Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / can / m_can / m_can.c
blobdeb274a19ba003c9061f127e28ec57521c4f877b
1 /*
2 * CAN bus driver for Bosch M_CAN controller
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/iopoll.h>
28 #include <linux/can/dev.h>
29 #include <linux/pinctrl/consumer.h>
31 /* napi related */
32 #define M_CAN_NAPI_WEIGHT 64
34 /* message ram configuration data length */
35 #define MRAM_CFG_LEN 8
37 /* registers definition */
38 enum m_can_reg {
39 M_CAN_CREL = 0x0,
40 M_CAN_ENDN = 0x4,
41 M_CAN_CUST = 0x8,
42 M_CAN_DBTP = 0xc,
43 M_CAN_TEST = 0x10,
44 M_CAN_RWD = 0x14,
45 M_CAN_CCCR = 0x18,
46 M_CAN_NBTP = 0x1c,
47 M_CAN_TSCC = 0x20,
48 M_CAN_TSCV = 0x24,
49 M_CAN_TOCC = 0x28,
50 M_CAN_TOCV = 0x2c,
51 M_CAN_ECR = 0x40,
52 M_CAN_PSR = 0x44,
53 /* TDCR Register only available for version >=3.1.x */
54 M_CAN_TDCR = 0x48,
55 M_CAN_IR = 0x50,
56 M_CAN_IE = 0x54,
57 M_CAN_ILS = 0x58,
58 M_CAN_ILE = 0x5c,
59 M_CAN_GFC = 0x80,
60 M_CAN_SIDFC = 0x84,
61 M_CAN_XIDFC = 0x88,
62 M_CAN_XIDAM = 0x90,
63 M_CAN_HPMS = 0x94,
64 M_CAN_NDAT1 = 0x98,
65 M_CAN_NDAT2 = 0x9c,
66 M_CAN_RXF0C = 0xa0,
67 M_CAN_RXF0S = 0xa4,
68 M_CAN_RXF0A = 0xa8,
69 M_CAN_RXBC = 0xac,
70 M_CAN_RXF1C = 0xb0,
71 M_CAN_RXF1S = 0xb4,
72 M_CAN_RXF1A = 0xb8,
73 M_CAN_RXESC = 0xbc,
74 M_CAN_TXBC = 0xc0,
75 M_CAN_TXFQS = 0xc4,
76 M_CAN_TXESC = 0xc8,
77 M_CAN_TXBRP = 0xcc,
78 M_CAN_TXBAR = 0xd0,
79 M_CAN_TXBCR = 0xd4,
80 M_CAN_TXBTO = 0xd8,
81 M_CAN_TXBCF = 0xdc,
82 M_CAN_TXBTIE = 0xe0,
83 M_CAN_TXBCIE = 0xe4,
84 M_CAN_TXEFC = 0xf0,
85 M_CAN_TXEFS = 0xf4,
86 M_CAN_TXEFA = 0xf8,
89 /* m_can lec values */
90 enum m_can_lec_type {
91 LEC_NO_ERROR = 0,
92 LEC_STUFF_ERROR,
93 LEC_FORM_ERROR,
94 LEC_ACK_ERROR,
95 LEC_BIT1_ERROR,
96 LEC_BIT0_ERROR,
97 LEC_CRC_ERROR,
98 LEC_UNUSED,
101 enum m_can_mram_cfg {
102 MRAM_SIDF = 0,
103 MRAM_XIDF,
104 MRAM_RXF0,
105 MRAM_RXF1,
106 MRAM_RXB,
107 MRAM_TXE,
108 MRAM_TXB,
109 MRAM_CFG_NUM,
112 /* Core Release Register (CREL) */
113 #define CREL_REL_SHIFT 28
114 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
115 #define CREL_STEP_SHIFT 24
116 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
117 #define CREL_SUBSTEP_SHIFT 20
118 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
120 /* Data Bit Timing & Prescaler Register (DBTP) */
121 #define DBTP_TDC BIT(23)
122 #define DBTP_DBRP_SHIFT 16
123 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
124 #define DBTP_DTSEG1_SHIFT 8
125 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
126 #define DBTP_DTSEG2_SHIFT 4
127 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
128 #define DBTP_DSJW_SHIFT 0
129 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
131 /* Transmitter Delay Compensation Register (TDCR) */
132 #define TDCR_TDCO_SHIFT 8
133 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
134 #define TDCR_TDCF_SHIFT 0
135 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
137 /* Test Register (TEST) */
138 #define TEST_LBCK BIT(4)
140 /* CC Control Register(CCCR) */
141 #define CCCR_CMR_MASK 0x3
142 #define CCCR_CMR_SHIFT 10
143 #define CCCR_CMR_CANFD 0x1
144 #define CCCR_CMR_CANFD_BRS 0x2
145 #define CCCR_CMR_CAN 0x3
146 #define CCCR_CME_MASK 0x3
147 #define CCCR_CME_SHIFT 8
148 #define CCCR_CME_CAN 0
149 #define CCCR_CME_CANFD 0x1
150 #define CCCR_CME_CANFD_BRS 0x2
151 #define CCCR_TXP BIT(14)
152 #define CCCR_TEST BIT(7)
153 #define CCCR_MON BIT(5)
154 #define CCCR_CSR BIT(4)
155 #define CCCR_CSA BIT(3)
156 #define CCCR_ASM BIT(2)
157 #define CCCR_CCE BIT(1)
158 #define CCCR_INIT BIT(0)
159 #define CCCR_CANFD 0x10
160 /* for version >=3.1.x */
161 #define CCCR_EFBI BIT(13)
162 #define CCCR_PXHD BIT(12)
163 #define CCCR_BRSE BIT(9)
164 #define CCCR_FDOE BIT(8)
165 /* only for version >=3.2.x */
166 #define CCCR_NISO BIT(15)
168 /* Nominal Bit Timing & Prescaler Register (NBTP) */
169 #define NBTP_NSJW_SHIFT 25
170 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
171 #define NBTP_NBRP_SHIFT 16
172 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
173 #define NBTP_NTSEG1_SHIFT 8
174 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
175 #define NBTP_NTSEG2_SHIFT 0
176 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
178 /* Error Counter Register(ECR) */
179 #define ECR_RP BIT(15)
180 #define ECR_REC_SHIFT 8
181 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
182 #define ECR_TEC_SHIFT 0
183 #define ECR_TEC_MASK 0xff
185 /* Protocol Status Register(PSR) */
186 #define PSR_BO BIT(7)
187 #define PSR_EW BIT(6)
188 #define PSR_EP BIT(5)
189 #define PSR_LEC_MASK 0x7
191 /* Interrupt Register(IR) */
192 #define IR_ALL_INT 0xffffffff
194 /* Renamed bits for versions > 3.1.x */
195 #define IR_ARA BIT(29)
196 #define IR_PED BIT(28)
197 #define IR_PEA BIT(27)
199 /* Bits for version 3.0.x */
200 #define IR_STE BIT(31)
201 #define IR_FOE BIT(30)
202 #define IR_ACKE BIT(29)
203 #define IR_BE BIT(28)
204 #define IR_CRCE BIT(27)
205 #define IR_WDI BIT(26)
206 #define IR_BO BIT(25)
207 #define IR_EW BIT(24)
208 #define IR_EP BIT(23)
209 #define IR_ELO BIT(22)
210 #define IR_BEU BIT(21)
211 #define IR_BEC BIT(20)
212 #define IR_DRX BIT(19)
213 #define IR_TOO BIT(18)
214 #define IR_MRAF BIT(17)
215 #define IR_TSW BIT(16)
216 #define IR_TEFL BIT(15)
217 #define IR_TEFF BIT(14)
218 #define IR_TEFW BIT(13)
219 #define IR_TEFN BIT(12)
220 #define IR_TFE BIT(11)
221 #define IR_TCF BIT(10)
222 #define IR_TC BIT(9)
223 #define IR_HPM BIT(8)
224 #define IR_RF1L BIT(7)
225 #define IR_RF1F BIT(6)
226 #define IR_RF1W BIT(5)
227 #define IR_RF1N BIT(4)
228 #define IR_RF0L BIT(3)
229 #define IR_RF0F BIT(2)
230 #define IR_RF0W BIT(1)
231 #define IR_RF0N BIT(0)
232 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
234 /* Interrupts for version 3.0.x */
235 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
236 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
237 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
238 IR_RF1L | IR_RF0L)
239 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
240 /* Interrupts for version >= 3.1.x */
