Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / fsmc_nand.c
blob25d354e9448ec73ff14ec635e6de40df481597f5
1 /*
2 * ST Microelectronics
3 * Flexible Static Memory Controller (FSMC)
4 * Driver for NAND portions
6 * Copyright © 2010 ST Microelectronics
7 * Vipin Kumar <vipin.kumar@st.com>
8 * Ashish Priyadarshi
10 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
11 * Copyright © 2007 STMicroelectronics Pvt. Ltd.
12 * Copyright © 2009 Alessandro Rubini
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
41 /* fsmc controller registers for NOR flash */
42 #define CTRL 0x0
43 /* ctrl register definitions */
44 #define BANK_ENABLE (1 << 0)
45 #define MUXED (1 << 1)
46 #define NOR_DEV (2 << 2)
47 #define WIDTH_8 (0 << 4)
48 #define WIDTH_16 (1 << 4)
49 #define RSTPWRDWN (1 << 6)
50 #define WPROT (1 << 7)
51 #define WRT_ENABLE (1 << 12)
52 #define WAIT_ENB (1 << 13)
54 #define CTRL_TIM 0x4
55 /* ctrl_tim register definitions */
57 #define FSMC_NOR_BANK_SZ 0x8
58 #define FSMC_NOR_REG_SIZE 0x40
60 #define FSMC_NOR_REG(base, bank, reg) (base + \
61 FSMC_NOR_BANK_SZ * (bank) + \
62 reg)
64 /* fsmc controller registers for NAND flash */
65 #define FSMC_PC 0x00
66 /* pc register definitions */
67 #define FSMC_RESET (1 << 0)
68 #define FSMC_WAITON (1 << 1)
69 #define FSMC_ENABLE (1 << 2)
70 #define FSMC_DEVTYPE_NAND (1 << 3)
71 #define FSMC_DEVWID_8 (0 << 4)
72 #define FSMC_DEVWID_16 (1 << 4)
73 #define FSMC_ECCEN (1 << 6)
74 #define FSMC_ECCPLEN_512 (0 << 7)
75 #define FSMC_ECCPLEN_256 (1 << 7)
76 #define FSMC_TCLR_1 (1)
77 #define FSMC_TCLR_SHIFT (9)
78 #define FSMC_TCLR_MASK (0xF)
79 #define FSMC_TAR_1 (1)
80 #define FSMC_TAR_SHIFT (13)
81 #define FSMC_TAR_MASK (0xF)
82 #define STS 0x04
83 /* sts register definitions */
84 #define FSMC_CODE_RDY (1 << 15)
85 #define COMM 0x08
86 /* comm register definitions */
87 #define FSMC_TSET_0 0
88 #define FSMC_TSET_SHIFT 0
89 #define FSMC_TSET_MASK 0xFF
90 #define FSMC_TWAIT_6 6
91 #define FSMC_TWAIT_SHIFT 8
92 #define FSMC_TWAIT_MASK 0xFF
93 #define FSMC_THOLD_4 4
94 #define FSMC_THOLD_SHIFT 16
95 #define FSMC_THOLD_MASK 0xFF
96 #define FSMC_THIZ_1 1
97 #define FSMC_THIZ_SHIFT 24
98 #define FSMC_THIZ_MASK 0xFF
99 #define ATTRIB 0x0C
100 #define IOATA 0x10
101 #define ECC1 0x14
102 #define ECC2 0x18
103 #define ECC3 0x1C
104 #define FSMC_NAND_BANK_SZ 0x20
106 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
108 struct fsmc_nand_timings {
109 uint8_t tclr;
110 uint8_t tar;
111 uint8_t thiz;
112 uint8_t thold;
113 uint8_t twait;
114 uint8_t tset;
117 enum access_mode {
118 USE_DMA_ACCESS = 1,
119 USE_WORD_ACCESS,
123 * struct fsmc_nand_data - structure for FSMC NAND device state
125 * @pid: Part ID on the AMBA PrimeCell format
126 * @mtd: MTD info for a NAND flash.
127 * @nand: Chip related info for a NAND flash.
128 * @partitions: Partition info for a NAND Flash.
129 * @nr_partitions: Total number of partition of a NAND flash.
131 * @bank: Bank number for probed device.
