2 * Freescale QuadSPI driver.
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/errno.h>
15 #include <linux/platform_device.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
22 #include <linux/of_device.h>
23 #include <linux/timer.h>
24 #include <linux/jiffies.h>
25 #include <linux/completion.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/mutex.h>
30 #include <linux/pm_qos.h>
31 #include <linux/sizes.h>
33 /* Controller needs driver to swap endian */
34 #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
35 /* Controller needs 4x internal clock */
36 #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
38 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
39 * trigger data transfer even though extern data will not transferred.
41 #define QUADSPI_QUIRK_TKT253890 (1 << 2)
42 /* Controller cannot wake up from wait mode, TKT245618 */
43 #define QUADSPI_QUIRK_TKT245618 (1 << 3)
46 #define QUADSPI_MCR 0x00
47 #define QUADSPI_MCR_RESERVED_SHIFT 16
48 #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
49 #define QUADSPI_MCR_MDIS_SHIFT 14
50 #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
51 #define QUADSPI_MCR_CLR_TXF_SHIFT 11
52 #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
53 #define QUADSPI_MCR_CLR_RXF_SHIFT 10
54 #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
55 #define QUADSPI_MCR_DDR_EN_SHIFT 7
56 #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
57 #define QUADSPI_MCR_END_CFG_SHIFT 2
58 #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
59 #define QUADSPI_MCR_SWRSTHD_SHIFT 1
60 #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
61 #define QUADSPI_MCR_SWRSTSD_SHIFT 0
62 #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
64 #define QUADSPI_IPCR 0x08
65 #define QUADSPI_IPCR_SEQID_SHIFT 24
66 #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
68 #define QUADSPI_BUF0CR 0x10
69 #define QUADSPI_BUF1CR 0x14
70 #define QUADSPI_BUF2CR 0x18
71 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
73 #define QUADSPI_BUF3CR 0x1c
74 #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
75 #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
76 #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
77 #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
79 #define QUADSPI_BFGENCR 0x20
80 #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
81 #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
82 #define QUADSPI_BFGENCR_SEQID_SHIFT 12
83 #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
85 #define QUADSPI_BUF0IND 0x30
86 #define QUADSPI_BUF1IND 0x34
87 #define QUADSPI_BUF2IND 0x38
88 #define QUADSPI_SFAR 0x100
90 #define QUADSPI_SMPR 0x108
91 #define QUADSPI_SMPR_DDRSMP_SHIFT 16
92 #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
93 #define QUADSPI_SMPR_FSDLY_SHIFT 6
94 #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
95 #define QUADSPI_SMPR_FSPHS_SHIFT 5
96 #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
97 #define QUADSPI_SMPR_HSENA_SHIFT 0
98 #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
100 #define QUADSPI_RBSR 0x10c
101 #define QUADSPI_RBSR_RDBFL_SHIFT 8
102 #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
104 #define QUADSPI_RBCT 0x110
105 #define QUADSPI_RBCT_WMRK_MASK 0x1F
106 #define QUADSPI_RBCT_RXBRD_SHIFT 8
107 #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
109 #define QUADSPI_TBSR 0x150
110 #define QUADSPI_TBDR 0x154
111 #define QUADSPI_SR 0x15c
112 #define QUADSPI_SR_IP_ACC_SHIFT 1
113 #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
114 #define QUADSPI_SR_AHB_ACC_SHIFT 2
115 #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
117 #define QUADSPI_FR 0x160
118 #define QUADSPI_FR_TFF_MASK 0x1
120 #define QUADSPI_SFA1AD 0x180
121 #define QUADSPI_SFA2AD 0x184
122 #define QUADSPI_SFB1AD 0x188
123 #define QUADSPI_SFB2AD 0x18c
124 #define QUADSPI_RBDR 0x200
126 #define QUADSPI_LUTKEY 0x300
127 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
129 #define QUADSPI_LCKCR 0x304
130 #define QUADSPI_LCKER_LOCK 0x1
131 #define QUADSPI_LCKER_UNLOCK 0x2
133 #define QUADSPI_RSER 0x164
134 #define QUADSPI_RSER_TFIE (0x1 << 0)
136 #define QUADSPI_LUT_BASE 0x310
139 * The definition of the LUT register shows below:
141 * ---------------------------------------------------
142 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
143 * ---------------------------------------------------
145 #define OPRND0_SHIFT 0
147 #define INSTR0_SHIFT 10
148 #define OPRND1_SHIFT 16
150 /* Instruction set for the LUT register. */
158 #define LUT_FSL_READ 7
159 #define LUT_FSL_WRITE 8
160 #define LUT_JMP_ON_CS 9
161 #define LUT_ADDR_DDR 10
162 #define LUT_MODE_DDR 11
163 #define LUT_MODE2_DDR 12
164 #define LUT_MODE4_DDR 13
165 #define LUT_FSL_READ_DDR 14
166 #define LUT_FSL_WRITE_DDR 15
167 #define LUT_DATA_LEARN 16
170 * The PAD definitions for LUT register.
