2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/slab.h>
34 #include <linux/of_device.h>
37 #include <linux/platform_data/mtd-davinci.h>
38 #include <linux/platform_data/mtd-davinci-aemif.h>
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 struct davinci_nand_info
{
54 struct nand_chip chip
;
56 struct platform_device
*pdev
;
63 void __iomem
*current_cs
;
65 uint32_t mask_chipsel
;
69 uint32_t core_chipsel
;
71 struct davinci_aemif_timing
*timing
;
74 static DEFINE_SPINLOCK(davinci_nand_lock
);
75 static bool ecc4_busy
;
77 static inline struct davinci_nand_info
*to_davinci_nand(struct mtd_info
*mtd
)
79 return container_of(mtd_to_nand(mtd
), struct davinci_nand_info
, chip
);
82 static inline unsigned int davinci_nand_readl(struct davinci_nand_info
*info
,
85 return __raw_readl(info
->base
+ offset
);
88 static inline void davinci_nand_writel(struct davinci_nand_info
*info
,
89 int offset
, unsigned long value
)
91 __raw_writel(value
, info
->base
+ offset
);
94 /*----------------------------------------------------------------------*/
97 * Access to hardware control lines: ALE, CLE, secondary chipselect.
100 static void nand_davinci_hwcontrol(struct mtd_info
*mtd
, int cmd
,
103 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
104 void __iomem
*addr
= info
->current_cs
;
105 struct nand_chip
*nand
= mtd_to_nand(mtd
);
107 /* Did the control lines change? */
108 if (ctrl
& NAND_CTRL_CHANGE
) {
109 if ((ctrl
& NAND_CTRL_CLE
) == NAND_CTRL_CLE
)
110 addr
+= info
->mask_cle
;
111 else if ((ctrl
& NAND_CTRL_ALE
) == NAND_CTRL_ALE
)
112 addr
+= info
->mask_ale
;
114 nand
->IO_ADDR_W
= addr
;
117 if (cmd
!= NAND_CMD_NONE
)
118 iowrite8(cmd
, nand
->IO_ADDR_W
);
121 static void nand_davinci_select_chip(struct mtd_info
*mtd
, int chip
)
123 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
125 info
->current_cs
= info
->vaddr
;
127 /* maybe kick in a second chipselect */
129 info
->current_cs
+= info
->mask_chipsel
;
131 info
->chip
.IO_ADDR_W
= info
->current_cs
;
132 info
->chip
.IO_ADDR_R
= info
->chip
.IO_ADDR_W
;
135 /*----------------------------------------------------------------------*/
138 * 1-bit hardware ECC ... context maintained for each core chipselect
141 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info
*mtd
)
143 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
145 return davinci_nand_readl(info
, NANDF1ECC_OFFSET
146 + 4 * info
->core_chipsel
);
149 static void nand_davinci_hwctl_1bit(struct mtd_info
*mtd
, int mode
)
151 struct davinci_nand_info
*info
;
155 info
= to_davinci_nand(mtd
);
157 /* Reset ECC hardware */
158 nand_davinci_readecc_1bit(mtd
);
160 spin_lock_irqsave(&davinci_nand_lock
, flags
);
162 /* Restart ECC hardware */
163 nandcfr
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
164 nandcfr
|= BIT(8 + info
->core_chipsel
);
165 davinci_nand_writel(info
, NANDFCR_OFFSET
, nandcfr
);
167 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
171 * Read hardware ECC value and pack into three bytes
173 static int nand_davinci_calculate_1bit(struct mtd_info
*mtd
,
174 const u_char
*dat
, u_char
*ecc_code
)
176 unsigned int ecc_val
= nand_davinci_readecc_1bit(mtd
);
177 unsigned int ecc24
= (ecc_val
& 0x0fff) | ((ecc_val
& 0x0fff0000) >> 4);
179 /* invert so that erased block ecc is correct */
181 ecc_code
[0] = (u_char
)(ecc24
);
182 ecc_code
[1] = (u_char
)(ecc24
>> 8);
183 ecc_code
[2] = (u_char
)(ecc24