132 * @clk: Clock structure for FSMC.
134 * @read_dma_chan: DMA channel for read access
135 * @write_dma_chan: DMA channel for write access to NAND
136 * @dma_access_complete: Completion structure
138 * @data_pa: NAND Physical port for Data.
139 * @data_va: NAND port for Data.
140 * @cmd_va: NAND port for Command.
141 * @addr_va: NAND port for Address.
142 * @regs_va: Registers base address for a given bank.
144 struct fsmc_nand_data {
145 u32 pid;
146 struct nand_chip nand;
148 unsigned int bank;
149 struct device *dev;
150 enum access_mode mode;
151 struct clk *clk;
153 /* DMA related objects */
154 struct dma_chan *read_dma_chan;
155 struct dma_chan *write_dma_chan;
156 struct completion dma_access_complete;
158 struct fsmc_nand_timings *dev_timings;
160 dma_addr_t data_pa;
161 void __iomem *data_va;
162 void __iomem *cmd_va;
163 void __iomem *addr_va;
164 void __iomem *regs_va;
167 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
168 struct mtd_oob_region *oobregion)
170 struct nand_chip *chip = mtd_to_nand(mtd);
172 if (section >= chip->ecc.steps)
173 return -ERANGE;
175 oobregion->offset = (section * 16) + 2;
176 oobregion->length = 3;
178 return 0;
181 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
182 struct mtd_oob_region *oobregion)
184 struct nand_chip *chip = mtd_to_nand(mtd);
186 if (section >= chip->ecc.steps)
187 return -ERANGE;
189 oobregion->offset = (section * 16) + 8;
191 if (section < chip->ecc.steps - 1)
192 oobregion->length = 8;
193 else
194 oobregion->length = mtd->oobsize - oobregion->offset;
196 return 0;
199 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
200 .ecc = fsmc_ecc1_ooblayout_ecc,
201 .free = fsmc_ecc1_ooblayout_free,
205 * ECC placement definitions in oobfree type format.
206 * There are 13 bytes of ecc for every 512 byte block and it has to be read
207 * consecutively and immediately after the 512 byte data block for hardware to
208 * generate the error bit offsets in 512 byte data.
210 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
211 struct mtd_oob_region *oobregion)
213 struct nand_chip *chip = mtd_to_nand(mtd);
215 if (section >= chip->ecc.steps)
216 return -ERANGE;
218 oobregion->length = chip->ecc.bytes;
220 if (!section && mtd->writesize <= 512)
221 oobregion->offset = 0;
222 else
223 oobregion->offset = (section * 16) + 2;
225 return 0;
228 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
229 struct mtd_oob_region *oobregion)
231 struct nand_chip *chip = mtd_to_nand(mtd);
233 if (section >= chip->ecc.steps)
234 return -ERANGE;
236 oobregion->offset = (section * 16) + 15;
238 if (section < chip->ecc.steps - 1)
239 oobregion->length = 3;
240 else
241 oobregion->length = mtd->oobsize - oobregion->offset;
243 return 0;
246 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
247 .ecc = fsmc_ecc4_ooblayout_ecc,
248 .free = fsmc_ecc4_ooblayout_free,
251 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
253 return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
257 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
259 * This routine initializes timing parameters related to NAND memory access in
260 * FSMC registers
262 static void fsmc_nand_setup(struct fsmc_nand_data *host,
263 struct fsmc_nand_timings *tims)
265 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
266 uint32_t tclr, tar, thiz, thold, twait, tset;
268 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
269 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
270 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
271 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
272 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
273 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
275 if (host->nand.options & NAND_BUSWIDTH_16)
276 writel_relaxed(value | FSMC_DEVWID_16,
277 host->regs_va + FSMC_PC);
278 else
279 writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + FSMC_PC);
281 writel_relaxed(readl(host->regs_va + FSMC_PC) | tclr | tar,
282 host->regs_va + FSMC_PC);
283 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
284 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
287 static int fsmc_calc_timings(struct fsmc_nand_data *host,
288 const struct nand_sdr_timings *sdrt,
289 struct fsmc_nand_timings *tims)
291 unsigned long hclk = clk_get_rate(host->clk);
292 unsigned long hclkn = NSEC_PER_SEC / hclk;
293 uint32_t thiz, thold, twait, tset;
295 if (sdrt->tRC_min < 30000)