241 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
242 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
243 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
244 IR_RF1L | IR_RF0L)
245 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
247 /* Interrupt Line Select (ILS) */
248 #define ILS_ALL_INT0 0x0
249 #define ILS_ALL_INT1 0xFFFFFFFF
251 /* Interrupt Line Enable (ILE) */
252 #define ILE_EINT1 BIT(1)
253 #define ILE_EINT0 BIT(0)
255 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
256 #define RXFC_FWM_SHIFT 24
257 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
258 #define RXFC_FS_SHIFT 16
259 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
261 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
262 #define RXFS_RFL BIT(25)
263 #define RXFS_FF BIT(24)
264 #define RXFS_FPI_SHIFT 16
265 #define RXFS_FPI_MASK 0x3f0000
266 #define RXFS_FGI_SHIFT 8
267 #define RXFS_FGI_MASK 0x3f00
268 #define RXFS_FFL_MASK 0x7f
270 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
271 #define M_CAN_RXESC_8BYTES 0x0
272 #define M_CAN_RXESC_64BYTES 0x777
274 /* Tx Buffer Configuration(TXBC) */
275 #define TXBC_NDTB_SHIFT 16
276 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
277 #define TXBC_TFQS_SHIFT 24
278 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
280 /* Tx FIFO/Queue Status (TXFQS) */
281 #define TXFQS_TFQF BIT(21)
282 #define TXFQS_TFQPI_SHIFT 16
283 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
284 #define TXFQS_TFGI_SHIFT 8
285 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
286 #define TXFQS_TFFL_SHIFT 0
287 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
289 /* Tx Buffer Element Size Configuration(TXESC) */
290 #define TXESC_TBDS_8BYTES 0x0
291 #define TXESC_TBDS_64BYTES 0x7
293 /* Tx Event FIFO Configuration (TXEFC) */
294 #define TXEFC_EFS_SHIFT 16
295 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
297 /* Tx Event FIFO Status (TXEFS) */
298 #define TXEFS_TEFL BIT(25)
299 #define TXEFS_EFF BIT(24)
300 #define TXEFS_EFGI_SHIFT 8
301 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
302 #define TXEFS_EFFL_SHIFT 0
303 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
305 /* Tx Event FIFO Acknowledge (TXEFA) */
306 #define TXEFA_EFAI_SHIFT 0
307 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
309 /* Message RAM Configuration (in bytes) */
310 #define SIDF_ELEMENT_SIZE 4
311 #define XIDF_ELEMENT_SIZE 8
312 #define RXF0_ELEMENT_SIZE 72
313 #define RXF1_ELEMENT_SIZE 72
314 #define RXB_ELEMENT_SIZE 72
315 #define TXE_ELEMENT_SIZE 8
316 #define TXB_ELEMENT_SIZE 72
318 /* Message RAM Elements */
319 #define M_CAN_FIFO_ID 0x0
320 #define M_CAN_FIFO_DLC 0x4
321 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
323 /* Rx Buffer Element */
324 /* R0 */
325 #define RX_BUF_ESI BIT(31)
326 #define RX_BUF_XTD BIT(30)
327 #define RX_BUF_RTR BIT(29)
328 /* R1 */
329 #define RX_BUF_ANMF BIT(31)
330 #define RX_BUF_FDF BIT(21)
331 #define RX_BUF_BRS BIT(20)
333 /* Tx Buffer Element */
334 /* T0 */
335 #define TX_BUF_ESI BIT(31)
336 #define TX_BUF_XTD BIT(30)
337 #define TX_BUF_RTR BIT(29)
338 /* T1 */
339 #define TX_BUF_EFC BIT(23)
340 #define TX_BUF_FDF BIT(21)
341 #define TX_BUF_BRS BIT(20)
342 #define TX_BUF_MM_SHIFT 24
343 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
345 /* Tx event FIFO Element */
346 /* E1 */
347 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
348 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
350 /* address offset and element number for each FIFO/Buffer in the Message RAM */
351 struct mram_cfg {
352 u16 off;
353 u8 num;
356 /* m_can private data structure */
357 struct m_can_priv {
358 struct can_priv can; /* must be the first member */
359 struct napi_struct napi;
360 struct net_device *dev;
361 struct device *device;
362 struct clk *hclk;
363 struct clk *cclk;
364 void __iomem *base;
365 u32 irqstatus;
366 int version;
368 /* message ram configuration */
369 void __iomem *mram_base;
370 struct mram_cfg mcfg[MRAM_CFG_NUM];
373 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
375 return readl(priv->base + reg);
378 static inline void m_can_write(const struct m_can_priv *priv,
379 enum m_can_reg reg, u32 val)
381 writel(val, priv->base + reg);
384 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
385 u32 fgi, unsigned int offset)
387 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
388 fgi * RXF0_ELEMENT_SIZE + offset);
391 static inline void m_can_fifo_write(const struct m_can_priv *priv,
392 u32 fpi, unsigned int offset, u32 val)
394 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
395 fpi * TXB_ELEMENT_SIZE + offset);
398 static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
399 u32 fgi,
400 u32 offset) {
401 return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
402 fgi * TXE_ELEMENT_SIZE + offset);
405 static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
407 return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
410 static inline void m_can_config_endisable(const struct m_can_priv *priv,
411 bool enable)
413 u32 cccr = m_can_read(priv, M_CAN_CCCR);
414 u32 timeout = 10;
415 u32 val = 0;
417 if (enable) {
418 /* enable m_can configuration */
419 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
420 udelay(5);
421 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
422 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
423 } else {
424 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
427 /* there's a delay for module initialization */
428 if (enable)
429 val = CCCR_INIT | CCCR_CCE;
431 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
432 if (timeout == 0) {
433 netdev_warn(priv->dev, "Failed to init module\n");
434 return;
436 timeout--;
437 udelay(1);
441 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
443 /* Only interrupt line 0 is used in this driver */
444 m_can_write(priv, M_CAN_ILE, ILE_EINT0);
447 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
449 m_can_write(priv, M_CAN_ILE, 0x0);
452 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
454 struct net_device_stats *stats = &dev->stats;
