Linux 4.19.133
[linux/fpc-iii.git] / drivers / mtd / nand / raw / qcom_nandc.c
blob1f9d64aeb863e2b4e1cfdde76855bf5458f5988a
1 /*
2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
27 /* NANDc reg offsets */
28 #define NAND_FLASH_CMD 0x00
29 #define NAND_ADDR0 0x04
30 #define NAND_ADDR1 0x08
31 #define NAND_FLASH_CHIP_SELECT 0x0c
32 #define NAND_EXEC_CMD 0x10
33 #define NAND_FLASH_STATUS 0x14
34 #define NAND_BUFFER_STATUS 0x18
35 #define NAND_DEV0_CFG0 0x20
36 #define NAND_DEV0_CFG1 0x24
37 #define NAND_DEV0_ECC_CFG 0x28
38 #define NAND_DEV1_ECC_CFG 0x2c
39 #define NAND_DEV1_CFG0 0x30
40 #define NAND_DEV1_CFG1 0x34
41 #define NAND_READ_ID 0x40
42 #define NAND_READ_STATUS 0x44
43 #define NAND_DEV_CMD0 0xa0
44 #define NAND_DEV_CMD1 0xa4
45 #define NAND_DEV_CMD2 0xa8
46 #define NAND_DEV_CMD_VLD 0xac
47 #define SFLASHC_BURST_CFG 0xe0
48 #define NAND_ERASED_CW_DETECT_CFG 0xe8
49 #define NAND_ERASED_CW_DETECT_STATUS 0xec
50 #define NAND_EBI2_ECC_BUF_CFG 0xf0
51 #define FLASH_BUF_ACC 0x100
53 #define NAND_CTRL 0xf00
54 #define NAND_VERSION 0xf08
55 #define NAND_READ_LOCATION_0 0xf20
56 #define NAND_READ_LOCATION_1 0xf24
57 #define NAND_READ_LOCATION_2 0xf28
58 #define NAND_READ_LOCATION_3 0xf2c
60 /* dummy register offsets, used by write_reg_dma */
61 #define NAND_DEV_CMD1_RESTORE 0xdead
62 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
64 /* NAND_FLASH_CMD bits */
65 #define PAGE_ACC BIT(4)
66 #define LAST_PAGE BIT(5)
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define NAND_DEV_SEL 0
70 #define DM_EN BIT(2)
72 /* NAND_FLASH_STATUS bits */
73 #define FS_OP_ERR BIT(4)
74 #define FS_READY_BSY_N BIT(5)
75 #define FS_MPU_ERR BIT(8)
76 #define FS_DEVICE_STS_ERR BIT(16)
77 #define FS_DEVICE_WP BIT(23)
79 /* NAND_BUFFER_STATUS bits */
80 #define BS_UNCORRECTABLE_BIT BIT(8)
81 #define BS_CORRECTABLE_ERR_MSK 0x1f
83 /* NAND_DEVn_CFG0 bits */
84 #define DISABLE_STATUS_AFTER_WRITE 4
85 #define CW_PER_PAGE 6
86 #define UD_SIZE_BYTES 9
87 #define ECC_PARITY_SIZE_BYTES_RS 19
88 #define SPARE_SIZE_BYTES 23
89 #define NUM_ADDR_CYCLES 27
90 #define STATUS_BFR_READ 30
91 #define SET_RD_MODE_AFTER_STATUS 31
93 /* NAND_DEVn_CFG0 bits */
94 #define DEV0_CFG1_ECC_DISABLE 0
95 #define WIDE_FLASH 1
96 #define NAND_RECOVERY_CYCLES 2
97 #define CS_ACTIVE_BSY 5
98 #define BAD_BLOCK_BYTE_NUM 6
99 #define BAD_BLOCK_IN_SPARE_AREA 16
100 #define WR_RD_BSY_GAP 17
101 #define ENABLE_BCH_ECC 27
103 /* NAND_DEV0_ECC_CFG bits */
104 #define ECC_CFG_ECC_DISABLE 0
105 #define ECC_SW_RESET 1
106 #define ECC_MODE 4
107 #define ECC_PARITY_SIZE_BYTES_BCH 8
108 #define ECC_NUM_DATA_BYTES 16
109 #define ECC_FORCE_CLK_OPEN 30
111 /* NAND_DEV_CMD1 bits */
112 #define READ_ADDR 0
114 /* NAND_DEV_CMD_VLD bits */
115 #define READ_START_VLD BIT(0)
116 #define READ_STOP_VLD BIT(1)
117 #define WRITE_START_VLD BIT(2)
118 #define ERASE_START_VLD BIT(3)
119 #define SEQ_READ_START_VLD BIT(4)
121 /* NAND_EBI2_ECC_BUF_CFG bits */
122 #define NUM_STEPS 0
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define ERASED_CW_ECC_MASK 1
126 #define AUTO_DETECT_RES 0
127 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
128 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
129 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
130 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
131 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define PAGE_ALL_ERASED BIT(7)
135 #define CODEWORD_ALL_ERASED BIT(6)
136 #define PAGE_ERASED BIT(5)
137 #define CODEWORD_ERASED BIT(4)
138 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
139 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET 0
143 #define READ_LOCATION_SIZE 16
144 #define READ_LOCATION_LAST 31
146 /* Version Mask */
147 #define NAND_VERSION_MAJOR_MASK 0xf0000000
148 #define NAND_VERSION_MAJOR_SHIFT 28
149 #define NAND_VERSION_MINOR_MASK 0x0fff0000
150 #define NAND_VERSION_MINOR_SHIFT 16
152 /* NAND OP_CMDs */
153 #define OP_PAGE_READ 0x2
154 #define OP_PAGE_READ_WITH_ECC 0x3
155 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
156 #define OP_PROGRAM_PAGE 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
158 #define OP_PROGRAM_PAGE_SPARE 0x9
159 #define OP_BLOCK_ERASE 0xa
160 #define OP_FETCH_ID 0xb
161 #define OP_RESET_DEVICE 0xd
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
165 ERASE_START_VLD | SEQ_READ_START_VLD)
167 /* NAND_CTRL bits */
168 #define BAM_MODE_EN BIT(0)
171 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172 * the driver calls the chunks 'step' or 'codeword' interchangeably
174 #define NANDC_STEP_SIZE 512
177 * the largest page size we support is 8K, this will have 16 steps/codewords
178 * of 512 bytes each
180 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
182 /* we read at most 3 registers per codeword scan */
183 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
185 /* ECC modes supported by the controller */
186 #define ECC_NONE BIT(0)
187 #define ECC_RS_4BIT BIT(1)
188 #define ECC_BCH_4BIT BIT(2)
189 #define ECC_BCH_8BIT BIT(3)
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
193 ((offset) << READ_LOCATION_OFFSET) | \
194 ((size) << READ_LOCATION_SIZE) | \
195 ((is_last) << READ_LOCATION_LAST))
198 * Returns the actual register address for all NAND_DEV_ registers
199 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208 ((chip)->reg_read_dma + \
209 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
211 #define QPIC_PER_CW_CMD_ELEMENTS 32
212 #define QPIC_PER_CW_CMD_SGL 32
213 #define QPIC_PER_CW_DATA_SGL 8
215 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
218 * Flags used in DMA descriptor preparation helper functions
219 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL BIT(2)
228 * Erased codeword status is being used two times in single transfer so this
229 * flag will determine the current value of erased codeword status register
231 #define NAND_ERASED_CW_SET BIT(4)
234 * This data type corresponds to the BAM transaction which will be used for all
235 * NAND transfers.
236 * @bam_ce - the array of BAM command elements
237 * @cmd_sgl - sgl for NAND BAM command pipe
238 * @data_sgl - sgl for NAND BAM consumer/producer pipe
239 * @bam_ce_pos - the index in bam_ce which is available for next sgl
240 * @bam_ce_start - the index in bam_ce which marks the start position ce
241 * for current sgl. It will be used for size calculation
242 * for current sgl
243 * @cmd_sgl_pos - current index in command sgl.
244 * @cmd_sgl_start - start index in command sgl.
245 * @tx_sgl_pos - current index in data sgl for tx.
246 * @tx_sgl_start - start index in data sgl for tx.
247 * @rx_sgl_pos - current index in data sgl for rx.
248 * @rx_sgl_start - start index in data sgl for rx.
249 * @wait_second_completion - wait for second DMA desc completion before making
250 * the NAND transfer completion.
251 * @txn_done - completion for NAND transfer.
252 * @last_data_desc - last DMA desc in data channel (tx/rx).
253 * @last_cmd_desc - last DMA desc in command channel.
255 struct bam_transaction {
256 struct bam_cmd_element *bam_ce;
257 struct scatterlist *cmd_sgl;
258 struct scatterlist *data_sgl;
259 u32 bam_ce_pos;
260 u32 bam_ce_start;
261 u32 cmd_sgl_pos;
262 u32 cmd_sgl_start;
263 u32 tx_sgl_pos;
264 u32 tx_sgl_start;
265 u32 rx_sgl_pos;
266 u32 rx_sgl_start;
267 bool wait_second_completion;
268 struct completion txn_done;
269 struct dma_async_tx_descriptor *last_data_desc;
270 struct dma_async_tx_descriptor *last_cmd_desc;
274 * This data type corresponds to the nand dma descriptor
275 * @list - list for desc_info
276 * @dir - DMA transfer direction
277 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
278 * ADM
279 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281 * @dma_desc - low level DMA engine descriptor
283 struct desc_info {
284 struct list_head node;
286 enum dma_data_direction dir;
287 union {
288 struct scatterlist adm_sgl;
289 struct {
290 struct scatterlist *bam_sgl;
291 int sgl_cnt;
294 struct dma_async_tx_descriptor *dma_desc;
298 * holds the current register values that we want to write. acts as a contiguous
299 * chunk of memory which we use to write the controller registers through DMA.