296 return -EOPNOTSUPP;
298 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
299 if (tims->tar > FSMC_TAR_MASK)
300 tims->tar = FSMC_TAR_MASK;
301 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
302 if (tims->tclr > FSMC_TCLR_MASK)
303 tims->tclr = FSMC_TCLR_MASK;
305 thiz = sdrt->tCS_min - sdrt->tWP_min;
306 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
308 thold = sdrt->tDH_min;
309 if (thold < sdrt->tCH_min)
310 thold = sdrt->tCH_min;
311 if (thold < sdrt->tCLH_min)
312 thold = sdrt->tCLH_min;
313 if (thold < sdrt->tWH_min)
314 thold = sdrt->tWH_min;
315 if (thold < sdrt->tALH_min)
316 thold = sdrt->tALH_min;
317 if (thold < sdrt->tREH_min)
318 thold = sdrt->tREH_min;
319 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
320 if (tims->thold == 0)
321 tims->thold = 1;
322 else if (tims->thold > FSMC_THOLD_MASK)
323 tims->thold = FSMC_THOLD_MASK;
325 twait = max(sdrt->tRP_min, sdrt->tWP_min);
326 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
327 if (tims->twait == 0)
328 tims->twait = 1;
329 else if (tims->twait > FSMC_TWAIT_MASK)
330 tims->twait = FSMC_TWAIT_MASK;
332 tset = max(sdrt->tCS_min - sdrt->tWP_min,
333 sdrt->tCEA_max - sdrt->tREA_max);
334 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
335 if (tims->tset == 0)
336 tims->tset = 1;
337 else if (tims->tset > FSMC_TSET_MASK)
338 tims->tset = FSMC_TSET_MASK;
340 return 0;
343 static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
344 const struct nand_data_interface *conf)
346 struct nand_chip *nand = mtd_to_nand(mtd);
347 struct fsmc_nand_data *host = nand_get_controller_data(nand);
348 struct fsmc_nand_timings tims;
349 const struct nand_sdr_timings *sdrt;
350 int ret;
352 sdrt = nand_get_sdr_timings(conf);
353 if (IS_ERR(sdrt))
354 return PTR_ERR(sdrt);
356 ret = fsmc_calc_timings(host, sdrt, &tims);
357 if (ret)
358 return ret;
360 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
361 return 0;
363 fsmc_nand_setup(host, &tims);
365 return 0;
369 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
371 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
373 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
375 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
376 host->regs_va + FSMC_PC);
377 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
378 host->regs_va + FSMC_PC);
379 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
380 host->regs_va + FSMC_PC);
384 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
385 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
386 * max of 8-bits)
388 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
389 uint8_t *ecc)
391 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
392 uint32_t ecc_tmp;
393 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
395 do {
396 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
397 break;
398 else
399 cond_resched();
400 } while (!time_after_eq(jiffies, deadline));
402 if (time_after_eq(jiffies, deadline)) {
403 dev_err(host->dev, "calculate ecc timed out\n");
404 return -ETIMEDOUT;
407 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
408 ecc[0] = (uint8_t) (ecc_tmp >> 0);
409 ecc[1] = (uint8_t) (ecc_tmp >> 8);
410 ecc[2] = (uint8_t) (ecc_tmp >> 16);
411 ecc[3] = (uint8_t) (ecc_tmp >> 24);
413 ecc_tmp = readl_relaxed(host->regs_va + ECC2);
414 ecc[4] = (uint8_t) (ecc_tmp >> 0);
415 ecc[5] = (uint8_t) (ecc_tmp >> 8);
416 ecc[6] = (uint8_t) (ecc_tmp >> 16);
417 ecc[7] = (uint8_t) (ecc_tmp >> 24);
419 ecc_tmp = readl_relaxed(host->regs_va + ECC3);
420 ecc[8] = (uint8_t) (ecc_tmp >> 0);
421 ecc[9] = (uint8_t) (ecc_tmp >> 8);
422 ecc[10] = (uint8_t) (ecc_tmp >> 16);
423 ecc[11] = (uint8_t) (ecc_tmp >> 24);
425 ecc_tmp = readl_relaxed(host->regs_va + STS);
426 ecc[12] = (uint8_t) (ecc_tmp >> 16);
428 return 0;
432 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
433 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
434 * max of 1-bit)
436 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
437 uint8_t *ecc)
439 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
440 uint32_t ecc_tmp;
442 ecc_tmp = readl_relaxed(host->regs_va + ECC1);
443 ecc[0] = (uint8_t) (ecc_tmp >> 0);
444 ecc[1] = (uint8_t) (ecc_tmp >> 8);
445 ecc[2] = (uint8_t) (ecc_tmp >> 16);
447 return 0;
450 /* Count the number of 0's in buff upto a max of max_bits */
451 static int count_written_bits(uint8_t *buff, int size, int max_bits)
453 int k, written_bits = 0;
