Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_init_ops.h
blob1835d2e451c0139e272e400774b0d6d19487df98
1 /* bnx2x_init_ops.h: Qlogic Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 * Copyright (c) 2014 QLogic Corporation
7 All rights reserved
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation.
13 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
14 * Written by: Vladislav Zolotarov
17 #ifndef BNX2X_INIT_OPS_H
18 #define BNX2X_INIT_OPS_H
21 #ifndef BP_ILT
22 #define BP_ILT(bp) NULL
23 #endif
25 #ifndef BP_FUNC
26 #define BP_FUNC(bp) 0
27 #endif
29 #ifndef BP_PORT
30 #define BP_PORT(bp) 0
31 #endif
33 #ifndef BNX2X_ILT_FREE
34 #define BNX2X_ILT_FREE(x, y, sz)
35 #endif
37 #ifndef BNX2X_ILT_ZALLOC
38 #define BNX2X_ILT_ZALLOC(x, y, sz)
39 #endif
41 #ifndef ILOG2
42 #define ILOG2(x) x
43 #endif
45 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
46 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
47 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
48 dma_addr_t phys_addr, u32 addr,
49 u32 len);
51 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
52 const u32 *data, u32 len)
54 u32 i;
56 for (i = 0; i < len; i++)
57 REG_WR(bp, addr + i*4, data[i]);
60 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
61 const u32 *data, u32 len)
63 u32 i;
65 for (i = 0; i < len; i++)
66 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
69 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
70 u8 wb)
72 if (bp->dmae_ready)
73 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
75 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
76 else if (wb && CHIP_IS_E1(bp))
77 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
79 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
80 else
81 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
84 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
85 u32 len, u8 wb)
87 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
88 u32 buf_len32 = buf_len/4;
89 u32 i;
91 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
93 for (i = 0; i < len; i += buf_len32) {
94 u32 cur_len = min(buf_len32, len - i);
96 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
100 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
102 if (bp->dmae_ready)
103 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
105 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
106 else if (CHIP_IS_E1(bp))
107 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
109 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
110 else
111 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
114 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
115 const u32 *data, u32 len64)
117 u32 buf_len32 = FW_BUF_SIZE/4;
118 u32 len = len64*2;
119 u64 data64 = 0;
120 u32 i;
122 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
123 data64 = HILO_U64((*(data + 1)), (*data));
125 len64 = min((u32)(FW_BUF_SIZE/8), len64);
126 for (i = 0; i < len64; i++) {
127 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
129 *pdata = data64;
132 for (i = 0; i < len; i += buf_len32) {
133 u32 cur_len = min(buf_len32, len - i);
135 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
139 /*********************************************************
140 There are different blobs for each PRAM section.
141 In addition, each blob write operation is divided into a few operations
142 in order to decrease the amount of phys. contiguous buffer needed.
143 Thus, when we select a blob the address may be with some offset
144 from the beginning of PRAM section.
145 The same holds for the INT_TABLE sections.
146 **********************************************************/
147 #define IF_IS_INT_TABLE_ADDR(base, addr) \
148 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
150 #define IF_IS_PRAM_ADDR(base, addr) \
151 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
153 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
154 const u8 *data)
156 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
157 data = INIT_TSEM_INT_TABLE_DATA(bp);
158 else
159 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
160 data = INIT_CSEM_INT_TABLE_DATA(bp);
161 else
162 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
163 data = INIT_USEM_INT_TABLE_DATA(bp);
164 else
165 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
166 data = INIT_XSEM_INT_TABLE_DATA(bp);
167 else
168 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
169 data = INIT_TSEM_PRAM_DATA(bp);
170 else
171 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
172 data = INIT_CSEM_PRAM_DATA(bp);
173 else
174 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
175 data = INIT_USEM_PRAM_DATA(bp);
176 else
177 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
178 data = INIT_XSEM_PRAM_DATA(bp);
180 return data;
183 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
184 const u32 *data, u32 len)
186 if (bp->dmae_ready)
187 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
189 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
190 else if (CHIP_IS_E1(bp))
191 bnx2x_init_ind_wr(bp, addr, data, len);
193 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
194 else
195 bnx2x_init_str_wr(bp, addr, data, len);
198 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
199 u32 val_hi)
201 u32 wb_write[2];
203 wb_write[0] = val_lo;
204 wb_write[1] = val_hi;
205 REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
207 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
208 u32 blob_off)
210 const u8 *data = NULL;
211 int rc;
212 u32 i;
214 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
216 rc = bnx2x_gunzip(bp, data, len);
217 if (rc)
218 return;
220 /* gunzip_outlen is in dwords */
221 len = GUNZIP_OUTLEN(bp);
222 for (i = 0; i < len; i++)
223 ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
224 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
226 bnx2x_write_big_buf_wb(bp, addr, len);
229 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
231 u16 op_start =
232 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
233 STAGE_START)];
234 u16 op_end =
235 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
236 STAGE_END)];
237 const union init_op *op;
238 u32 op_idx, op_type, addr, len;
239 const u32 *data, *data_base;
241 /* If empty block */
242 if (op_start == op_end)
243 return;
245 data_base = INIT_DATA(bp);
247 for (op_idx = op_start; op_idx < op_end; op_idx++) {
249 op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
250 /* Get generic data */
251 op_type = op->raw.op;
252 addr = op->raw.offset;
253 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
254 * OP_WR64 (we assume that op_arr_write and op_write have the
255 * same structure).