455 struct m_can_priv *priv = netdev_priv(dev);
456 struct canfd_frame *cf;
457 struct sk_buff *skb;
458 u32 id, fgi, dlc;
459 int i;
461 /* calculate the fifo get index for where to read data */
462 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
463 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
464 if (dlc & RX_BUF_FDF)
465 skb = alloc_canfd_skb(dev, &cf);
466 else
467 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
468 if (!skb) {
469 stats->rx_dropped++;
470 return;
473 if (dlc & RX_BUF_FDF)
474 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
475 else
476 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
478 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
479 if (id & RX_BUF_XTD)
480 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
481 else
482 cf->can_id = (id >> 18) & CAN_SFF_MASK;
484 if (id & RX_BUF_ESI) {
485 cf->flags |= CANFD_ESI;
486 netdev_dbg(dev, "ESI Error\n");
489 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
490 cf->can_id |= CAN_RTR_FLAG;
491 } else {
492 if (dlc & RX_BUF_BRS)
493 cf->flags |= CANFD_BRS;
495 for (i = 0; i < cf->len; i += 4)
496 *(u32 *)(cf->data + i) =
497 m_can_fifo_read(priv, fgi,
498 M_CAN_FIFO_DATA(i / 4));
501 /* acknowledge rx fifo 0 */
502 m_can_write(priv, M_CAN_RXF0A, fgi);
504 stats->rx_packets++;
505 stats->rx_bytes += cf->len;
507 netif_receive_skb(skb);
510 static int m_can_do_rx_poll(struct net_device *dev, int quota)
512 struct m_can_priv *priv = netdev_priv(dev);
513 u32 pkts = 0;
514 u32 rxfs;
516 rxfs = m_can_read(priv, M_CAN_RXF0S);
517 if (!(rxfs & RXFS_FFL_MASK)) {
518 netdev_dbg(dev, "no messages in fifo0\n");
519 return 0;
522 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
523 if (rxfs & RXFS_RFL)
524 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
526 m_can_read_fifo(dev, rxfs);
528 quota--;
529 pkts++;
530 rxfs = m_can_read(priv, M_CAN_RXF0S);
533 if (pkts)
534 can_led_event(dev, CAN_LED_EVENT_RX);
536 return pkts;
539 static int m_can_handle_lost_msg(struct net_device *dev)
541 struct net_device_stats *stats = &dev->stats;
542 struct sk_buff *skb;
543 struct can_frame *frame;
545 netdev_err(dev, "msg lost in rxf0\n");
547 stats->rx_errors++;
548 stats->rx_over_errors++;
550 skb = alloc_can_err_skb(dev, &frame);
551 if (unlikely(!skb))
552 return 0;
554 frame->can_id |= CAN_ERR_CRTL;
555 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
557 netif_receive_skb(skb);
559 return 1;
562 static int m_can_handle_lec_err(struct net_device *dev,
563 enum m_can_lec_type lec_type)
565 struct m_can_priv *priv = netdev_priv(dev);
566 struct net_device_stats *stats = &dev->stats;
567 struct can_frame *cf;
568 struct sk_buff *skb;
570 priv->can.can_stats.bus_error++;
571 stats->rx_errors++;
573 /* propagate the error condition to the CAN stack */
574 skb = alloc_can_err_skb(dev, &cf);
575 if (unlikely(!skb))
576 return 0;
578 /* check for 'last error code' which tells us the
579 * type of the last error to occur on the CAN bus
581 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
583 switch (lec_type) {
584 case LEC_STUFF_ERROR:
585 netdev_dbg(dev, "stuff error\n");
586 cf->data[2] |= CAN_ERR_PROT_STUFF;
587 break;
588 case LEC_FORM_ERROR:
589 netdev_dbg(dev, "form error\n");
590 cf->data[2] |= CAN_ERR_PROT_FORM;
591 break;
592 case LEC_ACK_ERROR:
593 netdev_dbg(dev, "ack error\n");
594 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
595 break;
596 case LEC_BIT1_ERROR:
597 netdev_dbg(dev, "bit1 error\n");
598 cf->data[2] |= CAN_ERR_PROT_BIT1;
599 break;
600 case LEC_BIT0_ERROR:
601 netdev_dbg(dev, "bit0 error\n");
602 cf->data[2] |= CAN_ERR_PROT_BIT0;
603 break;
604 case LEC_CRC_ERROR:
605 netdev_dbg(dev, "CRC error\n");
606 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
607 break;
608 default:
609 break;
612 stats->rx_packets++;
613 stats->rx_bytes += cf->can_dlc;
614 netif_receive_skb(skb);
616 return 1;
619 static int __m_can_get_berr_counter(const struct net_device *dev,
620 struct can_berr_counter *bec)
622 struct m_can_priv *priv = netdev_priv(dev);
623 unsigned int ecr;
625 ecr = m_can_read(priv, M_CAN_ECR);
626 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
627 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
629 return 0;
632 static int m_can_clk_start(struct m_can_priv *priv)
634 int err;
636 err = pm_runtime_get_sync(priv->device);
637 if (err < 0) {
638 pm_runtime_put_noidle(priv->device);
639 return err;
642 return 0;
645 static void m_can_clk_stop(struct m_can_priv *priv)
647 pm_runtime_put_sync(priv->device);
650 static int m_can_get_berr_counter(const struct net_device *dev,
651 struct can_berr_counter *bec)
653 struct m_can_priv *priv = netdev_priv(dev);
654 int err;
656 err = m_can_clk_start(priv);
657 if (err)
658 return err;
660 __m_can_get_berr_counter(dev, bec);
662 m_can_clk_stop(priv);
664 return 0;
667 static int m_can_handle_state_change(struct net_device *dev,
668 enum can_state new_state)
670 struct m_can_priv *priv = netdev_priv(dev);
671 struct net_device_stats *stats = &dev->stats;
672 struct can_frame *cf;
673 struct sk_buff *skb;
674 struct can_berr_counter bec;
675 unsigned int ecr;
677 switch (new_state) {
678 case CAN_STATE_ERROR_ACTIVE:
679 /* error warning state */
680 priv->can.can_stats.error_warning++;
681 priv->can.state = CAN_STATE_ERROR_WARNING;
682 break;
683 case CAN_STATE_ERROR_PASSIVE:
684 /* error passive state */
685 priv->can.can_stats.error_passive++;
686 priv->can.state = CAN_STATE_ERROR_PASSIVE;
687 break;
688 case CAN_STATE_BUS_OFF:
689 /* bus-off state */
690 priv->can.state = CAN_STATE_BUS_OFF;
691 m_can_disable_all_interrupts(priv);
692 priv->can.can_stats.bus_off++;
693 can_bus_off(dev);
694 break;
695 default:
696 break;
699 /* propagate the error condition to the CAN stack */
700 skb = alloc_can_err_skb(dev, &cf);
701 if (unlikely(!skb))
702 return 0;
704 __m_can_get_berr_counter(dev, &bec);
706 switch (new_state) {
707 case CAN_STATE_ERROR_ACTIVE:
708 /* error warning state */
709 cf->can_id |= CAN_ERR_CRTL;
710 cf->data[1] = (bec.txerr > bec.rxerr) ?