455 for (k = 0; k < size; k++) {
456 written_bits += hweight8(~buff[k]);
457 if (written_bits > max_bits)
458 break;
461 return written_bits;
464 static void dma_complete(void *param)
466 struct fsmc_nand_data *host = param;
468 complete(&host->dma_access_complete);
471 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
472 enum dma_data_direction direction)
474 struct dma_chan *chan;
475 struct dma_device *dma_dev;
476 struct dma_async_tx_descriptor *tx;
477 dma_addr_t dma_dst, dma_src, dma_addr;
478 dma_cookie_t cookie;
479 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
480 int ret;
481 unsigned long time_left;
483 if (direction == DMA_TO_DEVICE)
484 chan = host->write_dma_chan;
485 else if (direction == DMA_FROM_DEVICE)
486 chan = host->read_dma_chan;
487 else
488 return -EINVAL;
490 dma_dev = chan->device;
491 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
493 if (direction == DMA_TO_DEVICE) {
494 dma_src = dma_addr;
495 dma_dst = host->data_pa;
496 } else {
497 dma_src = host->data_pa;
498 dma_dst = dma_addr;
501 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
502 len, flags);
503 if (!tx) {
504 dev_err(host->dev, "device_prep_dma_memcpy error\n");
505 ret = -EIO;
506 goto unmap_dma;
509 tx->callback = dma_complete;
510 tx->callback_param = host;
511 cookie = tx->tx_submit(tx);
513 ret = dma_submit_error(cookie);
514 if (ret) {
515 dev_err(host->dev, "dma_submit_error %d\n", cookie);
516 goto unmap_dma;
519 dma_async_issue_pending(chan);
521 time_left =
522 wait_for_completion_timeout(&host->dma_access_complete,
523 msecs_to_jiffies(3000));
524 if (time_left == 0) {
525 dmaengine_terminate_all(chan);
526 dev_err(host->dev, "wait_for_completion_timeout\n");
527 ret = -ETIMEDOUT;
528 goto unmap_dma;
531 ret = 0;
533 unmap_dma:
534 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
536 return ret;
540 * fsmc_write_buf - write buffer to chip
541 * @mtd: MTD device structure
542 * @buf: data buffer
543 * @len: number of bytes to write
545 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
547 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
548 int i;
550 if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
551 IS_ALIGNED(len, sizeof(uint32_t))) {
552 uint32_t *p = (uint32_t *)buf;
553 len = len >> 2;
554 for (i = 0; i < len; i++)
555 writel_relaxed(p[i], host->data_va);
556 } else {
557 for (i = 0; i < len; i++)
558 writeb_relaxed(buf[i], host->data_va);
563 * fsmc_read_buf - read chip data into buffer
564 * @mtd: MTD device structure
565 * @buf: buffer to store date
566 * @len: number of bytes to read
568 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
570 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
571 int i;
573 if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
574 IS_ALIGNED(len, sizeof(uint32_t))) {
575 uint32_t *p = (uint32_t *)buf;
576 len = len >> 2;
577 for (i = 0; i < len; i++)
578 p[i] = readl_relaxed(host->data_va);
579 } else {
580 for (i = 0; i < len; i++)
581 buf[i] = readb_relaxed(host->data_va);
586 * fsmc_read_buf_dma - read chip data into buffer
587 * @mtd: MTD device structure
588 * @buf: buffer to store date
589 * @len: number of bytes to read
591 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
593 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
595 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
599 * fsmc_write_buf_dma - write buffer to chip
600 * @mtd: MTD device structure
601 * @buf: data buffer
602 * @len: number of bytes to write
604 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
605 int len)
607 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
609 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
612 /* fsmc_select_chip - assert or deassert nCE */
613 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
615 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
616 u32 pc;
618 /* Support only one CS */
619 if (chipnr > 0)
620 return;
622 pc = readl(host->regs_va + FSMC_PC);
623 if (chipnr < 0)
624 writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + FSMC_PC);
625 else
626 writel_relaxed(pc | FSMC_ENABLE, host->regs_va + FSMC_PC);
628 /* nCE line must be asserted before starting any operation */
629 mb();
633 * fsmc_exec_op - hook called by the core to execute NAND operations
635 * This controller is simple enough and thus does not need to use the parser
636 * provided by the core, instead, handle every situation here.
