1 /* Broadcom NetXtreme-C/E network driver.
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2018 Broadcom Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
11 #include <linux/module.h>
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54 #include <linux/hwmon.h>
55 #include <linux/hwmon-sysfs.h>
60 #include "bnxt_sriov.h"
61 #include "bnxt_ethtool.h"
66 #include "bnxt_devlink.h"
67 #include "bnxt_debugfs.h"
69 #define BNXT_TX_TIMEOUT (5 * HZ)
71 static const char version
[] =
72 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
"\n";
74 MODULE_LICENSE("GPL");
75 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
76 MODULE_VERSION(DRV_MODULE_VERSION
);
78 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
79 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
80 #define BNXT_RX_COPY_THRESH 256
82 #define BNXT_TX_PUSH_THRESH 164
122 /* indexed by enum above */
123 static const struct {
126 [BCM57301
] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
127 [BCM57302
] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
128 [BCM57304
] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
129 [BCM57417_NPAR
] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
130 [BCM58700
] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
131 [BCM57311
] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
132 [BCM57312
] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
133 [BCM57402
] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
134 [BCM57404
] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
135 [BCM57406
] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
136 [BCM57402_NPAR
] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
137 [BCM57407
] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
138 [BCM57412
] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
139 [BCM57414
] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
140 [BCM57416
] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
141 [BCM57417
] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
142 [BCM57412_NPAR
] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
143 [BCM57314
] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
144 [BCM57417_SFP
] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
145 [BCM57416_SFP
] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
146 [BCM57404_NPAR
] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
147 [BCM57406_NPAR
] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
148 [BCM57407_SFP
] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
149 [BCM57407_NPAR
] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
150 [BCM57414_NPAR
] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
151 [BCM57416_NPAR
] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
152 [BCM57452
] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
153 [BCM57454
] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
154 [BCM5745x_NPAR
] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
155 [BCM58802
] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
156 [BCM58804
] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
157 [BCM58808
] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
158 [NETXTREME_E_VF
] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
159 [NETXTREME_C_VF
] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
160 [NETXTREME_S_VF
] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
163 static const struct pci_device_id bnxt_pci_tbl
