Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / davinci_nand.c
blob66d3d596601389bfd5a27dc5f06a20be50653a4b
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/io.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/slab.h>
34 #include <linux/of_device.h>
35 #include <linux/of.h>
37 #include <linux/platform_data/mtd-davinci.h>
38 #include <linux/platform_data/mtd-davinci-aemif.h>
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 struct davinci_nand_info {
54 struct nand_chip chip;
56 struct platform_device *pdev;
58 bool is_readmode;
60 void __iomem *base;
61 void __iomem *vaddr;
63 void __iomem *current_cs;
65 uint32_t mask_chipsel;
66 uint32_t mask_ale;
67 uint32_t mask_cle;
69 uint32_t core_chipsel;
71 struct davinci_aemif_timing *timing;
74 static DEFINE_SPINLOCK(davinci_nand_lock);
75 static bool ecc4_busy;
77 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
79 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
82 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
83 int offset)
85 return __raw_readl(info->base + offset);
88 static inline void davinci_nand_writel(struct davinci_nand_info *info,
89 int offset, unsigned long value)
91 __raw_writel(value, info->base + offset);
94 /*----------------------------------------------------------------------*/
97 * Access to hardware control lines: ALE, CLE, secondary chipselect.
100 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
101 unsigned int ctrl)
103 struct davinci_nand_info *info = to_davinci_nand(mtd);
104 void __iomem *addr = info->current_cs;
105 struct nand_chip *nand = mtd_to_nand(mtd);
107 /* Did the control lines change? */
108 if (ctrl & NAND_CTRL_CHANGE) {
109 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
110 addr += info->mask_cle;
111 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
112 addr += info->mask_ale;
114 nand->IO_ADDR_W = addr;
117 if (cmd != NAND_CMD_NONE)
118 iowrite8(cmd, nand->IO_ADDR_W);
121 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
123 struct davinci_nand_info *info = to_davinci_nand(mtd);
125 info->current_cs = info->vaddr;
127 /* maybe kick in a second chipselect */
128 if (chip > 0)
129 info->current_cs += info->mask_chipsel;
131 info->chip.IO_ADDR_W = info->current_cs;
132 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
135 /*----------------------------------------------------------------------*/
138 * 1-bit hardware ECC ... context maintained for each core chipselect
141 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
143 struct davinci_nand_info *info = to_davinci_nand(mtd);
145 return davinci_nand_readl(info, NANDF1ECC_OFFSET
146 + 4 * info->core_chipsel);
149 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
151 struct davinci_nand_info *info;
152 uint32_t nandcfr;
153 unsigned long flags;
155 info = to_davinci_nand(mtd);
157 /* Reset ECC hardware */
158 nand_davinci_readecc_1bit(mtd);
160 spin_lock_irqsave(&davinci_nand_lock, flags);
162 /* Restart ECC hardware */
163 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
164 nandcfr |= BIT(8 + info->core_chipsel);
165 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
167 spin_unlock_irqrestore(&davinci_nand_lock, flags);
171 * Read hardware ECC value and pack into three bytes
173 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
174 const u_char *dat, u_char *ecc_code)
176 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
177 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
179 /* invert so that erased block ecc is correct */
180 ecc24 = ~ecc24;
181 ecc_code[0] = (u_char)(ecc24);
182 ecc_code[1] = (u_char)(ecc24 >> 8);
183 ecc_code[2] = (u_char)(ecc24 >> 16);
185 return 0;
188 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
189 u_char *read_ecc, u_char *calc_ecc)
191 struct nand_chip *chip = mtd_to_nand(mtd);
192 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
193 (read_ecc[2] << 16);
194 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
195 (calc_ecc[2] << 16);
196 uint32_t diff = eccCalc ^ eccNand;
198 if (diff) {
199 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
200 /* Correctable error */
201 if ((diff >> (12 + 3)) < chip->ecc.size) {
202 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
203 return 1;
204 } else {
205 return -EBADMSG;
207 } else if (!(diff & (diff - 1))) {
208 /* Single bit ECC error in the ECC itself,
209 * nothing to fix */
210 return 1;
211 } else {
212 /* Uncorrectable error */
213 return -EBADMSG;
217 return 0;
220 /*----------------------------------------------------------------------*/
223 * 4-bit hardware ECC ... context maintained over entire AEMIF
225 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
226 * since that forces use of a problematic "infix OOB" layout.