638 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
639 bool check_only)
641 struct mtd_info *mtd = nand_to_mtd(chip);
642 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
643 const struct nand_op_instr *instr = NULL;
644 int ret = 0;
645 unsigned int op_id;
646 int i;
648 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
649 for (op_id = 0; op_id < op->ninstrs; op_id++) {
650 instr = &op->instrs[op_id];
652 switch (instr->type) {
653 case NAND_OP_CMD_INSTR:
654 pr_debug(" ->CMD [0x%02x]\n",
655 instr->ctx.cmd.opcode);
657 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
658 break;
660 case NAND_OP_ADDR_INSTR:
661 pr_debug(" ->ADDR [%d cyc]",
662 instr->ctx.addr.naddrs);
664 for (i = 0; i < instr->ctx.addr.naddrs; i++)
665 writeb_relaxed(instr->ctx.addr.addrs[i],
666 host->addr_va);
667 break;
669 case NAND_OP_DATA_IN_INSTR:
670 pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
671 instr->ctx.data.force_8bit ?
672 ", force 8-bit" : "");
674 if (host->mode == USE_DMA_ACCESS)
675 fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
676 instr->ctx.data.len);
677 else
678 fsmc_read_buf(mtd, instr->ctx.data.buf.in,
679 instr->ctx.data.len);
680 break;
682 case NAND_OP_DATA_OUT_INSTR:
683 pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
684 instr->ctx.data.force_8bit ?
685 ", force 8-bit" : "");
687 if (host->mode == USE_DMA_ACCESS)
688 fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
689 instr->ctx.data.len);
690 else
691 fsmc_write_buf(mtd, instr->ctx.data.buf.out,
692 instr->ctx.data.len);
693 break;
695 case NAND_OP_WAITRDY_INSTR:
696 pr_debug(" ->WAITRDY [max %d ms]\n",
697 instr->ctx.waitrdy.timeout_ms);
699 ret = nand_soft_waitrdy(chip,
700 instr->ctx.waitrdy.timeout_ms);
701 break;
705 return ret;
709 * fsmc_read_page_hwecc
710 * @mtd: mtd info structure
711 * @chip: nand chip info structure
712 * @buf: buffer to store read data
713 * @oob_required: caller expects OOB data read to chip->oob_poi
714 * @page: page number to read
716 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
717 * performed in a strict sequence as follows:
718 * data(512 byte) -> ecc(13 byte)
719 * After this read, fsmc hardware generates and reports error data bits(up to a
720 * max of 8 bits)
722 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
723 uint8_t *buf, int oob_required, int page)
725 int i, j, s, stat, eccsize = chip->ecc.size;
726 int eccbytes = chip->ecc.bytes;
727 int eccsteps = chip->ecc.steps;
728 uint8_t *p = buf;
729 uint8_t *ecc_calc = chip->ecc.calc_buf;
730 uint8_t *ecc_code = chip->ecc.code_buf;
731 int off, len, group = 0;
733 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
734 * end up reading 14 bytes (7 words) from oob. The local array is
735 * to maintain word alignment
737 uint16_t ecc_oob[7];
738 uint8_t *oob = (uint8_t *)&ecc_oob[0];
739 unsigned int max_bitflips = 0;
741 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
742 nand_read_page_op(chip, page, s * eccsize, NULL, 0);
743 chip->ecc.hwctl(mtd, NAND_ECC_READ);
744 nand_read_data_op(chip, p, eccsize, false);
746 for (j = 0; j < eccbytes;) {
747 struct mtd_oob_region oobregion;
748 int ret;
750 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
751 if (ret)
752 return ret;
754 off = oobregion.offset;
755 len = oobregion.length;
758 * length is intentionally kept a higher multiple of 2
759 * to read at least 13 bytes even in case of 16 bit NAND
760 * devices
762 if (chip->options & NAND_BUSWIDTH_16)
763 len = roundup(len, 2);
765 nand_read_oob_op(chip, page, off, oob + j, len);
766 j += len;
769 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
770 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
772 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
773 if (stat < 0) {
774 mtd->ecc_stats.failed++;
775 } else {
776 mtd->ecc_stats.corrected += stat;
777 max_bitflips = max_t(unsigned int, max_bitflips, stat);
781 return max_bitflips;
785 * fsmc_bch8_correct_data
786 * @mtd: mtd info structure
787 * @dat: buffer of read data
788 * @read_ecc: ecc read from device spare area
789 * @calc_ecc: ecc calculated from read data
791 * calc_ecc is a 104 bit information containing maximum of 8 error
792 * offset informations of 13 bits each in 512 bytes of read data.
