2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/rawnand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
25 #include <linux/slab.h>
27 #include <linux/of_device.h>
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
143 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
147 struct omap_nand_info
{
148 struct nand_chip nand
;
149 struct platform_device
*pdev
;
153 enum nand_io xfer_type
;
155 enum omap_ecc ecc_opt
;
156 struct device_node
*elm_of_node
;
158 unsigned long phys_base
;
159 struct completion comp
;
160 struct dma_chan
*dma
;
164 OMAP_NAND_IO_READ
= 0, /* read */
165 OMAP_NAND_IO_WRITE
, /* write */
169 /* Interface to GPMC */
170 struct gpmc_nand_regs reg
;
171 struct gpmc_nand_ops
*ops
;
173 /* fields specific for BCHx_HW ECC scheme */
174 struct device
*elm_dev
;
175 /* NAND ready gpio */
176 struct gpio_desc
*ready_gpiod
;
179 static inline struct omap_nand_info
*mtd_to_omap(struct mtd_info
*mtd
)
181 return container_of(mtd_to_nand(mtd
), struct omap_nand_info
, nand
);
185 * omap_prefetch_enable - configures and starts prefetch transfer
186 * @cs: cs (chip select) number
187 * @fifo_th: fifo threshold to be used for read/ write
188 * @dma_mode: dma mode enable (1) or disable (0)
189 * @u32_count: number of bytes to be transferred
190 * @is_write: prefetch read(0) or write post(1) mode
192 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
193 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
197 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
200 if (readl(info
->reg
.gpmc_prefetch_control
))
203 /* Set the amount of bytes to be prefetched */
204 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
206 /* Set dma/mpu mode, the prefetch read / post write and
207 * enable the engine. Set which cs is has requested for.
209 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
210 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
211 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (is_write
& 0x1));
212 writel(val
, info
->reg
.gpmc_prefetch_config1
);
214 /* Start the prefetch engine */
215 writel(0x1, info
->reg
.gpmc_prefetch_control
);
221 * omap_prefetch_reset - disables and stops the prefetch engine
223 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
227 /* check if the same module/cs is trying to reset */
228 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
229 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
232 /* Stop the PFPW engine */
233 writel(0x0, info
->reg
.gpmc_prefetch_control
);
235 /* Reset/disable the PFPW engine */
236 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
242 * omap_hwcontrol - hardware specific access to control-lines
243 * @mtd: MTD device structure
244 * @cmd: command to device
246 * NAND_NCE: bit 0 -> don't care
247 * NAND_CLE: bit 1 -> Command Latch
248 * NAND_ALE: bit 2 -> Address Latch
250 * NOTE: boards may use different bits for these!!
252 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
254 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
256 if (cmd
!= NAND_CMD_NONE
) {
258 writeb(cmd
, info
->reg
.gpmc_nand_command
);
260 else if (ctrl
& NAND_ALE
)
261 writeb(cmd
, info
->reg
.gpmc_nand_address
);
264 writeb(cmd
, info
->reg
.gpmc_nand_data
);
269 * omap_read_buf8 - read data from NAND controller into buffer
270 * @mtd: MTD device structure
271 * @buf: buffer to store date
272 * @len: number of bytes to read
274 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
276 struct nand_chip
*nand
= mtd_to_nand(mtd
);
278 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
282 * omap_write_buf8 - write buffer to NAND controller
283 * @mtd: MTD device structure
285 * @len: number of bytes to write
287 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
289 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
290 u_char
*p
= (u_char
*)buf
;
294 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
295 /* wait until buffer is available for write */
297 status
= info
->ops
->nand_writebuffer_empty();
303 * omap_read_buf16 - read data from NAND controller into buffer
304 * @mtd: MTD device structure
305 * @buf: buffer to store date
306 * @len: number of bytes to read
308 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
310 struct nand_chip
*nand
= mtd_to_nand(mtd
);
312 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
316 * omap_write_buf16 - write buffer to NAND controller
317 * @mtd: MTD device structure
319 * @len: number of bytes to write
321 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
323 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
324 u16
*p
= (u16
*) buf
;
326 /* FIXME try bursts of writesw() or DMA ... */
330 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
331 /* wait until buffer is available for write */
333 status
= info
->ops
->nand_writebuffer_empty();
339 * omap_read_buf_pref - read data from NAND controller into buffer
340 * @mtd: MTD device structure
341 * @buf: buffer to store date
342 * @len: number of bytes to read
344 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
346 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
347 uint32_t r_count
= 0;
351 /* take care of subpage reads */
353 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
354 omap_read_buf16(mtd
, buf
, len
% 4);
356 omap_read_buf8(mtd
, buf
, len
% 4);
357 p
= (u32
*) (buf
+ len
% 4);
361 /* configure and start prefetch transfer */
362 ret
= omap_prefetch_enable(info
->gpmc_cs
,
363 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
365 /* PFPW engine is busy, use cpu copy method */
366 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
367 omap_read_buf16(mtd
, (u_char
*)p
, len
);
369 omap_read_buf8(mtd
, (u_char
*)p
, len
);
372 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
373 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
374 r_count
= r_count
>> 2;
375 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
379 /* disable and stop the PFPW engine */
380 omap_prefetch_reset(info
->gpmc_cs
, info
);
385 * omap_write_buf_pref - write buffer to NAND controller
386 * @mtd: MTD device structure
388 * @len: number of bytes to write
390 static void omap_write_buf_pref(struct mtd_info
*mtd
,
391 const u_char
*buf
, int len
)
393 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
394 uint32_t w_count
= 0;
397 unsigned long tim
, limit
;
400 /* take care of subpage writes */
402 writeb(*buf
, info
->nand
.IO_ADDR_W
);
403 p
= (u16
*)(buf
+ 1);
407 /* configure and start prefetch transfer */
408 ret
= omap_prefetch_enable(info
->gpmc_cs
,
409 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
411 /* PFPW engine is busy, use cpu copy method */
412 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
413 omap_write_buf16(mtd
, (u_char
*)p
, len
);
415 omap_write_buf8(mtd
, (u_char
*)p
, len
);
418 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
419 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
420 w_count
= w_count
>> 1;
421 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
422 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
424 /* wait for data to flushed-out before reset the prefetch */
426 limit
= (loops_per_jiffy
*
427 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
430 val
= readl(info
->reg
.gpmc_prefetch_status
);
431 val
= PREFETCH_STATUS_COUNT(val
);
432 } while (val
&& (tim
++ < limit
));
434 /* disable and stop the PFPW engine */
435 omap_prefetch_reset(info
->gpmc_cs
, info
);
440 * omap_nand_dma_callback: callback on the completion of dma transfer
441 * @data: pointer to completion data structure
443 static void omap_nand_dma_callback(void *data
)