227 * Among other things, it trashes manufacturer bad block markers.
228 * Also, and specific to this hardware, it ECC-protects the "prepad"
229 * in the OOB ... while having ECC protection for parts of OOB would
230 * seem useful, the current MTD stack sometimes wants to update the
231 * OOB without recomputing ECC.
234 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
236 struct davinci_nand_info *info = to_davinci_nand(mtd);
237 unsigned long flags;
238 u32 val;
240 /* Reset ECC hardware */
241 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
243 spin_lock_irqsave(&davinci_nand_lock, flags);
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251 info->is_readmode = (mode == NAND_ECC_READ);
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 const u32 mask = 0x03ff03ff;
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
300 return 0;
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
314 u32 ecc_state;
315 unsigned num_errors, corrected;
316 unsigned long timeo;
318 /* Unpack ten bytes into eight 10 bit values. We know we're
319 * little-endian, and use type punning for less shifting/masking.
321 if (WARN_ON(0x01 & (uintptr_t)ecc_code))
322 return -EINVAL;
323 ecc16 = (unsigned short *)ecc_code;
325 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
326 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
327 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
328 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
329 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
330 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
331 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
332 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
334 /* Tell ECC controller about the expected ECC codes. */
335 for (i = 7; i >= 0; i--)
336 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
338 /* Allow time for syndrome calculation ... then read it.
339 * A syndrome of all zeroes 0 means no detected errors.
341 davinci_nand_readl(info, NANDFSR_OFFSET);
342 nand_davinci_readecc_4bit(info, syndrome);
343 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
344 return 0;
347 * Clear any previous address calculation by doing a dummy read of an
348 * error address register.
350 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
352 /* Start address calculation, and wait for it to complete.
353 * We _could_ start reading more data while this is working,
354 * to speed up the overall page read.
356 davinci_nand_writel(info, NANDFCR_OFFSET,
357 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
360 * ECC_STATE field reads 0x3 (Error correction complete) immediately
361 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
362 * begin trying to poll for the state, you may fall right out of your
363 * loop without any of the correction calculations having taken place.
364 * The recommendation from the hardware team is to initially delay as
365 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
366 * correction state.
368 timeo = jiffies + usecs_to_jiffies(100);
369 do {
370 ecc_state = (davinci_nand_readl(info,
371 NANDFSR_OFFSET) >> 8) & 0x0f;
372 cpu_relax();
373 } while ((ecc_state < 4) && time_before(jiffies, timeo));
375 for (;;) {
376 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
378 switch ((fsr >> 8) & 0x0f) {
379 case 0: /* no error, should not happen */
380 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
381 return 0;
382 case 1: /* five or more errors detected */
383 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
384 return -EBADMSG;
385 case 2: /* error addresses computed */
386 case 3:
387 num_errors = 1 + ((fsr >> 16) & 0x03);
388 goto correct;
389 default: /* still working on it */
390 cpu_relax();
391 continue;
395 correct:
396 /* correct each error */
397 for (i = 0, corrected = 0; i < num_errors; i++) {
398 int error_address, error_value;
400 if (i > 1) {
401 error_address = davinci_nand_readl(info,
402 NAND_ERR_ADD2_OFFSET);
403 error_value = davinci_nand_readl(info,
404 NAND_ERR_ERRVAL2_OFFSET);
405 } else {
406 error_address = davinci_nand_readl(info,
407 NAND_ERR_ADD1_OFFSET);
408 error_value = davinci_nand_readl(info,
409 NAND_ERR_ERRVAL1_OFFSET);
412 if (i & 1) {
413 error_address >>= 16;
414 error_value >>= 16;
416 error_address &= 0x3ff;
417 error_address = (512 + 7) - error_address;
419 if (error_address < 512) {
420 data[error_address] ^= error_value;
421 corrected++;
425 return corrected;
428 /*----------------------------------------------------------------------*/
431 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
432 * how these chips are normally wired. This translates to both 8 and 16
433 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
435 * For now we assume that configuration, or any other one which ignores
436 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
437 * and have that transparently morphed into multiple NAND operations.