794 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
795 uint8_t *read_ecc, uint8_t *calc_ecc)
797 struct nand_chip *chip = mtd_to_nand(mtd);
798 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
799 uint32_t err_idx[8];
800 uint32_t num_err, i;
801 uint32_t ecc1, ecc2, ecc3, ecc4;
803 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
805 /* no bit flipping */
806 if (likely(num_err == 0))
807 return 0;
809 /* too many errors */
810 if (unlikely(num_err > 8)) {
812 * This is a temporary erase check. A newly erased page read
813 * would result in an ecc error because the oob data is also
814 * erased to FF and the calculated ecc for an FF data is not
815 * FF..FF.
816 * This is a workaround to skip performing correction in case
817 * data is FF..FF
819 * Logic:
820 * For every page, each bit written as 0 is counted until these
821 * number of bits are greater than 8 (the maximum correction
822 * capability of FSMC for each 512 + 13 bytes)
825 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
826 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
828 if ((bits_ecc + bits_data) <= 8) {
829 if (bits_data)
830 memset(dat, 0xff, chip->ecc.size);
831 return bits_data;
834 return -EBADMSG;
838 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
839 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
841 * calc_ecc is a 104 bit information containing maximum of 8 error
842 * offset informations of 13 bits each. calc_ecc is copied into a
843 * uint64_t array and error offset indexes are populated in err_idx
844 * array
846 ecc1 = readl_relaxed(host->regs_va + ECC1);
847 ecc2 = readl_relaxed(host->regs_va + ECC2);
848 ecc3 = readl_relaxed(host->regs_va + ECC3);
849 ecc4 = readl_relaxed(host->regs_va + STS);
851 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
852 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
853 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
854 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
855 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
856 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
857 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
858 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
860 i = 0;
861 while (num_err--) {
862 change_bit(0, (unsigned long *)&err_idx[i]);
863 change_bit(1, (unsigned long *)&err_idx[i]);
865 if (err_idx[i] < chip->ecc.size * 8) {
866 change_bit(err_idx[i], (unsigned long *)dat);
867 i++;
870 return i;
873 static bool filter(struct dma_chan *chan, void *slave)
875 chan->private = slave;
876 return true;
879 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
880 struct fsmc_nand_data *host,
881 struct nand_chip *nand)
883 struct device_node *np = pdev->dev.of_node;
884 u32 val;
885 int ret;
887 nand->options = 0;
889 if (!of_property_read_u32(np, "bank-width", &val)) {
890 if (val == 2) {
891 nand->options |= NAND_BUSWIDTH_16;
892 } else if (val != 1) {
893 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
894 return -EINVAL;
898 if (of_get_property(np, "nand-skip-bbtscan", NULL))
899 nand->options |= NAND_SKIP_BBTSCAN;
901 host->dev_timings = devm_kzalloc(&pdev->dev,
902 sizeof(*host->dev_timings), GFP_KERNEL);
903 if (!host->dev_timings)
904 return -ENOMEM;
905 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
906 sizeof(*host->dev_timings));
907 if (ret)
908 host->dev_timings = NULL;
910 /* Set default NAND bank to 0 */
911 host->bank = 0;
912 if (!of_property_read_u32(np, "bank", &val)) {
913 if (val > 3) {