172 * The pad stands for the lines number of IO[0:3].
173 * For example, the Quad read need four IO lines, so you should
174 * set LUT_PAD4 which means we use four IO lines.
180 /* Oprands for the LUT register. */
181 #define ADDR24BIT 0x18
182 #define ADDR32BIT 0x20
184 /* Macros for constructing the LUT register. */
185 #define LUT0(ins, pad, opr) \
186 (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
187 ((LUT_##ins) << INSTR0_SHIFT))
189 #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
191 /* other macros for LUT register. */
192 #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
193 #define QUADSPI_LUT_NUM 64
195 /* SEQID -- we can have 16 seqids at most. */
201 #define SEQID_CHIP_ERASE 5
206 #define SEQID_EN4B 10
207 #define SEQID_BRWR 11
209 #define QUADSPI_MIN_IOMAP SZ_4M
211 enum fsl_qspi_devtype
{
220 struct fsl_qspi_devtype_data
{
221 enum fsl_qspi_devtype devtype
;
228 static const struct fsl_qspi_devtype_data vybrid_data
= {
229 .devtype
= FSL_QUADSPI_VYBRID
,
232 .ahb_buf_size
= 1024,
233 .driver_data
= QUADSPI_QUIRK_SWAP_ENDIAN
,
236 static const struct fsl_qspi_devtype_data imx6sx_data
= {
237 .devtype
= FSL_QUADSPI_IMX6SX
,
240 .ahb_buf_size
= 1024,
241 .driver_data
= QUADSPI_QUIRK_4X_INT_CLK
242 | QUADSPI_QUIRK_TKT245618
,
245 static const struct fsl_qspi_devtype_data imx7d_data
= {
246 .devtype
= FSL_QUADSPI_IMX7D
,
249 .ahb_buf_size
= 1024,
250 .driver_data
= QUADSPI_QUIRK_TKT253890
251 | QUADSPI_QUIRK_4X_INT_CLK
,
254 static const struct fsl_qspi_devtype_data imx6ul_data
= {
255 .devtype
= FSL_QUADSPI_IMX6UL
,
258 .ahb_buf_size
= 1024,
259 .driver_data
= QUADSPI_QUIRK_TKT253890
260 | QUADSPI_QUIRK_4X_INT_CLK
,
263 static struct fsl_qspi_devtype_data ls1021a_data
= {
264 .devtype
= FSL_QUADSPI_LS1021A
,
267 .ahb_buf_size
= 1024,
271 static const struct fsl_qspi_devtype_data ls2080a_data
= {
272 .devtype
= FSL_QUADSPI_LS2080A
,
275 .ahb_buf_size
= 1024,
276 .driver_data
= QUADSPI_QUIRK_TKT253890
,
280 #define FSL_QSPI_MAX_CHIP 4
282 struct spi_nor nor
[FSL_QSPI_MAX_CHIP
];
283 void __iomem
*iobase
;
284 void __iomem
*ahb_addr
;
288 struct clk
*clk
, *clk_en
;
291 const struct fsl_qspi_devtype_data
*devtype_data
;
295 unsigned int chip_base_addr
; /* We may support two chips. */
296 bool has_second_chip
;
299 struct pm_qos_request pm_qos_req
;
302 static inline int needs_swap_endian(struct fsl_qspi
*q
)
304 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_SWAP_ENDIAN
;
307 static inline int needs_4x_clock(struct fsl_qspi
*q
)
309 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_4X_INT_CLK
;
312 static inline int needs_fill_txfifo(struct fsl_qspi
*q
)
314 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_TKT253890
;
317 static inline int needs_wakeup_wait_mode(struct fsl_qspi
*q
)
319 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_TKT245618
;
323 * R/W functions for big- or little-endian registers:
324 * The qSPI controller's endian is independent of the CPU core's endian.
325 * So far, although the CPU core is little-endian but the qSPI have two
326 * versions for big-endian and little-endian.
328 static void qspi_writel(struct fsl_qspi
*q
, u32 val
, void __iomem
*addr
)
331 iowrite32be(val
, addr
);
333 iowrite32(val
, addr
);
336 static u32
qspi_readl(struct fsl_qspi
*q
, void __iomem
*addr
)
339 return ioread32be(addr
);
341 return ioread32(addr
);
345 * An IC bug makes us to re-arrange the 32-bit data.