>> 16);
188 static int nand_davinci_correct_1bit(struct mtd_info
*mtd
, u_char
*dat
,
189 u_char
*read_ecc
, u_char
*calc_ecc
)
191 struct nand_chip
*chip
= mtd_to_nand(mtd
);
192 uint32_t eccNand
= read_ecc
[0] | (read_ecc
[1] << 8) |
194 uint32_t eccCalc
= calc_ecc
[0] | (calc_ecc
[1] << 8) |
196 uint32_t diff
= eccCalc
^ eccNand
;
199 if ((((diff
>> 12) ^ diff
) & 0xfff) == 0xfff) {
200 /* Correctable error */
201 if ((diff
>> (12 + 3)) < chip
->ecc
.size
) {
202 dat
[diff
>> (12 + 3)] ^= BIT((diff
>> 12) & 7);
207 } else if (!(diff
& (diff
- 1))) {
208 /* Single bit ECC error in the ECC itself,
212 /* Uncorrectable error */
220 /*----------------------------------------------------------------------*/
223 * 4-bit hardware ECC ... context maintained over entire AEMIF
225 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
226 * since that forces use of a problematic "infix OOB" layout.
227 * Among other things, it trashes manufacturer bad block markers.
228 * Also, and specific to this hardware, it ECC-protects the "prepad"
229 * in the OOB ... while having ECC protection for parts of OOB would
230 * seem useful, the current MTD stack sometimes wants to update the
231 * OOB without recomputing ECC.
234 static void nand_davinci_hwctl_4bit(struct mtd_info
*mtd
, int mode
)
236 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
240 /* Reset ECC hardware */
241 davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
);
243 spin_lock_irqsave(&davinci_nand_lock
, flags
);
245 /* Start 4-bit ECC calculation for read/write */
246 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
248 val
|= (info
->core_chipsel
<< 4) | BIT(12);
249 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
251 info
->is_readmode
= (mode
== NAND_ECC_READ
);
253 spin_unlock_irqrestore(&davinci_nand_lock
, flags
);
256 /* Read raw ECC code after writing to NAND. */
258 nand_davinci_readecc_4bit(struct davinci_nand_info
*info
, u32 code
[4])
260 const u32 mask
= 0x03ff03ff;
262 code
[0] = davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
) & mask
;
263 code
[1] = davinci_nand_readl(info
, NAND_4BIT_ECC2_OFFSET
) & mask
;
264 code
[2] = davinci_nand_readl(info
, NAND_4BIT_ECC3_OFFSET
) & mask
;
265 code
[3] = davinci_nand_readl(info
, NAND_4BIT_ECC4_OFFSET
) & mask
;
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info
*mtd
,
270 const u_char
*dat
, u_char
*ecc_code
)
272 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
281 if (info
->is_readmode
) {
282 davinci_nand_readl(info
, NAND_4BIT_ECC1_OFFSET
);
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
291 nand_davinci_readecc_4bit(info
, raw_ecc
);
292 for (i
= 0, p
= raw_ecc
; i
< 2; i
++, p
+= 2) {
293 *ecc_code
++ = p
[0] & 0xff;
294 *ecc_code
++ = ((p
[0] >> 8) & 0x03) | ((p
[0] >> 14) & 0xfc);
295 *ecc_code
++ = ((p
[0] >> 22) & 0x0f) | ((p
[1] << 4) & 0xf0);
296 *ecc_code
++ = ((p
[1] >> 4) & 0x3f) | ((p
[1] >> 10) & 0xc0);
297 *ecc_code
++ = (p
[1] >> 18) & 0xff;
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
306 static int nand_davinci_correct_4bit(struct mtd_info
*mtd
,
307 u_char
*data
, u_char
*ecc_code
, u_char
*null
)
310 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
311 unsigned short ecc10
[8];
312 unsigned short *ecc16
;
315 unsigned num_errors
, corrected
;
318 /* Unpack ten bytes into eight 10 bit values. We know we're
319 * little-endian, and use type punning for less shifting/masking.