914 dev_err(&pdev->dev, "invalid bank %u\n", val);
915 return -EINVAL;
917 host->bank = val;
919 return 0;
922 static int fsmc_nand_attach_chip(struct nand_chip *nand)
924 struct mtd_info *mtd = nand_to_mtd(nand);
925 struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
927 if (AMBA_REV_BITS(host->pid) >= 8) {
928 switch (mtd->oobsize) {
929 case 16:
930 case 64:
931 case 128:
932 case 224:
933 case 256:
934 break;
935 default:
936 dev_warn(host->dev,
937 "No oob scheme defined for oobsize %d\n",
938 mtd->oobsize);
939 return -EINVAL;
942 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
944 return 0;
947 switch (nand->ecc.mode) {
948 case NAND_ECC_HW:
949 dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
950 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
951 nand->ecc.correct = nand_correct_data;
952 nand->ecc.bytes = 3;
953 nand->ecc.strength = 1;
954 break;
956 case NAND_ECC_SOFT:
957 if (nand->ecc.algo == NAND_ECC_BCH) {
958 dev_info(host->dev,
959 "Using 4-bit SW BCH ECC scheme\n");
960 break;
963 case NAND_ECC_ON_DIE:
964 break;
966 default:
967 dev_err(host->dev, "Unsupported ECC mode!\n");
968 return -ENOTSUPP;
972 * Don't set layout for BCH4 SW ECC. This will be
973 * generated later in nand_bch_init() later.
975 if (nand->ecc.mode == NAND_ECC_HW) {
976 switch (mtd->oobsize) {
977 case 16:
978 case 64:
979 case 128:
980 mtd_set_ooblayout(mtd,
981 &fsmc_ecc1_ooblayout_ops);
982 break;
983 default:
984 dev_warn(host->dev,
985 "No oob scheme defined for oobsize %d\n",
986 mtd->oobsize);
987 return -EINVAL;
991 return 0;
994 static const struct nand_controller_ops fsmc_nand_controller_ops = {
995 .attach_chip = fsmc_nand_attach_chip,
999 * fsmc_nand_probe - Probe function
1000 * @pdev: platform device structure
1002 static int __init fsmc_nand_probe(struct platform_device *pdev)
1004 struct fsmc_nand_data *host;
1005 struct mtd_info *mtd;
1006 struct nand_chip *nand;
1007 struct resource *res;
1008 void __iomem *base;
1009 dma_cap_mask_t mask;
1010 int ret = 0;
1011 u32 pid;
1012 int i;
1014 /* Allocate memory for the device structure (and zero it) */
1015 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1016 if (!host)
1017 return -ENOMEM;
1019 nand = &host->nand;
1021 ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1022 if (ret)
1023 return ret;
1025 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1026 host->data_va = devm_ioremap_resource(&pdev->dev, res);
1027 if (IS_ERR(host->data_va))
1028 return PTR_ERR(host->data_va);
1030 host->data_pa = (dma_addr_t)res->start;
1032 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1033 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1034 if (IS_ERR(host->addr_va))
1035 return PTR_ERR(host->addr_va);
1037 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1038 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1039 if (IS_ERR(host->cmd_va))
1040 return PTR_ERR(host->cmd_va);
1042 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1043 base = devm_ioremap_resource(&pdev->dev, res);
1044 if (IS_ERR(base))
1045 return PTR_ERR(base);
1047 host->regs_va = base + FSMC_NOR_REG_SIZE +
1048 (host->bank * FSMC_NAND_BANK_SZ);
1050 host->clk = devm_clk_get(&pdev->dev, NULL);
1051 if (IS_ERR(host->clk)) {
1052 dev_err(&pdev->dev, "failed to fetch block clock\n");
1053 return PTR_ERR(host->clk);
1056 ret = clk_prepare_enable(host->clk);
1057 if (ret)
1058 return ret;
1061 * This device ID is actually a common AMBA ID as used on the
1062 * AMBA PrimeCell bus. However it is not a PrimeCell.