445 complete((struct completion
*) data
);
449 * omap_nand_dma_transfer: configure and start dma transfer
450 * @mtd: MTD device structure
451 * @addr: virtual address in RAM of source/destination
452 * @len: number of data bytes to be transferred
453 * @is_write: flag for read/write operation
455 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
456 unsigned int len
, int is_write
)
458 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
459 struct dma_async_tx_descriptor
*tx
;
460 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
462 struct scatterlist sg
;
463 unsigned long tim
, limit
;
468 if (!virt_addr_valid(addr
))
471 sg_init_one(&sg
, addr
, len
);
472 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
474 dev_err(&info
->pdev
->dev
,
475 "Couldn't DMA map a %d byte buffer\n", len
);
479 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
480 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
481 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
485 tx
->callback
= omap_nand_dma_callback
;
486 tx
->callback_param
= &info
->comp
;
487 dmaengine_submit(tx
);
489 init_completion(&info
->comp
);
491 /* setup and start DMA using dma_addr */
492 dma_async_issue_pending(info
->dma
);
494 /* configure and start prefetch transfer */
495 ret
= omap_prefetch_enable(info
->gpmc_cs
,
496 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
498 /* PFPW engine is busy, use cpu copy method */
501 wait_for_completion(&info
->comp
);
503 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
507 val
= readl(info
->reg
.gpmc_prefetch_status
);
508 val
= PREFETCH_STATUS_COUNT(val
);
509 } while (val
&& (tim
++ < limit
));
511 /* disable and stop the PFPW engine */
512 omap_prefetch_reset(info
->gpmc_cs
, info
);
514 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
518 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
520 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
521 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
522 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
524 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
525 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
530 * omap_read_buf_dma_pref - read data from NAND controller into buffer
531 * @mtd: MTD device structure
532 * @buf: buffer to store date
533 * @len: number of bytes to read
535 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
537 if (len
<= mtd
->oobsize
)
538 omap_read_buf_pref(mtd
, buf
, len
);
540 /* start transfer in DMA mode */
541 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
545 * omap_write_buf_dma_pref - write buffer to NAND controller
546 * @mtd: MTD device structure
548 * @len: number of bytes to write
550 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
551 const u_char
*buf
, int len
)
553 if (len
<= mtd
->oobsize
)
554 omap_write_buf_pref(mtd
, buf
, len
);
556 /* start transfer in DMA mode */
557 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
561 * omap_nand_irq - GPMC irq handler
562 * @this_irq: gpmc irq number
563 * @dev: omap_nand_info structure pointer is passed here
565 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
567 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
570 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
571 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
572 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
573 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
574 if (this_irq
== info
->gpmc_irq_count
)
577 if (info
->buf_len
&& (info
->buf_len
< bytes
))
578 bytes
= info
->buf_len
;
579 else if (!info
->buf_len
)
581 iowrite32_rep(info
->nand
.IO_ADDR_W
,
582 (u32
*)info
->buf
, bytes
>> 2);
583 info
->buf
= info
->buf
+ bytes
;
584 info
->buf_len
-= bytes
;
587 ioread32_rep(info
->nand
.IO_ADDR_R
,
588 (u32
*)info
->buf
, bytes
>> 2);
589 info
->buf
= info
->buf
+ bytes
;
591 if (this_irq
== info
->gpmc_irq_count
)
598 complete(&info
->comp
);
600 disable_irq_nosync(info
->gpmc_irq_fifo
);
601 disable_irq_nosync(info
->gpmc_irq_count
);
607 * omap_read_buf_irq_pref - read data from NAND controller into buffer
608 * @mtd: MTD device structure
609 * @buf: buffer to store date
610 * @len: number of bytes to read
612 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
614 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
617 if (len
<= mtd
->oobsize
) {
618 omap_read_buf_pref(mtd
, buf
, len
);
622 info
->iomode
= OMAP_NAND_IO_READ
;
624 init_completion(&info
->comp
);
626 /* configure and start prefetch transfer */
627 ret
= omap_prefetch_enable(info
->gpmc_cs
,
628 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
630 /* PFPW engine is busy, use cpu copy method */
635 enable_irq(info
->gpmc_irq_count
);
636 enable_irq(info
->gpmc_irq_fifo
);
638 /* waiting for read to complete */
639 wait_for_completion(&info
->comp
);
641 /* disable and stop the PFPW engine */
642 omap_prefetch_reset(info
->gpmc_cs
, info
);
646 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
647 omap_read_buf16(mtd
, buf
, len
);
649 omap_read_buf8(mtd
, buf
, len
);
653 * omap_write_buf_irq_pref - write buffer to NAND controller
654 * @mtd: MTD device structure
656 * @len: number of bytes to write
658 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
659 const u_char
*buf
, int len
)
661 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
663 unsigned long tim
, limit
;
666 if (len
<= mtd
->oobsize
) {
667 omap_write_buf_pref(mtd
, buf
, len
);
671 info
->iomode
= OMAP_NAND_IO_WRITE
;
672 info
->buf
= (u_char
*) buf
;
673 init_completion(&info
->comp
);
675 /* configure and start prefetch transfer : size=24 */
676 ret
= omap_prefetch_enable(info
->gpmc_cs
,
677 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
679 /* PFPW engine is busy, use cpu copy method */
684 enable_irq(info
->gpmc_irq_count
);
685 enable_irq(info
->gpmc_irq_fifo
);
687 /* waiting for write to complete */
688 wait_for_completion(&info
->comp
);
690 /* wait for data to flushed-out before reset the prefetch */
692 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
694 val
= readl(info
->reg
.gpmc_prefetch_status
);
695 val
= PREFETCH_STATUS_COUNT(val
);
697 } while (val
&& (tim
++ < limit
));
699 /* disable and stop the PFPW engine */
700 omap_prefetch_reset(info
->gpmc_cs
, info
);
704 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
705 omap_write_buf16(mtd
, buf
, len
);
707 omap_write_buf8(mtd
, buf
, len
);
711 * gen_true_ecc - This function will generate true ECC value
712 * @ecc_buf: buffer to store ecc code
714 * This generated true ECC value can be used when correcting
715 * data read from NAND flash memory core
717 static void gen_true_ecc(u8
*ecc_buf
)
719 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
720 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
722 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
723 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
724 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
725 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
726 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
727 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
731 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
732 * @ecc_data1: ecc code from nand spare area
733 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
734 * @page_data: page data
736 * This function compares two ECC's and indicates if there is an error.
737 * If the error can be corrected it will be corrected to the buffer.
738 * If there is no error, %0 is returned. If there is an error but it
739 * was corrected, %1 is returned. Otherwise, %-1 is returned.