346 * The following chips, such as IMX6SLX, have fixed this bug.
348 static inline u32
fsl_qspi_endian_xchg(struct fsl_qspi
*q
, u32 a
)
350 return needs_swap_endian(q
) ? __swab32(a
) : a
;
353 static inline void fsl_qspi_unlock_lut(struct fsl_qspi
*q
)
355 qspi_writel(q
, QUADSPI_LUTKEY_VALUE
, q
->iobase
+ QUADSPI_LUTKEY
);
356 qspi_writel(q
, QUADSPI_LCKER_UNLOCK
, q
->iobase
+ QUADSPI_LCKCR
);
359 static inline void fsl_qspi_lock_lut(struct fsl_qspi
*q
)
361 qspi_writel(q
, QUADSPI_LUTKEY_VALUE
, q
->iobase
+ QUADSPI_LUTKEY
);
362 qspi_writel(q
, QUADSPI_LCKER_LOCK
, q
->iobase
+ QUADSPI_LCKCR
);
365 static irqreturn_t
fsl_qspi_irq_handler(int irq
, void *dev_id
)
367 struct fsl_qspi
*q
= dev_id
;
370 /* clear interrupt */
371 reg
= qspi_readl(q
, q
->iobase
+ QUADSPI_FR
);
372 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_FR
);
374 if (reg
& QUADSPI_FR_TFF_MASK
)
377 dev_dbg(q
->dev
, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q
->chip_base_addr
, reg
);
381 static void fsl_qspi_init_lut(struct fsl_qspi
*q
)
383 void __iomem
*base
= q
->iobase
;
384 int rxfifo
= q
->devtype_data
->rxfifo
;
388 struct spi_nor
*nor
= &q
->nor
[0];
389 u8 addrlen
= (nor
->addr_width
== 3) ? ADDR24BIT
: ADDR32BIT
;
390 u8 read_op
= nor
->read_opcode
;
391 u8 read_dm
= nor
->read_dummy
;
393 fsl_qspi_unlock_lut(q
);
395 /* Clear all the LUT table */
396 for (i
= 0; i
< QUADSPI_LUT_NUM
; i
++)
397 qspi_writel(q
, 0, base
+ QUADSPI_LUT_BASE
+ i
* 4);
400 lut_base
= SEQID_READ
* 4;
402 qspi_writel(q
, LUT0(CMD
, PAD1
, read_op
) | LUT1(ADDR
, PAD1
, addrlen
),
403 base
+ QUADSPI_LUT(lut_base
));
404 qspi_writel(q
, LUT0(DUMMY
, PAD1
, read_dm
) |
405 LUT1(FSL_READ
, PAD4
, rxfifo
),
406 base
+ QUADSPI_LUT(lut_base
+ 1));
409 lut_base
= SEQID_WREN
* 4;
410 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WREN
),
411 base
+ QUADSPI_LUT(lut_base
));
414 lut_base
= SEQID_PP
* 4;
416 qspi_writel(q
, LUT0(CMD
, PAD1
, nor
->program_opcode
) |
417 LUT1(ADDR
, PAD1
, addrlen
),
418 base
+ QUADSPI_LUT(lut_base
));
419 qspi_writel(q
, LUT0(FSL_WRITE
, PAD1
, 0),
420 base
+ QUADSPI_LUT(lut_base
+ 1));
423 lut_base
= SEQID_RDSR
* 4;
424 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDSR
) |
425 LUT1(FSL_READ
, PAD1
, 0x1),
426 base
+ QUADSPI_LUT(lut_base
));
429 lut_base
= SEQID_SE
* 4;
431 qspi_writel(q
, LUT0(CMD
, PAD1
, nor
->erase_opcode
) |
432 LUT1(ADDR
, PAD1
, addrlen
),
433 base
+ QUADSPI_LUT(lut_base
));
435 /* Erase the whole chip */
436 lut_base
= SEQID_CHIP_ERASE
* 4;
437 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_CHIP_ERASE
),
438 base
+ QUADSPI_LUT(lut_base
));
441 lut_base
= SEQID_RDID
* 4;
442 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDID
) |
443 LUT1(FSL_READ
, PAD1
, 0x8),
444 base
+ QUADSPI_LUT(lut_base
));
447 lut_base
= SEQID_WRSR
* 4;
448 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WRSR
) |
449 LUT1(FSL_WRITE
, PAD1
, 0x2),
450 base
+ QUADSPI_LUT(lut_base
));
452 /* Read Configuration Register */
453 lut_base
= SEQID_RDCR
* 4;
454 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDCR
) |
455 LUT1(FSL_READ