439 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
441 struct nand_chip *chip = mtd_to_nand(mtd);
443 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
444 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
445 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
446 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
447 else
448 ioread8_rep(chip->IO_ADDR_R, buf, len);
451 static void nand_davinci_write_buf(struct mtd_info *mtd,
452 const uint8_t *buf, int len)
454 struct nand_chip *chip = mtd_to_nand(mtd);
456 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
457 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
458 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
459 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
460 else
461 iowrite8_rep(chip->IO_ADDR_R, buf, len);
465 * Check hardware register for wait status. Returns 1 if device is ready,
466 * 0 if it is still busy.
468 static int nand_davinci_dev_ready(struct mtd_info *mtd)
470 struct davinci_nand_info *info = to_davinci_nand(mtd);
472 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
475 /*----------------------------------------------------------------------*/
477 /* An ECC layout for using 4-bit ECC with small-page flash, storing
478 * ten ECC bytes plus the manufacturer's bad block marker byte, and
479 * and not overlapping the default BBT markers.
481 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
482 struct mtd_oob_region *oobregion)
484 if (section > 2)
485 return -ERANGE;
487 if (!section) {
488 oobregion->offset = 0;
489 oobregion->length = 5;
490 } else if (section == 1) {
491 oobregion->offset = 6;
492 oobregion->length = 2;
493 } else {
494 oobregion->offset = 13;
495 oobregion->length = 3;
498 return 0;
501 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
502 struct mtd_oob_region *oobregion)
504 if (section > 1)
505 return -ERANGE;
507 if (!section) {
508 oobregion->offset = 8;
509 oobregion->length = 5;
510 } else {
511 oobregion->offset = 16;
512 oobregion->length = mtd->oobsize - 16;
515 return 0;
518 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
519 .ecc = hwecc4_ooblayout_small_ecc,
520 .free = hwecc4_ooblayout_small_free,
523 #if defined(CONFIG_OF)
524 static const struct of_device_id davinci_nand_of_match[] = {
525 {.compatible = "ti,davinci-nand", },
526 {.compatible = "ti,keystone-nand", },
529 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
531 static struct davinci_nand_pdata
532 *nand_davinci_get_pdata(struct platform_device *pdev)
534 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
535 struct davinci_nand_pdata *pdata;
536 const char *mode;
537 u32 prop;
539 pdata = devm_kzalloc(&pdev->dev,
540 sizeof(struct davinci_nand_pdata),
541 GFP_KERNEL);
542 pdev->dev.platform_data = pdata;
543 if (!pdata)
544 return ERR_PTR(-ENOMEM);
545 if (!of_property_read_u32(pdev->dev.of_node,
546 "ti,davinci-chipselect", &prop))
547 pdata->core_chipsel = prop;
548 else
549 return ERR_PTR(-EINVAL);
551 if (!of_property_read_u32(pdev->dev.of_node,
552 "ti,davinci-mask-ale", &prop))
553 pdata->mask_ale = prop;
554 if (!of_property_read_u32(pdev->dev.of_node,
555 "ti,davinci-mask-cle", &prop))
556 pdata->mask_cle = prop;
557 if (!of_property_read_u32(pdev->dev.of_node,
558 "ti,davinci-mask-chipsel", &prop))
559 pdata->mask_chipsel = prop;
560 if (!of_property_read_string(pdev->dev.of_node,
561 "ti,davinci-ecc-mode", &mode)) {
562 if (!strncmp("none", mode, 4))
563 pdata->ecc_mode = NAND_ECC_NONE;
564 if (!strncmp("soft", mode, 4))
565 pdata->ecc_mode = NAND_ECC_SOFT;
566 if (!strncmp("hw", mode, 2))
567 pdata->ecc_mode = NAND_ECC_HW;
569 if (!of_property_read_u32(pdev->dev.of_node,
570 "ti,davinci-ecc-bits", &prop))
571 pdata->ecc_bits = prop;
573 if (!of_property_read_u32(pdev->dev.of_node,
574 "ti,davinci-nand-buswidth", &prop) && prop == 16)
575 pdata->options |= NAND_BUSWIDTH_16;
577 if (of_property_read_bool(pdev->dev.of_node,
578 "ti,davinci-nand-use-bbt"))
579 pdata->bbt_options = NAND_BBT_USE_FLASH;
582 * Since kernel v4.8, this driver has been fixed to enable
583 * use of 4-bit hardware ECC with subpages and verified on
584 * TI's keystone EVMs (K2L, K2HK and K2E).
