
->size
- ofs
;
507 err
= mtd_unlock(subdev
, ofs
, size
);
522 static void concat_sync(struct mtd_info
*mtd
)
524 struct mtd_concat
*concat
= CONCAT(mtd
);
527 for (i
= 0; i
< concat
->num_subdev
; i
++) {
528 struct mtd_info
*subdev
= concat
->subdev
[i
];
533 static int concat_suspend(struct mtd_info
*mtd
)
535 struct mtd_concat
*concat
= CONCAT(mtd
);
538 for (i
= 0; i
< concat
->num_subdev
; i
++) {
539 struct mtd_info
*subdev
= concat
->subdev
[i
];
540 if ((rc
= mtd_suspend(subdev
)) < 0)
546 static void concat_resume(struct mtd_info
*mtd
)
548 struct mtd_concat
*concat
= CONCAT(mtd
);
551 for (i
= 0; i
< concat
->num_subdev
; i
++) {
552 struct mtd_info
*subdev
= concat
->subdev
[i
];
557 static int concat_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
559 struct mtd_concat
*concat
= CONCAT(mtd
);
562 if (!mtd_can_have_bb(concat
->subdev
[0]))
565 for (i
= 0; i
< concat
->num_subdev
; i
++) {
566 struct mtd_info
*subdev
= concat
->subdev
[i
];
568 if (ofs
>= subdev
->size
) {
573 res
= mtd_block_isbad(subdev
, ofs
);
580 static int concat_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
582 struct mtd_concat
*concat
= CONCAT(mtd
);
583 int i
, err
= -EINVAL
;
585 for (i
= 0; i
< concat
->num_subdev
; i
++) {
586 struct mtd_info
*subdev
= concat
->subdev
[i
];
588 if (ofs
>= subdev
->size
) {
593 err
= mtd_block_markbad(subdev
, ofs
);
595 mtd
->ecc_stats
.badblocks
++;
603 * This function constructs a virtual MTD device by concatenating
604 * num_devs MTD devices. A pointer to the new device object is
605 * stored to *new_dev upon success. This function does _not_
606 * register any devices: this is the caller's responsibility.
608 struct mtd_info
*mtd_concat_create(struct mtd_info
*subdev
[], /* subdevices to concatenate */
609 int num_devs
, /* number of subdevices */
611 { /* name for the new device */
614 struct mtd_concat
*concat
;
615 uint32_t max_erasesize
, curr_erasesize
;
616 int num_erase_region
;
617 int max_writebufsize
= 0;
619 printk(KERN_NOTICE
"Concatenating MTD devices:\n");
620 for (i
= 0; i
< num_devs
; i
++)
621 printk(KERN_NOTICE
"(%d): \"%s\"\n", i
, subdev
[i
]->name
);
622 printk(KERN_NOTICE
"into device \"%s\"\n", name
);
624 /* allocate the device structure */
625 size
= SIZEOF_STRUCT_MTD_CONCAT(num_devs
);
626 concat
= kzalloc(size
, GFP_KERNEL
);
629 ("memory allocation error while creating concatenated device \"%s\"\n",
633 concat
->subdev
= (struct mtd_info
**) (concat
+ 1);
636 * Set up the new "super" device's MTD object structure, check for
637 * incompatibilities between the subdevices.
639 concat
->mtd
.type
= subdev
[0]->type
;
640 concat
->mtd
.flags
= subdev
[0]->flags
;
641 concat
->mtd
.size
= subdev
[0]->size
;
642 concat
->mtd
.erasesize
= subdev
[0]->erasesize
;
643 concat
->mtd
.writesize
= subdev
[0]->writesize
;
645 for (i
= 0; i
< num_devs
; i
++)
646 if (max_writebufsize
< subdev
[i
]->writebufsize
)
647 max_writebufsize
= subdev
[i
]->writebufsize
;
648 concat
->mtd
.writebufsize
= max_writebufsize
;
650 concat
->mtd
.subpage_sft
= subdev
[0]->subpage_sft
;
651 concat
->mtd
.oobsize
= subdev
[0]->oobsize
;
652 concat
->mtd
.oobavail
= subdev
[0]->oobavail
;
653 if (subdev
[0]->_writev
)
654 concat
->mtd
._writev
= concat_writev
;
655 if (subdev
[0]->_read_oob
)
656 concat
->mtd
._read_oob
= concat_read_oob
;
657 if (subdev
[0]->_write_oob
)
658 concat
->mtd
._write_oob
= concat_write_oob
;
659 if (subdev
[0]->_block_isbad
)
660 concat
->mtd
._block_isbad
= concat_block_isbad
;
661 if (subdev
[0]->_block_markbad
)
662 concat
->mtd
._block_markbad
= concat_block_markbad
;
664 concat
->mtd
.ecc_stats
.badblocks
= subdev
[0]->ecc_stats
.badblocks
;
666 concat
->subdev
[0] = subdev
[0];
668 for (i
= 1; i
< num_devs
; i
++) {
669 if (concat
->mtd
.type
!= subdev
[i
]->type
) {
671 printk("Incompatible device type on \"%s\"\n",
675 if (concat
->mtd
.flags
!= subdev
[i
]->flags
) {
677 * Expect all flags except MTD_WRITEABLE to be
678 * equal on all subdevices.