, PAD1
, 0x1),
456 base
+ QUADSPI_LUT(lut_base
));
459 lut_base
= SEQID_WRDI
* 4;
460 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WRDI
),
461 base
+ QUADSPI_LUT(lut_base
));
463 /* Enter 4 Byte Mode (Micron) */
464 lut_base
= SEQID_EN4B
* 4;
465 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_EN4B
),
466 base
+ QUADSPI_LUT(lut_base
));
468 /* Enter 4 Byte Mode (Spansion) */
469 lut_base
= SEQID_BRWR
* 4;
470 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_BRWR
),
471 base
+ QUADSPI_LUT(lut_base
));
473 fsl_qspi_lock_lut(q
);
476 /* Get the SEQID for the command */
477 static int fsl_qspi_get_seqid(struct fsl_qspi
*q
, u8 cmd
)
480 case SPINOR_OP_READ_1_1_4
:
481 case SPINOR_OP_READ_1_1_4_4B
:
491 case SPINOR_OP_CHIP_ERASE
:
492 return SEQID_CHIP_ERASE
;
506 if (cmd
== q
->nor
[0].erase_opcode
)
508 dev_err(q
->dev
, "Unsupported cmd 0x%.2x\n", cmd
);
515 fsl_qspi_runcmd(struct fsl_qspi
*q
, u8 cmd
, unsigned int addr
, int len
)
517 void __iomem
*base
= q
->iobase
;
522 init_completion(&q
->c
);
523 dev_dbg(q
->dev
, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
524 q
->chip_base_addr
, addr
, len
, cmd
);
527 reg
= qspi_readl(q
, base
+ QUADSPI_MCR
);
529 qspi_writel(q
, q
->memmap_phy
+ q
->chip_base_addr
+ addr
,
530 base
+ QUADSPI_SFAR
);
531 qspi_writel(q
, QUADSPI_RBCT_WMRK_MASK
| QUADSPI_RBCT_RXBRD_USEIPS
,
532 base
+ QUADSPI_RBCT
);
533 qspi_writel(q
, reg
| QUADSPI_MCR_CLR_RXF_MASK
, base
+ QUADSPI_MCR
);
536 reg2
= qspi_readl(q
, base
+ QUADSPI_SR
);
537 if (reg2
& (QUADSPI_SR_IP_ACC_MASK
| QUADSPI_SR_AHB_ACC_MASK
)) {
539 dev_dbg(q
->dev
, "The controller is busy, 0x%x\n", reg2
);
545 /* trigger the LUT now */
546 seqid
= fsl_qspi_get_seqid(q
, cmd
);
550 qspi_writel(q
, (seqid
<< QUADSPI_IPCR_SEQID_SHIFT
) | len
,
551 base
+ QUADSPI_IPCR
);
553 /* Wait for the interrupt. */
554 if (!wait_for_completion_timeout(&q
->c
, msecs_to_jiffies(1000))) {
556 "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
557 cmd
, addr
, qspi_readl(q
, base
+ QUADSPI_FR
),
558 qspi_readl(q
, base
+ QUADSPI_SR
));
564 /* restore the MCR */
565 qspi_writel(q
, reg
, base
+ QUADSPI_MCR
);
570 /* Read out the data from the QUADSPI_RBDR buffer registers. */
571 static void fsl_qspi_read_data(struct fsl_qspi
*q
, int len
, u8
*rxbuf
)
577 tmp
= qspi_readl(q
, q
->iobase
+ QUADSPI_RBDR
+ i
* 4);
578 tmp
= fsl_qspi_endian_xchg(q
, tmp
);
579 dev_dbg(q
->dev
, "chip addr:0x%.8x, rcv:0x%.8x\n",
580 q
->chip_base_addr
, tmp
);
583 *((u32
*)rxbuf
) = tmp
;
586 memcpy(rxbuf
, &tmp
, len
);
596 * If we have changed the content of the flash by writing or erasing,
597 * we need to invalidate the AHB buffer. If we do not do so, we may read out
598 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
599 * domain at the same time.
601 static inline void fsl_qspi_invalid(struct fsl_qspi
*q
)
605 reg
= qspi_readl(q
, q
->iobase
+ QUADSPI_MCR
);
606 reg
|= QUADSPI_MCR_SWRSTHD_MASK
| QUADSPI_MCR_SWRSTSD_MASK
;
607 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_MCR
);
610 * The minimum delay : 1 AHB + 2 SFCK clocks.
611 * Delay 1 us is enough.