257 len = op->arr_wr.data_len;
258 data = data_base + op->arr_wr.data_off;
260 switch (op_type) {
261 case OP_RD:
262 REG_RD(bp, addr);
263 break;
264 case OP_WR:
265 REG_WR(bp, addr, op->write.val);
266 break;
267 case OP_SW:
268 bnx2x_init_str_wr(bp, addr, data, len);
269 break;
270 case OP_WB:
271 bnx2x_init_wr_wb(bp, addr, data, len);
272 break;
273 case OP_ZR:
274 bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
275 break;
276 case OP_WB_ZR:
277 bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
278 break;
279 case OP_ZP:
280 bnx2x_init_wr_zp(bp, addr, len,
281 op->arr_wr.data_off);
282 break;
283 case OP_WR_64:
284 bnx2x_init_wr_64(bp, addr, data, len);
285 break;
286 case OP_IF_MODE_AND:
287 /* if any of the flags doesn't match, skip the
288 * conditional block.
290 if ((INIT_MODE_FLAGS(bp) &
291 op->if_mode.mode_bit_map) !=
292 op->if_mode.mode_bit_map)
293 op_idx += op->if_mode.cmd_offset;
294 break;
295 case OP_IF_MODE_OR:
296 /* if all the flags don't match, skip the conditional
297 * block.
299 if ((INIT_MODE_FLAGS(bp) &
300 op->if_mode.mode_bit_map) == 0)
301 op_idx += op->if_mode.cmd_offset;
302 break;
303 default:
304 /* Should never get here! */
306 break;
312 /****************************************************************************
313 * PXP Arbiter
314 ****************************************************************************/
316 * This code configures the PCI read/write arbiter
317 * which implements a weighted round robin
318 * between the virtual queues in the chip.
320 * The values were derived for each PCI max payload and max request size.
321 * since max payload and max request size are only known at run time,
322 * this is done as a separate init stage.