301 struct nandc_regs {
302 __le32 cmd;
303 __le32 addr0;
304 __le32 addr1;
305 __le32 chip_sel;
306 __le32 exec;
308 __le32 cfg0;
309 __le32 cfg1;
310 __le32 ecc_bch_cfg;
312 __le32 clrflashstatus;
313 __le32 clrreadstatus;
315 __le32 cmd1;
316 __le32 vld;
318 __le32 orig_cmd1;
319 __le32 orig_vld;
321 __le32 ecc_buf_cfg;
322 __le32 read_location0;
323 __le32 read_location1;
324 __le32 read_location2;
325 __le32 read_location3;
327 __le32 erased_cw_detect_cfg_clr;
328 __le32 erased_cw_detect_cfg_set;
332 * NAND controller data struct
334 * @controller: base controller structure
335 * @host_list: list containing all the chips attached to the
336 * controller
337 * @dev: parent device
338 * @base: MMIO base
339 * @base_phys: physical base address of controller registers
340 * @base_dma: dma base address of controller registers
341 * @core_clk: controller clock
342 * @aon_clk: another controller clock
344 * @chan: dma channel
345 * @cmd_crci: ADM DMA CRCI for command flow control
346 * @data_crci: ADM DMA CRCI for data flow control
347 * @desc_list: DMA descriptor list (list of desc_infos)
349 * @data_buffer: our local DMA buffer for page read/writes,
350 * used when we can't use the buffer provided
351 * by upper layers directly
352 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
353 * @reg_read_buf: local buffer for reading back registers via DMA
354 * @reg_read_dma: contains dma address for register read buffer
355 * @reg_read_pos: marker for data read in reg_read_buf
357 * @regs: a contiguous chunk of memory for DMA register
358 * writes. contains the register values to be
359 * written to controller
360 * @cmd1/vld: some fixed controller register values
361 * @props: properties of current NAND controller,
362 * initialized via DT match data
363 * @max_cwperpage: maximum QPIC codewords required. calculated
364 * from all connected NAND devices pagesize
366 struct qcom_nand_controller {
367 struct nand_controller controller;
368 struct list_head host_list;
370 struct device *dev;
372 void __iomem *base;
373 phys_addr_t base_phys;
374 dma_addr_t base_dma;
376 struct clk *core_clk;
377 struct clk *aon_clk;
379 union {
380 /* will be used only by QPIC for BAM DMA */
381 struct {
382 struct dma_chan *tx_chan;
383 struct dma_chan *rx_chan;
384 struct dma_chan *cmd_chan;
387 /* will be used only by EBI2 for ADM DMA */
388 struct {
389 struct dma_chan *chan;
390 unsigned int cmd_crci;
391 unsigned int data_crci;
395 struct list_head desc_list;
396 struct bam_transaction *bam_txn;
398 u8 *data_buffer;
399 int buf_size;
400 int buf_count;
401 int buf_start;
402 unsigned int max_cwperpage;
404 __le32 *reg_read_buf;
405 dma_addr_t reg_read_dma;
406 int reg_read_pos;
408 struct nandc_regs *regs;
410 u32 cmd1, vld;
411 const struct qcom_nandc_props *props;
415 * NAND chip structure
417 * @chip: base NAND chip structure
418 * @node: list node to add itself to host_list in
419 * qcom_nand_controller
421 * @cs: chip select value for this chip
422 * @cw_size: the number of bytes in a single step/codeword
423 * of a page, consisting of all data, ecc, spare
424 * and reserved bytes
425 * @cw_data: the number of bytes within a codeword protected
426 * by ECC
427 * @use_ecc: request the controller to use ECC for the
428 * upcoming read/write
429 * @bch_enabled: flag to tell whether BCH ECC mode is used
430 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
431 * chip
432 * @status: value to be returned if NAND_CMD_STATUS command
433 * is executed
434 * @last_command: keeps track of last command on this chip. used
435 * for reading correct status
437 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
438 * ecc/non-ecc mode for the current nand flash
439 * device
441 struct qcom_nand_host {
442 struct nand_chip chip;
443 struct list_head node;
445 int cs;
446 int cw_size;
447 int cw_data;
448 bool use_ecc;
449 bool bch_enabled;
450 int ecc_bytes_hw;
451 int spare_bytes;
452 int bbm_size;
453 u8 status;
454 int last_command;
456 u32 cfg0, cfg1;
457 u32 cfg0_raw, cfg1_raw;
458 u32 ecc_buf_cfg;
459 u32 ecc_bch_cfg;
460 u32 clrflashstatus;
461 u32 clrreadstatus;
465 * This data type corresponds to the NAND controller properties which varies
466 * among different NAND controllers.
467 * @ecc_modes - ecc mode for NAND
468 * @is_bam - whether NAND controller is using BAM
469 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471 struct qcom_nandc_props {
472 u32 ecc_modes;
473 bool is_bam;
474 u32 dev_cmd_reg_start;
477 /* Frees the BAM transaction memory */
478 static void free_bam_transaction(struct qcom_nand_controller *nandc)
480 struct bam_transaction *bam_txn = nandc->bam_txn;
482 devm_kfree(nandc->dev, bam_txn);
485 /* Allocates and Initializes the BAM transaction */
486 static struct bam_transaction *
487 alloc_bam_transaction(struct qcom_nand_controller *nandc)
489 struct bam_transaction *bam_txn;
490 size_t bam_txn_size;
491 unsigned int num_cw = nandc->max_cwperpage;
492 void *bam_txn_buf;
494 bam_txn_size =
495 sizeof(*bam_txn) + num_cw *
496 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
497 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
498 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
500 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
501 if (!bam_txn_buf)
502 return NULL;
504 bam_txn = bam_txn_buf;
505 bam_txn_buf += sizeof(*bam_txn);
507 bam_txn->bam_ce = bam_txn_buf;
508 bam_txn_buf +=
509 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
511 bam_txn->cmd_sgl = bam_txn_buf;
512 bam_txn_buf +=
513 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
515 bam_txn->data_sgl = bam_txn_buf;
517 init_completion(&bam_txn->txn_done);
519 return bam_txn;
522 /* Clears the BAM transaction indexes */
523 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
525 struct bam_transaction *bam_txn = nandc->bam_txn;
527 if (!nandc->props->is_bam)
528 return;
530 bam_txn->bam_ce_pos = 0;
531 bam_txn->bam_ce_start = 0;
532 bam_txn->cmd_sgl_pos = 0;
533 bam_txn->cmd_sgl_start = 0;
534 bam_txn->tx_sgl_pos = 0;
535 bam_txn->tx_sgl_start = 0;
536 bam_txn->rx_sgl_pos = 0;
537 bam_txn->rx_sgl_start = 0;
538 bam_txn->last_data_desc = NULL;
539 bam_txn->wait_second_completion = false;
541 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
542 QPIC_PER_CW_CMD_SGL);
543 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
544 QPIC_PER_CW_DATA_SGL);
546 reinit_completion(&bam_txn->txn_done);
549 /* Callback for DMA descriptor completion */
550 static void qpic_bam_dma_done(void *data)
552 struct bam_transaction *bam_txn = data;
555 * In case of data transfer with NAND, 2 callbacks will be generated.
556 * One for command channel and another one for data channel.
557 * If current transaction has data descriptors
558 * (i.e. wait_second_completion is true), then set this to false
559 * and wait for second DMA descriptor completion.
561 if (bam_txn->wait_second_completion)
562 bam_txn->wait_second_completion = false;
563 else
564 complete(&bam_txn->txn_done);
567 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
569 return container_of(chip, struct qcom_nand_host, chip);
572 static inline struct qcom_nand_controller *
573 get_qcom_nand_controller(struct nand_chip *chip)
575 return container_of(chip->controller, struct qcom_nand_controller,
576 controller);
579 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
581 return ioread32(nandc->base + offset);
584 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
585 u32 val)
587 iowrite32(val, nandc->base + offset);
590 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
591 bool is_cpu)
593 if (!nandc->props->is_bam)
594 return;
596 if (is_cpu)
597 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
598 MAX_REG_RD *
599 sizeof(*nandc->reg_read_buf),
600 DMA_FROM_DEVICE);
601 else
602 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
603 MAX_REG_RD *
604 sizeof(*nandc->reg_read_buf),
605 DMA_FROM_DEVICE);
608 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
610 switch (offset) {
611 case NAND_FLASH_CMD:
612 return &regs->cmd;
613 case NAND_ADDR0:
614 return &regs->addr0;
615 case NAND_ADDR1:
616 return &regs->addr1;
617 case NAND_FLASH_CHIP_SELECT:
618 return &regs->chip_sel;
619 case NAND_EXEC_CMD:
620 return &regs->exec;
621 case NAND_FLASH_STATUS:
622 return &regs->clrflashstatus;
623 case NAND_DEV0_CFG0:
624 return &regs->cfg0;
625 case NAND_DEV0_CFG1:
626 return &regs->cfg1;
627 case NAND_DEV0_ECC_CFG:
628 return &regs->ecc_bch_cfg;
629 case NAND_READ_STATUS:
630 return &regs->clrreadstatus;
631 case NAND_DEV_CMD1:
632 return &regs->cmd1;
633 case NAND_DEV_CMD1_RESTORE:
634 return &regs->orig_cmd1;
635 case NAND_DEV_CMD_VLD:
636 return &regs->vld;
637 case NAND_DEV_CMD_VLD_RESTORE:
638 return &regs->orig_vld;
639 case NAND_EBI2_ECC_BUF_CFG:
640 return &regs->ecc_buf_cfg;
641 case NAND_READ_LOCATION_0:
642 return &regs->read_location0;
643 case NAND_READ_LOCATION_1:
644 return &regs->read_location1;
645 case NAND_READ_LOCATION_2:
646 return &regs->read_location2;
647 case NAND_READ_LOCATION_3:
648 return &regs->read_location3;
649 default:
650 return NULL;
654 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
655 u32 val)
657 struct nandc_regs *regs = nandc->regs;
658 __le32 *reg;
660 reg = offset_to_nandc_reg(regs, offset);
662 if (reg)
663 *reg = cpu_to_le32(val);
666 /* helper to configure address register values */
667 static void set_address(struct qcom_nand_host *host, u16 column, int page)
669 struct nand_chip *chip = &host->chip;
670 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
672 if (chip->options & NAND_BUSWIDTH_16)
673 column >>= 1;
675 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
676 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
680 * update_rw_regs: set up read/write register values, these will be
681 * written to the NAND controller registers via DMA
683 * @num_cw: number of steps for the read/write operation
684 * @read: read or write operation
686 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
688 struct nand_chip *chip = &host->chip;
689 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
690 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
692 if (read) {
693 if (host->use_ecc)
694 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
695 else
696 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
697 } else {
698 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
701 if (host->use_ecc) {
702 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
703 (num_cw - 1) << CW_PER_PAGE;
705 cfg1 = host->cfg1;
706 ecc_bch_cfg = host->ecc_bch_cfg;
707 } else {
708 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
709 (num_cw - 1) << CW_PER_PAGE;
711 cfg1 = host->cfg1_raw;
712 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
715 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
716 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
717 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
718 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
719 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
720 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
721 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
722 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
724 if (read)
725 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
726 host->cw_data : host->cw_size, 1);
730 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
731 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
732 * which will be submitted to DMA engine.