711 CAN_ERR_CRTL_TX_WARNING :
712 CAN_ERR_CRTL_RX_WARNING;
713 cf->data[6] = bec.txerr;
714 cf->data[7] = bec.rxerr;
715 break;
716 case CAN_STATE_ERROR_PASSIVE:
717 /* error passive state */
718 cf->can_id |= CAN_ERR_CRTL;
719 ecr = m_can_read(priv, M_CAN_ECR);
720 if (ecr & ECR_RP)
721 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
722 if (bec.txerr > 127)
723 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
724 cf->data[6] = bec.txerr;
725 cf->data[7] = bec.rxerr;
726 break;
727 case CAN_STATE_BUS_OFF:
728 /* bus-off state */
729 cf->can_id |= CAN_ERR_BUSOFF;
730 break;
731 default:
732 break;
735 stats->rx_packets++;
736 stats->rx_bytes += cf->can_dlc;
737 netif_receive_skb(skb);
739 return 1;
742 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
744 struct m_can_priv *priv = netdev_priv(dev);
745 int work_done = 0;
747 if ((psr & PSR_EW) &&
748 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
749 netdev_dbg(dev, "entered error warning state\n");
750 work_done += m_can_handle_state_change(dev,
751 CAN_STATE_ERROR_WARNING);
754 if ((psr & PSR_EP) &&
755 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
756 netdev_dbg(dev, "entered error passive state\n");
757 work_done += m_can_handle_state_change(dev,
758 CAN_STATE_ERROR_PASSIVE);
761 if ((psr & PSR_BO) &&
762 (priv->can.state != CAN_STATE_BUS_OFF)) {
763 netdev_dbg(dev, "entered error bus off state\n");
764 work_done += m_can_handle_state_change(dev,
765 CAN_STATE_BUS_OFF);
768 return work_done;
771 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
773 if (irqstatus & IR_WDI)
774 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
775 if (irqstatus & IR_ELO)
776 netdev_err(dev, "Error Logging Overflow\n");
777 if (irqstatus & IR_BEU)
778 netdev_err(dev, "Bit Error Uncorrected\n");
779 if (irqstatus & IR_BEC)
780 netdev_err(dev, "Bit Error Corrected\n");
781 if (irqstatus & IR_TOO)
782 netdev_err(dev, "Timeout reached\n");
783 if (irqstatus & IR_MRAF)
784 netdev_err(dev, "Message RAM access failure occurred\n");
787 static inline bool is_lec_err(u32 psr)
789 psr &= LEC_UNUSED;
791 return psr && (psr != LEC_UNUSED);
794 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
795 u32 psr)
797 struct m_can_priv *priv = netdev_priv(dev);
798 int work_done = 0;
800 if (irqstatus & IR_RF0L)
801 work_done += m_can_handle_lost_msg(dev);
803 /* handle lec errors on the bus */
804 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
805 is_lec_err(psr))
806 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
808 /* other unproccessed error interrupts */
809 m_can_handle_other_err(dev, irqstatus);
811 return work_done;
814 static int m_can_poll(struct napi_struct *napi, int quota)
816 struct net_device *dev = napi->dev;
817 struct m_can_priv *priv = netdev_priv(dev);
818 int work_done = 0;
819 u32 irqstatus, psr;
821 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
822 if (!irqstatus)
823 goto end;
825 /* Errata workaround for issue "Needless activation of MRAF irq"
826 * During frame reception while the MCAN is in Error Passive state
827 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
828 * it may happen that MCAN_IR.MRAF is set although there was no
829 * Message RAM access failure.
830 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
831 * The Message RAM Access Failure interrupt routine needs to check
832 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
833 * In this case, reset MCAN_IR.MRAF. No further action is required.