615 reg
&= ~(QUADSPI_MCR_SWRSTHD_MASK
| QUADSPI_MCR_SWRSTSD_MASK
);
616 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_MCR
);
619 static ssize_t
fsl_qspi_nor_write(struct fsl_qspi
*q
, struct spi_nor
*nor
,
620 u8 opcode
, unsigned int to
, u32
*txbuf
,
626 dev_dbg(q
->dev
, "to 0x%.8x:0x%.8x, len : %d\n",
627 q
->chip_base_addr
, to
, count
);
629 /* clear the TX FIFO. */
630 tmp
= qspi_readl(q
, q
->iobase
+ QUADSPI_MCR
);
631 qspi_writel(q
, tmp
| QUADSPI_MCR_CLR_TXF_MASK
, q
->iobase
+ QUADSPI_MCR
);
633 /* fill the TX data to the FIFO */
634 for (j
= 0, i
= ((count
+ 3) / 4); j
< i
; j
++) {
635 tmp
= fsl_qspi_endian_xchg(q
, *txbuf
);
636 qspi_writel(q
, tmp
, q
->iobase
+ QUADSPI_TBDR
);
640 /* fill the TXFIFO upto 16 bytes for i.MX7d */
641 if (needs_fill_txfifo(q
))
643 qspi_writel(q
, tmp
, q
->iobase
+ QUADSPI_TBDR
);
646 ret
= fsl_qspi_runcmd(q
, opcode
, to
, count
);
654 static void fsl_qspi_set_map_addr(struct fsl_qspi
*q
)
656 int nor_size
= q
->nor_size
;
657 void __iomem
*base
= q
->iobase
;
659 qspi_writel(q
, nor_size
+ q
->memmap_phy
, base
+ QUADSPI_SFA1AD
);
660 qspi_writel(q
, nor_size
* 2 + q
->memmap_phy
, base
+ QUADSPI_SFA2AD
);
661 qspi_writel(q
, nor_size
* 3 + q
->memmap_phy
, base
+ QUADSPI_SFB1AD
);
662 qspi_writel(q
, nor_size
* 4 + q
->memmap_phy
, base
+ QUADSPI_SFB2AD
);
666 * There are two different ways to read out the data from the flash:
667 * the "IP Command Read" and the "AHB Command Read".
669 * The IC guy suggests we use the "AHB Command Read" which is faster
670 * then the "IP Command Read". (What's more is that there is a bug in
671 * the "IP Command Read" in the Vybrid.)
673 * After we set up the registers for the "AHB Command Read", we can use
674 * the memcpy to read the data directly. A "missed" access to the buffer
675 * causes the controller to clear the buffer, and use the sequence pointed
676 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
678 static int fsl_qspi_init_ahb_read(struct fsl_qspi
*q
)
680 void __iomem
*base
= q
->iobase
;
683 /* AHB configuration for access buffer 0/1/2 .*/
684 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF0CR
);
685 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF1CR
);
686 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF2CR
);
688 * Set ADATSZ with the maximum AHB buffer size to improve the
691 qspi_writel(q
, QUADSPI_BUF3CR_ALLMST_MASK
|
692 ((q
->devtype_data
->ahb_buf_size
/ 8)
693 << QUADSPI_BUF3CR_ADATSZ_SHIFT
),
694 base
+ QUADSPI_BUF3CR
);
696 /* We only use the buffer3 */
697 qspi_writel(q
, 0, base
+ QUADSPI_BUF0IND
);
698 qspi_writel(q
, 0, base
+ QUADSPI_BUF1IND
);
699 qspi_writel(q
, 0, base
+ QUADSPI_BUF2IND
);
701 /* Set the default lut sequence for AHB Read. */
702 seqid
= fsl_qspi_get_seqid(q
, q
->nor
[0].read_opcode
);
706 qspi_writel(q
, seqid
<< QUADSPI_BFGENCR_SEQID_SHIFT
,
707 q
->iobase
+ QUADSPI_BFGENCR
);
712 /* This function was used to prepare and enable QSPI clock */
713 static int fsl_qspi_clk_prep_enable(struct fsl_qspi
*q
)
717 ret
= clk_prepare_enable(q
->clk_en
);
721 ret
= clk_prepare_enable(q
->clk
);
723 clk_disable_unprepare(q
->clk_en
);
727 if (needs_wakeup_wait_mode(q
))
728 pm_qos_add_request(&q
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
, 0);
733 /* This function was used to disable and unprepare QSPI clock */
734 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi
*q
)
736 if (needs_wakeup_wait_mode(q
))
737 pm_qos_remove_request(&q
->pm_qos_req
);
739 clk_disable_unprepare(q
->clk
);
740 clk_disable_unprepare(q
->clk_en
);
744 /* We use this function to do some basic init for spi_nor_scan(). */
745 static int fsl_qspi_nor_setup(struct fsl_qspi
*q
)
747 void __iomem
*base
= q
->iobase
;
751 /* disable and unprepare clock to avoid glitch pass to controller */
752 fsl_qspi_clk_disable_unprep(q
);
754 /* the default frequency, we will change it in the future. */
755 ret
= clk_set_rate(q
->clk
, 66000000);
759 ret
= fsl_qspi_clk_prep_enable(q
);
763 /* Reset the module */
764 qspi_writel(q
, QUADSPI_MCR_SWRSTSD_MASK
| QUADSPI_MCR_SWRSTHD_MASK
,
768 /* Init the LUT table. */
769 fsl_qspi_init_lut(q
);
771 /* Disable the module */
772 qspi_writel(q
, QUADSPI_MCR_MDIS_MASK
| QUADSPI_MCR_RESERVED_MASK
,
775 reg
= qspi_readl(q
, base
+ QUADSPI_SMPR
);
776 qspi_writel(q
, reg
& ~(QUADSPI_SMPR_FSDLY_MASK
777 | QUADSPI_SMPR_FSPHS_MASK
778 | QUADSPI_SMPR_HSENA_MASK
779 | QUADSPI_SMPR_DDRSMP_MASK
), base
+ QUADSPI_SMPR
);
781 /* Enable the module */
782 qspi_writel(q
, QUADSPI_MCR_RESERVED_MASK
| QUADSPI_MCR_END_CFG_MASK
,
785 /* clear all interrupt status */
786 qspi_writel(q
, 0xffffffff, q
->iobase
+ QUADSPI_FR
);
788 /* enable the interrupt */
789 qspi_writel(q
, QUADSPI_RSER_TFIE
, q
->iobase
+ QUADSPI_RSER
);
794 static int fsl_qspi_nor_setup_last(struct fsl_qspi
*q
)
796 unsigned long rate
= q
->clk_rate
;
799 if (needs_4x_clock(q
))
802 /* disable and unprepare clock to avoid glitch pass to controller */
803 fsl_qspi_clk_disable_unprep(q
);
805 ret
= clk_set_rate(q
->clk
, rate
);
809 ret
= fsl_qspi_clk_prep_enable(q
);
813 /* Init the LUT table again. */
814 fsl_qspi_init_lut(q
);
816 /* Init for AHB read */
817 return fsl_qspi_init_ahb_read(q
);
820 static const struct of_device_id fsl_qspi_dt_ids
[] = {
821 { .compatible
= "fsl,vf610-qspi", .data
= &vybrid_data
, },
822 { .compatible
= "fsl,imx6sx-qspi", .data
= &imx6sx_data
, },
823 { .compatible
= "fsl,imx7d-qspi", .data
= &imx7d_data
, },
824 { .compatible
= "fsl,imx6ul-qspi", .data
= &imx6ul_data
, },
825 { .compatible
= "fsl,ls1021a-qspi", .data
= (void *)&ls1021a_data
, },
826 { .compatible
= "fsl,ls2080a-qspi", .data
= &ls2080a_data
, },
829 MODULE_DEVICE_TABLE(of
, fsl_qspi_dt_ids
);
831 static void fsl_qspi_set_base_addr(struct fsl_qspi
*q
, struct spi_nor
*nor
)
833 q
->chip_base_addr
= q
->nor_size
* (nor
- q
->nor
);
836 static int fsl_qspi_read_reg(struct spi_nor
*nor
, u8 opcode
, u8
*buf
, int len
)
839 struct fsl_qspi
*q
= nor
->priv
;
841 ret
= fsl_qspi_runcmd(q
, opcode
, 0, len
);
845 fsl_qspi_read_data(q
, len
, buf
);
849 static int fsl_qspi_write_reg(struct spi_nor
*nor
, u8 opcode
, u8
*buf
, int len
)
851 struct fsl_qspi
*q
= nor
->priv
;
855 ret
= fsl_qspi_runcmd(q
, opcode
, 0, 1);
859 if (opcode
== SPINOR_OP_CHIP_ERASE
)
862 } else if (len
> 0) {
863 ret
= fsl_qspi_nor_write(q
, nor
, opcode
, 0,
868 dev_err(q
->dev
, "invalid cmd %d\n", opcode
);
875 static ssize_t
fsl_qspi_write(struct spi_nor
*nor
, loff_t to
,
876 size_t len
, const u_char
*buf
)
878 struct fsl_qspi
*q
= nor
->priv
;
879 ssize_t ret
= fsl_qspi_nor_write(q
, nor
, nor
->program_opcode
, to
,
882 /* invalid the data in the AHB buffer. */
887 static ssize_t
fsl_qspi_read(struct spi_nor
*nor
, loff_t from
,
888 size_t len
, u_char
*buf
)
890 struct fsl_qspi