734 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
735 struct dma_chan *chan,
736 unsigned long flags)
738 struct desc_info *desc;
739 struct scatterlist *sgl;
740 unsigned int sgl_cnt;
741 int ret;
742 struct bam_transaction *bam_txn = nandc->bam_txn;
743 enum dma_transfer_direction dir_eng;
744 struct dma_async_tx_descriptor *dma_desc;
746 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
747 if (!desc)
748 return -ENOMEM;
750 if (chan == nandc->cmd_chan) {
751 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
752 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
753 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
754 dir_eng = DMA_MEM_TO_DEV;
755 desc->dir = DMA_TO_DEVICE;
756 } else if (chan == nandc->tx_chan) {
757 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
758 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
759 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
760 dir_eng = DMA_MEM_TO_DEV;
761 desc->dir = DMA_TO_DEVICE;
762 } else {
763 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
764 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
765 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
766 dir_eng = DMA_DEV_TO_MEM;
767 desc->dir = DMA_FROM_DEVICE;
770 sg_mark_end(sgl + sgl_cnt - 1);
771 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
772 if (ret == 0) {
773 dev_err(nandc->dev, "failure in mapping desc\n");
774 kfree(desc);
775 return -ENOMEM;
778 desc->sgl_cnt = sgl_cnt;
779 desc->bam_sgl = sgl;
781 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
782 flags);
784 if (!dma_desc) {
785 dev_err(nandc->dev, "failure in prep desc\n");
786 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
787 kfree(desc);
788 return -EINVAL;
791 desc->dma_desc = dma_desc;
793 /* update last data/command descriptor */
794 if (chan == nandc->cmd_chan)
795 bam_txn->last_cmd_desc = dma_desc;
796 else
797 bam_txn->last_data_desc = dma_desc;
799 list_add_tail(&desc->node, &nandc->desc_list);
801 return 0;
805 * Prepares the command descriptor for BAM DMA which will be used for NAND
806 * register reads and writes. The command descriptor requires the command
807 * to be formed in command element type so this function uses the command
808 * element from bam transaction ce array and fills the same with required
809 * data. A single SGL can contain multiple command elements so
810 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
811 * after the current command element.
813 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
814 int reg_off, const void *vaddr,
815 int size, unsigned int flags)
817 int bam_ce_size;
818 int i, ret;
819 struct bam_cmd_element *bam_ce_buffer;
820 struct bam_transaction *bam_txn = nandc->bam_txn;
822 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
824 /* fill the command desc */
825 for (i = 0; i < size; i++) {
826 if (read)
827 bam_prep_ce(&bam_ce_buffer[i],
828 nandc_reg_phys(nandc, reg_off + 4 * i),
829 BAM_READ_COMMAND,
830 reg_buf_dma_addr(nandc,
831 (__le32 *)vaddr + i));
832 else
833 bam_prep_ce_le32(&bam_ce_buffer[i],
834 nandc_reg_phys(nandc, reg_off + 4 * i),
835 BAM_WRITE_COMMAND,
836 *((__le32 *)vaddr + i));
839 bam_txn->bam_ce_pos += size;
841 /* use the separate sgl after this command */
842 if (flags & NAND_BAM_NEXT_SGL) {
843 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
844 bam_ce_size = (bam_txn->bam_ce_pos -
845 bam_txn->bam_ce_start) *
846 sizeof(struct bam_cmd_element);
847 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
848 bam_ce_buffer, bam_ce_size);
849 bam_txn->cmd_sgl_pos++;
850 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
852 if (flags & NAND_BAM_NWD) {
853 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
854 DMA_PREP_FENCE |
855 DMA_PREP_CMD);
856 if (ret)
857 return ret;
861 return 0;
865 * Prepares the data descriptor for BAM DMA which will be used for NAND
866 * data reads and writes.
868 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
869 const void *vaddr,
870 int size, unsigned int flags)
872 int ret;
873 struct bam_transaction *bam_txn = nandc->bam_txn;
875 if (read) {
876 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
877 vaddr, size);
878 bam_txn->rx_sgl_pos++;
879 } else {
880 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
881 vaddr, size);
882 bam_txn->tx_sgl_pos++;
885 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
886 * is not set, form the DMA descriptor
888 if (!(flags & NAND_BAM_NO_EOT)) {
889 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
890 DMA_PREP_INTERRUPT);
891 if (ret)
892 return ret;
896 return 0;
899 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
900 int reg_off, const void *vaddr, int size,
901 bool flow_control)
903 struct desc_info *desc;
904 struct dma_async_tx_descriptor *dma_desc;
905 struct scatterlist *sgl;
906 struct dma_slave_config slave_conf;
907 enum dma_transfer_direction dir_eng;
908 int ret;
910 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
911 if (!desc)
912 return -ENOMEM;
914 sgl = &desc->adm_sgl;
916 sg_init_one(sgl, vaddr, size);
918 if (read) {
919 dir_eng = DMA_DEV_TO_MEM;
920 desc->dir = DMA_FROM_DEVICE;
921 } else {
922 dir_eng = DMA_MEM_TO_DEV;
923 desc->dir = DMA_TO_DEVICE;
926 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
927 if (ret == 0) {
928 ret = -ENOMEM;
929 goto err;
932 memset(&slave_conf, 0x00, sizeof(slave_conf));
934 slave_conf.device_fc = flow_control;
935 if (read) {
936 slave_conf.src_maxburst = 16;
937 slave_conf.src_addr = nandc->base_dma + reg_off;
938 slave_conf.slave_id = nandc->data_crci;
939 } else {
940 slave_conf.dst_maxburst = 16;
941 slave_conf.dst_addr = nandc->base_dma + reg_off;
942 slave_conf.slave_id = nandc->cmd_crci;
945 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
946 if (ret) {
947 dev_err(nandc->dev, "failed to configure dma channel\n");
948 goto err;
951 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
952 if (!dma_desc) {
953 dev_err(nandc->dev, "failed to prepare desc\n");
954 ret = -EINVAL;
955 goto err;
958 desc->dma_desc = dma_desc;
960 list_add_tail(&desc->node, &nandc->desc_list);
962 return 0;
963 err:
964 kfree(desc);
966 return ret;
970 * read_reg_dma: prepares a descriptor to read a given number of
971 * contiguous registers to the reg_read_buf pointer
973 * @first: offset of the first register in the contiguous block
974 * @num_regs: number of registers to read
975 * @flags: flags to control DMA descriptor preparation
977 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
978 int num_regs, unsigned int flags)
980 bool flow_control = false;
981 void *vaddr;
983 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
984 nandc->reg_read_pos += num_regs;
986 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
987 first = dev_cmd_reg_addr(nandc, first);
989 if (nandc->props->is_bam)
990 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
991 num_regs, flags);
993 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
994 flow_control = true;
996 return prep_adm_dma_desc(nandc, true, first, vaddr,
997 num_regs * sizeof(u32), flow_control);
1001 * write_reg_dma: prepares a descriptor to write a given number of
1002 * contiguous registers
1004 * @first: offset of the first register in the contiguous block
1005 * @num_regs: number of registers to write
1006 * @flags: flags to control DMA descriptor preparation
1008 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1009 int num_regs, unsigned int flags)
1011 bool flow_control = false;
1012 struct nandc_regs *regs = nandc->regs;
1013 void *vaddr;
1015 vaddr = offset_to_nandc_reg(regs, first);
1017 if (first == NAND_ERASED_CW_DETECT_CFG) {
1018 if (flags & NAND_ERASED_CW_SET)
1019 vaddr = &regs->erased_cw_detect_cfg_set;
1020 else
1021 vaddr = &regs->erased_cw_detect_cfg_clr;
1024 if (first == NAND_EXEC_CMD)
1025 flags |= NAND_BAM_NWD;
1027 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1028 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1030 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1031 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1033 if (nandc->props->is_bam)
1034 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1035 num_regs, flags);
1037 if (first == NAND_FLASH_CMD)
1038 flow_control = true;
1040 return prep_adm_dma_desc(nandc, false, first, vaddr,
1041 num_regs * sizeof(u32), flow_control);
1045 * read_data_dma: prepares a DMA descriptor to transfer data from the
1046 * controller's internal buffer to the buffer 'vaddr'
1048 * @reg_off: offset within the controller's data buffer
1049 * @vaddr: virtual address of the buffer we want to write to
1050 * @size: DMA transaction size in bytes
1051 * @flags: flags to control DMA descriptor preparation
1053 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1054 const u8 *vaddr, int size, unsigned int flags)
1056 if (nandc->props->is_bam)
1057 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1059 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1063 * write_data_dma: prepares a DMA descriptor to transfer data from
1064 * 'vaddr' to the controller's internal buffer
1066 * @reg_off: offset within the controller's data buffer
1067 * @vaddr: virtual address of the buffer we want to read from
1068 * @size: DMA transaction size in bytes
1069 * @flags: flags to control DMA descriptor preparation
1071 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1072 const u8 *vaddr, int size, unsigned int flags)
1074 if (nandc->props->is_bam)
1075 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1077 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1081 * Helper to prepare DMA descriptors for configuring registers
1082 * before reading a NAND page.
1084 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1086 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1087 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1088 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1089 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1090 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1091 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1095 * Helper to prepare DMA descriptors for configuring registers
1096 * before reading each codeword in NAND page.