[] = {
164 { PCI_VDEVICE(BROADCOM
, 0x1604), .driver_data
= BCM5745x_NPAR
},
165 { PCI_VDEVICE(BROADCOM
, 0x1605), .driver_data
= BCM5745x_NPAR
},
166 { PCI_VDEVICE(BROADCOM
, 0x1614), .driver_data
= BCM57454
},
167 { PCI_VDEVICE(BROADCOM
, 0x16c0), .driver_data
= BCM57417_NPAR
},
168 { PCI_VDEVICE(BROADCOM
, 0x16c8), .driver_data
= BCM57301
},
169 { PCI_VDEVICE(BROADCOM
, 0x16c9), .driver_data
= BCM57302
},
170 { PCI_VDEVICE(BROADCOM
, 0x16ca), .driver_data
= BCM57304
},
171 { PCI_VDEVICE(BROADCOM
, 0x16cc), .driver_data
= BCM57417_NPAR
},
172 { PCI_VDEVICE(BROADCOM
, 0x16cd), .driver_data
= BCM58700
},
173 { PCI_VDEVICE(BROADCOM
, 0x16ce), .driver_data
= BCM57311
},
174 { PCI_VDEVICE(BROADCOM
, 0x16cf), .driver_data
= BCM57312
},
175 { PCI_VDEVICE(BROADCOM
, 0x16d0), .driver_data
= BCM57402
},
176 { PCI_VDEVICE(BROADCOM
, 0x16d1), .driver_data
= BCM57404
},
177 { PCI_VDEVICE(BROADCOM
, 0x16d2), .driver_data
= BCM57406
},
178 { PCI_VDEVICE(BROADCOM
, 0x16d4), .driver_data
= BCM57402_NPAR
},
179 { PCI_VDEVICE(BROADCOM
, 0x16d5), .driver_data
= BCM57407
},
180 { PCI_VDEVICE(BROADCOM
, 0x16d6), .driver_data
= BCM57412
},
181 { PCI_VDEVICE(BROADCOM
, 0x16d7), .driver_data
= BCM57414
},
182 { PCI_VDEVICE(BROADCOM
, 0x16d8), .driver_data
= BCM57416
},
183 { PCI_VDEVICE(BROADCOM
, 0x16d9), .driver_data
= BCM57417
},
184 { PCI_VDEVICE(BROADCOM
, 0x16de), .driver_data
= BCM57412_NPAR
},
185 { PCI_VDEVICE(BROADCOM
, 0x16df), .driver_data
= BCM57314
},
186 { PCI_VDEVICE(BROADCOM
, 0x16e2), .driver_data
= BCM57417_SFP
},
187 { PCI_VDEVICE(BROADCOM
, 0x16e3), .driver_data
= BCM57416_SFP
},
188 { PCI_VDEVICE(BROADCOM
, 0x16e7), .driver_data
= BCM57404_NPAR
},
189 { PCI_VDEVICE(BROADCOM
, 0x16e8), .driver_data
= BCM57406_NPAR
},
190 { PCI_VDEVICE(BROADCOM
, 0x16e9), .driver_data
= BCM57407_SFP
},
191 { PCI_VDEVICE(BROADCOM
, 0x16ea), .driver_data
= BCM57407_NPAR
},
192 { PCI_VDEVICE(BROADCOM
, 0x16eb), .driver_data
= BCM57412_NPAR
},
193 { PCI_VDEVICE(BROADCOM
, 0x16ec), .driver_data
= BCM57414_NPAR
},
194 { PCI_VDEVICE(BROADCOM
, 0x16ed), .driver_data
= BCM57414_NPAR
},
195 { PCI_VDEVICE(BROADCOM
, 0x16ee), .driver_data
= BCM57416_NPAR
},
196 { PCI_VDEVICE(BROADCOM
, 0x16ef), .driver_data
= BCM57416_NPAR
},
197 { PCI_VDEVICE(BROADCOM
, 0x16f0), .driver_data
= BCM58808
},
198 { PCI_VDEVICE(BROADCOM
, 0x16f1), .driver_data
= BCM57452
},
199 { PCI_VDEVICE(BROADCOM
, 0xd802), .driver_data
= BCM58802
},
200 { PCI_VDEVICE(BROADCOM
, 0xd804), .driver_data
= BCM58804
},
201 #ifdef CONFIG_BNXT_SRIOV
202 { PCI_VDEVICE(BROADCOM
, 0x1606), .driver_data
= NETXTREME_E_VF
},
203 { PCI_VDEVICE(BROADCOM
, 0x1609), .driver_data
= NETXTREME_E_VF
},
204 { PCI_VDEVICE(BROADCOM
, 0x16c1), .driver_data
= NETXTREME_E_VF
},
205 { PCI_VDEVICE(BROADCOM
, 0x16cb), .driver_data
= NETXTREME_C_VF
},
206 { PCI_VDEVICE(BROADCOM
, 0x16d3), .driver_data
= NETXTREME_E_VF
},
207 { PCI_VDEVICE(BROADCOM
, 0x16dc), .driver_data
= NETXTREME_E_VF
},
208 { PCI_VDEVICE(BROADCOM
, 0x16e1), .driver_data
= NETXTREME_C_VF
},
209 { PCI_VDEVICE(BROADCOM
, 0x16e5), .driver_data
= NETXTREME_C_VF
},
210 { PCI_VDEVICE(BROADCOM
, 0xd800), .driver_data
= NETXTREME_S_VF
},
215 MODULE_DEVICE_TABLE(pci
, bnxt_pci_tbl
);
217 static const u16 bnxt_vf_req_snif
[] = {
221 HWRM_CFA_L2_FILTER_ALLOC
,
224 static const u16 bnxt_async_events_arr
[] = {
225 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE
,
226 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD
,