1064 for (pid = 0, i = 0; i < 4; i++)
1065 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
1066 host->pid = pid;
1067 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
1068 "revision %02x, config %02x\n",
1069 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1070 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1072 host->dev = &pdev->dev;
1074 if (host->mode == USE_DMA_ACCESS)
1075 init_completion(&host->dma_access_complete);
1077 /* Link all private pointers */
1078 mtd = nand_to_mtd(&host->nand);
1079 nand_set_controller_data(nand, host);
1080 nand_set_flash_node(nand, pdev->dev.of_node);
1082 mtd->dev.parent = &pdev->dev;
1083 nand->exec_op = fsmc_exec_op;
1084 nand->select_chip = fsmc_select_chip;
1085 nand->chip_delay = 30;
1088 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1089 * can overwrite this value if the DT provides a different value.
1091 nand->ecc.mode = NAND_ECC_HW;
1092 nand->ecc.hwctl = fsmc_enable_hwecc;
1093 nand->ecc.size = 512;
1094 nand->badblockbits = 7;
1096 if (host->mode == USE_DMA_ACCESS) {
1097 dma_cap_zero(mask);
1098 dma_cap_set(DMA_MEMCPY, mask);
1099 host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1100 if (!host->read_dma_chan) {
1101 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1102 goto disable_clk;
1104 host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1105 if (!host->write_dma_chan) {
1106 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1107 goto release_dma_read_chan;
1111 if (host->dev_timings)
1112 fsmc_nand_setup(host, host->dev_timings);
1113 else
1114 nand->setup_data_interface = fsmc_setup_data_interface;
1116 if (AMBA_REV_BITS(host->pid) >= 8) {
1117 nand->ecc.read_page = fsmc_read_page_hwecc;
1118 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1119 nand->ecc.correct = fsmc_bch8_correct_data;
1120 nand->ecc.bytes = 13;
1121 nand->ecc.strength = 8;
1125 * Scan to find existence of the device
1127 nand->dummy_controller.ops = &fsmc_nand_controller_ops;
1128 ret = nand_scan(nand, 1);
1129 if (ret)
1130 goto release_dma_write_chan;
1132 mtd->name = "nand";
1133 ret = mtd_device_register(mtd, NULL, 0);
1134 if (ret)
1135 goto cleanup_nand;
1137 platform_set_drvdata(pdev, host);
1138 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1140 return 0;
1142 cleanup_nand:
1143 nand_cleanup(nand);
1144 release_dma_write_chan:
1145 if (host->mode == USE_DMA_ACCESS)
1146 dma_release_channel(host->write_dma_chan);
1147 release_dma_read_chan:
1148 if (host->mode == USE_DMA_ACCESS)
1149 dma_release_channel(host->read_dma_chan);
1150 disable_clk:
1151 clk_disable_unprepare(host->clk);
1153 return ret;
1157 * Clean up routine
1159 static int fsmc_nand_remove(struct platform_device *pdev)
1161 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1163 if (host) {
1164 nand_release(&host->nand);
1166 if (host->mode == USE_DMA_ACCESS) {
1167 dma_release_channel(host->write_dma_chan);
1168 dma_release_channel(host->read_dma_chan);
1170 clk_disable_unprepare(host->clk);
1173 return 0;
1176 #ifdef CONFIG_PM_SLEEP
1177 static int fsmc_nand_suspend(struct device *dev)
1179 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1180 if (host)
1181 clk_disable_unprepare(host->clk);
1182 return 0;
1185 static int fsmc_nand_resume(struct device *dev)
1187 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1188 if (host) {
1189 clk_prepare_enable(host->clk);
1190 if (host->dev_timings)
1191 fsmc_nand_setup(host, host->dev_timings);
1193 return 0;
1195 #endif
1197 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1199 static const struct of_device_id fsmc_nand_id_table[] = {
1200 { .compatible = "st,spear600-fsmc-nand" },
1201 { .compatible = "stericsson,fsmc-nand" },
1204 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1206 static struct platform_driver fsmc_nand_driver = {
1207 .remove = fsmc_nand_remove,
1208 .driver = {
1209 .name = "fsmc-nand",
1210 .of_match_table = fsmc_nand_id_table,
1211 .pm = &fsmc_nand_pm_ops,
1215 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1217 MODULE_LICENSE("GPL");
1218 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1219 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");