1098 static void
1099 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1101 if (nandc->props->is_bam)
1102 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1103 NAND_BAM_NEXT_SGL);
1105 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1106 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1108 if (use_ecc) {
1109 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1110 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1111 NAND_BAM_NEXT_SGL);
1112 } else {
1113 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1118 * Helper to prepare dma descriptors to configure registers needed for reading a
1119 * single codeword in page
1121 static void
1122 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1123 bool use_ecc)
1125 config_nand_page_read(nandc);
1126 config_nand_cw_read(nandc, use_ecc);
1130 * Helper to prepare DMA descriptors used to configure registers needed for
1131 * before writing a NAND page.
1133 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1135 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1136 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1137 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1138 NAND_BAM_NEXT_SGL);
1142 * Helper to prepare DMA descriptors for configuring registers
1143 * before writing each codeword in NAND page.
1145 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1147 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1148 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1150 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1152 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1153 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1157 * the following functions are used within chip->cmdfunc() to perform different
1158 * NAND_CMD_* commands
1161 /* sets up descriptors for NAND_CMD_PARAM */
1162 static int nandc_param(struct qcom_nand_host *host)
1164 struct nand_chip *chip = &host->chip;
1165 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1168 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1169 * in use. we configure the controller to perform a raw read of 512
1170 * bytes to read onfi params
1172 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1173 nandc_set_reg(nandc, NAND_ADDR0, 0);
1174 nandc_set_reg(nandc, NAND_ADDR1, 0);
1175 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1176 | 512 << UD_SIZE_BYTES
1177 | 5 << NUM_ADDR_CYCLES
1178 | 0 << SPARE_SIZE_BYTES);
1179 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1180 | 0 << CS_ACTIVE_BSY
1181 | 17 << BAD_BLOCK_BYTE_NUM
1182 | 1 << BAD_BLOCK_IN_SPARE_AREA
1183 | 2 << WR_RD_BSY_GAP
1184 | 0 << WIDE_FLASH
1185 | 1 << DEV0_CFG1_ECC_DISABLE);
1186 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1188 /* configure CMD1 and VLD for ONFI param probing */
1189 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1190 (nandc->vld & ~READ_START_VLD));
1191 nandc_set_reg(nandc, NAND_DEV_CMD1,
1192 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1193 | NAND_CMD_PARAM << READ_ADDR);
1195 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1197 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1198 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1199 nandc_set_read_loc(nandc, 0, 0, 512, 1);
1201 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1202 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1204 nandc->buf_count = 512;
1205 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1207 config_nand_single_cw_page_read(nandc, false);
1209 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1210 nandc->buf_count, 0);
1212 /* restore CMD1 and VLD regs */
1213 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1214 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1216 return 0;
1219 /* sets up descriptors for NAND_CMD_ERASE1 */
1220 static int erase_block(struct qcom_nand_host *host, int page_addr)
1222 struct nand_chip *chip = &host->chip;
1223 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1225 nandc_set_reg(nandc, NAND_FLASH_CMD,
1226 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1227 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1228 nandc_set_reg(nandc, NAND_ADDR1, 0);
1229 nandc_set_reg(nandc, NAND_DEV0_CFG0,
1230 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1231 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1232 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1233 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1234 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1236 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1237 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1238 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1240 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1242 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1243 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1245 return 0;
1248 /* sets up descriptors for NAND_CMD_READID */
1249 static int read_id(struct qcom_nand_host *host, int column)
1251 struct nand_chip *chip = &host->chip;
1252 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1254 if (column == -1)
1255 return 0;
1257 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1258 nandc_set_reg(nandc, NAND_ADDR0, column);
1259 nandc_set_reg(nandc, NAND_ADDR1, 0);
1260 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1261 nandc->props->is_bam ? 0 : DM_EN);
1262 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1264 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1265 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1267 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1269 return 0;
1272 /* sets up descriptors for NAND_CMD_RESET */
1273 static int reset(struct qcom_nand_host *host)
1275 struct nand_chip *chip = &host->chip;
1276 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1278 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1279 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1281 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1282 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1284 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1286 return 0;
1289 /* helpers to submit/free our list of dma descriptors */
1290 static int submit_descs(struct qcom_nand_controller *nandc)
1292 struct desc_info *desc;
1293 dma_cookie_t cookie = 0;
1294 struct bam_transaction *bam_txn = nandc->bam_txn;
1295 int r;
1297 if (nandc->props->is_bam) {
1298 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1299 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1300 if (r)
1301 return r;
1304 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1305 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1306 DMA_PREP_INTERRUPT);
1307 if (r)
1308 return r;
1311 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1312 r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1313 DMA_PREP_CMD);
1314 if (r)
1315 return r;
1319 list_for_each_entry(desc, &nandc->desc_list, node)
1320 cookie = dmaengine_submit(desc->dma_desc);
1322 if (nandc->props->is_bam) {
1323 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1324 bam_txn->last_cmd_desc->callback_param = bam_txn;
1325 if (bam_txn->last_data_desc) {
1326 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1327 bam_txn->last_data_desc->callback_param = bam_txn;
1328 bam_txn->wait_second_completion = true;
1331 dma_async_issue_pending(nandc->tx_chan);
1332 dma_async_issue_pending(nandc->rx_chan);
1333 dma_async_issue_pending(nandc->cmd_chan);
1335 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1336 QPIC_NAND_COMPLETION_TIMEOUT))
1337 return -ETIMEDOUT;
1338 } else {
1339 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1340 return -ETIMEDOUT;
1343 return 0;
1346 static void free_descs(struct qcom_nand_controller *nandc)
1348 struct desc_info *desc, *n;
1350 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1351 list_del(&desc->node);
1353 if (nandc->props->is_bam)
1354 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1355 desc->sgl_cnt, desc->dir);
1356 else
1357 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1358 desc->dir);
1360 kfree(desc);
1364 /* reset the register read buffer for next NAND operation */
1365 static void clear_read_regs(struct qcom_nand_controller *nandc)
1367 nandc->reg_read_pos = 0;
1368 nandc_read_buffer_sync(nandc, false);
1371 static void pre_command(struct qcom_nand_host *host, int command)
1373 struct nand_chip *chip = &host->chip;
1374 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1376 nandc->buf_count = 0;
1377 nandc->buf_start = 0;
1378 host->use_ecc = false;
1379 host->last_command = command;
1381 clear_read_regs(nandc);
1383 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1384 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1385 clear_bam_transaction(nandc);
1389 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1390 * privately maintained status byte, this status byte can be read after
1391 * NAND_CMD_STATUS is called
1393 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1395 struct nand_chip *chip = &host->chip;
1396 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1397 struct nand_ecc_ctrl *ecc = &chip->ecc;
1398 int num_cw;
1399 int i;
1401 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1402 nandc_read_buffer_sync(nandc, true);
1404 for (i = 0; i < num_cw; i++) {
1405 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1407 if (flash_status & FS_MPU_ERR)
1408 host->status &= ~NAND_STATUS_WP;
1410 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1411 (flash_status &
1412 FS_DEVICE_STS_ERR)))
1413 host->status |= NAND_STATUS_FAIL;
1417 static void post_command(struct qcom_nand_host *host, int command)
1419 struct nand_chip *chip = &host->chip;
1420 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1422 switch (command) {
1423 case NAND_CMD_READID:
1424 nandc_read_buffer_sync(nandc, true);
1425 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1426 nandc->buf_count);
1427 break;
1428 case NAND_CMD_PAGEPROG:
1429 case NAND_CMD_ERASE1:
1430 parse_erase_write_errors(host, command);
1431 break;
1432 default:
1433 break;
1438 * Implements chip->cmdfunc. It's only used for a limited set of commands.
1439 * The rest of the commands wouldn't be called by upper layers. For example,
1440 * NAND_CMD_READOOB would never be called because we have our own versions
1441 * of read_oob ops for nand_ecc_ctrl.
1443 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1444 int column, int page_addr)
1446 struct nand_chip *chip = mtd_to_nand(mtd);
1447 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1448 struct nand_ecc_ctrl *ecc = &chip->ecc;
1449 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1450 bool wait = false;
1451 int ret = 0;
1453 pre_command(host, command);
1455 switch (command) {
1456 case NAND_CMD_RESET:
1457 ret = reset(host);
1458 wait = true;
1459 break;
1461 case NAND_CMD_READID:
1462 nandc->buf_count = 4;
1463 ret = read_id(host, column);
1464 wait = true;
1465 break;
1467 case NAND_CMD_PARAM:
1468 ret = nandc_param(host);
1469 wait = true;
1470 break;
1472 case NAND_CMD_ERASE1:
1473 ret = erase_block(host, page_addr);
1474 wait = true;
1475 break;
1477 case NAND_CMD_READ0:
1478 /* we read the entire page for now */
1479 WARN_ON(column != 0);
1481 host->use_ecc = true;
1482 set_address(host, 0, page_addr);
1483 update_rw_regs(host, ecc->steps, true);
1484 break;
1486 case NAND_CMD_SEQIN:
1487 WARN_ON(column != 0);
1488 set_address(host, 0, page_addr);
1489 break;
1491 case NAND_CMD_PAGEPROG:
1492 case NAND_CMD_STATUS:
1493 case NAND_CMD_NONE:
1494 default:
1495 break;
1498 if (ret) {
1499 dev_err(nandc->dev, "failure executing command %d\n",
1500 command);
1501 free_descs(nandc);
1502 return;
1505 if (wait) {
1506 ret = submit_descs(nandc);
1507 if (ret)
1508 dev_err(nandc->dev,
1509 "failure submitting descs for command %d\n",
1510 command);
1513 free_descs(nandc);
1515 post_command(host, command);
1519 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1520 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1522 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1523 * but it notifies that it is an erased CW by placing special characters at
1524 * certain offsets in the buffer.
1526 * verify if the page is erased or not, and fix up the page for RS ECC by
1527 * replacing the special characters with 0xff.