227 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED
,
228 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE
,
229 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE
,
232 static struct workqueue_struct
*bnxt_pf_wq
;
234 static bool bnxt_vf_pciid(enum board_idx idx
)
236 return (idx
== NETXTREME_C_VF
|| idx
== NETXTREME_E_VF
||
237 idx
== NETXTREME_S_VF
);
240 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
241 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
242 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
244 #define BNXT_CP_DB_REARM(db, raw_cons) \
245 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
247 #define BNXT_CP_DB(db, raw_cons) \
248 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
250 #define BNXT_CP_DB_IRQ_DIS(db) \
251 writel(DB_CP_IRQ_DIS_FLAGS, db)
253 const u16 bnxt_lhint_arr
[] = {
254 TX_BD_FLAGS_LHINT_512_AND_SMALLER
,
255 TX_BD_FLAGS_LHINT_512_TO_1023
,
256 TX_BD_FLAGS_LHINT_1024_TO_2047
,
257 TX_BD_FLAGS_LHINT_1024_TO_2047
,
258 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
259 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
260 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
261 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
262 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
263 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
264 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
265 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
266 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
267 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
268 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
269 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
270 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
271 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
272 TX_BD_FLAGS_LHINT_2048_AND_LARGER
,
275 static u16
bnxt_xmit_get_cfa_action(struct sk_buff
*skb
)
277 struct metadata_dst
*md_dst
= skb_metadata_dst(skb
);
279 if (!md_dst
|| md_dst
->type
!= METADATA_HW_PORT_MUX
)
282 return md_dst
->u
.port_info
.port_id
;
285 static netdev_tx_t
bnxt_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
287 struct bnxt
*bp
= netdev_priv(dev
);
289 struct tx_bd_ext
*txbd1
;
290 struct netdev_queue
*txq
;
293 unsigned int length
, pad
= 0;
294 u32 len
, free_size
, vlan_tag_flags
, cfa_action
, flags
;
296 struct pci_dev
*pdev
= bp
->pdev
;
297 struct bnxt_tx_ring_info
*txr
;
298 struct bnxt_sw_tx_bd
*tx_buf
;
300 i
= skb_get_queue_mapping(skb
);
301 if (unlikely(i
>= bp
->tx_nr_rings
)) {
302 dev_kfree_skb_any(skb
);
306 txq
= netdev_get_tx_queue(dev
, i
);
307 txr
= &bp
->tx_ring
[bp
->tx_ring_map
[i
]];
310 free_size
= bnxt_tx_avail(bp
, txr
);
311 if (unlikely(free_size
< skb_shinfo(skb
)->nr_frags
+ 2)) {
312 netif_tx_stop_queue(txq
);
313 return NETDEV_TX_BUSY
;
317 len
= skb_headlen(skb
);
318 last_frag
= skb_shinfo(skb
)->nr_frags
;
320 txbd
= &txr
->tx_desc_ring
[TX_RING(prod
)][TX_IDX(prod
)];
322 txbd
->tx_bd_opaque
= prod
;
324 tx_buf
= &txr
->tx_buf_ring
[prod
];
326 tx_buf
->nr_frags
= last_frag
;
329 cfa_action
= bnxt_xmit_get_cfa_action(skb
);
330 if (skb_vlan_tag_present(skb
)) {
331 vlan_tag_flags
= TX_BD_CFA_META_KEY_VLAN
|
332 skb_vlan_tag_get(skb
);
333 /* Currently supports 8021Q, 8021AD vlan offloads
334 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
336 if (skb
->vlan_proto
== htons(ETH_P_8021Q
))
337 vlan_tag_flags
|= 1 << TX_BD_CFA_META_TPID_SHIFT
;