741 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
742 u8
*ecc_data2
, /* read from register */
746 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
747 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
754 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
756 gen_true_ecc(ecc_data1
);
757 gen_true_ecc(ecc_data2
);
759 for (i
= 0; i
<= 2; i
++) {
760 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
761 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
764 for (i
= 0; i
< 8; i
++) {
765 tmp0_bit
[i
] = *ecc_data1
% 2;
766 *ecc_data1
= *ecc_data1
/ 2;
769 for (i
= 0; i
< 8; i
++) {
770 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
771 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
774 for (i
= 0; i
< 8; i
++) {
775 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
776 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
779 for (i
= 0; i
< 8; i
++) {
780 comp0_bit
[i
] = *ecc_data2
% 2;
781 *ecc_data2
= *ecc_data2
/ 2;
784 for (i
= 0; i
< 8; i
++) {
785 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
786 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
789 for (i
= 0; i
< 8; i
++) {
790 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
791 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
794 for (i
= 0; i
< 6; i
++)
795 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
797 for (i
= 0; i
< 8; i
++)
798 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
800 for (i
= 0; i
< 8; i
++)
801 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
803 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
804 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
806 for (i
= 0; i
< 24; i
++)
807 ecc_sum
+= ecc_bit
[i
];
811 /* Not reached because this function is not called if
812 * ECC values are equal
817 /* Uncorrectable error */
818 pr_debug("ECC UNCORRECTED_ERROR 1\n");
822 /* UN-Correctable error */
823 pr_debug("ECC UNCORRECTED_ERROR B\n");
827 /* Correctable error */
828 find_byte
= (ecc_bit
[23] << 8) +
838 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
840 pr_debug("Correcting single bit ECC error at offset: "
841 "%d, bit: %d\n", find_byte
, find_bit
);
843 page_data
[find_byte
] ^= (1 << find_bit
);
848 if (ecc_data2
[0] == 0 &&
853 pr_debug("UNCORRECTED_ERROR default\n");
859 * omap_correct_data - Compares the ECC read with HW generated ECC
860 * @mtd: MTD device structure
862 * @read_ecc: ecc read from nand flash
863 * @calc_ecc: ecc read from HW ECC registers
865 * Compares the ecc read from nand spare area with ECC registers values
866 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
867 * detection and correction. If there are no errors, %0 is returned. If
868 * there were errors and all of the errors were corrected, the number of
869 * corrected errors is returned. If uncorrectable errors exist, %-1 is
872 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
873 u_char
*read_ecc
, u_char
*calc_ecc
)
875 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
876 int blockCnt
= 0, i
= 0, ret
= 0;
879 /* Ex NAND_ECC_HW12_2048 */
880 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
881 (info
->nand
.ecc
.size
== 2048))
886 for (i
= 0; i
< blockCnt
; i
++) {
887 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
888 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
891 /* keep track of the number of corrected errors */
902 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
903 * @mtd: MTD device structure
904 * @dat: The pointer to data on which ecc is computed
905 * @ecc_code: The ecc_code buffer
907 * Using noninverted ECC can be considered ugly since writing a blank
908 * page ie. padding will clear the ECC bytes. This is no problem as long
909 * nobody is trying to write data on the seemingly unused page. Reading
910 * an erased page will produce an ECC mismatch between generated and read
911 * ECC bytes that has to be dealt with separately.
913 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
916 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
919 val
= readl(info
->reg
.gpmc_ecc_config
);
920 if (((val
>> ECC_CONFIG_CS_SHIFT
) & CS_MASK
) != info
->gpmc_cs
)
923 /* read ecc result */
924 val
= readl(info
->reg
.gpmc_ecc1_result
);
925 *ecc_code
++ = val
; /* P128e, ..., P1e */
926 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
927 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
928 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
934 * omap_enable_hwecc - This function enables the hardware ecc functionality
935 * @mtd: MTD device structure
936 * @mode: Read/Write mode
938 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
940 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
941 struct nand_chip
*chip
= mtd_to_nand(mtd
);
942 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
945 /* clear ecc and enable bits */
946 val
= ECCCLEAR
| ECC1
;
947 writel(val
, info
->reg
.gpmc_ecc_control
);
949 /* program ecc and result sizes */
950 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
952 writel(val
, info
->reg
.gpmc_ecc_size_config
);
957 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
959 case NAND_ECC_READSYN
:
960 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
963 dev_info(&info
->pdev
->dev
,
964 "error: unrecognized Mode[%d]!\n", mode
);
968 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
969 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
970 writel(val
, info
->reg
.gpmc_ecc_config
);
974 * omap_wait - wait until the command is done
975 * @mtd: MTD device structure
976 * @chip: NAND Chip structure
978 * Wait function is called during Program and erase operations and
979 * the way it is called from MTD layer, we should wait till the NAND
980 * chip is ready after the programming/erase operation has completed.
982 * Erase can take up to 400ms and program up to 20ms according to
983 * general NAND and SmartMedia specs
985 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
987 struct nand_chip
*this = mtd_to_nand(mtd
);
988 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
989 unsigned long timeo
= jiffies
;
990 int status
, state
= this->state
;
992 if (state
== FL_ERASING
)
993 timeo
+= msecs_to_jiffies(400);
995 timeo
+= msecs_to_jiffies(20);
997 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
998 while (time_before(jiffies
, timeo
)) {
999 status
= readb(info
->reg
.gpmc_nand_data
);
1000 if (status
& NAND_STATUS_READY
)
1005 status
= readb(info
->reg
.gpmc_nand_data
);
1010 * omap_dev_ready - checks the NAND Ready GPIO line
1011 * @mtd: MTD device structure
1013 * Returns true if ready and false if busy.
1015 static int omap_dev_ready(struct mtd_info
*mtd
)
1017 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1019 return gpiod_get_value(info
->ready_gpiod
);
1023 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1024 * @mtd: MTD device structure
1025 * @mode: Read/Write mode
1027 * When using BCH with SW correction (i.e. no ELM), sector size is set
1028 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1029 * for both reading and writing with:
1030 * eccsize0 = 0 (no additional protected byte in spare area)
1031 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1033 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1035 unsigned int bch_type
;
1036 unsigned int dev_width
, nsectors
;
1037 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1038 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1039 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1041 unsigned int ecc_size1
, ecc_size0
;
1043 /* GPMC configurations for calculating ECC */
1045 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1048 wr_mode
= BCH_WRAPMODE_6
;
1049 ecc_size0
= BCH_ECC_SIZE0
;
1050 ecc_size1
= BCH_ECC_SIZE1
;
1052 case OMAP_ECC_BCH4_CODE_HW
:
1054 nsectors
= chip
->ecc
.steps
;
1055 if (mode
== NAND_ECC_READ
) {
1056 wr_mode
= BCH_WRAPMODE_1
;
1057 ecc_size0
= BCH4R_ECC_SIZE0
;
1058 ecc_size1
= BCH4R_ECC_SIZE1
;
1060 wr_mode
= BCH_WRAPMODE_6
;
1061 ecc_size0
= BCH_ECC_SIZE0
;
1062 ecc_size1
= BCH_ECC_SIZE1
;
1065 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1068 wr_mode
= BCH_WRAPMODE_6
;
1069 ecc_size0
= BCH_ECC_SIZE0
;
1070 ecc_size1
= BCH_ECC_SIZE1
;
1072 case OMAP_ECC_BCH8_CODE_HW
:
1074 nsectors
= chip
->ecc
.steps
;
1075 if (mode
== NAND_ECC_READ
) {
1076 wr_mode
= BCH_WRAPMODE_1
;
1077 ecc_size0
= BCH8R_ECC_SIZE0
;
1078 ecc_size1
= BCH8R_ECC_SIZE1
;
1080 wr_mode
= BCH_WRAPMODE_6
;
1081 ecc_size0
= BCH_ECC_SIZE0
;
1082 ecc_size1
= BCH_ECC_SIZE1
;
1085 case OMAP_ECC_BCH16_CODE_HW
:
1087 nsectors
= chip
->ecc
.steps
;
1088 if (mode
== NAND_ECC_READ
) {
1090 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1091 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1094 ecc_size0
= 0; /* extra bits in nibbles per sector */
1095 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1102 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1104 /* Configure ecc size for BCH */
1105 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1106 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1108 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1110 /* BCH configuration */
1111 val
= ((1 << 16) | /* enable BCH */
1112 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1113 (wr_mode
<< 8) | /* wrap mode */
1114 (dev_width
<< 7) | /* bus width */
1115 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1116 (info
->gpmc_cs
<< 1) | /* ECC CS */
1117 (0x1)); /* enable ECC */
1119 writel(val
, info
->reg
.gpmc_ecc_config
);
1121 /* Clear ecc and enable bits */
1122 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1125 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1126 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1127 0x97, 0x79, 0xe5, 0x24, 0xb5};
1130 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1131 * @mtd: MTD device structure
1132 * @dat: The pointer to data on which ecc is computed
1133 * @ecc_code: The ecc_code buffer
1134 * @i: The sector number (for a multi sector page)
1136 * Support calculating of BCH4/8/16 ECC vectors for one sector
1137 * within a page. Sector number is in @i.