321 if (WARN_ON(0x01 & (uintptr_t)ecc_code
))
323 ecc16
= (unsigned short *)ecc_code
;
325 ecc10
[0] = (ecc16
[0] >> 0) & 0x3ff;
326 ecc10
[1] = ((ecc16
[0] >> 10) & 0x3f) | ((ecc16
[1] << 6) & 0x3c0);
327 ecc10
[2] = (ecc16
[1] >> 4) & 0x3ff;
328 ecc10
[3] = ((ecc16
[1] >> 14) & 0x3) | ((ecc16
[2] << 2) & 0x3fc);
329 ecc10
[4] = (ecc16
[2] >> 8) | ((ecc16
[3] << 8) & 0x300);
330 ecc10
[5] = (ecc16
[3] >> 2) & 0x3ff;
331 ecc10
[6] = ((ecc16
[3] >> 12) & 0xf) | ((ecc16
[4] << 4) & 0x3f0);
332 ecc10
[7] = (ecc16
[4] >> 6) & 0x3ff;
334 /* Tell ECC controller about the expected ECC codes. */
335 for (i
= 7; i
>= 0; i
--)
336 davinci_nand_writel(info
, NAND_4BIT_ECC_LOAD_OFFSET
, ecc10
[i
]);
338 /* Allow time for syndrome calculation ... then read it.
339 * A syndrome of all zeroes 0 means no detected errors.
341 davinci_nand_readl(info
, NANDFSR_OFFSET
);
342 nand_davinci_readecc_4bit(info
, syndrome
);
343 if (!(syndrome
[0] | syndrome
[1] | syndrome
[2] | syndrome
[3]))
347 * Clear any previous address calculation by doing a dummy read of an
348 * error address register.
350 davinci_nand_readl(info
, NAND_ERR_ADD1_OFFSET
);
352 /* Start address calculation, and wait for it to complete.
353 * We _could_ start reading more data while this is working,
354 * to speed up the overall page read.
356 davinci_nand_writel(info
, NANDFCR_OFFSET
,
357 davinci_nand_readl(info
, NANDFCR_OFFSET
) | BIT(13));
360 * ECC_STATE field reads 0x3 (Error correction complete) immediately
361 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
362 * begin trying to poll for the state, you may fall right out of your
363 * loop without any of the correction calculations having taken place.
364 * The recommendation from the hardware team is to initially delay as
365 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
368 timeo
= jiffies
+ usecs_to_jiffies(100);
370 ecc_state
= (davinci_nand_readl(info
,
371 NANDFSR_OFFSET
) >> 8) & 0x0f;
373 } while ((ecc_state
< 4) && time_before(jiffies
, timeo
));
376 u32 fsr
= davinci_nand_readl(info
, NANDFSR_OFFSET
);
378 switch ((fsr
>> 8) & 0x0f) {
379 case 0: /* no error, should not happen */
380 davinci_nand_readl(info
, NAND_ERR_ERRVAL1_OFFSET
);
382 case 1: /* five or more errors detected */
383 davinci_nand_readl(info
, NAND_ERR_ERRVAL1_OFFSET
);
385 case 2: /* error addresses computed */
387 num_errors
= 1 + ((fsr
>> 16) & 0x03);
389 default: /* still working on it */
396 /* correct each error */
397 for (i
= 0, corrected
= 0; i
< num_errors
; i
++) {
398 int error_address
, error_value
;
401 error_address
= davinci_nand_readl(info
,
402 NAND_ERR_ADD2_OFFSET
);
403 error_value
= davinci_nand_readl(info
,
404 NAND_ERR_ERRVAL2_OFFSET
);
406 error_address
= davinci_nand_readl(info
,
407 NAND_ERR_ADD1_OFFSET
);
408 error_value
= davinci_nand_readl(info
,
409 NAND_ERR_ERRVAL1_OFFSET
);
413 error_address
>>= 16;
416 error_address
&= 0x3ff;
417 error_address
= (512 + 7) - error_address
;
419 if (error_address
< 512) {
420 data
[error_address
] ^= error_value
;
428 /*----------------------------------------------------------------------*/
431 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
432 * how these chips are normally wired. This translates to both 8 and 16
433 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
435 * For now we assume that configuration, or any other one which ignores
436 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
437 * and have that transparently morphed into multiple NAND operations.