*q
= nor
->priv
;
891 u8 cmd
= nor
->read_opcode
;
893 /* if necessary,ioremap buffer before AHB read, */
895 q
->memmap_offs
= q
->chip_base_addr
+ from
;
896 q
->memmap_len
= len
> QUADSPI_MIN_IOMAP
? len
: QUADSPI_MIN_IOMAP
;
898 q
->ahb_addr
= ioremap_nocache(
899 q
->memmap_phy
+ q
->memmap_offs
,
902 dev_err(q
->dev
, "ioremap failed\n");
905 /* ioremap if the data requested is out of range */
906 } else if (q
->chip_base_addr
+ from
< q
->memmap_offs
907 || q
->chip_base_addr
+ from
+ len
>
908 q
->memmap_offs
+ q
->memmap_len
) {
909 iounmap(q
->ahb_addr
);
911 q
->memmap_offs
= q
->chip_base_addr
+ from
;
912 q
->memmap_len
= len
> QUADSPI_MIN_IOMAP
? len
: QUADSPI_MIN_IOMAP
;
913 q
->ahb_addr
= ioremap_nocache(
914 q
->memmap_phy
+ q
->memmap_offs
,
917 dev_err(q
->dev
, "ioremap failed\n");
922 dev_dbg(q
->dev
, "cmd [%x],read from %p, len:%zd\n",
923 cmd
, q
->ahb_addr
+ q
->chip_base_addr
+ from
- q
->memmap_offs
,
926 /* Read out the data directly from the AHB buffer.*/
927 memcpy(buf
, q
->ahb_addr
+ q
->chip_base_addr
+ from
- q
->memmap_offs
,
933 static int fsl_qspi_erase(struct spi_nor
*nor
, loff_t offs
)
935 struct fsl_qspi
*q
= nor
->priv
;
938 dev_dbg(nor
->dev
, "%dKiB at 0x%08x:0x%08x\n",
939 nor
->mtd
.erasesize
/ 1024, q
->chip_base_addr
, (u32
)offs
);
941 ret
= fsl_qspi_runcmd(q
, nor
->erase_opcode
, offs
, 0);
949 static int fsl_qspi_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
951 struct fsl_qspi
*q
= nor
->priv
;
954 mutex_lock(&q
->lock
);
956 ret
= fsl_qspi_clk_prep_enable(q
);
960 fsl_qspi_set_base_addr(q
, nor
);
964 mutex_unlock(&q
->lock
);
968 static void fsl_qspi_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
970 struct fsl_qspi
*q
= nor
->priv
;
972 fsl_qspi_clk_disable_unprep(q
);
973 mutex_unlock(&q
->lock
);
976 static int fsl_qspi_probe(struct platform_device
*pdev
)
978 const struct spi_nor_hwcaps hwcaps
= {
979 .mask
= SNOR_HWCAPS_READ_1_1_4
|
982 struct device_node
*np
= pdev
->dev
.of_node
;
983 struct device
*dev
= &pdev
->dev
;
985 struct resource
*res
;
987 struct mtd_info
*mtd
;
990 q
= devm_kzalloc(dev
, sizeof(*q
), GFP_KERNEL
);
994 q
->nor_num
= of_get_child_count(dev
->of_node
);
995 if (!q
->nor_num
|| q
->nor_num
> FSL_QSPI_MAX_CHIP
)
999 q
->devtype_data
= of_device_get_match_data(dev
);
1000 if (!q
->devtype_data
)
1002 platform_set_drvdata(pdev
, q
);
1004 /* find the resources */
1005 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "QuadSPI");
1006 q
->iobase
= devm_ioremap_resource(dev
, res
);
1007 if (IS_ERR(q
->iobase
))
1008 return PTR_ERR(q
->iobase
);
1010 q
->big_endian
= of_property_read_bool(np
, "big-endian");
1011 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1013 if (!devm_request_mem_region(dev
, res
->start
, resource_size(res
),
1015 dev_err(dev
, "can't request region for resource %pR\n", res
);
1019 q
->memmap_phy
= res
->start
;
1021 /* find the clocks */
1022 q
->clk_en
= devm_clk_get(dev
, "qspi_en");
1023 if (IS_ERR(q
->clk_en
))
1024 return PTR_ERR(q
->clk_en
);
1026 q
->clk
= devm_clk_get(dev
, "qspi");
1028 return PTR_ERR(q
->clk
);
1030 ret
= fsl_qspi_clk_prep_enable(q
);
1032 dev_err(dev
, "can not enable the clock\n");
1037 ret
= platform_get_irq(pdev
, 0);
1039 dev_err(dev
, "failed to get the irq: %d\n", ret
);
1043 ret
= devm_request_irq(dev
, ret
,
1044 fsl_qspi_irq_handler
, 0, pdev
->name
, q
);
1046 dev_err(dev