1139 static int _omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1140 const u_char
*dat
, u_char
*ecc_calc
, int i
)
1142 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1143 int eccbytes
= info
->nand
.ecc
.bytes
;
1144 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1146 unsigned long bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1150 ecc_code
= ecc_calc
;
1151 switch (info
->ecc_opt
) {
1152 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1153 case OMAP_ECC_BCH8_CODE_HW
:
1154 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1155 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1156 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1157 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1158 *ecc_code
++ = (bch_val4
& 0xFF);
1159 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1160 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1161 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1162 *ecc_code
++ = (bch_val3
& 0xFF);
1163 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1164 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1165 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1166 *ecc_code
++ = (bch_val2
& 0xFF);
1167 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1168 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1169 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1170 *ecc_code
++ = (bch_val1
& 0xFF);
1172 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1173 case OMAP_ECC_BCH4_CODE_HW
:
1174 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1175 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1176 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1177 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1178 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1179 ((bch_val1
>> 28) & 0xF);
1180 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1181 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1182 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1183 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1185 case OMAP_ECC_BCH16_CODE_HW
:
1186 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1187 ecc_code
[0] = ((val
>> 8) & 0xFF);
1188 ecc_code
[1] = ((val
>> 0) & 0xFF);
1189 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1190 ecc_code
[2] = ((val
>> 24) & 0xFF);
1191 ecc_code
[3] = ((val
>> 16) & 0xFF);
1192 ecc_code
[4] = ((val
>> 8) & 0xFF);
1193 ecc_code
[5] = ((val
>> 0) & 0xFF);
1194 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1195 ecc_code
[6] = ((val
>> 24) & 0xFF);
1196 ecc_code
[7] = ((val
>> 16) & 0xFF);
1197 ecc_code
[8] = ((val
>> 8) & 0xFF);
1198 ecc_code
[9] = ((val
>> 0) & 0xFF);
1199 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1200 ecc_code
[10] = ((val
>> 24) & 0xFF);
1201 ecc_code
[11] = ((val
>> 16) & 0xFF);
1202 ecc_code
[12] = ((val
>> 8) & 0xFF);
1203 ecc_code
[13] = ((val
>> 0) & 0xFF);
1204 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1205 ecc_code
[14] = ((val
>> 24) & 0xFF);
1206 ecc_code
[15] = ((val
>> 16) & 0xFF);
1207 ecc_code
[16] = ((val
>> 8) & 0xFF);
1208 ecc_code
[17] = ((val
>> 0) & 0xFF);
1209 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1210 ecc_code
[18] = ((val
>> 24) & 0xFF);
1211 ecc_code
[19] = ((val
>> 16) & 0xFF);
1212 ecc_code
[20] = ((val
>> 8) & 0xFF);
1213 ecc_code
[21] = ((val
>> 0) & 0xFF);
1214 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1215 ecc_code
[22] = ((val
>> 24) & 0xFF);
1216 ecc_code
[23] = ((val
>> 16) & 0xFF);
1217 ecc_code
[24] = ((val
>> 8) & 0xFF);
1218 ecc_code
[25] = ((val
>> 0) & 0xFF);
1224 /* ECC scheme specific syndrome customizations */
1225 switch (info
->ecc_opt
) {
1226 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1227 /* Add constant polynomial to remainder, so that
1228 * ECC of blank pages results in 0x0 on reading back
1230 for (j
= 0; j
< eccbytes
; j
++)
1231 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1233 case OMAP_ECC_BCH4_CODE_HW
:
1234 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1235 ecc_calc
[eccbytes
- 1] = 0x0;
1237 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1238 /* Add constant polynomial to remainder, so that
1239 * ECC of blank pages results in 0x0 on reading back
1241 for (j
= 0; j
< eccbytes
; j
++)
1242 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1244 case OMAP_ECC_BCH8_CODE_HW
:
1245 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1246 ecc_calc
[eccbytes
- 1] = 0x0;
1248 case OMAP_ECC_BCH16_CODE_HW
:
1258 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1259 * @mtd: MTD device structure
1260 * @dat: The pointer to data on which ecc is computed
1261 * @ecc_code: The ecc_code buffer
1263 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1264 * when SW based correction is required as ECC is required for one sector
1267 static int omap_calculate_ecc_bch_sw(struct mtd_info
*mtd
,
1268 const u_char
*dat
, u_char
*ecc_calc
)
1270 return _omap_calculate_ecc_bch(mtd
, dat
, ecc_calc
, 0);
1274 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1275 * @mtd: MTD device structure
1276 * @dat: The pointer to data on which ecc is computed
1277 * @ecc_code: The ecc_code buffer
1279 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1281 static int omap_calculate_ecc_bch_multi(struct mtd_info
*mtd
,
1282 const u_char
*dat
, u_char
*ecc_calc
)
1284 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1285 int eccbytes
= info
->nand
.ecc
.bytes
;
1286 unsigned long nsectors
;
1289 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1290 for (i
= 0; i
< nsectors
; i
++) {
1291 ret
= _omap_calculate_ecc_bch(mtd
, dat
, ecc_calc
, i
);
1295 ecc_calc
+= eccbytes
;
1302 * erased_sector_bitflips - count bit flips
1303 * @data: data sector buffer
1305 * @info: omap_nand_info
1307 * Check the bit flips in erased page falls below correctable level.
1308 * If falls below, report the page as erased with correctable bit
1309 * flip, else report as uncorrectable page.
1311 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1312 struct omap_nand_info
*info
)
1314 int flip_bits
= 0, i
;
1316 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1317 flip_bits
+= hweight8(~data
[i
]);
1318 if (flip_bits
> info
->nand
.ecc
.strength
)
1322 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1323 flip_bits
+= hweight8(~oob
[i
]);
1324 if (flip_bits
> info
->nand
.ecc
.strength
)
1329 * Bit flips falls in correctable level.
1330 * Fill data area with 0xFF
1333 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1334 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1341 * omap_elm_correct_data - corrects page data area in case error reported
1342 * @mtd: MTD device structure
1344 * @read_ecc: ecc read from nand flash
1345 * @calc_ecc: ecc read from HW ECC registers
1347 * Calculated ecc vector reported as zero in case of non-error pages.
1348 * In case of non-zero ecc vector, first filter out erased-pages, and
1349 * then process data via ELM to detect bit-flips.