439 static void nand_davinci_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
441 struct nand_chip
*chip
= mtd_to_nand(mtd
);
443 if ((0x03 & ((uintptr_t)buf
)) == 0 && (0x03 & len
) == 0)
444 ioread32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
445 else if ((0x01 & ((uintptr_t)buf
)) == 0 && (0x01 & len
) == 0)
446 ioread16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
448 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
451 static void nand_davinci_write_buf(struct mtd_info
*mtd
,
452 const uint8_t *buf
, int len
)
454 struct nand_chip
*chip
= mtd_to_nand(mtd
);
456 if ((0x03 & ((uintptr_t)buf
)) == 0 && (0x03 & len
) == 0)
457 iowrite32_rep(chip
->IO_ADDR_R
, buf
, len
>> 2);
458 else if ((0x01 & ((uintptr_t)buf
)) == 0 && (0x01 & len
) == 0)
459 iowrite16_rep(chip
->IO_ADDR_R
, buf
, len
>> 1);
461 iowrite8_rep(chip
->IO_ADDR_R
, buf
, len
);
465 * Check hardware register for wait status. Returns 1 if device is ready,
466 * 0 if it is still busy.
468 static int nand_davinci_dev_ready(struct mtd_info
*mtd
)
470 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
472 return davinci_nand_readl(info
, NANDFSR_OFFSET
) & BIT(0);
475 /*----------------------------------------------------------------------*/
477 /* An ECC layout for using 4-bit ECC with small-page flash, storing
478 * ten ECC bytes plus the manufacturer's bad block marker byte, and
479 * and not overlapping the default BBT markers.
481 static int hwecc4_ooblayout_small_ecc(struct mtd_info
*mtd
, int section
,
482 struct mtd_oob_region
*oobregion
)
488 oobregion
->offset
= 0;
489 oobregion
->length
= 5;
490 } else if (section
== 1) {
491 oobregion
->offset
= 6;
492 oobregion
->length
= 2;
494 oobregion
->offset
= 13;
495 oobregion
->length
= 3;
501 static int hwecc4_ooblayout_small_free(struct mtd_info
*mtd
, int section
,
502 struct mtd_oob_region
*oobregion
)
508 oobregion
->offset
= 8;
509 oobregion
->length
= 5;
511 oobregion
->offset
= 16;
512 oobregion
->length
= mtd
->oobsize
- 16;
518 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops
= {
519 .ecc
= hwecc4_ooblayout_small_ecc
,
520 .free
= hwecc4_ooblayout_small_free
,
523 #if defined(CONFIG_OF)
524 static const struct of_device_id davinci_nand_of_match
[] = {
525 {.compatible
= "ti,davinci-nand", },
526 {.compatible
= "ti,keystone-nand", },
529 MODULE_DEVICE_TABLE(of
, davinci_nand_of_match
);
531 static struct davinci_nand_pdata
532 *nand_davinci_get_pdata(struct platform_device
*pdev
)
534 if (!dev_get_platdata(&pdev
->dev
) && pdev
->dev
.of_node
) {
535 struct davinci_nand_pdata
*pdata
;
539 pdata
= devm_kzalloc(&pdev
->dev
,
540 sizeof(struct davinci_nand_pdata
),
542 pdev
->dev
.platform_data
= pdata
;
544 return ERR_PTR(-ENOMEM