1529 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1531 u8 empty1, empty2;
1534 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1535 * is erased by looking for 0x54s at offsets 3 and 175 from the
1536 * beginning of each codeword
1539 empty1 = data_buf[3];
1540 empty2 = data_buf[175];
1543 * if the erased codework markers, if they exist override them with
1544 * 0xffs
1546 if ((empty1 == 0x54 && empty2 == 0xff) ||
1547 (empty1 == 0xff && empty2 == 0x54)) {
1548 data_buf[3] = 0xff;
1549 data_buf[175] = 0xff;
1553 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1554 * restore the original values at the special offsets
1556 if (memchr_inv(data_buf, 0xff, data_len)) {
1557 data_buf[3] = empty1;
1558 data_buf[175] = empty2;
1560 return false;
1563 return true;
1566 struct read_stats {
1567 __le32 flash;
1568 __le32 buffer;
1569 __le32 erased_cw;
1572 /* reads back FLASH_STATUS register set by the controller */
1573 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1575 struct nand_chip *chip = &host->chip;
1576 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1577 int i;
1579 for (i = 0; i < cw_cnt; i++) {
1580 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1582 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1583 return -EIO;
1586 return 0;
1589 /* performs raw read for one codeword */
1590 static int
1591 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1592 u8 *data_buf, u8 *oob_buf, int page, int cw)
1594 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1595 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1596 struct nand_ecc_ctrl *ecc = &chip->ecc;
1597 int data_size1, data_size2, oob_size1, oob_size2;
1598 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1600 nand_read_page_op(chip, page, 0, NULL, 0);
1601 host->use_ecc = false;
1603 clear_bam_transaction(nandc);
1604 set_address(host, host->cw_size * cw, page);
1605 update_rw_regs(host, 1, true);
1606 config_nand_page_read(nandc);
1608 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1609 oob_size1 = host->bbm_size;
1611 if (cw == (ecc->steps - 1)) {
1612 data_size2 = ecc->size - data_size1 -
1613 ((ecc->steps - 1) * 4);
1614 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1615 host->spare_bytes;
1616 } else {
1617 data_size2 = host->cw_data - data_size1;
1618 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1621 if (nandc->props->is_bam) {
1622 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1623 read_loc += data_size1;
1625 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1626 read_loc += oob_size1;
1628 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1629 read_loc += data_size2;
1631 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1634 config_nand_cw_read(nandc, false);
1636 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1637 reg_off += data_size1;
1639 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1640 reg_off += oob_size1;
1642 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1643 reg_off += data_size2;
1645 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1647 ret = submit_descs(nandc);
1648 free_descs(nandc);
1649 if (ret) {
1650 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1651 return ret;
1654 return check_flash_errors(host, 1);
1658 * Bitflips can happen in erased codewords also so this function counts the
1659 * number of 0 in each CW for which ECC engine returns the uncorrectable
1660 * error. The page will be assumed as erased if this count is less than or
1661 * equal to the ecc->strength for each CW.
1663 * 1. Both DATA and OOB need to be checked for number of 0. The
1664 * top-level API can be called with only data buf or OOB buf so use
1665 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1666 * is null for copying the raw bytes.
1667 * 2. Perform raw read for all the CW which has uncorrectable errors.
1668 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1669 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1670 * the number of bitflips in this area.
1672 static int
1673 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1674 u8 *oob_buf, unsigned long uncorrectable_cws,
1675 int page, unsigned int max_bitflips)
1677 struct nand_chip *chip = &host->chip;
1678 struct mtd_info *mtd = nand_to_mtd(chip);
1679 struct nand_ecc_ctrl *ecc = &chip->ecc;
1680 u8 *cw_data_buf, *cw_oob_buf;
1681 int cw, data_size, oob_size, ret = 0;
1683 if (!data_buf) {
1684 data_buf = chip->data_buf;
1685 chip->pagebuf = -1;
1688 if (!oob_buf) {
1689 oob_buf = chip->oob_poi;
1690 chip->pagebuf = -1;
1693 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1694 if (cw == (ecc->steps - 1)) {
1695 data_size = ecc->size - ((ecc->steps - 1) * 4);
1696 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1697 } else {
1698 data_size = host->cw_data;
1699 oob_size = host->ecc_bytes_hw;
1702 /* determine starting buffer address for current CW */
1703 cw_data_buf = data_buf + (cw * host->cw_data);
1704 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1706 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1707 cw_oob_buf, page, cw);
1708 if (ret)
1709 return ret;
1712 * make sure it isn't an erased page reported
1713 * as not-erased by HW because of a few bitflips
1715 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1716 cw_oob_buf + host->bbm_size,
1717 oob_size, NULL,
1718 0, ecc->strength);
1719 if (ret < 0) {
1720 mtd->ecc_stats.failed++;
1721 } else {
1722 mtd->ecc_stats.corrected += ret;
1723 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1727 return max_bitflips;
1731 * reads back status registers set by the controller to notify page read
1732 * errors. this is equivalent to what 'ecc->correct()' would do.
1734 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1735 u8 *oob_buf, int page)
1737 struct nand_chip *chip = &host->chip;
1738 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1739 struct mtd_info *mtd = nand_to_mtd(chip);
1740 struct nand_ecc_ctrl *ecc = &chip->ecc;
1741 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1742 struct read_stats *buf;
1743 bool flash_op_err = false, erased;
1744 int i;
1745 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1747 buf = (struct read_stats *)nandc->reg_read_buf;
1748 nandc_read_buffer_sync(nandc, true);
1750 for (i = 0; i < ecc->steps; i++, buf++) {
1751 u32 flash, buffer, erased_cw;
1752 int data_len, oob_len;
1754 if (i == (ecc->steps - 1)) {
1755 data_len = ecc->size - ((ecc->steps - 1) << 2);
1756 oob_len = ecc->steps << 2;
1757 } else {
1758 data_len = host->cw_data;
1759 oob_len = 0;
1762 flash = le32_to_cpu(buf->flash);
1763 buffer = le32_to_cpu(buf->buffer);
1764 erased_cw = le32_to_cpu(buf->erased_cw);
1767 * Check ECC failure for each codeword. ECC failure can
1768 * happen in either of the following conditions
1769 * 1. If number of bitflips are greater than ECC engine
1770 * capability.
1771 * 2. If this codeword contains all 0xff for which erased
1772 * codeword detection check will be done.
1774 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1776 * For BCH ECC, ignore erased codeword errors, if
1777 * ERASED_CW bits are set.
1779 if (host->bch_enabled) {
1780 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1781 true : false;
1783 * For RS ECC, HW reports the erased CW by placing
1784 * special characters at certain offsets in the buffer.
1785 * These special characters will be valid only if
1786 * complete page is read i.e. data_buf is not NULL.
1788 } else if (data_buf) {
1789 erased = erased_chunk_check_and_fixup(data_buf,
1790 data_len);
1791 } else {
1792 erased = false;
1795 if (!erased)
1796 uncorrectable_cws |= BIT(i);
1798 * Check if MPU or any other operational error (timeout,
1799 * device failure, etc.) happened for this codeword and
1800 * make flash_op_err true. If flash_op_err is set, then
1801 * EIO will be returned for page read.
1803 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1804 flash_op_err = true;
1806 * No ECC or operational errors happened. Check the number of
1807 * bits corrected and update the ecc_stats.corrected.
1809 } else {
1810 unsigned int stat;
1812 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1813 mtd->ecc_stats.corrected += stat;
1814 max_bitflips = max(max_bitflips, stat);
1817 if (data_buf)
1818 data_buf += data_len;
1819 if (oob_buf)
1820 oob_buf += oob_len + ecc->bytes;
1823 if (flash_op_err)
1824 return -EIO;
1826 if (!uncorrectable_cws)
1827 return max_bitflips;
1829 return check_for_erased_page(host, data_buf_start, oob_buf_start,
1830 uncorrectable_cws, page,
1831 max_bitflips);
1835 * helper to perform the actual page read operation, used by ecc->read_page(),
1836 * ecc->read_oob()
1838 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1839 u8 *oob_buf, int page)
1841 struct nand_chip *chip = &host->chip;
1842 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1843 struct nand_ecc_ctrl *ecc = &chip->ecc;
1844 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1845 int i, ret;
1847 config_nand_page_read(nandc);
1849 /* queue cmd descs for each codeword */
1850 for (i = 0; i < ecc->steps; i++) {
1851 int data_size, oob_size;
1853 if (i == (ecc->steps - 1)) {
1854 data_size = ecc->size - ((ecc->steps - 1) << 2);
1855 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1856 host->spare_bytes;
1857 } else {
1858 data_size = host->cw_data;
1859 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1862 if (nandc->props->is_bam) {
1863 if (data_buf && oob_buf) {
1864 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1865 nandc_set_read_loc(nandc, 1, data_size,
1866 oob_size, 1);
1867 } else if (data_buf) {
1868 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1869 } else {
1870 nandc_set_read_loc(nandc, 0, data_size,
1871 oob_size, 1);
1875 config_nand_cw_read(nandc, true);
1877 if (data_buf)
1878 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1879 data_size, 0);
1882 * when ecc is enabled, the controller doesn't read the real
1883 * or dummy bad block markers in each chunk. To maintain a
1884 * consistent layout across RAW and ECC reads, we just
1885 * leave the real/dummy BBM offsets empty (i.e, filled with
1886 * 0xffs)
1888 if (oob_buf) {
1889 int j;
1891 for (j = 0; j < host->bbm_size; j++)
1892 *oob_buf++ = 0xff;
1894 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1895 oob_buf, oob_size, 0);
1898 if (data_buf)
1899 data_buf += data_size;
1900 if (oob_buf)
1901 oob_buf += oob_size;
1904 ret = submit_descs(nandc);
1905 free_descs(nandc);
1907 if (ret) {
1908 dev_err(nandc->dev, "failure to read page/oob\n");
1909 return ret;
1912 return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1916 * a helper that copies the last step/codeword of a page (containing free oob)
1917 * into our local buffer
1919 static int copy_last_cw(struct qcom_nand_host *host, int page)
1921 struct nand_chip *chip = &host->chip;
1922 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1923 struct nand_ecc_ctrl *ecc = &chip->ecc;
1924 int size;
1925 int ret;
1927 clear_read_regs(nandc);
1929 size = host->use_ecc ? host->cw_data : host->cw_size;
1931 /* prepare a clean read buffer */
1932 memset(nandc->data_buffer, 0xff, size);
1934 set_address(host, host->cw_size * (ecc->steps - 1), page);
1935 update_rw_regs(host, 1, true);
1937 config_nand_single_cw_page_read(nandc, host->use_ecc);
1939 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1941 ret = submit_descs(nandc);
1942 if (ret)
1943 dev_err(nandc->dev, "failed to copy last codeword\n");
1945 free_descs(nandc);
1947 return ret;
1950 /* implements ecc->read_page() */
1951 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1952 uint8_t *buf, int oob_required, int page)
1954 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1955 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1956 u8 *data_buf, *oob_buf = NULL;
1958 nand_read_page_op(chip, page, 0, NULL, 0);
1959 data_buf = buf;
1960 oob_buf = oob_required ? chip->oob_poi : NULL;
1962 clear_bam_transaction(nandc);
1964 return read_page_ecc(host, data_buf, oob_buf, page);
1967 /* implements ecc->read_page_raw() */
1968 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1969 struct nand_chip *chip, uint8_t *buf,
1970 int oob_required, int page)
1972 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1973 struct nand_ecc_ctrl *ecc = &chip->ecc;
1974 int cw, ret;
1975 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1977 for (cw = 0; cw < ecc->steps; cw++) {
1978 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1979 page, cw);
1980 if (ret)
1981 return ret;
1983 data_buf += host->cw_data;
1984 oob_buf += ecc->bytes;
1987 return 0;
1990 /* implements ecc->read_oob() */
1991 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1992 int page)
1994 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1995 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1996 struct nand_ecc_ctrl *ecc = &chip->ecc;
1998 clear_read_regs(nandc);
1999 clear_bam_transaction(nandc);
2001 host->use_ecc = true;
2002 set_address(host, 0, page);
2003 update_rw_regs(host, ecc->steps, true);
2005 return read_page_ecc(host, NULL, chip->oob_poi, page);
2008 /* implements ecc->write_page() */
2009 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2010 const uint8_t *buf, int oob_required, int page)
2012 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2013 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2014 struct nand_ecc_ctrl *ecc = &chip->ecc;
2015 u8 *data_buf, *oob_buf;
2016 int i, ret;
2018 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2020 clear_read_regs(nandc);
2021 clear_bam_transaction(nandc);
2023 data_buf = (u8 *)buf;
2024 oob_buf = chip->oob_poi;
2026 host->use_ecc = true;
2027 update_rw_regs(host, ecc->steps, false);
2028 config_nand_page_write(nandc);
2030 for (i = 0; i < ecc->steps; i++) {
2031 int data_size, oob_size;
2033 if (i == (ecc->steps - 1)) {
2034 data_size = ecc->size - ((ecc->steps - 1) << 2);
2035 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2036 host->spare_bytes;
2037 } else {
2038 data_size = host->cw_data;
2039 oob_size = ecc->bytes;
2043 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2044 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2047 * when ECC is enabled, we don't really need to write anything
2048 * to oob for the first n - 1 codewords since these oob regions
2049 * just contain ECC bytes that's written by the controller
2050 * itself. For the last codeword, we skip the bbm positions and
2051 * write to the free oob area.