325 #define NUM_WR_Q 13
326 #define NUM_RD_Q 29
327 #define MAX_RD_ORD 3
328 #define MAX_WR_ORD 2
330 /* configuration for one arbiter queue */
331 struct arb_line {
332 int l;
333 int add;
334 int ubound;
337 /* derived configuration for each read queue for each max request size */
338 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
339 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
340 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
341 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
342 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
343 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
344 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
346 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
348 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
354 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
355 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
356 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
357 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
358 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
359 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
360 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
361 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
362 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
363 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
364 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
365 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
366 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
367 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
370 /* derived configuration for each write queue for each max request size */
371 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
372 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
373 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
374 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
375 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
376 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
377 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
378 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
379 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
380 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
381 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
382 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
383 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
384 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
387 /* register addresses for read queues */
388 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
389 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
390 PXP2_REG_RQ_BW_RD_UBOUND0},
391 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
392 PXP2_REG_PSWRQ_BW_UB1},
393 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
394 PXP2_REG_PSWRQ_BW_UB2},
395 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
396 PXP2_REG_PSWRQ_BW_UB3},
397 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
398 PXP2_REG_RQ_BW_RD_UBOUND4},
399 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
400 PXP2_REG_RQ_BW_RD_UBOUND5},
401 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
402 PXP2_REG_PSWRQ_BW_UB6},
403 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
404 PXP2_REG_PSWRQ_BW_UB7},
405 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
406 PXP2_REG_PSWRQ_BW_UB8},
407 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
408 PXP2_REG_PSWRQ_BW_UB9},
409 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
410 PXP2_REG_PSWRQ_BW_UB10},
411 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
412 PXP2_REG_PSWRQ_BW_UB11},
413 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
414 PXP2_REG_RQ_BW_RD_UBOUND12},
415 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
416 PXP2_REG_RQ_BW_RD_UBOUND13},
417 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
418 PXP2_REG_RQ_BW_RD_UBOUND14},
419 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
420 PXP2_REG_RQ_BW_RD_UBOUND15},
421 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
422 PXP2_REG_RQ_BW_RD_UBOUND16},
423 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
424 PXP2_REG_RQ_BW_RD_UBOUND17},
425 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
426 PXP2_REG_RQ_BW_RD_UBOUND18},
427 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
428 PXP2_REG_RQ_BW_RD_UBOUND19},
429 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
430 PXP2_REG_RQ_BW_RD_UBOUND20},
431 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
432 PXP2_REG_RQ_BW_RD_UBOUND22},
433 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
434 PXP2_REG_RQ_BW_RD_UBOUND23},
435 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
436 PXP2_REG_RQ_BW_RD_UBOUND24},
437 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
438 PXP2_REG_RQ_BW_RD_UBOUND25},
439 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
440 PXP2_REG_RQ_BW_RD_UBOUND26},
441 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
442 PXP2_REG_RQ_BW_RD_UBOUND27},
443 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
444 PXP2_REG_PSWRQ_BW_UB28}
447 /* register addresses for write queues */
448 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
449 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
450 PXP2_REG_PSWRQ_BW_UB1},
451 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
452 PXP2_REG_PSWRQ_BW_UB2},
453 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
454 PXP2_REG_PSWRQ_BW_UB3},
455 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
456 PXP2_REG_PSWRQ_BW_UB6},
457 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
458 PXP2_REG_PSWRQ_BW_UB7},
459 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
460 PXP2_REG_PSWRQ_BW_UB8},
461 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
462 PXP2_REG_PSWRQ_BW_UB9},
463 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
464 PXP2_REG_PSWRQ_BW_UB10},
465 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
466 PXP2_REG_PSWRQ_BW_UB11},
467 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
468 PXP2_REG_PSWRQ_BW_UB28},
469 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
470 PXP2_REG_RQ_BW_WR_UBOUND29},
471 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
472 PXP2_REG_RQ_BW_WR_UBOUND30}
475 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
476 int w_order)
478 u32 val, i;
480 if (r_order > MAX_RD_ORD) {
481 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
482 r_order, MAX_RD_ORD);
483 r_order = MAX_RD_ORD;
485 if (w_order > MAX_WR_ORD) {
486 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