);
545 if (!of_property_read_u32(pdev
->dev
.of_node
,
546 "ti,davinci-chipselect", &prop
))
547 pdata
->core_chipsel
= prop
;
549 return ERR_PTR(-EINVAL
);
551 if (!of_property_read_u32(pdev
->dev
.of_node
,
552 "ti,davinci-mask-ale", &prop
))
553 pdata
->mask_ale
= prop
;
554 if (!of_property_read_u32(pdev
->dev
.of_node
,
555 "ti,davinci-mask-cle", &prop
))
556 pdata
->mask_cle
= prop
;
557 if (!of_property_read_u32(pdev
->dev
.of_node
,
558 "ti,davinci-mask-chipsel", &prop
))
559 pdata
->mask_chipsel
= prop
;
560 if (!of_property_read_string(pdev
->dev
.of_node
,
561 "ti,davinci-ecc-mode", &mode
)) {
562 if (!strncmp("none", mode
, 4))
563 pdata
->ecc_mode
= NAND_ECC_NONE
;
564 if (!strncmp("soft", mode
, 4))
565 pdata
->ecc_mode
= NAND_ECC_SOFT
;
566 if (!strncmp("hw", mode
, 2))
567 pdata
->ecc_mode
= NAND_ECC_HW
;
569 if (!of_property_read_u32(pdev
->dev
.of_node
,
570 "ti,davinci-ecc-bits", &prop
))
571 pdata
->ecc_bits
= prop
;
573 if (!of_property_read_u32(pdev
->dev
.of_node
,
574 "ti,davinci-nand-buswidth", &prop
) && prop
== 16)
575 pdata
->options
|= NAND_BUSWIDTH_16
;
577 if (of_property_read_bool(pdev
->dev
.of_node
,
578 "ti,davinci-nand-use-bbt"))
579 pdata
->bbt_options
= NAND_BBT_USE_FLASH
;
582 * Since kernel v4.8, this driver has been fixed to enable
583 * use of 4-bit hardware ECC with subpages and verified on
584 * TI's keystone EVMs (K2L, K2HK and K2E).
585 * However, in the interest of not breaking systems using
586 * existing UBI partitions, sub-page writes are not being
587 * (re)enabled. If you want to use subpage writes on Keystone
588 * platforms (i.e. do not have any existing UBI partitions),
589 * then use "ti,davinci-nand" as the compatible in your
592 if (of_device_is_compatible(pdev
->dev
.of_node
,
593 "ti,keystone-nand")) {
594 pdata
->options
|= NAND_NO_SUBPAGE_WRITE
;
598 return dev_get_platdata(&pdev
->dev
);
601 static struct davinci_nand_pdata
602 *nand_davinci_get_pdata(struct platform_device
*pdev
)
604 return dev_get_platdata(&pdev
->dev
);
608 static int davinci_nand_attach_chip(struct nand_chip
*chip
)
610 struct mtd_info
*mtd
= nand_to_mtd(chip
);
611 struct davinci_nand_info
*info
= to_davinci_nand(mtd
);
612 struct davinci_nand_pdata
*pdata
= nand_davinci_get_pdata(info
->pdev
);
616 return PTR_ERR(pdata
);
618 switch (info
->chip
.ecc
.mode
) {
625 * This driver expects Hamming based ECC when ecc_mode is set
626 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
627 * avoid adding an extra ->ecc_algo field to
628 * davinci_nand_pdata.
630 info
->chip
.ecc
.algo
= NAND_ECC_HAMMING
;
633 if (pdata
->ecc_bits
== 4) {
635 * No sanity checks: CPUs must support this,
636 * and the chips may not use NAND_BUSWIDTH_16.