585 * However, in the interest of not breaking systems using
586 * existing UBI partitions, sub-page writes are not being
587 * (re)enabled. If you want to use subpage writes on Keystone
588 * platforms (i.e. do not have any existing UBI partitions),
589 * then use "ti,davinci-nand" as the compatible in your
590 * device-tree file.
592 if (of_device_is_compatible(pdev->dev.of_node,
593 "ti,keystone-nand")) {
594 pdata->options |= NAND_NO_SUBPAGE_WRITE;
598 return dev_get_platdata(&pdev->dev);
600 #else
601 static struct davinci_nand_pdata
602 *nand_davinci_get_pdata(struct platform_device *pdev)
604 return dev_get_platdata(&pdev->dev);
606 #endif
608 static int davinci_nand_attach_chip(struct nand_chip *chip)
610 struct mtd_info *mtd = nand_to_mtd(chip);
611 struct davinci_nand_info *info = to_davinci_nand(mtd);
612 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
613 int ret = 0;
615 if (IS_ERR(pdata))
616 return PTR_ERR(pdata);
618 switch (info->chip.ecc.mode) {
619 case NAND_ECC_NONE:
620 pdata->ecc_bits = 0;
621 break;
622 case NAND_ECC_SOFT:
623 pdata->ecc_bits = 0;
625 * This driver expects Hamming based ECC when ecc_mode is set
626 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
627 * avoid adding an extra ->ecc_algo field to
628 * davinci_nand_pdata.
630 info->chip.ecc.algo = NAND_ECC_HAMMING;
631 break;
632 case NAND_ECC_HW:
633 if (pdata->ecc_bits == 4) {
635 * No sanity checks: CPUs must support this,
636 * and the chips may not use NAND_BUSWIDTH_16.
639 /* No sharing 4-bit hardware between chipselects yet */
640 spin_lock_irq(&davinci_nand_lock);
641 if (ecc4_busy)
642 ret = -EBUSY;
643 else
644 ecc4_busy = true;
645 spin_unlock_irq(&davinci_nand_lock);
647 if (ret == -EBUSY)
648 return ret;
650 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
651 info->chip.ecc.correct = nand_davinci_correct_4bit;
652 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
653 info->chip.ecc.bytes = 10;
654 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
655 info->chip.ecc.algo = NAND_ECC_BCH;
656 } else {
657 /* 1bit ecc hamming */
658 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
659 info->chip.ecc.correct = nand_davinci_correct_1bit;
660 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
661 info->chip.ecc.bytes = 3;
662 info->chip.ecc.algo = NAND_ECC_HAMMING;
664 info->chip.ecc.size = 512;
665 info->chip.ecc.strength = pdata->ecc_bits;
666 break;
667 default:
668 return -EINVAL;
672 * Update ECC layout if needed ... for 1-bit HW ECC, the default
673 * is OK, but it allocates 6 bytes when only 3 are needed (for
674 * each 512 bytes). For the 4-bit HW ECC, that default is not
675 * usable: 10 bytes are needed, not 6.
677 if (pdata->ecc_bits == 4) {
678 int chunks = mtd->writesize / 512;
680 if (!chunks || mtd->oobsize < 16) {
681 dev_dbg(&info->pdev->dev, "too small\n");
682 return -EINVAL;
685 /* For small page chips, preserve the manufacturer's
686 * badblock marking data ... and make sure a flash BBT
687 * table marker fits in the free bytes.
689 if (chunks == 1) {
690 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
691 } else if (chunks == 4 || chunks == 8) {
692 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
693 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
694 } else {
695 return -EIO;
699 return ret;
702 static const struct nand_controller_ops davinci_nand_controller_ops = {
703 .attach_chip = davinci_nand_attach_chip,
706 static int nand_davinci_probe(struct platform_device *pdev)
708 struct davinci_nand_pdata *pdata;
709 struct davinci_nand_info *info;
710 struct resource *res1;
711 struct resource *res2;
712 void __iomem *vaddr;
713 void __iomem *base;
714 int ret;
715 uint32_t val;
716 struct mtd_info *mtd;
718 pdata = nand_davinci_get_pdata(pdev);
719 if (IS_ERR(pdata))
720 return PTR_ERR(pdata);
722 /* insist on board-specific configuration */
723 if (!pdata)
724 return -ENODEV;
726 /* which external chipselect will we be managing? */
727 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
728 return -ENODEV;
730 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
731 if (!info)
732 return -ENOMEM;
734 platform_set_drvdata(pdev, info);
736 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
737 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
738 if (!res1 || !res2) {
739 dev_err(&pdev->dev, "resource missing\n");
740 return -EINVAL;
743 vaddr = devm_ioremap_resource(&pdev->dev, res1);
744 if (IS_ERR(vaddr))
745 return PTR_ERR(vaddr);
748 * This registers range is used to setup NAND settings. In case with
749 * TI AEMIF driver, the same memory address range is requested already
750 * by AEMIF, so we cannot request it twice, just ioremap.