835 if ((priv->version <= 31) && (irqstatus & IR_MRAF) &&
836 (m_can_read(priv, M_CAN_ECR) & ECR_RP)) {
837 struct can_berr_counter bec;
839 __m_can_get_berr_counter(dev, &bec);
840 if (bec.rxerr == 127) {
841 m_can_write(priv, M_CAN_IR, IR_MRAF);
842 irqstatus &= ~IR_MRAF;
846 psr = m_can_read(priv, M_CAN_PSR);
847 if (irqstatus & IR_ERR_STATE)
848 work_done += m_can_handle_state_errors(dev, psr);
850 if (irqstatus & IR_ERR_BUS_30X)
851 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
853 if (irqstatus & IR_RF0N)
854 work_done += m_can_do_rx_poll(dev, (quota - work_done));
856 if (work_done < quota) {
857 napi_complete_done(napi, work_done);
858 m_can_enable_all_interrupts(priv);
861 end:
862 return work_done;
865 static void m_can_echo_tx_event(struct net_device *dev)
867 u32 txe_count = 0;
868 u32 m_can_txefs;
869 u32 fgi = 0;
870 int i = 0;
871 unsigned int msg_mark;
873 struct m_can_priv *priv = netdev_priv(dev);
874 struct net_device_stats *stats = &dev->stats;
876 /* read tx event fifo status */
877 m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
879 /* Get Tx Event fifo element count */
880 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
881 >> TXEFS_EFFL_SHIFT;
883 /* Get and process all sent elements */
884 for (i = 0; i < txe_count; i++) {
885 /* retrieve get index */
886 fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
887 >> TXEFS_EFGI_SHIFT;
889 /* get message marker */
890 msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
891 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
893 /* ack txe element */
894 m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
895 (fgi << TXEFA_EFAI_SHIFT)));
897 /* update stats */
898 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
899 stats->tx_packets++;
903 static irqreturn_t m_can_isr(int irq, void *dev_id)
905 struct net_device *dev = (struct net_device *)dev_id;
906 struct m_can_priv *priv = netdev_priv(dev);
907 struct net_device_stats *stats = &dev->stats;
908 u32 ir;
910 ir = m_can_read(priv, M_CAN_IR);
911 if (!ir)
912 return IRQ_NONE;
914 /* ACK all irqs */
915 if (ir & IR_ALL_INT)
916 m_can_write(priv, M_CAN_IR, ir);
918 /* schedule NAPI in case of
919 * - rx IRQ
920 * - state change IRQ
921 * - bus error IRQ and bus error reporting
923 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
924 priv->irqstatus = ir;
925 m_can_disable_all_interrupts(priv);
926 napi_schedule(&priv->napi);
929 if (priv->version == 30) {
930 if (ir & IR_TC) {
931 /* Transmission Complete Interrupt*/
932 stats->tx_bytes += can_get_echo_skb(dev, 0);
933 stats->tx_packets++;
934 can_led_event(dev, CAN_LED_EVENT_TX);
935 netif_wake_queue(dev);
937 } else {
938 if (ir & IR_TEFN) {
939 /* New TX FIFO Element arrived */
940 m_can_echo_tx_event(dev);
941 can_led_event(dev, CAN_LED_EVENT_TX);
942 if (netif_queue_stopped(dev) &&
943 !m_can_tx_fifo_full(priv))
944 netif_wake_queue(dev);
948 return IRQ_HANDLED;
951 static const struct can_bittiming_const m_can_bittiming_const_30X = {
952 .name = KBUILD_MODNAME,
953 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
954 .tseg1_max = 64,
955 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
956 .tseg2_max = 16,
957 .sjw_max = 16,
958 .brp_min = 1,
959 .brp_max = 1024,
960 .brp_inc = 1,
963 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
964 .name = KBUILD_MODNAME,
965 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
966 .tseg1_max = 16,
967 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
968 .tseg2_max = 8,
969 .sjw_max = 4,
970 .brp_min = 1,
971 .brp_max = 32,
972 .brp_inc = 1,
975 static const struct can_bittiming_const m_can_bittiming_const_31X = {
976 .name = KBUILD_MODNAME,
977 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
978 .tseg1_max = 256,
979 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
980 .tseg2_max = 128,
981 .sjw_max = 128,
982 .brp_min = 1,
983 .brp_max = 512,
984 .brp_inc = 1,
987 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
988 .name = KBUILD_MODNAME,
989 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
990 .tseg1_max = 32,
991 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
992 .tseg2_max = 16,
993 .sjw_max = 16,
994 .brp_min = 1,
995 .brp_max = 32,
996 .brp_inc = 1,
999 static int m_can_set_bittiming(struct net_device *dev)
1001 struct m_can_priv *priv = netdev_priv(dev);
1002 const struct can_bittiming *bt = &priv->can.bittiming;
1003 const struct can_bittiming *dbt = &priv->can.data_bittiming;
1004 u16 brp, sjw, tseg1, tseg2;
1005 u32 reg_btp;
1007 brp = bt->brp - 1;
1008 sjw = bt->sjw - 1;
1009 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1010 tseg2 = bt->phase_seg2 - 1;
1011 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1012 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1013 m_can_write(priv, M_CAN_NBTP, reg_btp);
1015 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1016 reg_btp = 0;
1017 brp = dbt->brp - 1;
1018 sjw = dbt->sjw - 1;
1019 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1020 tseg2 = dbt->phase_seg2 - 1;
1022 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1023 * This is mentioned in the "Bit Time Requirements for CAN FD"
1024 * paper presented at the International CAN Conference 2013
1026 if (dbt->bitrate > 2500000) {
1027 u32 tdco, ssp;
1029 /* Use the same value of secondary sampling point
1030 * as the data sampling point
1032 ssp = dbt->sample_point;
1034 /* Equation based on Bosch's M_CAN User Manual's
1035 * Transmitter Delay Compensation Section
1037 tdco = (priv->can.clock.freq / 1000) *
1038 ssp / dbt->bitrate;
1040 /* Max valid TDCO value is 127 */
1041 if (tdco > 127) {
1042 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1043 tdco);
1044 tdco = 127;
1047 reg_btp |= DBTP_TDC;
1048 m_can_write(priv, M_CAN_TDCR,
1049 tdco << TDCR_TDCO_SHIFT);
1052 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1053 (sjw << DBTP_DSJW_SHIFT) |
1054 (tseg1 << DBTP_DTSEG1_SHIFT) |
1055 (tseg2 << DBTP_DTSEG2_SHIFT);
1057 m_can_write(priv, M_CAN_DBTP, reg_btp);
1060 return 0;
1063 /* Configure M_CAN chip:
1064 * - set rx buffer/fifo element size
1065 * - configure rx fifo
1066 * - accept non-matching frame into fifo 0
1067 * - configure tx buffer
1068 * - >= v3.1.x: TX FIFO is used
1069 * - configure mode
1070 * - setup bittiming
1072 static void m_can_chip_config(struct net_device *dev)
1074 struct m_can_priv *priv = netdev_priv(dev);
1075 u32 cccr, test;
1077 m_can_config_endisable(priv, true);
1079 /* RX Buffer/FIFO Element Size 64 bytes data field */
1080 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1082 /* Accept Non-matching Frames Into FIFO 0 */
1083 m_can_write(priv, M_CAN_GFC, 0x0);
1085 if (priv->version == 30) {
1086 /* only support one Tx Buffer currently */
1087 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1088 priv->mcfg[MRAM_TXB].off);
1089 } else {
1090 /* TX FIFO is used for newer IP Core versions */
1091 m_can_write(priv, M_CAN_TXBC,
1092 (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1093 (priv->mcfg[MRAM_TXB].off));
1096 /* support 64 bytes payload */
1097 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1099 /* TX Event FIFO */
1100 if (priv->version == 30) {
1101 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1102 priv->mcfg[MRAM_TXE].off);
1103 } else {
1104 /* Full TX Event FIFO is used */
1105 m_can_write(priv, M_CAN_TXEFC,
1106 ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1107 & TXEFC_EFS_MASK) |
1108 priv->mcfg[MRAM_TXE].off);
1111 /* rx fifo configuration, blocking mode, fifo size 1 */
1112 m_can_write(priv, M_CAN_RXF0C,
1113 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1114 priv->mcfg[MRAM_RXF0].off);
1116 m_can_write(priv, M_CAN_RXF1C,
1117 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1118 priv->mcfg[MRAM_RXF1].off);
1120 cccr = m_can_read(priv, M_CAN_CCCR);
1121 test = m_can_read(priv, M_CAN_TEST);
1122 test &= ~TEST_LBCK;
1123 if (priv->version == 30) {
1124 /* Version 3.0.x */
1126 cccr &= ~(CCCR_TEST | CCCR_MON |
1127 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1128 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1130 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1131 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1133 } else {
1134 /* Version 3.1.x or 3.2.x */
1135 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1136 CCCR_NISO);
1138 /* Only 3.2.x has NISO Bit implemented */
1139 if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1140 cccr |= CCCR_NISO;
1142 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1143 cccr |= (CCCR_BRSE | CCCR_FDOE);
1146 /* Loopback Mode */
1147 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1148 cccr |= CCCR_TEST | CCCR_MON;
1149 test |= TEST_LBCK;
1152 /* Enable Monitoring (all versions) */
1153 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1154 cccr |= CCCR_MON;
1156 /* Write config */
1157 m_can_write(priv, M_CAN_CCCR, cccr);
1158 m_can_write(priv, M_CAN_TEST, test);
1160 /* Enable interrupts */
1161 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1162 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1163 if (priv->version == 30)
1164 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1165 ~(IR_ERR_LEC_30X));
1166 else
1167 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1168 ~(IR_ERR_LEC_31X));
1169 else
1170 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1172 /* route all interrupts to INT0 */
1173 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1175 /* set bittiming params */
1176 m_can_set_bittiming(dev);
1178 m_can_config_endisable(priv, false);
1181 static void m_can_start(struct net_device *dev)
1183 struct m_can_priv *priv = netdev_priv(dev);
1185 /* basic m_can configuration */
1186 m_can_chip_config(dev);
1188 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1190 m_can_enable_all_interrupts(priv);
1193 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1195 switch (mode) {
1196 case CAN_MODE_START:
1197 m_can_start(dev);
1198 netif_wake_queue(dev);
1199 break;
1200 default:
1201 return -EOPNOTSUPP;
1204 return 0;
1207 /* Checks core release number of M_CAN
1208 * returns 0 if an unsupported device is detected
1209 * else it returns the release and step coded as:
1210 * return value = 10 * <release> + 1 * <step>
1212 static int m_can_check_core_release(void __iomem *m_can_base)
1214 u32 crel_reg;
1215 u8 rel;
1216 u8 step;
1217 int res;
1218 struct m_can_priv temp_priv = {
1219 .base = m_can_base
1222 /* Read Core Release Version and split into version number
1223 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1225 crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1226 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1227 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1229 if (rel == 3) {
1230 /* M_CAN v3.x.y: create return value */
1231 res = 30 + step;
1232 } else {
1233 /* Unsupported M_CAN version */
1234 res = 0;
1237 return res;
1240 /* Selectable Non ISO support only in version 3.2.x
1241 * This function checks if the bit is writable.
1243 static bool m_can_niso_supported(const struct m_can_priv *priv)
1245 u32 cccr_reg, cccr_poll;
1246 int niso_timeout;
1248 m_can_config_endisable(priv, true);
1249 cccr_reg = m_can_read(priv, M_CAN_CCCR);
1250 cccr_reg |= CCCR_NISO;
1251 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1253 niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1254 (cccr_poll == cccr_reg), 0, 10);
1256 /* Clear NISO */
1257 cccr_reg &= ~(CCCR_NISO);
1258 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1260 m_can_config_endisable(priv, false);
1262 /* return false if time out (-ETIMEDOUT), else return true */
1263 return !niso_timeout;
1266 static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1267 void __iomem *addr)
1269 struct m_can_priv *priv;
1270 int m_can_version;
1272 m_can_version = m_can_check_core_release(addr);
1273 /* return if unsupported version */
1274 if (!m_can_version) {
1275 dev_err(&pdev->dev, "Unsupported version number: %2d",
1276 m_can_version);
1277 return -EINVAL;
1280 priv = netdev_priv(dev);
1281 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1283 /* Shared properties of all M_CAN versions */