487 w_order, MAX_WR_ORD);
488 w_order = MAX_WR_ORD;
490 if (CHIP_REV_IS_FPGA(bp)) {
491 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
492 w_order = 0;
494 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
496 for (i = 0; i < NUM_RD_Q-1; i++) {
497 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
498 REG_WR(bp, read_arb_addr[i].add,
499 read_arb_data[i][r_order].add);
500 REG_WR(bp, read_arb_addr[i].ubound,
501 read_arb_data[i][r_order].ubound);
504 for (i = 0; i < NUM_WR_Q-1; i++) {
505 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
506 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
508 REG_WR(bp, write_arb_addr[i].l,
509 write_arb_data[i][w_order].l);
511 REG_WR(bp, write_arb_addr[i].add,
512 write_arb_data[i][w_order].add);
514 REG_WR(bp, write_arb_addr[i].ubound,
515 write_arb_data[i][w_order].ubound);
516 } else {
518 val = REG_RD(bp, write_arb_addr[i].l);
519 REG_WR(bp, write_arb_addr[i].l,
520 val | (write_arb_data[i][w_order].l << 10));
522 val = REG_RD(bp, write_arb_addr[i].add);
523 REG_WR(bp, write_arb_addr[i].add,
524 val | (write_arb_data[i][w_order].add << 10));
526 val = REG_RD(bp, write_arb_addr[i].ubound);
527 REG_WR(bp, write_arb_addr[i].ubound,
528 val | (write_arb_data[i][w_order].ubound << 7));
532 val = write_arb_data[NUM_WR_Q-1][w_order].add;
533 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
534 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
535 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
537 val = read_arb_data[NUM_RD_Q-1][r_order].add;
538 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
539 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
540 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
542 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
543 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
544 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
545 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
547 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
548 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
550 if (CHIP_IS_E3(bp))
551 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
552 else if (CHIP_IS_E2(bp))
553 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
554 else
555 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
557 if (!CHIP_IS_E1(bp)) {
558 /* MPS w_order optimal TH presently TH
559 * 128 0 0 2
560 * 256 1 1 3
561 * >=512 2 2 3
563 /* DMAE is special */
564 if (!CHIP_IS_E1H(bp)) {
565 /* E2 can use optimal TH */
566 val = w_order;
567 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
568 } else {
569 val = ((w_order == 0) ? 2 : 3);
570 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
573 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
574 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
575 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
576 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
577 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
578 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
579 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
580 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
581 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
582 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
585 /* Validate number of tags suppoted by device */
586 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
587 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
588 val &= 0xFF;
589 if (val <= 0x20)
590 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
593 /****************************************************************************
594 * ILT management
595 ****************************************************************************/
597 * This codes hides the low level HW interaction for ILT management and
598 * configuration. The API consists of a shadow ILT table which is set by the
599 * driver and a set of routines to use it to configure the HW.
603 /* ILT HW init operations */
605 /* ILT memory management operations */
606 #define ILT_MEMOP_ALLOC 0
607 #define ILT_MEMOP_FREE 1
609 /* the phys address is shifted right 12 bits and has an added
610 * 1=valid bit added to the 53rd bit
611 * then since this is a wide register(TM)
612 * we split it into two 32 bit writes
614 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
615 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
616 #define ILT_RANGE(f, l) (((l) << 10) | f)
618 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
619 struct ilt_line *line, u32 size, u8 memop)
621 if (memop == ILT_MEMOP_FREE) {
622 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
623 return 0;
625 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
626 if (!line->page)
627 return -1;
628 line->size = size;
629 return 0;
633 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
634 u8 memop)
636 int i, rc;
637 struct bnx2x_ilt *ilt = BP_ILT(bp);
638 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
640 if (!ilt || !ilt->lines)
641 return -1;
643 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
644 return 0;
646 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
647 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
648 ilt_cli->page_size, memop);
650 return rc;
653 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
655 int rc = 0;
657 if (CONFIGURE_NIC_MODE(bp))
658 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
659 if (!rc)
660 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
662 return rc;
665 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
667 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
668 if (!rc)
669 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
670 if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
671 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
673 return rc;
676 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
677 dma_addr_t page_mapping)
679 u32 reg;
681 if (CHIP_IS_E1(bp))
682 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
683 else
684 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
686 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
689 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
690 struct bnx2x_ilt *ilt, int idx, u8 initop)
692 dma_addr_t null_mapping;
693 int abs_idx = ilt->start_line + idx;
696 switch (initop) {
697 case INITOP_INIT:
698 /* set in the init-value array */
699 case INITOP_SET:
700 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
701 break;
702 case INITOP_CLEAR:
703 null_mapping = 0;
704 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
705 break;