2053 if (i == (ecc->steps - 1)) {
2054 oob_buf += host->bbm_size;
2056 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2057 oob_buf, oob_size, 0);
2060 config_nand_cw_write(nandc);
2062 data_buf += data_size;
2063 oob_buf += oob_size;
2066 ret = submit_descs(nandc);
2067 if (ret)
2068 dev_err(nandc->dev, "failure to write page\n");
2070 free_descs(nandc);
2072 if (!ret)
2073 ret = nand_prog_page_end_op(chip);
2075 return ret;
2078 /* implements ecc->write_page_raw() */
2079 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
2080 struct nand_chip *chip, const uint8_t *buf,
2081 int oob_required, int page)
2083 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2084 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2085 struct nand_ecc_ctrl *ecc = &chip->ecc;
2086 u8 *data_buf, *oob_buf;
2087 int i, ret;
2089 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2090 clear_read_regs(nandc);
2091 clear_bam_transaction(nandc);
2093 data_buf = (u8 *)buf;
2094 oob_buf = chip->oob_poi;
2096 host->use_ecc = false;
2097 update_rw_regs(host, ecc->steps, false);
2098 config_nand_page_write(nandc);
2100 for (i = 0; i < ecc->steps; i++) {
2101 int data_size1, data_size2, oob_size1, oob_size2;
2102 int reg_off = FLASH_BUF_ACC;
2104 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2105 oob_size1 = host->bbm_size;
2107 if (i == (ecc->steps - 1)) {
2108 data_size2 = ecc->size - data_size1 -
2109 ((ecc->steps - 1) << 2);
2110 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2111 host->spare_bytes;
2112 } else {
2113 data_size2 = host->cw_data - data_size1;
2114 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2117 write_data_dma(nandc, reg_off, data_buf, data_size1,
2118 NAND_BAM_NO_EOT);
2119 reg_off += data_size1;
2120 data_buf += data_size1;
2122 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2123 NAND_BAM_NO_EOT);
2124 reg_off += oob_size1;
2125 oob_buf += oob_size1;
2127 write_data_dma(nandc, reg_off, data_buf, data_size2,
2128 NAND_BAM_NO_EOT);
2129 reg_off += data_size2;
2130 data_buf += data_size2;
2132 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2133 oob_buf += oob_size2;
2135 config_nand_cw_write(nandc);
2138 ret = submit_descs(nandc);
2139 if (ret)
2140 dev_err(nandc->dev, "failure to write raw page\n");
2142 free_descs(nandc);
2144 if (!ret)
2145 ret = nand_prog_page_end_op(chip);
2147 return ret;
2151 * implements ecc->write_oob()
2153 * the NAND controller cannot write only data or only OOB within a codeword
2154 * since ECC is calculated for the combined codeword. So update the OOB from
2155 * chip->oob_poi, and pad the data area with OxFF before writing.
2157 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2158 int page)
2160 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2161 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2162 struct nand_ecc_ctrl *ecc = &chip->ecc;
2163 u8 *oob = chip->oob_poi;
2164 int data_size, oob_size;
2165 int ret;
2167 host->use_ecc = true;
2168 clear_bam_transaction(nandc);
2170 /* calculate the data and oob size for the last codeword/step */
2171 data_size = ecc->size - ((ecc->steps - 1) << 2);
2172 oob_size = mtd->oobavail;
2174 memset(nandc->data_buffer, 0xff, host->cw_data);
2175 /* override new oob content to last codeword */
2176 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2177 0, mtd->oobavail);
2179 set_address(host, host->cw_size * (ecc->steps - 1), page);
2180 update_rw_regs(host, 1, false);
2182 config_nand_page_write(nandc);
2183 write_data_dma(nandc, FLASH_BUF_ACC,
2184 nandc->data_buffer, data_size + oob_size, 0);
2185 config_nand_cw_write(nandc);
2187 ret = submit_descs(nandc);
2189 free_descs(nandc);
2191 if (ret) {
2192 dev_err(nandc->dev, "failure to write oob\n");
2193 return -EIO;
2196 return nand_prog_page_end_op(chip);
2199 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2201 struct nand_chip *chip = mtd_to_nand(mtd);
2202 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2203 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2204 struct nand_ecc_ctrl *ecc = &chip->ecc;
2205 int page, ret, bbpos, bad = 0;
2207 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2210 * configure registers for a raw sub page read, the address is set to
2211 * the beginning of the last codeword, we don't care about reading ecc
2212 * portion of oob. we just want the first few bytes from this codeword
2213 * that contains the BBM
2215 host->use_ecc = false;
2217 clear_bam_transaction(nandc);
2218 ret = copy_last_cw(host, page);
2219 if (ret)
2220 goto err;
2222 if (check_flash_errors(host, 1)) {
2223 dev_warn(nandc->dev, "error when trying to read BBM\n");
2224 goto err;
2227 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2229 bad = nandc->data_buffer[bbpos] != 0xff;
2231 if (chip->options & NAND_BUSWIDTH_16)
2232 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2233 err:
2234 return bad;
2237 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2239 struct nand_chip *chip = mtd_to_nand(mtd);
2240 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2241 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2242 struct nand_ecc_ctrl *ecc = &chip->ecc;
2243 int page, ret;
2245 clear_read_regs(nandc);
2246 clear_bam_transaction(nandc);
2249 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2250 * we don't care about the rest of the content in the codeword since
2251 * we aren't going to use this block again
2253 memset(nandc->data_buffer, 0x00, host->cw_size);
2255 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2257 /* prepare write */
2258 host->use_ecc = false;
2259 set_address(host, host->cw_size * (ecc->steps - 1), page);
2260 update_rw_regs(host, 1, false);
2262 config_nand_page_write(nandc);
2263 write_data_dma(nandc, FLASH_BUF_ACC,
2264 nandc->data_buffer, host->cw_size, 0);
2265 config_nand_cw_write(nandc);
2267 ret = submit_descs(nandc);
2269 free_descs(nandc);
2271 if (ret) {
2272 dev_err(nandc->dev, "failure to update BBM\n");
2273 return -EIO;
2276 return nand_prog_page_end_op(chip);
2280 * the three functions below implement chip->read_byte(), chip->read_buf()
2281 * and chip->write_buf() respectively. these aren't used for
2282 * reading/writing page data, they are used for smaller data like reading
2283 * id, status etc
2285 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2287 struct nand_chip *chip = mtd_to_nand(mtd);
2288 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2289 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2290 u8 *buf = nandc->data_buffer;
2291 u8 ret = 0x0;
2293 if (host->last_command == NAND_CMD_STATUS) {
2294 ret = host->status;
2296 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2298 return ret;
2301 if (nandc->buf_start < nandc->buf_count)
2302 ret = buf[nandc->buf_start++];
2304 return ret;
2307 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2309 struct nand_chip *chip = mtd_to_nand(mtd);
2310 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2311 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2313 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2314 nandc->buf_start += real_len;
2317 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2318 int len)
2320 struct nand_chip *chip = mtd_to_nand(mtd);
2321 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2322 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2324 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2326 nandc->buf_start += real_len;
2329 /* we support only one external chip for now */
2330 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2332 struct nand_chip *chip = mtd_to_nand(mtd);
2333 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2335 if (chipnr <= 0)
2336 return;
2338 dev_warn(nandc->dev, "invalid chip select\n");
2342 * NAND controller page layout info
2344 * Layout with ECC enabled:
2346 * |----------------------| |---------------------------------|
2347 * | xx.......yy| | *********xx.......yy|
2348 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2349 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2350 * | xx.......yy| | *********xx.......yy|
2351 * |----------------------| |---------------------------------|
2352 * codeword 1,2..n-1 codeword n
2353 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2355 * n = Number of codewords in the page
2356 * . = ECC bytes
2357 * * = Spare/free bytes
2358 * x = Unused byte(s)
2359 * y = Reserved byte(s)
2361 * 2K page: n = 4, spare = 16 bytes
2362 * 4K page: n = 8, spare = 32 bytes
2363 * 8K page: n = 16, spare = 64 bytes
2365 * the qcom nand controller operates at a sub page/codeword level. each
2366 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2367 * the number of ECC bytes vary based on the ECC strength and the bus width.