751 * The AEMIF and NAND drivers not use the same registers in this range.
753 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
754 if (!base) {
755 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
756 return -EADDRNOTAVAIL;
759 info->pdev = pdev;
760 info->base = base;
761 info->vaddr = vaddr;
763 mtd = nand_to_mtd(&info->chip);
764 mtd->dev.parent = &pdev->dev;
765 nand_set_flash_node(&info->chip, pdev->dev.of_node);
767 info->chip.IO_ADDR_R = vaddr;
768 info->chip.IO_ADDR_W = vaddr;
769 info->chip.chip_delay = 0;
770 info->chip.select_chip = nand_davinci_select_chip;
772 /* options such as NAND_BBT_USE_FLASH */
773 info->chip.bbt_options = pdata->bbt_options;
774 /* options such as 16-bit widths */
775 info->chip.options = pdata->options;
776 info->chip.bbt_td = pdata->bbt_td;
777 info->chip.bbt_md = pdata->bbt_md;
778 info->timing = pdata->timing;
780 info->current_cs = info->vaddr;
781 info->core_chipsel = pdata->core_chipsel;
782 info->mask_chipsel = pdata->mask_chipsel;
784 /* use nandboot-capable ALE/CLE masks by default */
785 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
786 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
788 /* Set address of hardware control function */
789 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
790 info->chip.dev_ready = nand_davinci_dev_ready;
792 /* Speed up buffer I/O */
793 info->chip.read_buf = nand_davinci_read_buf;
794 info->chip.write_buf = nand_davinci_write_buf;
796 /* Use board-specific ECC config */
797 info->chip.ecc.mode = pdata->ecc_mode;
799 spin_lock_irq(&davinci_nand_lock);
801 /* put CSxNAND into NAND mode */
802 val = davinci_nand_readl(info, NANDFCR_OFFSET);
803 val |= BIT(info->core_chipsel);
804 davinci_nand_writel(info, NANDFCR_OFFSET, val);
806 spin_unlock_irq(&davinci_nand_lock);
808 /* Scan to find existence of the device(s) */
809 info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
810 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
811 if (ret < 0) {
812 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
813 return ret;
816 if (pdata->parts)
817 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
818 else
819 ret = mtd_device_register(mtd, NULL, 0);
820 if (ret < 0)
821 goto err_cleanup_nand;
823 val = davinci_nand_readl(info, NRCSR_OFFSET);
824 dev_info(&pdev->dev, "controller rev. %d.%d\n",
825 (val >> 8) & 0xff, val & 0xff);
827 return 0;
829 err_cleanup_nand:
830 nand_cleanup(&info->chip);
832 return ret;
835 static int nand_davinci_remove(struct platform_device *pdev)
837 struct davinci_nand_info *info = platform_get_drvdata(pdev);
839 spin_lock_irq(&davinci_nand_lock);
840 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
841 ecc4_busy = false;
842 spin_unlock_irq(&davinci_nand_lock);
844 nand_release(&info->chip);
846 return 0;
849 static struct platform_driver nand_davinci_driver = {
850 .probe = nand_davinci_probe,
851 .remove = nand_davinci_remove,
852 .driver = {
853 .name = "davinci_nand",
854 .of_match_table = of_match_ptr(davinci_nand_of_match),
857 MODULE_ALIAS("platform:davinci_nand");
859 module_platform_driver(nand_davinci_driver);
861 MODULE_LICENSE("GPL");
862 MODULE_AUTHOR("Texas Instruments");
863 MODULE_DESCRIPTION("Davinci NAND flash driver");