709 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
710 struct ilt_client_info *ilt_cli,
711 u32 ilt_start, u8 initop)
713 u32 start_reg = 0;
714 u32 end_reg = 0;
716 /* The boundary is either SET or INIT,
717 CLEAR => SET and for now SET ~~ INIT */
719 /* find the appropriate regs */
720 if (CHIP_IS_E1(bp)) {
721 switch (ilt_cli->client_num) {
722 case ILT_CLIENT_CDU:
723 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
724 break;
725 case ILT_CLIENT_QM:
726 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
727 break;
728 case ILT_CLIENT_SRC:
729 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
730 break;
731 case ILT_CLIENT_TM:
732 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
733 break;
735 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
736 ILT_RANGE((ilt_start + ilt_cli->start),
737 (ilt_start + ilt_cli->end)));
738 } else {
739 switch (ilt_cli->client_num) {
740 case ILT_CLIENT_CDU:
741 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
742 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
743 break;
744 case ILT_CLIENT_QM:
745 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
746 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
747 break;
748 case ILT_CLIENT_SRC:
749 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
750 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
751 break;
752 case ILT_CLIENT_TM:
753 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
754 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
755 break;
757 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
758 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
762 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
763 struct bnx2x_ilt *ilt,
764 struct ilt_client_info *ilt_cli,
765 u8 initop)
767 int i;
769 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
770 return;
772 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
773 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
775 /* init/clear the ILT boundries */
776 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
779 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
780 struct ilt_client_info *ilt_cli, u8 initop)
782 struct bnx2x_ilt *ilt = BP_ILT(bp);
784 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
787 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
788 int cli_num, u8 initop)
790 struct bnx2x_ilt *ilt = BP_ILT(bp);
791 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
793 bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
796 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
798 if (CONFIGURE_NIC_MODE(bp))
799 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
800 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
803 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
805 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
806 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
807 if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
808 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
811 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
812 u32 psz_reg, u8 initop)
814 struct bnx2x_ilt *ilt = BP_ILT(bp);
815 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
817 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
818 return;
820 switch (initop) {
821 case INITOP_INIT:
822 /* set in the init-value array */
823 case INITOP_SET:
824 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
825 break;
826 case INITOP_CLEAR:
827 break;
832 * called during init common stage, ilt clients should be initialized
833 * prioir to calling this function
835 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
837 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
838 PXP2_REG_RQ_CDU_P_SIZE, initop);
839 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
840 PXP2_REG_RQ_QM_P_SIZE, initop);
841 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
842 PXP2_REG_RQ_SRC_P_SIZE, initop);
843 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
844 PXP2_REG_RQ_TM_P_SIZE, initop);
847 /****************************************************************************
848 * QM initializations
849 ****************************************************************************/
850 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
851 #define QM_INIT_MIN_CID_COUNT 31
852 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
854 /* called during init port stage */
855 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
856 u8 initop)
858 int port = BP_PORT(bp);
860 if (QM_INIT(qm_cid_count)) {
861 switch (initop) {
862 case INITOP_INIT:
863 /* set in the init-value array */
864 case INITOP_SET:
865 REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
866 qm_cid_count/16 - 1);
867 break;
868 case INITOP_CLEAR:
869 break;
874 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
875 u32 base_reg, u32 reg)
877 int i;
878 u32 wb_data[2] = {0, 0};
879 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
880 REG_WR(bp, base_reg + i*4,
881 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
882 bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2);
886 /* called during init common stage */
887 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
888 u8 initop)
890 if (!QM_INIT(qm_cid_count))
891 return;
893 switch (initop) {
894 case INITOP_INIT:
895 /* set in the init-value array */
896 case INITOP_SET:
897 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
898 QM_REG_BASEADDR, QM_REG_PTRTBL);
899 if (CHIP_IS_E1H(bp))
900 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
901 QM_REG_BASEADDR_EXT_A,
902 QM_REG_PTRTBL_EXT_A);
903 break;
904 case INITOP_CLEAR:
905 break;
909 /****************************************************************************
910 * SRC initializations
911 ****************************************************************************/
912 /* called during init func stage */
913 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
914 dma_addr_t t2_mapping, int src_cid_count)
916 int i;
917 int port = BP_PORT(bp);
919 /* Initialize T2 */
920 for (i = 0; i < src_cid_count-1; i++)
921 t2[i].next = (u64)(t2_mapping +
922 (i+1)*sizeof(struct src_ent));
924 /* tell the searcher where the T2 table is */
925 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
927 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
928 U64_LO(t2_mapping), U64_HI(t2_mapping));
930 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
931 U64_LO((u64)t2_mapping +
932 (src_cid_count-1) * sizeof(struct src_ent)),
933 U64_HI((u64)t2_mapping +
934 (src_cid_count-1) * sizeof(struct src_ent)));
936 #endif /* BNX2X_INIT_OPS_H */