2369 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2370 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2371 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2373 * When we access a page with ECC enabled, the reserved bytes(s) are not
2374 * accessible at all. When reading, we fill up these unreadable positions
2375 * with 0xffs. When writing, the controller skips writing the inaccessible
2376 * bytes.
2378 * Layout with ECC disabled:
2380 * |------------------------------| |---------------------------------------|
2381 * | yy xx.......| | bb *********xx.......|
2382 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2383 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2384 * | yy xx.......| | bb *********xx.......|
2385 * |------------------------------| |---------------------------------------|
2386 * codeword 1,2..n-1 codeword n
2387 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2389 * n = Number of codewords in the page
2390 * . = ECC bytes
2391 * * = Spare/free bytes
2392 * x = Unused byte(s)
2393 * y = Dummy Bad Bock byte(s)
2394 * b = Real Bad Block byte(s)
2395 * size1/size2 = function of codeword size and 'n'
2397 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2398 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2399 * Block Markers. In the last codeword, this position contains the real BBM
2401 * In order to have a consistent layout between RAW and ECC modes, we assume
2402 * the following OOB layout arrangement:
2404 * |-----------| |--------------------|
2405 * |yyxx.......| |bb*********xx.......|
2406 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2407 * |yyxx.......| |bb*********xx.......|
2408 * |yyxx.......| |bb*********xx.......|
2409 * |-----------| |--------------------|
2410 * first n - 1 nth OOB region
2411 * OOB regions
2413 * n = Number of codewords in the page
2414 * . = ECC bytes
2415 * * = FREE OOB bytes
2416 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2417 * x = Unused byte(s)
2418 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2420 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2421 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2422 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2423 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2424 * the sum of the three).
2426 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2427 struct mtd_oob_region *oobregion)
2429 struct nand_chip *chip = mtd_to_nand(mtd);
2430 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2431 struct nand_ecc_ctrl *ecc = &chip->ecc;
2433 if (section > 1)
2434 return -ERANGE;
2436 if (!section) {
2437 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2438 host->bbm_size;
2439 oobregion->offset = 0;
2440 } else {
2441 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2442 oobregion->offset = mtd->oobsize - oobregion->length;
2445 return 0;
2448 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2449 struct mtd_oob_region *oobregion)
2451 struct nand_chip *chip = mtd_to_nand(mtd);
2452 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2453 struct nand_ecc_ctrl *ecc = &chip->ecc;
2455 if (section)
2456 return -ERANGE;
2458 oobregion->length = ecc->steps * 4;
2459 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2461 return 0;
2464 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2465 .ecc = qcom_nand_ooblayout_ecc,
2466 .free = qcom_nand_ooblayout_free,
2469 static int
2470 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2472 return strength == 4 ? 12 : 16;
2474 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2475 NANDC_STEP_SIZE, 4, 8);
2477 static int qcom_nand_attach_chip(struct nand_chip *chip)
2479 struct mtd_info *mtd = nand_to_mtd(chip);
2480 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2481 struct nand_ecc_ctrl *ecc = &chip->ecc;
2482 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2483 int cwperpage, bad_block_byte, ret;
2484 bool wide_bus;
2485 int ecc_mode = 1;
2487 /* controller only supports 512 bytes data steps */
2488 ecc->size = NANDC_STEP_SIZE;
2489 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2490 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2493 * Each CW has 4 available OOB bytes which will be protected with ECC
2494 * so remaining bytes can be used for ECC.
2496 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2497 mtd->oobsize - (cwperpage * 4));
2498 if (ret) {
2499 dev_err(nandc->dev, "No valid ECC settings possible\n");
2500 return ret;
2503 if (ecc->strength >= 8) {
2504 /* 8 bit ECC defaults to BCH ECC on all platforms */
2505 host->bch_enabled = true;
2506 ecc_mode = 1;
2508 if (wide_bus) {
2509 host->ecc_bytes_hw = 14;
2510 host->spare_bytes = 0;
2511 host->bbm_size = 2;
2512 } else {
2513 host->ecc_bytes_hw = 13;
2514 host->spare_bytes = 2;
2515 host->bbm_size = 1;
2517 } else {
2519 * if the controller supports BCH for 4 bit ECC, the controller
2520 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2521 * always 10 bytes
2523 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2524 /* BCH */
2525 host->bch_enabled = true;
2526 ecc_mode = 0;
2528 if (wide_bus) {
2529 host->ecc_bytes_hw = 8;
2530 host->spare_bytes = 2;
2531 host->bbm_size = 2;
2532 } else {
2533 host->ecc_bytes_hw = 7;
2534 host->spare_bytes = 4;
2535 host->bbm_size = 1;
2537 } else {
2538 /* RS */
2539 host->ecc_bytes_hw = 10;
2541 if (wide_bus) {
2542 host->spare_bytes = 0;
2543 host->bbm_size = 2;
2544 } else {
2545 host->spare_bytes = 1;
2546 host->bbm_size = 1;
2552 * we consider ecc->bytes as the sum of all the non-data content in a
2553 * step. It gives us a clean representation of the oob area (even if
2554 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2555 * ECC and 12 bytes for 4 bit ECC
2557 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2559 ecc->read_page = qcom_nandc_read_page;
2560 ecc->read_page_raw = qcom_nandc_read_page_raw;
2561 ecc->read_oob = qcom_nandc_read_oob;
2562 ecc->write_page = qcom_nandc_write_page;
2563 ecc->write_page_raw = qcom_nandc_write_page_raw;
2564 ecc->write_oob = qcom_nandc_write_oob;
2566 ecc->mode = NAND_ECC_HW;
2568 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2570 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2571 cwperpage);
2574 * DATA_UD_BYTES varies based on whether the read/write command protects
2575 * spare data with ECC too. We protect spare data by default, so we set
2576 * it to main + spare data, which are 512 and 4 bytes respectively.
2578 host->cw_data = 516;
2581 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2582 * for 8 bit ECC
2584 host->cw_size = host->cw_data + ecc->bytes;
2585 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2587 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2588 | host->cw_data << UD_SIZE_BYTES
2589 | 0 << DISABLE_STATUS_AFTER_WRITE
2590 | 5 << NUM_ADDR_CYCLES
2591 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2592 | 0 << STATUS_BFR_READ
2593 | 1 << SET_RD_MODE_AFTER_STATUS
2594 | host->spare_bytes << SPARE_SIZE_BYTES;
2596 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2597 | 0 << CS_ACTIVE_BSY
2598 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2599 | 0 << BAD_BLOCK_IN_SPARE_AREA
2600 | 2 << WR_RD_BSY_GAP
2601 | wide_bus << WIDE_FLASH
2602 | host->bch_enabled << ENABLE_BCH_ECC;
2604 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2605 | host->cw_size << UD_SIZE_BYTES
2606 | 5 << NUM_ADDR_CYCLES
2607 | 0 << SPARE_SIZE_BYTES;
2609 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2610 | 0 << CS_ACTIVE_BSY
2611 | 17 << BAD_BLOCK_BYTE_NUM
2612 | 1 << BAD_BLOCK_IN_SPARE_AREA
2613 | 2 << WR_RD_BSY_GAP
2614 | wide_bus << WIDE_FLASH
2615 | 1 << DEV0_CFG1_ECC_DISABLE;
2617 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2618 | 0 << ECC_SW_RESET
2619 | host->cw_data << ECC_NUM_DATA_BYTES
2620 | 1 << ECC_FORCE_CLK_OPEN
2621 | ecc_mode << ECC_MODE
2622 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2624 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2626 host->clrflashstatus = FS_READY_BSY_N;
2627 host->clrreadstatus = 0xc0;
2628 nandc->regs->erased_cw_detect_cfg_clr =
2629 cpu_to_le32(CLR_ERASED_PAGE_DET);
2630 nandc->regs->erased_cw_detect_cfg_set =
2631 cpu_to_le32(SET_ERASED_PAGE_DET);
2633 dev_dbg(nandc->dev,
2634 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2635 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2636 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2637 cwperpage);
2639 return 0;
2642 static const struct nand_controller_ops qcom_nandc_ops = {
2643 .attach_chip = qcom_nand_attach_chip,
2646 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2648 int ret;
2650 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2651 if (ret) {
2652 dev_err(nandc->dev, "failed to set DMA mask\n");
2653 return ret;
2657 * we use the internal buffer for reading ONFI params, reading small
2658 * data like ID and status, and preforming read-copy-write operations
2659 * when writing to a codeword partially. 532 is the maximum possible
2660 * size of a codeword for our nand controller
2662 nandc->buf_size = 532;
2664 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2665 GFP_KERNEL);
2666 if (!nandc->data_buffer)
2667 return -ENOMEM;
2669 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2670 GFP_KERNEL);
2671 if (!nandc->regs)
2672 return -ENOMEM;
2674 nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2675 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2676 GFP_KERNEL);
2677 if (!nandc->reg_read_buf)
2678 return -ENOMEM;
2680 if (nandc->props->is_bam) {
2681 nandc->reg_read_dma =
2682 dma_map_single(nandc->dev, nandc->reg_read_buf,
2683 MAX_REG_RD *
2684 sizeof(*nandc->reg_read_buf),
2685 DMA_FROM_DEVICE);
2686 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2687 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2688 return -EIO;
2691 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2692 if (!nandc->tx_chan) {
2693 dev_err(nandc->dev, "failed to request tx channel\n");
2694 return -ENODEV;
2697 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2698 if (!nandc->rx_chan) {
2699 dev_err(nandc->dev, "failed to request rx channel\n");
2700 return -ENODEV;
2703 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2704 if (!nandc->cmd_chan) {
2705 dev_err(nandc->dev, "failed to request cmd channel\n");
2706 return -ENODEV;
2710 * Initially allocate BAM transaction to read ONFI param page.