680 if ((concat
->mtd
.flags
^ subdev
[i
]->
681 flags
) & ~MTD_WRITEABLE
) {
683 printk("Incompatible device flags on \"%s\"\n",
687 /* if writeable attribute differs,
688 make super device writeable */
690 subdev
[i
]->flags
& MTD_WRITEABLE
;
693 concat
->mtd
.size
+= subdev
[i
]->size
;
694 concat
->mtd
.ecc_stats
.badblocks
+=
695 subdev
[i
]->ecc_stats
.badblocks
;
696 if (concat
->mtd
.writesize
!= subdev
[i
]->writesize
||
697 concat
->mtd
.subpage_sft
!= subdev
[i
]->subpage_sft
||
698 concat
->mtd
.oobsize
!= subdev
[i
]->oobsize
||
699 !concat
->mtd
._read_oob
!= !subdev
[i
]->_read_oob
||
700 !concat
->mtd
._write_oob
!= !subdev
[i
]->_write_oob
) {
702 printk("Incompatible OOB or ECC data on \"%s\"\n",
706 concat
->subdev
[i
] = subdev
[i
];
710 mtd_set_ooblayout(&concat
->mtd
, subdev
[0]->ooblayout
);
712 concat
->num_subdev
= num_devs
;
713 concat
->mtd
.name
= name
;
715 concat
->mtd
._erase
= concat_erase
;
716 concat
->mtd
._read
= concat_read
;
717 concat
->mtd
._write
= concat_write
;
718 concat
->mtd
._sync
= concat_sync
;
719 concat
->mtd
._lock
= concat_lock
;
720 concat
->mtd
._unlock
= concat_unlock
;
721 concat
->mtd
._suspend
= concat_suspend
;
722 concat
->mtd
._resume
= concat_resume
;
725 * Combine the erase block size info of the subdevices:
727 * first, walk the map of the new device and see how
728 * many changes in erase size we have
730 max_erasesize
= curr_erasesize
= subdev
[0]->erasesize
;
731 num_erase_region
= 1;
732 for (i
= 0; i
< num_devs
; i
++) {
733 if (subdev
[i
]->numeraseregions
== 0) {
734 /* current subdevice has uniform erase size */
735 if (subdev
[i
]->erasesize
!= curr_erasesize
) {
736 /* if it differs from the last subdevice's erase size, count it */
738 curr_erasesize
= subdev
[i
]->erasesize
;
739 if (curr_erasesize
> max_erasesize
)
740 max_erasesize
= curr_erasesize
;
743 /* current subdevice has variable erase size */
745 for (j
= 0; j
< subdev
[i
]->numeraseregions
; j
++) {
747 /* walk the list of erase regions, count any changes */
748 if (subdev
[i
]->eraseregions
[j
].erasesize
!=
752 subdev
[i
]->eraseregions
[j
].
754 if (curr_erasesize
> max_erasesize
)
755 max_erasesize
= curr_erasesize
;
761 if (num_erase_region
== 1) {
763 * All subdevices have the same uniform erase size.
766 concat
->mtd
.erasesize
= curr_erasesize
;
767 concat
->mtd
.numeraseregions
= 0;
772 * erase block size varies across the subdevices: allocate
773 * space to store the data describing the variable erase regions
775 struct mtd_erase_region_info
*erase_region_p
;
776 uint64_t begin
, position
;
778 concat
->mtd
.erasesize
= max_erasesize
;
779 concat
->mtd
.numeraseregions
= num_erase_region
;
780 concat
->mtd
.eraseregions
= erase_region_p
=
781 kmalloc_array(num_erase_region
,
782 sizeof(struct mtd_erase_region_info
),
784 if (!erase_region_p
) {
787 ("memory allocation error while creating erase region list"
788 " for device \"%s\"\n", name
);
793 * walk the map of the new device once more and fill in
794 * in erase region info:
796 curr_erasesize
= subdev
[0]->erasesize
;
797 begin
= position
= 0;
798 for (i
= 0; i
< num_devs
; i
++) {
799 if (subdev
[i
]->numeraseregions
== 0) {
800 /* current subdevice has uniform erase size */
801 if (subdev
[i
]->erasesize
!= curr_erasesize
) {
803 * fill in an mtd_erase_region_info structure for the area
804 * we have walked so far:
806 erase_region_p
->offset
= begin
;
807 erase_region_p
->erasesize
=
809 tmp64
= position
- begin
;
810 do_div(tmp64
, curr_erasesize
);
811 erase_region_p
->numblocks
= tmp64
;
814 curr_erasesize
= subdev
[i
]->erasesize
;
817 position
+= subdev
[i
]->size
;
819 /* current subdevice has variable erase size */
821 for (j
= 0; j
< subdev
[i
]->numeraseregions
; j
++) {
822 /* walk the list of erase regions, count any changes */
823 if (subdev
[i
]->eraseregions
[j
].
824 erasesize
!= curr_erasesize
) {
825 erase_region_p
->offset
= begin
;
826 erase_region_p
->erasesize
=
828 tmp64
= position
- begin
;
829 do_div(tmp64
, curr_erasesize
);
830 erase_region_p
->numblocks
= tmp64
;
834 subdev
[i
]->eraseregions
[j
].
839 subdev
[i
]->eraseregions
[j
].
840 numblocks
* (uint64_t)curr_erasesize
;
844 /* Now write the final entry */
845 erase_region_p
->offset
= begin
;
846 erase_region_p
->erasesize
= curr_erasesize
;
847 tmp64
= position
- begin
;
848 do_div(tmp64
, curr_erasesize
);
849 erase_region_p
->numblocks
= tmp64
;
856 * This function destroys an MTD object obtained from concat_mtd_devs()
859 void mtd_concat_destroy(struct mtd_info
*mtd
)
861 struct mtd_concat
*concat
= CONCAT(mtd
);
862 if (concat
->mtd
.numeraseregions
)
863 kfree(concat
->mtd
.eraseregions
);
867 EXPORT_SYMBOL(mtd_concat_create
);
868 EXPORT_SYMBOL(mtd_concat_destroy
);
870 MODULE_LICENSE("GPL");
871 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
872 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");