1351 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1352 u_char
*read_ecc
, u_char
*calc_ecc
)
1354 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1355 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1356 int eccsteps
= info
->nand
.ecc
.steps
;
1357 int i
, j
, stat
= 0;
1358 int eccflag
, actual_eccbytes
;
1359 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1360 u_char
*ecc_vec
= calc_ecc
;
1361 u_char
*spare_ecc
= read_ecc
;
1362 u_char
*erased_ecc_vec
;
1365 bool is_error_reported
= false;
1366 u32 bit_pos
, byte_pos
, error_max
, pos
;
1369 switch (info
->ecc_opt
) {
1370 case OMAP_ECC_BCH4_CODE_HW
:
1371 /* omit 7th ECC byte reserved for ROM code compatibility */
1372 actual_eccbytes
= ecc
->bytes
- 1;
1373 erased_ecc_vec
= bch4_vector
;
1375 case OMAP_ECC_BCH8_CODE_HW
:
1376 /* omit 14th ECC byte reserved for ROM code compatibility */
1377 actual_eccbytes
= ecc
->bytes
- 1;
1378 erased_ecc_vec
= bch8_vector
;
1380 case OMAP_ECC_BCH16_CODE_HW
:
1381 actual_eccbytes
= ecc
->bytes
;
1382 erased_ecc_vec
= bch16_vector
;
1385 dev_err(&info
->pdev
->dev
, "invalid driver configuration\n");
1389 /* Initialize elm error vector to zero */
1390 memset(err_vec
, 0, sizeof(err_vec
));
1392 for (i
= 0; i
< eccsteps
; i
++) {
1393 eccflag
= 0; /* initialize eccflag */
1396 * Check any error reported,
1397 * In case of error, non zero ecc reported.
1399 for (j
= 0; j
< actual_eccbytes
; j
++) {
1400 if (calc_ecc
[j
] != 0) {
1401 eccflag
= 1; /* non zero ecc, error present */
1407 if (memcmp(calc_ecc
, erased_ecc_vec
,
1408 actual_eccbytes
) == 0) {
1410 * calc_ecc[] matches pattern for ECC(all 0xff)
1411 * so this is definitely an erased-page
1414 buf
= &data
[info
->nand
.ecc
.size
* i
];
1416 * count number of 0-bits in read_buf.
1417 * This check can be removed once a similar
1418 * check is introduced in generic NAND driver
1420 bitflip_count
= erased_sector_bitflips(
1421 buf
, read_ecc
, info
);
1422 if (bitflip_count
) {
1424 * number of 0-bits within ECC limits
1425 * So this may be an erased-page
1427 stat
+= bitflip_count
;
1430 * Too many 0-bits. It may be a
1431 * - programmed-page, OR
1432 * - erased-page with many bit-flips
1433 * So this page requires check by ELM
1435 err_vec
[i
].error_reported
= true;
1436 is_error_reported
= true;
1441 /* Update the ecc vector */
1442 calc_ecc
+= ecc
->bytes
;
1443 read_ecc
+= ecc
->bytes
;
1446 /* Check if any error reported */
1447 if (!is_error_reported
)
1450 /* Decode BCH error using ELM module */
1451 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1454 for (i
= 0; i
< eccsteps
; i
++) {
1455 if (err_vec
[i
].error_uncorrectable
) {
1456 dev_err(&info
->pdev
->dev
,
1457 "uncorrectable bit-flips found\n");
1459 } else if (err_vec
[i
].error_reported
) {
1460 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1461 switch (info
->ecc_opt
) {
1462 case OMAP_ECC_BCH4_CODE_HW
:
1463 /* Add 4 bits to take care of padding */
1464 pos
= err_vec
[i
].error_loc
[j
] +
1467 case OMAP_ECC_BCH8_CODE_HW
:
1468 case OMAP_ECC_BCH16_CODE_HW
:
1469 pos
= err_vec
[i
].error_loc
[j
];
1474 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1475 /* Calculate bit position of error */
1478 /* Calculate byte position of error */
1479 byte_pos
= (error_max
- pos
- 1) / 8;
1481 if (pos
< error_max
) {
1482 if (byte_pos
< 512) {
1483 pr_debug("bitflip@dat[%d]=%x\n",
1484 byte_pos
, data
[byte_pos
]);
1485 data
[byte_pos
] ^= 1 << bit_pos
;
1487 pr_debug("bitflip@oob[%d]=%x\n",
1489 spare_ecc
[byte_pos
- 512]);
1490 spare_ecc
[byte_pos
- 512] ^=
1494 dev_err(&info
->pdev
->dev
,
1495 "invalid bit-flip @ %d:%d\n",
1502 /* Update number of correctable errors */
1503 stat
+= err_vec
[i
].error_count
;
1505 /* Update page data with sector size */
1507 spare_ecc
+= ecc
->bytes
;
1510 return (err
) ? err
: stat
;
1514 * omap_write_page_bch - BCH ecc based write page function for entire page
1515 * @mtd: mtd info structure
1516 * @chip: nand chip info structure
1518 * @oob_required: must write chip->oob_poi to OOB
1521 * Custom write page method evolved to support multi sector writing in one shot
1523 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1524 const uint8_t *buf
, int oob_required
, int page
)
1527 uint8_t *ecc_calc
= chip
->ecc
.calc_buf
;
1529 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1531 /* Enable GPMC ecc engine */
1532 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1535 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1537 /* Update ecc vector from GPMC result registers */
1538 omap_calculate_ecc_bch_multi(mtd
, buf
, &ecc_calc
[0]);
1540 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1545 /* Write ecc vector to OOB area */
1546 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1548 return nand_prog_page_end_op(chip
);
1552 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1553 * @mtd: mtd info structure
1554 * @chip: nand chip info structure
1555 * @offset: column address of subpage within the page
1556 * @data_len: data length
1558 * @oob_required: must write chip->oob_poi to OOB
1559 * @page: page number to write
1561 * OMAP optimized subpage write method.
1563 static int omap_write_subpage_bch(struct mtd_info
*mtd
,
1564 struct nand_chip
*chip
, u32 offset
,
1565 u32 data_len
, const u8
*buf
,
1566 int oob_required
, int page
)
1568 u8
*ecc_calc
= chip
->ecc
.calc_buf
;
1569 int ecc_size
= chip
->ecc
.size
;
1570 int ecc_bytes
= chip
->ecc
.bytes
;
1571 int ecc_steps
= chip
->ecc
.steps
;
1572 u32 start_step
= offset
/ ecc_size
;
1573 u32 end_step
= (offset
+ data_len
- 1) / ecc_size
;
1577 * Write entire page at one go as it would be optimal
1578 * as ECC is calculated by hardware.
1579 * ECC is calculated for all subpages but we choose
1580 * only what we want.
1582 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1584 /* Enable GPMC ECC engine */
1585 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1588 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1590 for (step
= 0; step
< ecc_steps
; step
++) {
1591 /* mask ECC of un-touched subpages by padding 0xFF */
1592 if (step
< start_step
|| step
> end_step
)
1593 memset(ecc_calc
, 0xff, ecc_bytes
);
1595 ret
= _omap_calculate_ecc_bch(mtd
, buf
, ecc_calc
, step
);
1601 ecc_calc
+= ecc_bytes
;
1604 /* copy calculated ECC for whole page to chip->buffer->oob */
1605 /* this include masked-value(0xFF) for unwritten subpages */
1606 ecc_calc
= chip
->ecc
.calc_buf
;
1607 ret
= mtd_ooblayout_set_eccbytes(mtd
, ecc_calc
, chip
->oob_poi
, 0,
1612 /* write OOB buffer to NAND device */
1613 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1615 return nand_prog_page_end_op(chip
);
1619 * omap_read_page_bch - BCH ecc based page read function for entire page
1620 * @mtd: mtd info structure
1621 * @chip: nand chip info structure
1622 * @buf: buffer to store read data
1623 * @oob_required: caller requires OOB data read to chip->oob_poi
1624 * @page: page number to read
1626 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1627 * used for error correction.
1628 * Custom method evolved to support ELM error correction & multi sector
1629 * reading. On reading page data area is read along with OOB data with
1630 * ecc engine enabled. ecc vector updated after read of OOB data.