340 if (free_size
== bp
->tx_ring_size
&& length
<= bp
->tx_push_thresh
) {
341 struct tx_push_buffer
*tx_push_buf
= txr
->tx_push
;
342 struct tx_push_bd
*tx_push
= &tx_push_buf
->push_bd
;
343 struct tx_bd_ext
*tx_push1
= &tx_push
->txbd2
;
344 void *pdata
= tx_push_buf
->data
;
348 /* Set COAL_NOW to be ready quickly for the next push */
349 tx_push
->tx_bd_len_flags_type
=
350 cpu_to_le32((length
<< TX_BD_LEN_SHIFT
) |
351 TX_BD_TYPE_LONG_TX_BD
|
352 TX_BD_FLAGS_LHINT_512_AND_SMALLER
|
353 TX_BD_FLAGS_COAL_NOW
|
354 TX_BD_FLAGS_PACKET_END
|
355 (2 << TX_BD_FLAGS_BD_CNT_SHIFT
));
357 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
358 tx_push1
->tx_bd_hsize_lflags
=
359 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM
);
361 tx_push1
->tx_bd_hsize_lflags
= 0;
363 tx_push1
->tx_bd_cfa_meta
= cpu_to_le32(vlan_tag_flags
);
364 tx_push1
->tx_bd_cfa_action
=
365 cpu_to_le32(cfa_action
<< TX_BD_CFA_ACTION_SHIFT
);
367 end
= pdata
+ length
;
368 end
= PTR_ALIGN(end
, 8) - 1;
371 skb_copy_from_linear_data(skb
, pdata
, len
);
373 for (j
= 0; j
< last_frag
; j
++) {
374 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
377 fptr
= skb_frag_address_safe(frag
);
381 memcpy(pdata
, fptr
, skb_frag_size(frag
));
382 pdata
+= skb_frag_size(frag
);
385 txbd
->tx_bd_len_flags_type
= tx_push
->tx_bd_len_flags_type
;
386 txbd
->tx_bd_haddr
= txr
->data_mapping
;
387 prod
= NEXT_TX(prod
);
388 txbd
= &txr
->tx_desc_ring
[TX_RING(prod
)][TX_IDX(prod
)];
389 memcpy(txbd
, tx_push1
, sizeof(*txbd
));
390 prod
= NEXT_TX(prod
);
392 cpu_to_le32(DB_KEY_TX_PUSH
| DB_LONG_TX_PUSH
| prod
);
396 netdev_tx_sent_queue(txq
, skb
->len
);
397 wmb(); /* Sync is_push and byte queue before pushing data */
399 push_len
= (length
+ sizeof(*tx_push
) + 7) / 8;
401 __iowrite64_copy(txr
->tx_doorbell
, tx_push_buf
, 16);
402 __iowrite32_copy(txr
->tx_doorbell
+ 4, tx_push_buf
+ 1,
403 (push_len
- 16) << 1);
405 __iowrite64_copy(txr
->tx_doorbell
, tx_push_buf
,
413 if (length
< BNXT_MIN_PKT_SIZE
) {
414 pad
= BNXT_MIN_PKT_SIZE
- length
;
415 if (skb_pad(skb
, pad
)) {
416 /* SKB already freed. */
420 length
= BNXT_MIN_PKT_SIZE
;
423 mapping
= dma_map_single(&pdev
->dev
, skb
->data
, len
, DMA_TO_DEVICE
);
425 if (unlikely(dma_mapping_error(&pdev
->dev
, mapping
))) {
426 dev_kfree_skb_any(skb
);
431 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
432 flags
= (len
<< TX_BD_LEN_SHIFT
) | TX_BD_TYPE_LONG_TX_BD
|
433 ((last_frag
+ 2) << TX_BD_FLAGS_BD_CNT_SHIFT
);
435 txbd
->tx_bd_haddr
= cpu_to_le64(mapping
);
437 prod
= NEXT_TX(prod
);
438 txbd1
= (struct tx_bd_ext
*)
439 &txr
->tx_desc_ring
[TX_RING(prod
)][TX_IDX(prod
)];
441 txbd1
->tx_bd_hsize_lflags
= 0;
442 if (skb_is_gso(skb
)) {
445 if (skb
->encapsulation
)
446 hdr_len
= skb_inner_network_offset(skb
) +
447 skb_inner_network_header_len(skb
) +
448 inner_tcp_hdrlen(skb
);
450 hdr_len
= skb_transport_offset(skb
) +
453 txbd1
->tx_bd_hsize_lflags
= cpu_to_le32(TX_BD_FLAGS_LSO
|
455 (hdr_len
<< (TX_BD_HSIZE_SHIFT
- 1)));
456 length
= skb_shinfo(skb
)->gso_size
;
457 txbd1
->tx_bd_mss
= cpu_to_le32(length
);
459 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
460 txbd1
->tx_bd_hsize_lflags
=
461 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM
);
462 txbd1
->tx_bd_mss
= 0;
466 if (unlikely(length
>= ARRAY_SIZE(bnxt_lhint_arr
))) {
467 dev_warn_ratelimited(&pdev
->dev
, "Dropped oversize %d bytes TX packet.\n",
472 flags
|= bnxt_lhint_arr
[length
];
