2 * Freescale UPM NAND driver.
4 * Copyright © 2007-2008 MontaVista Software, Inc.
6 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_address.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_gpio.h>
25 #include <linux/slab.h>
26 #include <asm/fsl_lbc.h>
28 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
29 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
30 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
34 struct nand_chip chip
;
36 struct mtd_partition
*parts
;
38 uint8_t upm_addr_offset
;
39 uint8_t upm_cmd_offset
;
40 void __iomem
*io_base
;
41 int rnb_gpio
[NAND_MAX_CHIPS
];
42 uint32_t mchip_offsets
[NAND_MAX_CHIPS
];
44 uint32_t mchip_number
;
49 static inline struct fsl_upm_nand
*to_fsl_upm_nand(struct mtd_info
*mtdinfo
)
51 return container_of(mtd_to_nand(mtdinfo
), struct fsl_upm_nand
,
55 static int fun_chip_ready(struct mtd_info
*mtd
)
57 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
59 if (gpio_get_value(fun
->rnb_gpio
[fun
->mchip_number
]))
62 dev_vdbg(fun
->dev
, "busy\n");
66 static void fun_wait_rnb(struct fsl_upm_nand
*fun
)
68 if (fun
->rnb_gpio
[fun
->mchip_number
] >= 0) {
69 struct mtd_info
*mtd
= nand_to_mtd(&fun
->chip
);
72 while (--cnt
&& !fun_chip_ready(mtd
))
75 dev_err(fun
->dev
, "tired waiting for RNB\n");
81 static void fun_cmd_ctrl(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
83 struct nand_chip
*chip
= mtd_to_nand(mtd
);
84 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
87 if (!(ctrl
& fun
->last_ctrl
)) {
88 fsl_upm_end_pattern(&fun
->upm
);
90 if (cmd
== NAND_CMD_NONE
)
93 fun
->last_ctrl
= ctrl
& (NAND_ALE
| NAND_CLE
);
96 if (ctrl
& NAND_CTRL_CHANGE
) {
98 fsl_upm_start_pattern(&fun
->upm
, fun
->upm_addr_offset
);
99 else if (ctrl
& NAND_CLE
)
100 fsl_upm_start_pattern(&fun
->upm
, fun
->upm_cmd_offset
);
103 mar
= (cmd
<< (32 - fun
->upm
.width
)) |
104 fun
->mchip_offsets
[fun
->mchip_number
];
105 fsl_upm_run_pattern(&fun
->upm
, chip
->IO_ADDR_R
, mar
);
107 if (fun
->wait_flags
& FSL_UPM_WAIT_RUN_PATTERN
)
111 static void fun_select_chip(struct mtd_info
*mtd
, int mchip_nr
)
113 struct nand_chip
*chip
= mtd_to_nand(mtd
);
114 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
116 if (mchip_nr
== -1) {
117 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
118 } else if (mchip_nr
>= 0 && mchip_nr
< NAND_MAX_CHIPS
) {
119 fun
->mchip_number
= mchip_nr
;
120 chip
->IO_ADDR_R
= fun
->io_base
+ fun
->mchip_offsets
[mchip_nr
];
121 chip
->IO_ADDR_W
= chip
->IO_ADDR_R
;
127 static uint8_t fun_read_byte(struct mtd_info
*mtd
)
129 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
131 return in_8(fun
->chip
.IO_ADDR_R
);
134 static void fun_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
136 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
139 for (i
= 0; i
< len
; i
++)
140 buf
[i
] = in_8(fun
->chip
.IO_ADDR_R
);
143 static void fun_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
145 struct fsl_upm_nand
*fun
= to_fsl_upm_nand(mtd
);
148 for (i
= 0; i
< len
; i
++) {
149 out_8(fun
->chip
.IO_ADDR_W
, buf
[i
]);
150 if (fun
->wait_flags
& FSL_UPM_WAIT_WRITE_BYTE
)
153 if (fun
->wait_flags
& FSL_UPM_WAIT_WRITE_BUFFER
)
157 static int fun_chip_init(struct fsl_upm_nand
*fun
,
158 const struct device_node
*upm_np
,
159 const struct resource
*io_res
)
161 struct mtd_info
*mtd
= nand_to_mtd(&fun
->chip
);
163 struct device_node
*flash_np
;
165 fun
->chip
.IO_ADDR_R
= fun
->io_base
;
166 fun
->chip
.IO_ADDR_W
= fun
->io_base
;
167 fun
->chip
.cmd_ctrl
= fun_cmd_ctrl
;
168 fun
->chip
.chip_delay
= fun
->chip_delay
;
169 fun
->chip
.read_byte
= fun_read_byte
;
170 fun
->chip
.read_buf
= fun_read_buf
;
171 fun
->chip
.write_buf
= fun_write_buf
;
172 fun
->chip
.ecc
.mode
= NAND_ECC_SOFT
;
173 fun
->chip
.ecc
.algo