1631 * For non error pages ecc vector reported as zero.
1633 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1634 uint8_t *buf
, int oob_required
, int page
)
1636 uint8_t *ecc_calc
= chip
->ecc
.calc_buf
;
1637 uint8_t *ecc_code
= chip
->ecc
.code_buf
;
1639 unsigned int max_bitflips
= 0;
1641 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1643 /* Enable GPMC ecc engine */
1644 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1647 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1649 /* Read oob bytes */
1650 nand_change_read_column_op(chip
,
1651 mtd
->writesize
+ BADBLOCK_MARKER_LENGTH
,
1652 chip
->oob_poi
+ BADBLOCK_MARKER_LENGTH
,
1653 chip
->ecc
.total
, false);
1655 /* Calculate ecc bytes */
1656 omap_calculate_ecc_bch_multi(mtd
, buf
, ecc_calc
);
1658 ret
= mtd_ooblayout_get_eccbytes(mtd
, ecc_code
, chip
->oob_poi
, 0,
1663 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1666 mtd
->ecc_stats
.failed
++;
1668 mtd
->ecc_stats
.corrected
+= stat
;
1669 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1672 return max_bitflips
;
1676 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677 * @omap_nand_info: NAND device structure containing platform data
1679 static bool is_elm_present(struct omap_nand_info
*info
,
1680 struct device_node
*elm_node
)
1682 struct platform_device
*pdev
;
1684 /* check whether elm-id is passed via DT */
1686 dev_err(&info
->pdev
->dev
, "ELM devicetree node not found\n");
1689 pdev
= of_find_device_by_node(elm_node
);
1690 /* check whether ELM device is registered */
1692 dev_err(&info
->pdev
->dev
, "ELM device not found\n");
1695 /* ELM module available, now configure it */
1696 info
->elm_dev
= &pdev
->dev
;
1700 static bool omap2_nand_ecc_check(struct omap_nand_info
*info
)
1702 bool ecc_needs_bch
, ecc_needs_omap_bch
, ecc_needs_elm
;
1704 switch (info
->ecc_opt
) {
1705 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1706 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1707 ecc_needs_omap_bch
= false;
1708 ecc_needs_bch
= true;
1709 ecc_needs_elm
= false;
1711 case OMAP_ECC_BCH4_CODE_HW
:
1712 case OMAP_ECC_BCH8_CODE_HW
:
1713 case OMAP_ECC_BCH16_CODE_HW
:
1714 ecc_needs_omap_bch
= true;
1715 ecc_needs_bch
= false;
1716 ecc_needs_elm
= true;
1719 ecc_needs_omap_bch
= false;
1720 ecc_needs_bch
= false;
1721 ecc_needs_elm
= false;
1725 if (ecc_needs_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH
)) {
1726 dev_err(&info
->pdev
->dev
,
1727 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1730 if (ecc_needs_omap_bch
&& !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH
)) {
1731 dev_err(&info
->pdev
->dev
,
1732 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1735 if (ecc_needs_elm
&& !is_elm_present(info
, info
->elm_of_node
)) {
1736 dev_err(&info
->pdev
->dev
, "ELM not available\n");
1743 static const char * const nand_xfer_types
[] = {
1744 [NAND_OMAP_PREFETCH_POLLED
] = "prefetch-polled",
1745 [NAND_OMAP_POLLED
] = "polled",
1746 [NAND_OMAP_PREFETCH_DMA
] = "prefetch-dma",
1747 [NAND_OMAP_PREFETCH_IRQ
] = "prefetch-irq",
1750 static int omap_get_dt_info(struct device
*dev
, struct omap_nand_info
*info
)
1752 struct device_node
*child
= dev
->of_node
;
1757 if (of_property_read_u32(child
, "reg", &cs
) < 0) {
1758 dev_err(dev
, "reg not found in DT\n");
1764 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1765 info
->elm_of_node
= of_parse_phandle(child
, "ti,elm-id", 0);
1766 if (!info
->elm_of_node
) {
1767 info
->elm_of_node
= of_parse_phandle(child
, "elm_id", 0);
1768 if (!info
->elm_of_node
)
1769 dev_dbg(dev
, "ti,elm-id not in DT\n");
1772 /* select ecc-scheme for NAND */
1773 if (of_property_read_string(child
, "ti,nand-ecc-opt", &s
)) {
1774 dev_err(dev
, "ti,nand-ecc-opt not found\n");
1778 if (!strcmp(s
, "sw")) {
1779 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_SW
;
1780 } else if (!strcmp(s
, "ham1") ||
1781 !strcmp(s
, "hw") || !strcmp(s
, "hw-romcode")) {
1782 info
->ecc_opt
= OMAP_ECC_HAM1_CODE_HW
;
1783 } else if (!strcmp(s
, "bch4")) {
1784 if (info
->elm_of_node
)
1785 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW
;
1787 info
->ecc_opt
= OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
;
1788 } else if (!strcmp(s
, "bch8")) {
1789 if (info
->elm_of_node
)
1790 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW
;
1792 info
->ecc_opt
= OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
;
1793 } else if (!strcmp(s
, "bch16")) {
1794 info
->ecc_opt
= OMAP_ECC_BCH16_CODE_HW
;
1796 dev_err(dev
, "unrecognized value for ti,nand-ecc-opt\n");
1800 /* select data transfer mode */
1801 if (!of_property_read_string(child
, "ti,nand-xfer-type", &s
)) {
1802 for (i
= 0; i
< ARRAY_SIZE(nand_xfer_types
); i
++) {
1803 if (!strcasecmp(s
, nand_xfer_types
[i
])) {
1804 info
->xfer_type
= i
;
1809 dev_err(dev
, "unrecognized value for ti,nand-xfer-type\n");
1816 static int omap_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1817 struct mtd_oob_region
*oobregion
)
1819 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1820 struct nand_chip
*chip
= &info
->nand
;
1821 int off
= BADBLOCK_MARKER_LENGTH
;
1823 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1824 !(chip
->options
& NAND_BUSWIDTH_16
))
1830 oobregion
->offset
= off
;
1831 oobregion
->length
= chip
->ecc
.total
;
1836 static int omap_ooblayout_free(struct mtd_info
*mtd
, int section
,
1837 struct mtd_oob_region
*oobregion
)
1839 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1840 struct nand_chip
*chip
= &info
->nand
;
1841 int off
= BADBLOCK_MARKER_LENGTH
;
1843 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_HW
&&
1844 !(chip
->options
& NAND_BUSWIDTH_16
))
1850 off
+= chip
->ecc
.total
;
1851 if (off
>= mtd
->oobsize
)
1854 oobregion
->offset
= off
;
1855 oobregion
->length
= mtd
->oobsize
- off
;
1860 static const struct mtd_ooblayout_ops omap_ooblayout_ops
= {
1861 .ecc
= omap_ooblayout_ecc
,
1862 .free
= omap_ooblayout_free
,
1865 static int omap_sw_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1866 struct mtd_oob_region
*oobregion
)
1868 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1869 int off
= BADBLOCK_MARKER_LENGTH
;
1871 if (section
>= chip
->ecc
.steps
)
1875 * When SW correction is employed, one OMAP specific marker byte is
1876 * reserved after each ECC step.