473 txbd
->tx_bd_len_flags_type
= cpu_to_le32(flags
);
475 txbd1
->tx_bd_cfa_meta
= cpu_to_le32(vlan_tag_flags
);
476 txbd1
->tx_bd_cfa_action
=
477 cpu_to_le32(cfa_action
<< TX_BD_CFA_ACTION_SHIFT
);
478 for (i
= 0; i
< last_frag
; i
++) {
479 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
481 prod
= NEXT_TX(prod
);
482 txbd
= &txr
->tx_desc_ring
[TX_RING(prod
)][TX_IDX(prod
)];
484 len
= skb_frag_size(frag
);
485 mapping
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
488 if (unlikely(dma_mapping_error(&pdev
->dev
, mapping
)))
491 tx_buf
= &txr
->tx_buf_ring
[prod
];
492 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
494 txbd
->tx_bd_haddr
= cpu_to_le64(mapping
);
496 flags
= len
<< TX_BD_LEN_SHIFT
;
497 txbd
->tx_bd_len_flags_type
= cpu_to_le32(flags
);
501 txbd
->tx_bd_len_flags_type
=
502 cpu_to_le32(((len
+ pad
) << TX_BD_LEN_SHIFT
) | flags
|
503 TX_BD_FLAGS_PACKET_END
);
505 netdev_tx_sent_queue(txq
, skb
->len
);
507 /* Sync BD data before updating doorbell */
510 prod
= NEXT_TX(prod
);
513 if (!skb
->xmit_more
|| netif_xmit_stopped(txq
))
514 bnxt_db_write(bp
, txr
->tx_doorbell
, DB_KEY_TX
| prod
);
520 if (unlikely(bnxt_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
+ 1)) {
521 if (skb
->xmit_more
&& !tx_buf
->is_push
)
522 bnxt_db_write(bp
, txr
->tx_doorbell
, DB_KEY_TX
| prod
);
524 netif_tx_stop_queue(txq
);
526 /* netif_tx_stop_queue() must be done before checking
527 * tx index in bnxt_tx_avail() below, because in
528 * bnxt_tx_int(), we update tx index before checking for
529 * netif_tx_queue_stopped().
532 if (bnxt_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
533 netif_tx_wake_queue(txq
);
540 /* start back at beginning and unmap skb */
542 tx_buf
= &txr
->tx_buf_ring
[prod
];
544 dma_unmap_single(&pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
545 skb_headlen(skb
), PCI_DMA_TODEVICE
);
546 prod
= NEXT_TX(prod
);
548 /* unmap remaining mapped pages */
549 for (i
= 0; i
< last_frag
; i
++) {
550 prod
= NEXT_TX(prod
);
551 tx_buf
= &txr
->tx_buf_ring
[prod
];
552 dma_unmap_page(&pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
553 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
557 dev_kfree_skb_any(skb
);
561 static void bnxt_tx_int(struct bnxt
*bp
, struct bnxt_napi
*bnapi
, int nr_pkts
)
563 struct bnxt_tx_ring_info
*txr
= bnapi
->tx_ring
;
564 struct netdev_queue
*txq
= netdev_get_tx_queue(bp
->dev
, txr
->txq_index
);
565 u16 cons
= txr
->tx_cons
;
566 struct pci_dev
*pdev
= bp
->pdev
;
568 unsigned int tx_bytes
= 0;
570 for (i
= 0; i
< nr_pkts
; i
++) {
571 struct bnxt_sw_tx_bd
*tx_buf
;
575 tx_buf
= &txr
->tx_buf_ring
[cons
];
576 cons
= NEXT_TX(cons
);
580 if (tx_buf
->is_push
) {
585 dma_unmap_single(&pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
586 skb_headlen(skb
), PCI_DMA_TODEVICE
);
587 last
= tx_buf
->nr_frags
;
589 for (j
= 0; j
< last
; j
++) {
590 cons
= NEXT_TX(cons
);
591 tx_buf
= &txr
->tx_buf_ring
[cons
];
594 dma_unmap_addr(tx_buf
, mapping
),
595 skb_frag_size(&skb_shinfo(skb
)->frags
[j
]),
600 cons
= NEXT_TX(cons
);
602 tx_bytes
+= skb
->len
;
603 dev_kfree_skb_any(skb
);
606 netdev_tx_completed_queue(txq
, nr_pkts
, tx_bytes
);
609 /* Need to make the tx_cons update visible to bnxt_start_xmit()
610 * before checking for netif_tx_queue_stopped(). Without the
611 * memory barrier, there is a small possibility that bnxt_start_xmit()
612 * will miss it and cause the queue to be stopped forever.