639 /* No sharing 4-bit hardware between chipselects yet */
640 spin_lock_irq(&davinci_nand_lock
);
645 spin_unlock_irq(&davinci_nand_lock
);
650 info
->chip
.ecc
.calculate
= nand_davinci_calculate_4bit
;
651 info
->chip
.ecc
.correct
= nand_davinci_correct_4bit
;
652 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_4bit
;
653 info
->chip
.ecc
.bytes
= 10;
654 info
->chip
.ecc
.options
= NAND_ECC_GENERIC_ERASED_CHECK
;
655 info
->chip
.ecc
.algo
= NAND_ECC_BCH
;
657 /* 1bit ecc hamming */
658 info
->chip
.ecc
.calculate
= nand_davinci_calculate_1bit
;
659 info
->chip
.ecc
.correct
= nand_davinci_correct_1bit
;
660 info
->chip
.ecc
.hwctl
= nand_davinci_hwctl_1bit
;
661 info
->chip
.ecc
.bytes
= 3;
662 info
->chip
.ecc
.algo
= NAND_ECC_HAMMING
;
664 info
->chip
.ecc
.size
= 512;
665 info
->chip
.ecc
.strength
= pdata
->ecc_bits
;
672 * Update ECC layout if needed ... for 1-bit HW ECC, the default
673 * is OK, but it allocates 6 bytes when only 3 are needed (for
674 * each 512 bytes). For the 4-bit HW ECC, that default is not
675 * usable: 10 bytes are needed, not 6.
677 if (pdata
->ecc_bits
== 4) {
678 int chunks
= mtd
->writesize
/ 512;
680 if (!chunks
|| mtd
->oobsize
< 16) {
681 dev_dbg(&info
->pdev
->dev
, "too small\n");
685 /* For small page chips, preserve the manufacturer's
686 * badblock marking data ... and make sure a flash BBT
687 * table marker fits in the free bytes.
690 mtd_set_ooblayout(mtd
, &hwecc4_small_ooblayout_ops
);
691 } else if (chunks
== 4 || chunks
== 8) {
692 mtd_set_ooblayout(mtd
, &nand_ooblayout_lp_ops
);
693 info
->chip
.ecc
.mode
= NAND_ECC_HW_OOB_FIRST
;
702 static const struct nand_controller_ops davinci_nand_controller_ops
= {
703 .attach_chip
= davinci_nand_attach_chip
,
706 static int nand_davinci_probe(struct platform_device
*pdev
)
708 struct davinci_nand_pdata
*pdata
;
709 struct davinci_nand_info
*info
;
710 struct resource
*res1
;
711 struct resource
*res2
;
716 struct mtd_info
*mtd
;
718 pdata
= nand_davinci_get_pdata(pdev
);
720 return PTR_ERR(pdata
);
722 /* insist on board-specific configuration */
726 /* which external chipselect will we be managing? */
727 if (pdata
->core_chipsel
< 0 || pdata
->core_chipsel
> 3)
730 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
734 platform_set_drvdata(pdev
, info
);
736 res1
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
737 res2
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
738 if (!res1
|| !res2
) {
739 dev_err(&pdev
->dev
, "resource missing\n");
743 vaddr
= devm_ioremap_resource(&pdev
->dev
, res1
);
745 return PTR_ERR(vaddr
);
748 * This registers range is used to setup NAND settings. In case with
749 * TI AEMIF driver, the same memory address range is requested already
750 * by AEMIF, so we cannot request it twice, just ioremap.
751 * The AEMIF and NAND drivers not use the same registers in this range.