1878 oobregion
->offset
= off
+ (section
* (chip
->ecc
.bytes
+ 1));
1879 oobregion
->length
= chip
->ecc
.bytes
;
1884 static int omap_sw_ooblayout_free(struct mtd_info
*mtd
, int section
,
1885 struct mtd_oob_region
*oobregion
)
1887 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1888 int off
= BADBLOCK_MARKER_LENGTH
;
1894 * When SW correction is employed, one OMAP specific marker byte is
1895 * reserved after each ECC step.
1897 off
+= ((chip
->ecc
.bytes
+ 1) * chip
->ecc
.steps
);
1898 if (off
>= mtd
->oobsize
)
1901 oobregion
->offset
= off
;
1902 oobregion
->length
= mtd
->oobsize
- off
;
1907 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops
= {
1908 .ecc
= omap_sw_ooblayout_ecc
,
1909 .free
= omap_sw_ooblayout_free
,
1912 static int omap_nand_attach_chip(struct nand_chip
*chip
)
1914 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1915 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
1916 struct device
*dev
= &info
->pdev
->dev
;
1917 int min_oobbytes
= BADBLOCK_MARKER_LENGTH
;
1918 int oobbytes_per_step
;
1919 dma_cap_mask_t mask
;
1922 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
)
1923 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
1925 chip
->options
|= NAND_SKIP_BBTSCAN
;
1927 /* Re-populate low-level callbacks based on xfer modes */
1928 switch (info
->xfer_type
) {
1929 case NAND_OMAP_PREFETCH_POLLED
:
1930 chip
->read_buf
= omap_read_buf_pref
;
1931 chip
->write_buf
= omap_write_buf_pref
;
1934 case NAND_OMAP_POLLED
:
1935 /* Use nand_base defaults for {read,write}_buf */
1938 case NAND_OMAP_PREFETCH_DMA
:
1940 dma_cap_set(DMA_SLAVE
, mask
);
1941 info
->dma
= dma_request_chan(dev
->parent
, "rxtx");
1943 if (IS_ERR(info
->dma
)) {
1944 dev_err(dev
, "DMA engine request failed\n");
1945 return PTR_ERR(info
->dma
);
1947 struct dma_slave_config cfg
;
1949 memset(&cfg
, 0, sizeof(cfg
));
1950 cfg
.src_addr
= info
->phys_base
;
1951 cfg
.dst_addr
= info
->phys_base
;
1952 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1953 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1954 cfg
.src_maxburst
= 16;
1955 cfg
.dst_maxburst
= 16;
1956 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1959 "DMA engine slave config failed: %d\n",
1963 chip
->read_buf
= omap_read_buf_dma_pref
;
1964 chip
->write_buf
= omap_write_buf_dma_pref
;
1968 case NAND_OMAP_PREFETCH_IRQ
:
1969 info
->gpmc_irq_fifo
= platform_get_irq(info
->pdev
, 0);
1970 if (info
->gpmc_irq_fifo
<= 0) {
1971 dev_err(dev
, "Error getting fifo IRQ\n");
1974 err
= devm_request_irq(dev
, info
->gpmc_irq_fifo
,
1975 omap_nand_irq
, IRQF_SHARED
,
1976 "gpmc-nand-fifo", info
);
1978 dev_err(dev
, "Requesting IRQ %d, error %d\n",
1979 info
->gpmc_irq_fifo
, err
);
1980 info
->gpmc_irq_fifo
= 0;
1984 info
->gpmc_irq_count
= platform_get_irq(info
->pdev
, 1);
1985 if (info
->gpmc_irq_count
<= 0) {
1986 dev_err(dev
, "Error getting IRQ count\n");
1989 err
= devm_request_irq(dev
, info
->gpmc_irq_count
,
1990 omap_nand_irq
, IRQF_SHARED
,
1991 "gpmc-nand-count", info
);
1993 dev_err(dev
, "Requesting IRQ %d, error %d\n",
1994 info
->gpmc_irq_count
, err
);
1995 info
->gpmc_irq_count
= 0;
1999 chip
->read_buf
= omap_read_buf_irq_pref
;
2000 chip
->write_buf
= omap_write_buf_irq_pref
;
2005 dev_err(dev
, "xfer_type %d not supported!\n", info
->xfer_type
);
2009 if (!omap2_nand_ecc_check(info
))
2013 * Bail out earlier to let NAND_ECC_SOFT code create its own
2014 * ooblayout instead of using ours.
2016 if (info
->ecc_opt
== OMAP_ECC_HAM1_CODE_SW
) {
2017 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2018 chip
->ecc
.algo
= NAND_ECC_HAMMING
;
2022 /* Populate MTD interface based on ECC scheme */
2023 switch (info
->ecc_opt
) {
2024 case OMAP_ECC_HAM1_CODE_HW
:
2025 dev_info(dev
, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2026 chip
->ecc
.mode
= NAND_ECC_HW
;
2027 chip
->ecc
.bytes
= 3;
2028 chip
->ecc
.size
= 512;
2029 chip
->ecc
.strength
= 1;
2030 chip
->ecc
.calculate
= omap_calculate_ecc
;
2031 chip
->ecc
.hwctl
= omap_enable_hwecc
;
2032 chip
->ecc
.correct
= omap_correct_data
;
2033 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2034 oobbytes_per_step
= chip
->ecc
.bytes
;
2036 if (!(chip
->options
& NAND_BUSWIDTH_16
))
2041 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
2042 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2043 chip
->ecc
.mode
= NAND_ECC_HW
;
2044 chip
->ecc
.size
= 512;
2045 chip
->ecc
.bytes
= 7;
2046 chip
->ecc
.strength
= 4;
2047 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2048 chip
->ecc
.correct
= nand_bch_correct_data
;
2049 chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2050 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2051 /* Reserve one byte for the OMAP marker */
2052 oobbytes_per_step
= chip
->ecc
.bytes
+ 1;
2053 /* Software BCH library is used for locating errors */
2054 chip
->ecc
.priv
= nand_bch_init(mtd
);
2055 if (!chip
->ecc
.priv
) {
2056 dev_err(dev
, "Unable to use BCH library\n");
2061 case OMAP_ECC_BCH4_CODE_HW
:
2062 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2063 chip
->ecc
.mode
= NAND_ECC_HW
;
2064 chip
->ecc
.size
= 512;
2065 /* 14th bit is kept reserved for ROM-code compatibility */
2066 chip
->ecc
.bytes
= 7 + 1;
2067 chip
->ecc
.strength
= 4;
2068 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2069 chip
->ecc
.correct
= omap_elm_correct_data
;
2070 chip
->ecc
.read_page
= omap_read_page_bch
;
2071 chip
->ecc
.write_page
= omap_write_page_bch
;
2072 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2073 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2074 oobbytes_per_step
= chip
->ecc
.bytes
;
2076 err
= elm_config(info
->elm_dev
, BCH4_ECC
,
2077 mtd
->writesize
/ chip
->ecc
.size
,
2078 chip
->ecc
.size
, chip
->ecc
.bytes
);
2083 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
2084 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2085 chip
->ecc
.mode
= NAND_ECC_HW
;
2086 chip
->ecc
.size
= 512;
2087 chip
->ecc
.bytes
= 13;
2088 chip
->ecc
.strength
= 8;
2089 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2090 chip
->ecc
.correct
= nand_bch_correct_data
;
2091 chip
->ecc
.calculate