1284 priv->version = m_can_version;
1285 priv->dev = dev;
1286 priv->base = addr;
1287 priv->can.do_set_mode = m_can_set_mode;
1288 priv->can.do_get_berr_counter = m_can_get_berr_counter;
1290 /* Set M_CAN supported operations */
1291 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1292 CAN_CTRLMODE_LISTENONLY |
1293 CAN_CTRLMODE_BERR_REPORTING |
1294 CAN_CTRLMODE_FD;
1296 /* Set properties depending on M_CAN version */
1297 switch (priv->version) {
1298 case 30:
1299 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1300 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1301 priv->can.bittiming_const = &m_can_bittiming_const_30X;
1302 priv->can.data_bittiming_const =
1303 &m_can_data_bittiming_const_30X;
1304 break;
1305 case 31:
1306 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1307 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1308 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1309 priv->can.data_bittiming_const =
1310 &m_can_data_bittiming_const_31X;
1311 break;
1312 case 32:
1313 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1314 priv->can.data_bittiming_const =
1315 &m_can_data_bittiming_const_31X;
1316 priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1317 ? CAN_CTRLMODE_FD_NON_ISO
1318 : 0);
1319 break;
1320 default:
1321 dev_err(&pdev->dev, "Unsupported version number: %2d",
1322 priv->version);
1323 return -EINVAL;
1326 return 0;
1329 static int m_can_open(struct net_device *dev)
1331 struct m_can_priv *priv = netdev_priv(dev);
1332 int err;
1334 err = m_can_clk_start(priv);
1335 if (err)
1336 return err;
1338 /* open the can device */
1339 err = open_candev(dev);
1340 if (err) {
1341 netdev_err(dev, "failed to open can device\n");
1342 goto exit_disable_clks;
1345 /* register interrupt handler */
1346 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1347 dev);
1348 if (err < 0) {
1349 netdev_err(dev, "failed to request interrupt\n");
1350 goto exit_irq_fail;
1353 /* start the m_can controller */
1354 m_can_start(dev);
1356 can_led_event(dev, CAN_LED_EVENT_OPEN);
1357 napi_enable(&priv->napi);
1358 netif_start_queue(dev);
1360 return 0;
1362 exit_irq_fail:
1363 close_candev(dev);
1364 exit_disable_clks:
1365 m_can_clk_stop(priv);
1366 return err;
1369 static void m_can_stop(struct net_device *dev)
1371 struct m_can_priv *priv = netdev_priv(dev);
1373 /* disable all interrupts */
1374 m_can_disable_all_interrupts(priv);
1376 /* set the state as STOPPED */
1377 priv->can.state = CAN_STATE_STOPPED;
1380 static int m_can_close(struct net_device *dev)
1382 struct m_can_priv *priv = netdev_priv(dev);
1384 netif_stop_queue(dev);
1385 napi_disable(&priv->napi);
1386 m_can_stop(dev);
1387 m_can_clk_stop(priv);
1388 free_irq(dev->irq, dev);
1389 close_candev(dev);
1390 can_led_event(dev, CAN_LED_EVENT_STOP);
1392 return 0;
1395 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1397 struct m_can_priv *priv = netdev_priv(dev);
1398 /*get wrap around for loopback skb index */
1399 unsigned int wrap = priv->can.echo_skb_max;
1400 int next_idx;
1402 /* calculate next index */
1403 next_idx = (++putidx >= wrap ? 0 : putidx);
1405 /* check if occupied */
1406 return !!priv->can.echo_skb[next_idx];
1409 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1410 struct net_device *dev)
1412 struct m_can_priv *priv = netdev_priv(dev);
1413 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1414 u32 id, cccr, fdflags;
1415 int i;
1416 int putidx;
1418 if (can_dropped_invalid_skb(dev, skb))
1419 return NETDEV_TX_OK;
1421 /* Generate ID field for TX buffer Element */
1422 /* Common to all supported M_CAN versions */
1423 if (cf->can_id & CAN_EFF_FLAG) {
1424 id = cf->can_id & CAN_EFF_MASK;
1425 id |= TX_BUF_XTD;
1426 } else {
1427 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1430 if (cf->can_id & CAN_RTR_FLAG)
1431 id |= TX_BUF_RTR;
1433 if (priv->version == 30) {
1434 netif_stop_queue(dev);
1436 /* message ram configuration */
1437 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1438 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1439 can_len2dlc(cf->len) << 16);
1441 for (i = 0; i < cf->len; i += 4)
1442 m_can_fifo_write(priv, 0,
1443 M_CAN_FIFO_DATA(i / 4),
1444 *(u32 *)(cf->data + i));
1446 can_put_echo_skb(skb, dev, 0);
1448 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1449 cccr = m_can_read(priv, M_CAN_CCCR);
1450 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451 if (can_is_canfd_skb(skb)) {
1452 if (cf->flags & CANFD_BRS)
1453 cccr |= CCCR_CMR_CANFD_BRS <<
1454 CCCR_CMR_SHIFT;
1455 else
1456 cccr |= CCCR_CMR_CANFD <<
1457 CCCR_CMR_SHIFT;
1458 } else {
1459 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1461 m_can_write(priv, M_CAN_CCCR, cccr);
1463 m_can_write(priv, M_CAN_TXBTIE, 0x1);
1464 m_can_write(priv, M_CAN_TXBAR, 0x1);
1465 /* End of xmit function for version 3.0.x */
1466 } else {
1467 /* Transmit routine for version >= v3.1.x */
1469 /* Check if FIFO full */
1470 if (m_can_tx_fifo_full(priv)) {
1471 /* This shouldn't happen */
1472 netif_stop_queue(dev);
1473 netdev_warn(dev,
1474 "TX queue active although FIFO is full.");
1475 return NETDEV_TX_BUSY;
1478 /* get put index for frame */
1479 putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1480 >> TXFQS_TFQPI_SHIFT);
1481 /* Write ID Field to FIFO Element */
1482 m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1484 /* get CAN FD configuration of frame */
1485 fdflags = 0;
1486 if (can_is_canfd_skb(skb)) {
1487 fdflags |= TX_BUF_FDF;
1488 if (cf->flags & CANFD_BRS)
1489 fdflags |= TX_BUF_BRS;
1492 /* Construct DLC Field. Also contains CAN-FD configuration
1493 * use put index of fifo as message marker
1494 * it is used in TX interrupt for
1495 * sending the correct echo frame
1497 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1498 ((putidx << TX_BUF_MM_SHIFT) &
1499 TX_BUF_MM_MASK) |
1500 (can_len2dlc(cf->len) << 16) |
1501 fdflags | TX_BUF_EFC);
1503 for (i = 0; i < cf->len; i += 4)
1504 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1505 *(u32 *)(cf->data + i));
1507 /* Push loopback echo.