753 base
= devm_ioremap(&pdev
->dev
, res2
->start
, resource_size(res2
));
755 dev_err(&pdev
->dev
, "ioremap failed for resource %pR\n", res2
);
756 return -EADDRNOTAVAIL
;
763 mtd
= nand_to_mtd(&info
->chip
);
764 mtd
->dev
.parent
= &pdev
->dev
;
765 nand_set_flash_node(&info
->chip
, pdev
->dev
.of_node
);
767 info
->chip
.IO_ADDR_R
= vaddr
;
768 info
->chip
.IO_ADDR_W
= vaddr
;
769 info
->chip
.chip_delay
= 0;
770 info
->chip
.select_chip
= nand_davinci_select_chip
;
772 /* options such as NAND_BBT_USE_FLASH */
773 info
->chip
.bbt_options
= pdata
->bbt_options
;
774 /* options such as 16-bit widths */
775 info
->chip
.options
= pdata
->options
;
776 info
->chip
.bbt_td
= pdata
->bbt_td
;
777 info
->chip
.bbt_md
= pdata
->bbt_md
;
778 info
->timing
= pdata
->timing
;
780 info
->current_cs
= info
->vaddr
;
781 info
->core_chipsel
= pdata
->core_chipsel
;
782 info
->mask_chipsel
= pdata
->mask_chipsel
;
784 /* use nandboot-capable ALE/CLE masks by default */
785 info
->mask_ale
= pdata
->mask_ale
? : MASK_ALE
;
786 info
->mask_cle
= pdata
->mask_cle
? : MASK_CLE
;
788 /* Set address of hardware control function */
789 info
->chip
.cmd_ctrl
= nand_davinci_hwcontrol
;
790 info
->chip
.dev_ready
= nand_davinci_dev_ready
;
792 /* Speed up buffer I/O */
793 info
->chip
.read_buf
= nand_davinci_read_buf
;
794 info
->chip
.write_buf
= nand_davinci_write_buf
;
796 /* Use board-specific ECC config */
797 info
->chip
.ecc
.mode
= pdata
->ecc_mode
;
799 spin_lock_irq(&davinci_nand_lock
);
801 /* put CSxNAND into NAND mode */
802 val
= davinci_nand_readl(info
, NANDFCR_OFFSET
);
803 val
|= BIT(info
->core_chipsel
);
804 davinci_nand_writel(info
, NANDFCR_OFFSET
, val
);
806 spin_unlock_irq(&davinci_nand_lock
);
808 /* Scan to find existence of the device(s) */
809 info
->chip
.dummy_controller
.ops
= &davinci_nand_controller_ops
;
810 ret
= nand_scan(&info
->chip
, pdata
->mask_chipsel
? 2 : 1);
812 dev_dbg(&pdev
->dev
, "no NAND chip(s) found\n");
817 ret
= mtd_device_register(mtd
, pdata
->parts
, pdata
->nr_parts
);
819 ret
= mtd_device_register(mtd
, NULL
, 0);
821 goto err_cleanup_nand
;
823 val
= davinci_nand_readl(info
, NRCSR_OFFSET
);
824 dev_info(&pdev
->dev
, "controller rev. %d.%d\n",
825 (val
>> 8) & 0xff, val
& 0xff);
830 nand_cleanup(&info
->chip
);
835 static int nand_davinci_remove(struct platform_device
*pdev
)
837 struct davinci_nand_info
*info
= platform_get_drvdata(pdev
);
839 spin_lock_irq(&davinci_nand_lock
);
840 if (info
->chip
.ecc
.mode
== NAND_ECC_HW_SYNDROME
)
842 spin_unlock_irq(&davinci_nand_lock
);
844 nand_release(&info
->chip
);
849 static struct platform_driver nand_davinci_driver
= {
850 .probe
= nand_davinci_probe
,
851 .remove
= nand_davinci_remove
,
853 .name
= "davinci_nand",
854 .of_match_table
= of_match_ptr(davinci_nand_of_match
),
857 MODULE_ALIAS("platform:davinci_nand");
859 module_platform_driver(nand_davinci_driver
);
861 MODULE_LICENSE("GPL");
862 MODULE_AUTHOR("Texas Instruments");
863 MODULE_DESCRIPTION("Davinci NAND flash driver");