= omap_calculate_ecc_bch_sw
;
2092 mtd_set_ooblayout(mtd
, &omap_sw_ooblayout_ops
);
2093 /* Reserve one byte for the OMAP marker */
2094 oobbytes_per_step
= chip
->ecc
.bytes
+ 1;
2095 /* Software BCH library is used for locating errors */
2096 chip
->ecc
.priv
= nand_bch_init(mtd
);
2097 if (!chip
->ecc
.priv
) {
2098 dev_err(dev
, "unable to use BCH library\n");
2103 case OMAP_ECC_BCH8_CODE_HW
:
2104 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2105 chip
->ecc
.mode
= NAND_ECC_HW
;
2106 chip
->ecc
.size
= 512;
2107 /* 14th bit is kept reserved for ROM-code compatibility */
2108 chip
->ecc
.bytes
= 13 + 1;
2109 chip
->ecc
.strength
= 8;
2110 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2111 chip
->ecc
.correct
= omap_elm_correct_data
;
2112 chip
->ecc
.read_page
= omap_read_page_bch
;
2113 chip
->ecc
.write_page
= omap_write_page_bch
;
2114 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2115 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2116 oobbytes_per_step
= chip
->ecc
.bytes
;
2118 err
= elm_config(info
->elm_dev
, BCH8_ECC
,
2119 mtd
->writesize
/ chip
->ecc
.size
,
2120 chip
->ecc
.size
, chip
->ecc
.bytes
);
2126 case OMAP_ECC_BCH16_CODE_HW
:
2127 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2128 chip
->ecc
.mode
= NAND_ECC_HW
;
2129 chip
->ecc
.size
= 512;
2130 chip
->ecc
.bytes
= 26;
2131 chip
->ecc
.strength
= 16;
2132 chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
2133 chip
->ecc
.correct
= omap_elm_correct_data
;
2134 chip
->ecc
.read_page
= omap_read_page_bch
;
2135 chip
->ecc
.write_page
= omap_write_page_bch
;
2136 chip
->ecc
.write_subpage
= omap_write_subpage_bch
;
2137 mtd_set_ooblayout(mtd
, &omap_ooblayout_ops
);
2138 oobbytes_per_step
= chip
->ecc
.bytes
;
2140 err
= elm_config(info
->elm_dev
, BCH16_ECC
,
2141 mtd
->writesize
/ chip
->ecc
.size
,
2142 chip
->ecc
.size
, chip
->ecc
.bytes
);
2148 dev_err(dev
, "Invalid or unsupported ECC scheme\n");
2152 /* Check if NAND device's OOB is enough to store ECC signatures */
2153 min_oobbytes
+= (oobbytes_per_step
*
2154 (mtd
->writesize
/ chip
->ecc
.size
));
2155 if (mtd
->oobsize
< min_oobbytes
) {
2157 "Not enough OOB bytes: required = %d, available=%d\n",
2158 min_oobbytes
, mtd
->oobsize
);
2165 static const struct nand_controller_ops omap_nand_controller_ops
= {
2166 .attach_chip
= omap_nand_attach_chip
,
2169 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2170 static struct nand_controller omap_gpmc_controller
= {
2171 .lock
= __SPIN_LOCK_UNLOCKED(omap_gpmc_controller
.lock
),
2172 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller
.wq
),
2173 .ops
= &omap_nand_controller_ops
,
2176 static int omap_nand_probe(struct platform_device
*pdev
)
2178 struct omap_nand_info
*info
;
2179 struct mtd_info
*mtd
;
2180 struct nand_chip
*nand_chip
;
2182 struct resource
*res
;
2183 struct device
*dev
= &pdev
->dev
;
2185 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
2192 err
= omap_get_dt_info(dev
, info
);
2196 info
->ops
= gpmc_omap_get_nand_ops(&info
->reg
, info
->gpmc_cs
);
2198 dev_err(&pdev
->dev
, "Failed to get GPMC->NAND interface\n");
2202 nand_chip
= &info
->nand
;
2203 mtd
= nand_to_mtd(nand_chip
);
2204 mtd
->dev
.parent
= &pdev
->dev
;
2205 nand_chip
->ecc
.priv
= NULL
;
2206 nand_set_flash_node(nand_chip
, dev
->of_node
);
2209 mtd
->name
= devm_kasprintf(&pdev
->dev
, GFP_KERNEL
,
2210 "omap2-nand.%d", info
->gpmc_cs
);
2212 dev_err(&pdev
->dev
, "Failed to set MTD name\n");
2217 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2218 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
2219 if (IS_ERR(nand_chip
->IO_ADDR_R
))
2220 return PTR_ERR(nand_chip
->IO_ADDR_R
);
2222 info
->phys_base
= res
->start
;
2224 nand_chip
->controller
= &omap_gpmc_controller
;
2226 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
2227 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
2229 info
->ready_gpiod
= devm_gpiod_get_optional(&pdev
->dev
, "rb",
2231 if (IS_ERR(info
->ready_gpiod
)) {
2232 dev_err(dev
, "failed to get ready gpio\n");
2233 return PTR_ERR(info
->ready_gpiod
);
2237 * If RDY/BSY line is connected to OMAP then use the omap ready
2238 * function and the generic nand_wait function which reads the status
2239 * register after monitoring the RDY/BSY line. Otherwise use a standard
2240 * chip delay which is slightly more than tR (AC Timing) of the NAND
2241 * device and read status register until you get a failure or success
2243 if (info
->ready_gpiod
) {
2244 nand_chip
->dev_ready
= omap_dev_ready
;
2245 nand_chip
->chip_delay
= 0;
2247 nand_chip
->waitfunc
= omap_wait
;
2248 nand_chip
->chip_delay
= 50;
2251 if (info
->flash_bbt
)
2252 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2254 /* scan NAND device connected to chip controller */
2255 nand_chip
->options
|= info
->devsize
& NAND_BUSWIDTH_16
;
2257 err
= nand_scan(nand_chip
, 1);
2261 err
= mtd_device_register(mtd
, NULL
, 0);
2265 platform_set_drvdata(pdev
, mtd
);
2270 nand_cleanup(nand_chip
);
2273 if (!IS_ERR_OR_NULL(info
->dma
))
2274 dma_release_channel(info
->dma
);
2275 if (nand_chip
->ecc
.priv
) {
2276 nand_bch_free(nand_chip
->ecc
.priv
);
2277 nand_chip
->ecc
.priv
= NULL
;
2282 static int omap_nand_remove(struct platform_device
*pdev
)
2284 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2285 struct nand_chip
*nand_chip
= mtd_to_nand(mtd
);
2286 struct omap_nand_info
*info
= mtd_to_omap(mtd
);
2287 if (nand_chip
->ecc
.priv
) {
2288 nand_bch_free(nand_chip
->ecc
.priv
);
2289 nand_chip
->ecc
.priv
= NULL
;
2292 dma_release_channel(info
->dma
);
2293 nand_release(nand_chip
);
2297 static const struct of_device_id omap_nand_ids
[] = {
2298 { .compatible
= "ti,omap2-nand", },
2301 MODULE_DEVICE_TABLE(of
, omap_nand_ids
);
2303 static struct platform_driver omap_nand_driver
= {
2304 .probe
= omap_nand_probe
,
2305 .remove
= omap_nand_remove
,
2307 .name
= DRIVER_NAME
,
2308 .of_match_table
= of_match_ptr(omap_nand_ids
),
2312 module_platform_driver(omap_nand_driver
);
2314 MODULE_ALIAS("platform:" DRIVER_NAME
);
2315 MODULE_LICENSE("GPL");
2316 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");