1508 * Will be looped back on TX interrupt based on message marker
1510 can_put_echo_skb(skb, dev, putidx);
1512 /* Enable TX FIFO element to start transfer */
1513 m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1515 /* stop network queue if fifo full */
1516 if (m_can_tx_fifo_full(priv) ||
1517 m_can_next_echo_skb_occupied(dev, putidx))
1518 netif_stop_queue(dev);
1521 return NETDEV_TX_OK;
1524 static const struct net_device_ops m_can_netdev_ops = {
1525 .ndo_open = m_can_open,
1526 .ndo_stop = m_can_close,
1527 .ndo_start_xmit = m_can_start_xmit,
1528 .ndo_change_mtu = can_change_mtu,
1531 static int register_m_can_dev(struct net_device *dev)
1533 dev->flags |= IFF_ECHO; /* we support local echo */
1534 dev->netdev_ops = &m_can_netdev_ops;
1536 return register_candev(dev);
1539 static void m_can_init_ram(struct m_can_priv *priv)
1541 int end, i, start;
1543 /* initialize the entire Message RAM in use to avoid possible
1544 * ECC/parity checksum errors when reading an uninitialized buffer
1546 start = priv->mcfg[MRAM_SIDF].off;
1547 end = priv->mcfg[MRAM_TXB].off +
1548 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1549 for (i = start; i < end; i += 4)
1550 writel(0x0, priv->mram_base + i);
1553 static void m_can_of_parse_mram(struct m_can_priv *priv,
1554 const u32 *mram_config_vals)
1556 priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1557 priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1558 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1559 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1560 priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1561 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1562 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1563 priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1564 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1565 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1566 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1567 priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1568 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1569 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1570 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1571 priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1572 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1573 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1574 priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1575 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1576 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1577 priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1578 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1580 dev_dbg(priv->device,
1581 "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1582 priv->mram_base,
1583 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1584 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1585 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1586 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1587 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1588 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1589 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1591 m_can_init_ram(priv);
1594 static int m_can_plat_probe(struct platform_device *pdev)
1596 struct net_device *dev;
1597 struct m_can_priv *priv;
1598 struct resource *res;
1599 void __iomem *addr;
1600 void __iomem *mram_addr;
1601 struct clk *hclk, *cclk;
1602 int irq, ret;
1603 struct device_node *np;
1604 u32 mram_config_vals[MRAM_CFG_LEN];
1605 u32 tx_fifo_size;
1607 np = pdev->dev.of_node;
1609 hclk = devm_clk_get(&pdev->dev, "hclk");
1610 cclk = devm_clk_get(&pdev->dev, "cclk");
1612 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1613 dev_err(&pdev->dev, "no clock found\n");
1614 ret = -ENODEV;
1615 goto failed_ret;
1618 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1619 addr = devm_ioremap_resource(&pdev->dev, res);
1620 irq = platform_get_irq_byname(pdev, "int0");
1622 if (IS_ERR(addr) || irq < 0) {
1623 ret = -EINVAL;
1624 goto failed_ret;
1627 /* message ram could be shared */
1628 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1629 if (!res) {
1630 ret = -ENODEV;
1631 goto failed_ret;
1634 mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1635 if (!mram_addr) {
1636 ret = -ENOMEM;
1637 goto failed_ret;
1640 /* get message ram configuration */
1641 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1642 mram_config_vals,
1643 sizeof(mram_config_vals) / 4);
1644 if (ret) {
1645 dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1646 goto failed_ret;
1649 /* Get TX FIFO size
1650 * Defines the total amount of echo buffers for loopback
1652 tx_fifo_size = mram_config_vals[7];
1654 /* allocate the m_can device */
1655 dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1656 if (!dev) {
1657 ret = -ENOMEM;
1658 goto failed_ret;
1661 priv = netdev_priv(dev);
1662 dev->irq = irq;
1663 priv->device = &pdev->dev;
1664 priv->hclk = hclk;
1665 priv->cclk = cclk;
1666 priv->can.clock.freq = clk_get_rate(cclk);
1667 priv->mram_base = mram_addr;
1669 platform_set_drvdata(pdev, dev);
1670 SET_NETDEV_DEV(dev, &pdev->dev);
1672 /* Enable clocks. Necessary to read Core Release in order to determine
1673 * M_CAN version
1675 pm_runtime_enable(&pdev->dev);
1676 ret = m_can_clk_start(priv);
1677 if (ret)
1678 goto pm_runtime_fail;
1680 ret = m_can_dev_setup(pdev, dev, addr);
1681 if (ret)
1682 goto clk_disable;
1684 ret = register_m_can_dev(dev);
1685 if (ret) {
1686 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1687 KBUILD_MODNAME, ret);
1688 goto clk_disable;
1691 m_can_of_parse_mram(priv, mram_config_vals);
1693 devm_can_led_init(dev);
1695 of_can_transceiver(dev);
1697 dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1698 KBUILD_MODNAME, dev->irq, priv->version);
1700 /* Probe finished
1701 * Stop clocks. They will be reactivated once the M_CAN device is opened
1703 clk_disable:
1704 m_can_clk_stop(priv);
1705 pm_runtime_fail:
1706 if (ret) {
1707 pm_runtime_disable(&pdev->dev);
1708 free_candev(dev);
1710 failed_ret:
1711 return ret;
1714 static __maybe_unused int m_can_suspend(struct device *dev)
1716 struct net_device *ndev = dev_get_drvdata(dev);
1717 struct m_can_priv *priv = netdev_priv(ndev);
1719 if (netif_running(ndev)) {
1720 netif_stop_queue(ndev);
1721 netif_device_detach(ndev);
1722 m_can_stop(ndev);
1723 m_can_clk_stop(priv);
1726 pinctrl_pm_select_sleep_state(dev);
1728 priv->can.state = CAN_STATE_SLEEPING;
1730 return 0;
1733 static __maybe_unused int m_can_resume(struct device *dev)
1735 struct net_device *ndev = dev_get_drvdata(dev);
1736 struct m_can_priv *priv = netdev_priv(ndev);
1738 pinctrl_pm_select_default_state(dev);
1740 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1742 if (netif_running(ndev)) {
1743 int ret;
1745 ret = m_can_clk_start(priv);
1746 if (ret)
1747 return ret;
1749 m_can_init_ram(priv);
1750 m_can_start(ndev);
1751 netif_device_attach(ndev);
1752 netif_start_queue(ndev);
1755 return 0;
1758 static void unregister_m_can_dev(struct net_device *dev)
1760 unregister_candev(dev);
1763 static int m_can_plat_remove(struct platform_device *pdev)
1765 struct net_device *dev = platform_get_drvdata(pdev);
1767 unregister_m_can_dev(dev);
1769 pm_runtime_disable(&pdev->dev);
1771 platform_set_drvdata(pdev, NULL);
1773 free_candev(dev);
1775 return 0;
1778 static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1780 struct net_device *ndev = dev_get_drvdata(dev);
1781 struct m_can_priv *priv = netdev_priv(ndev);
1783 clk_disable_unprepare(priv->cclk);
1784 clk_disable_unprepare(priv->hclk);
1786 return 0;
1789 static int __maybe_unused m_can_runtime_resume(struct device *dev)
1791 struct net_device *ndev = dev_get_drvdata(dev);
1792 struct m_can_priv *priv = netdev_priv(ndev);
1793 int err;
1795 err = clk_prepare_enable(priv->hclk);
1796 if (err)
1797 return err;
1799 err = clk_prepare_enable(priv->cclk);
1800 if (err)
1801 clk_disable_unprepare(priv->hclk);
1803 return err;
1806 static const struct dev_pm_ops m_can_pmops = {
1807 SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1808 m_can_runtime_resume, NULL)
1809 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1812 static const struct of_device_id m_can_of_table[] = {
1813 { .compatible = "bosch,m_can", .data = NULL },
1814 { /* sentinel */ },
1816 MODULE_DEVICE_TABLE(of, m_can_of_table);
1818 static struct platform_driver m_can_plat_driver = {
1819 .driver = {
1820 .name = KBUILD_MODNAME,
1821 .of_match_table = m_can_of_table,
1822 .pm = &m_can_pmops,
1824 .probe = m_can_plat_probe,
1825 .remove = m_can_plat_remove,
1828 module_platform_driver(m_can_plat_driver);
1830 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1831 MODULE_LICENSE("GPL v2");
1832 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");