, "failed to request irq: %d\n", ret
);
1050 ret
= fsl_qspi_nor_setup(q
);
1054 if (of_get_property(np
, "fsl,qspi-has-second-chip", NULL
))
1055 q
->has_second_chip
= true;
1057 mutex_init(&q
->lock
);
1059 /* iterate the subnodes. */
1060 for_each_available_child_of_node(dev
->of_node
, np
) {
1061 /* skip the holes */
1062 if (!q
->has_second_chip
)
1069 spi_nor_set_flash_node(nor
, np
);
1072 if (q
->nor_num
> 1 && !mtd
->name
) {
1075 ret
= of_property_read_u32(np
, "reg", &spiflash_idx
);
1077 mtd
->name
= devm_kasprintf(dev
, GFP_KERNEL
,
1086 dev_warn(dev
, "reg property is missing\n");
1090 /* fill the hooks */
1091 nor
->read_reg
= fsl_qspi_read_reg
;
1092 nor
->write_reg
= fsl_qspi_write_reg
;
1093 nor
->read
= fsl_qspi_read
;
1094 nor
->write
= fsl_qspi_write
;
1095 nor
->erase
= fsl_qspi_erase
;
1097 nor
->prepare
= fsl_qspi_prep
;
1098 nor
->unprepare
= fsl_qspi_unprep
;
1100 ret
= of_property_read_u32(np
, "spi-max-frequency",
1105 /* set the chip address for READID */
1106 fsl_qspi_set_base_addr(q
, nor
);
1108 ret
= spi_nor_scan(nor
, NULL
, &hwcaps
);
1112 ret
= mtd_device_register(mtd
, NULL
, 0);
1116 /* Set the correct NOR size now. */
1117 if (q
->nor_size
== 0) {
1118 q
->nor_size
= mtd
->size
;
1120 /* Map the SPI NOR to accessiable address */
1121 fsl_qspi_set_map_addr(q
);
1125 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1126 * may writes 265 bytes per time. The write is working in the
1127 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1130 * So shrink the spi_nor->page_size if it is larger then the
1133 if (nor
->page_size
> q
->devtype_data
->txfifo
)
1134 nor
->page_size
= q
->devtype_data
->txfifo
;
1139 /* finish the rest init. */
1140 ret
= fsl_qspi_nor_setup_last(q
);
1142 goto last_init_failed
;
1144 fsl_qspi_clk_disable_unprep(q
);
1148 for (i
= 0; i
< q
->nor_num
; i
++) {
1149 /* skip the holes */
1150 if (!q
->has_second_chip
)
1152 mtd_device_unregister(&q
->nor
[i
].mtd
);
1155 mutex_destroy(&q
->lock
);
1157 fsl_qspi_clk_disable_unprep(q
);
1159 dev_err(dev
, "Freescale QuadSPI probe failed\n");
1163 static int fsl_qspi_remove(struct platform_device
*pdev
)
1165 struct fsl_qspi
*q
= platform_get_drvdata(pdev
);
1168 for (i
= 0; i
< q
->nor_num
; i
++) {
1169 /* skip the holes */
1170 if (!q
->has_second_chip
)
1172 mtd_device_unregister(&q
->nor
[i
].mtd
);
1175 /* disable the hardware */
1176 qspi_writel(q
, QUADSPI_MCR_MDIS_MASK
, q
->iobase
+ QUADSPI_MCR
);
1177 qspi_writel(q
, 0x0, q
->iobase
+ QUADSPI_RSER
);
1179 mutex_destroy(&q
->lock
);
1182 iounmap(q
->ahb_addr
);
1187 static int fsl_qspi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1192 static int fsl_qspi_resume(struct platform_device
*pdev
)
1195 struct fsl_qspi
*q
= platform_get_drvdata(pdev
);
1197 ret
= fsl_qspi_clk_prep_enable(q
);
1201 fsl_qspi_nor_setup(q
);
1202 fsl_qspi_set_map_addr(q
);
1203 fsl_qspi_nor_setup_last(q
);
1205 fsl_qspi_clk_disable_unprep(q
);
1210 static struct platform_driver fsl_qspi_driver
= {
1212 .name
= "fsl-quadspi",
1213 .of_match_table
= fsl_qspi_dt_ids
,
1215 .probe
= fsl_qspi_probe
,
1216 .remove
= fsl_qspi_remove
,
1217 .suspend
= fsl_qspi_suspend
,
1218 .resume
= fsl_qspi_resume
,
1220 module_platform_driver(fsl_qspi_driver
);
1222 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1223 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1224 MODULE_LICENSE("GPL v2");