= NAND_ECC_HAMMING
;
174 if (fun
->mchip_count
> 1)
175 fun
->chip
.select_chip
= fun_select_chip
;
177 if (fun
->rnb_gpio
[0] >= 0)
178 fun
->chip
.dev_ready
= fun_chip_ready
;
180 mtd
->dev
.parent
= fun
->dev
;
182 flash_np
= of_get_next_child(upm_np
, NULL
);
186 nand_set_flash_node(&fun
->chip
, flash_np
);
187 mtd
->name
= kasprintf(GFP_KERNEL
, "0x%llx.%s", (u64
)io_res
->start
,
194 ret
= nand_scan(&fun
->chip
, fun
->mchip_count
);
198 ret
= mtd_device_register(mtd
, NULL
, 0);
200 of_node_put(flash_np
);
206 static int fun_probe(struct platform_device
*ofdev
)
208 struct fsl_upm_nand
*fun
;
209 struct resource io_res
;
216 fun
= kzalloc(sizeof(*fun
), GFP_KERNEL
);
220 ret
= of_address_to_resource(ofdev
->dev
.of_node
, 0, &io_res
);
222 dev_err(&ofdev
->dev
, "can't get IO base\n");
226 ret
= fsl_upm_find(io_res
.start
, &fun
->upm
);
228 dev_err(&ofdev
->dev
, "can't find UPM\n");
232 prop
= of_get_property(ofdev
->dev
.of_node
, "fsl,upm-addr-offset",
234 if (!prop
|| size
!= sizeof(uint32_t)) {
235 dev_err(&ofdev
->dev
, "can't get UPM address offset\n");
239 fun
->upm_addr_offset
= *prop
;
241 prop
= of_get_property(ofdev
->dev
.of_node
, "fsl,upm-cmd-offset", &size
);
242 if (!prop
|| size
!= sizeof(uint32_t)) {
243 dev_err(&ofdev
->dev
, "can't get UPM command offset\n");
247 fun
->upm_cmd_offset
= *prop
;
249 prop
= of_get_property(ofdev
->dev
.of_node
,
250 "fsl,upm-addr-line-cs-offsets", &size
);
251 if (prop
&& (size
/ sizeof(uint32_t)) > 0) {
252 fun
->mchip_count
= size
/ sizeof(uint32_t);
253 if (fun
->mchip_count
>= NAND_MAX_CHIPS
) {
254 dev_err(&ofdev
->dev
, "too much multiple chips\n");
257 for (i
= 0; i
< fun
->mchip_count
; i
++)
258 fun
->mchip_offsets
[i
] = be32_to_cpu(prop
[i
]);
260 fun
->mchip_count
= 1;
263 for (i
= 0; i
< fun
->mchip_count
; i
++) {
264 fun
->rnb_gpio
[i
] = -1;
265 rnb_gpio
= of_get_gpio(ofdev
->dev
.of_node
, i
);
267 ret
= gpio_request(rnb_gpio
, dev_name(&ofdev
->dev
));
270 "can't request RNB gpio #%d\n", i
);
273 gpio_direction_input(rnb_gpio
);
274 fun
->rnb_gpio
[i
] = rnb_gpio
;
275 } else if (rnb_gpio
== -EINVAL
) {
276 dev_err(&ofdev
->dev
, "RNB gpio #%d is invalid\n", i
);
281 prop
= of_get_property(ofdev
->dev
.of_node
, "chip-delay", NULL
);
283 fun
->chip_delay
= be32_to_cpup(prop
);
285 fun
->chip_delay
= 50;
287 prop
= of_get_property(ofdev
->dev
.of_node
, "fsl,upm-wait-flags", &size
);
288 if (prop
&& size
== sizeof(uint32_t))
289 fun
->wait_flags
= be32_to_cpup(prop
);
291 fun
->wait_flags
= FSL_UPM_WAIT_RUN_PATTERN
|
292 FSL_UPM_WAIT_WRITE_BYTE
;
294 fun
->io_base
= devm_ioremap_nocache(&ofdev
->dev
, io_res
.start
,
295 resource_size(&io_res
));
301 fun
->dev
= &ofdev
->dev
;
302 fun
->last_ctrl
= NAND_CLE
;
304 ret
= fun_chip_init(fun
, ofdev
->dev
.of_node
, &io_res
);
308 dev_set_drvdata(&ofdev
->dev
, fun
);
312 for (i
= 0; i
< fun
->mchip_count
; i
++) {
313 if (fun
->rnb_gpio
[i
] < 0)
315 gpio_free(fun
->rnb_gpio
[i
]);
323 static int fun_remove(struct platform_device
*ofdev
)
325 struct fsl_upm_nand
*fun
= dev_get_drvdata(&ofdev
->dev
);
326 struct mtd_info
*mtd
= nand_to_mtd(&fun
->chip
);
329 nand_release(&fun
->chip
);
332 for (i
= 0; i
< fun
->mchip_count
; i
++) {
333 if (fun
->rnb_gpio
[i
] < 0)
335 gpio_free(fun
->rnb_gpio
[i
]);
343 static const struct of_device_id of_fun_match
[] = {
344 { .compatible
= "fsl,upm-nand" },
347 MODULE_DEVICE_TABLE(of
, of_fun_match
);
349 static struct platform_driver of_fun_driver
= {
351 .name
= "fsl,upm-nand",
352 .of_match_table
= of_fun_match
,
355 .remove
= fun_remove
,
358 module_platform_driver(of_fun_driver
);
360 MODULE_LICENSE("GPL");
361 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
362 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
363 "LocalBus User-Programmable Machine");