2711 * After detecting all the devices, this BAM transaction will
2712 * be freed and the next BAM tranasction will be allocated with
2713 * maximum codeword size
2715 nandc->max_cwperpage = 1;
2716 nandc->bam_txn = alloc_bam_transaction(nandc);
2717 if (!nandc->bam_txn) {
2718 dev_err(nandc->dev,
2719 "failed to allocate bam transaction\n");
2720 return -ENOMEM;
2722 } else {
2723 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2724 if (!nandc->chan) {
2725 dev_err(nandc->dev,
2726 "failed to request slave channel\n");
2727 return -ENODEV;
2731 INIT_LIST_HEAD(&nandc->desc_list);
2732 INIT_LIST_HEAD(&nandc->host_list);
2734 nand_controller_init(&nandc->controller);
2735 nandc->controller.ops = &qcom_nandc_ops;
2737 return 0;
2740 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2742 if (nandc->props->is_bam) {
2743 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2744 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2745 MAX_REG_RD *
2746 sizeof(*nandc->reg_read_buf),
2747 DMA_FROM_DEVICE);
2749 if (nandc->tx_chan)
2750 dma_release_channel(nandc->tx_chan);
2752 if (nandc->rx_chan)
2753 dma_release_channel(nandc->rx_chan);
2755 if (nandc->cmd_chan)
2756 dma_release_channel(nandc->cmd_chan);
2757 } else {
2758 if (nandc->chan)
2759 dma_release_channel(nandc->chan);
2763 /* one time setup of a few nand controller registers */
2764 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2766 u32 nand_ctrl;
2768 /* kill onenand */
2769 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2770 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2771 NAND_DEV_CMD_VLD_VAL);
2773 /* enable ADM or BAM DMA */
2774 if (nandc->props->is_bam) {
2775 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2776 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2777 } else {
2778 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2781 /* save the original values of these registers */
2782 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2783 nandc->vld = NAND_DEV_CMD_VLD_VAL;
2785 return 0;
2788 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2789 struct qcom_nand_host *host,
2790 struct device_node *dn)
2792 struct nand_chip *chip = &host->chip;
2793 struct mtd_info *mtd = nand_to_mtd(chip);
2794 struct device *dev = nandc->dev;
2795 int ret;
2797 ret = of_property_read_u32(dn, "reg", &host->cs);
2798 if (ret) {
2799 dev_err(dev, "can't get chip-select\n");
2800 return -ENXIO;
2803 nand_set_flash_node(chip, dn);
2804 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2805 if (!mtd->name)
2806 return -ENOMEM;
2808 mtd->owner = THIS_MODULE;
2809 mtd->dev.parent = dev;
2811 chip->cmdfunc = qcom_nandc_command;
2812 chip->select_chip = qcom_nandc_select_chip;
2813 chip->read_byte = qcom_nandc_read_byte;
2814 chip->read_buf = qcom_nandc_read_buf;
2815 chip->write_buf = qcom_nandc_write_buf;
2816 chip->set_features = nand_get_set_features_notsupp;
2817 chip->get_features = nand_get_set_features_notsupp;
2820 * the bad block marker is readable only when we read the last codeword
2821 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2822 * helpers don't allow us to read BB from a nand chip with ECC
2823 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2824 * and block_markbad helpers until we permanently switch to using
2825 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2827 chip->block_bad = qcom_nandc_block_bad;
2828 chip->block_markbad = qcom_nandc_block_markbad;
2830 chip->controller = &nandc->controller;
2831 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2832 NAND_SKIP_BBTSCAN;
2834 /* set up initial status value */
2835 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2837 ret = nand_scan(chip, 1);
2838 if (ret)
2839 return ret;
2841 if (nandc->props->is_bam) {
2842 free_bam_transaction(nandc);
2843 nandc->bam_txn = alloc_bam_transaction(nandc);
2844 if (!nandc->bam_txn) {
2845 dev_err(nandc->dev,
2846 "failed to allocate bam transaction\n");
2847 return -ENOMEM;
2851 ret = mtd_device_register(mtd, NULL, 0);
2852 if (ret)
2853 nand_cleanup(chip);
2855 return ret;
2858 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2860 struct device *dev = nandc->dev;
2861 struct device_node *dn = dev->of_node, *child;
2862 struct qcom_nand_host *host;
2863 int ret;
2865 for_each_available_child_of_node(dn, child) {
2866 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2867 if (!host) {
2868 of_node_put(child);
2869 return -ENOMEM;
2872 ret = qcom_nand_host_init_and_register(nandc, host, child);
2873 if (ret) {
2874 devm_kfree(dev, host);
2875 continue;
2878 list_add_tail(&host->node, &nandc->host_list);
2881 if (list_empty(&nandc->host_list))
2882 return -ENODEV;
2884 return 0;
2887 /* parse custom DT properties here */
2888 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2890 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2891 struct device_node *np = nandc->dev->of_node;
2892 int ret;
2894 if (!nandc->props->is_bam) {
2895 ret = of_property_read_u32(np, "qcom,cmd-crci",
2896 &nandc->cmd_crci);
2897 if (ret) {
2898 dev_err(nandc->dev, "command CRCI unspecified\n");
2899 return ret;
2902 ret = of_property_read_u32(np, "qcom,data-crci",
2903 &nandc->data_crci);
2904 if (ret) {
2905 dev_err(nandc->dev, "data CRCI unspecified\n");
2906 return ret;
2910 return 0;
2913 static int qcom_nandc_probe(struct platform_device *pdev)
2915 struct qcom_nand_controller *nandc;
2916 const void *dev_data;
2917 struct device *dev = &pdev->dev;
2918 struct resource *res;
2919 int ret;
2921 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2922 if (!nandc)
2923 return -ENOMEM;
2925 platform_set_drvdata(pdev, nandc);
2926 nandc->dev = dev;
2928 dev_data = of_device_get_match_data(dev);
2929 if (!dev_data) {
2930 dev_err(&pdev->dev, "failed to get device data\n");
2931 return -ENODEV;
2934 nandc->props = dev_data;
2936 nandc->core_clk = devm_clk_get(dev, "core");
2937 if (IS_ERR(nandc->core_clk))
2938 return PTR_ERR(nandc->core_clk);
2940 nandc->aon_clk = devm_clk_get(dev, "aon");
2941 if (IS_ERR(nandc->aon_clk))
2942 return PTR_ERR(nandc->aon_clk);
2944 ret = qcom_nandc_parse_dt(pdev);
2945 if (ret)
2946 return ret;
2948 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2949 nandc->base = devm_ioremap_resource(dev, res);
2950 if (IS_ERR(nandc->base))
2951 return PTR_ERR(nandc->base);
2953 nandc->base_phys = res->start;
2954 nandc->base_dma = dma_map_resource(dev, res->start,
2955 resource_size(res),
2956 DMA_BIDIRECTIONAL, 0);
2957 if (!nandc->base_dma)
2958 return -ENXIO;
2960 ret = qcom_nandc_alloc(nandc);
2961 if (ret)
2962 goto err_nandc_alloc;
2964 ret = clk_prepare_enable(nandc->core_clk);
2965 if (ret)
2966 goto err_core_clk;
2968 ret = clk_prepare_enable(nandc->aon_clk);
2969 if (ret)
2970 goto err_aon_clk;
2972 ret = qcom_nandc_setup(nandc);
2973 if (ret)
2974 goto err_setup;
2976 ret = qcom_probe_nand_devices(nandc);
2977 if (ret)
2978 goto err_setup;
2980 return 0;
2982 err_setup:
2983 clk_disable_unprepare(nandc->aon_clk);
2984 err_aon_clk:
2985 clk_disable_unprepare(nandc->core_clk);
2986 err_core_clk:
2987 qcom_nandc_unalloc(nandc);
2988 err_nandc_alloc:
2989 dma_unmap_resource(dev, res->start, resource_size(res),
2990 DMA_BIDIRECTIONAL, 0);
2992 return ret;
2995 static int qcom_nandc_remove(struct platform_device *pdev)
2997 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2998 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2999 struct qcom_nand_host *host;
3001 list_for_each_entry(host, &nandc->host_list, node)
3002 nand_release(&host->chip);
3005 qcom_nandc_unalloc(nandc);
3007 clk_disable_unprepare(nandc->aon_clk);
3008 clk_disable_unprepare(nandc->core_clk);
3010 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3011 DMA_BIDIRECTIONAL, 0);
3013 return 0;
3016 static const struct qcom_nandc_props ipq806x_nandc_props = {
3017 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3018 .is_bam = false,
3019 .dev_cmd_reg_start = 0x0,
3022 static const struct qcom_nandc_props ipq4019_nandc_props = {
3023 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3024 .is_bam = true,
3025 .dev_cmd_reg_start = 0x0,
3028 static const struct qcom_nandc_props ipq8074_nandc_props = {
3029 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3030 .is_bam = true,
3031 .dev_cmd_reg_start = 0x7000,
3035 * data will hold a struct pointer containing more differences once we support
3036 * more controller variants
3038 static const struct of_device_id qcom_nandc_of_match[] = {
3040 .compatible = "qcom,ipq806x-nand",
3041 .data = &ipq806x_nandc_props,
3044 .compatible = "qcom,ipq4019-nand",
3045 .data = &ipq4019_nandc_props,
3048 .compatible = "qcom,ipq8074-nand",
3049 .data = &ipq8074_nandc_props,
3053 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3055 static struct platform_driver qcom_nandc_driver = {
3056 .driver = {
3057 .name = "qcom-nandc",
3058 .of_match_table = qcom_nandc_of_match,
3060 .probe = qcom_nandc_probe,
3061 .remove = qcom_nandc_remove,
3063 module_platform_driver(qcom_nandc_driver);
3065 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3066 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3067 MODULE_LICENSE("GPL v2");