616 if (unlikely(netif_tx_queue_stopped(txq
)) &&
617 (bnxt_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
618 __netif_tx_lock(txq
, smp_processor_id());
619 if (netif_tx_queue_stopped(txq
) &&
620 bnxt_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
&&
621 txr
->dev_state
!= BNXT_DEV_STATE_CLOSING
)
622 netif_tx_wake_queue(txq
);
623 __netif_tx_unlock(txq
);
627 static struct page
*__bnxt_alloc_rx_page(struct bnxt
*bp
, dma_addr_t
*mapping
,
630 struct device
*dev
= &bp
->pdev
->dev
;
633 page
= alloc_page(gfp
);
637 *mapping
= dma_map_page_attrs(dev
, page
, 0, PAGE_SIZE
, bp
->rx_dir
,
638 DMA_ATTR_WEAK_ORDERING
);
639 if (dma_mapping_error(dev
, *mapping
)) {
643 *mapping
+= bp
->rx_dma_offset
;
647 static inline u8
*__bnxt_alloc_rx_data(struct bnxt
*bp
, dma_addr_t
*mapping
,
651 struct pci_dev
*pdev
= bp
->pdev
;
653 data
= kmalloc(bp
->rx_buf_size
, gfp
);
657 *mapping
= dma_map_single_attrs(&pdev
->dev
, data
+ bp
->rx_dma_offset
,
658 bp
->rx_buf_use_size
, bp
->rx_dir
,
659 DMA_ATTR_WEAK_ORDERING
);
661 if (dma_mapping_error(&pdev
->dev
, *mapping
)) {
668 int bnxt_alloc_rx_data(struct bnxt
*bp
, struct bnxt_rx_ring_info
*rxr
,
671 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
672 struct bnxt_sw_rx_bd
*rx_buf
= &rxr
->rx_buf_ring
[prod
];
675 if (BNXT_RX_PAGE_MODE(bp
)) {
676 struct page
*page
= __bnxt_alloc_rx_page(bp
, &mapping
, gfp
);
682 rx_buf
->data_ptr
= page_address(page
) + bp
->rx_offset
;
684 u8
*data
= __bnxt_alloc_rx_data(bp
, &mapping
, gfp
);
690 rx_buf
->data_ptr
= data
+ bp
->rx_offset
;
692 rx_buf
->mapping
= mapping
;
694 rxbd
->rx_bd_haddr
= cpu_to_le64(mapping
);
698 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info
*rxr
, u16 cons
, void *data
)
700 u16 prod
= rxr
->rx_prod
;
701 struct bnxt_sw_rx_bd
*cons_rx_buf
, *prod_rx_buf
;
702 struct rx_bd
*cons_bd
, *prod_bd
;
704 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
705 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
707 prod_rx_buf
->data
= data
;
708 prod_rx_buf
->data_ptr
= cons_rx_buf
->data_ptr
;
710 prod_rx_buf
->mapping
= cons_rx_buf
->mapping
;
712 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
713 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
715 prod_bd
->rx_bd_haddr
= cons_bd
->rx_bd_haddr
;
718 static inline u16
bnxt_find_next_agg_idx(struct bnxt_rx_ring_info
*rxr
, u16 idx
)
720 u16 next
, max
= rxr
->rx_agg_bmap_size
;
722 next
= find_next_zero_bit(rxr
->rx_agg_bmap
, max
, idx
);
724 next
= find_first_zero_bit(rxr
->rx_agg_bmap
, max
);
728 static inline int bnxt_alloc_rx_page(struct bnxt
*bp
,
729 struct bnxt_rx_ring_info
*rxr
,
733 &rxr
->rx_agg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
734 struct bnxt_sw_rx_agg_bd
*rx_agg_buf
;
735 struct pci_dev
*pdev
= bp
->pdev
;
738 u16 sw_prod
= rxr
->rx_sw_agg_prod
;
739 unsigned int offset
= 0;
741 if (PAGE_SIZE
> BNXT_RX_PAGE_SIZE
) {
744 page
= alloc_page(gfp
);
748 rxr
->rx_page_offset
= 0;
750 offset
= rxr
->rx_page_offset
;
751 rxr
->rx_page_offset
+= BNXT_RX_PAGE_SIZE
;
752 if (rxr
->rx_page_offset
== PAGE_SIZE
)
757 page
= alloc_page(gfp
);
762 mapping
= dma_map_page_attrs(&pdev
->dev
, page
, offset
,
763 BNXT_RX_PAGE_SIZE
, PCI_DMA_FROMDEVICE
,
764 DMA_ATTR_WEAK_ORDERING
);
765 if (dma_mapping_error(&pdev
->dev
, mapping
)) {
770 if (unlikely(test_bit(sw_prod
, rxr
->rx_agg_bmap
)))
771 sw_prod
= bnxt_find_next_agg_idx(rxr
, sw_prod
);
773 __set_bit(sw_prod
, rxr
->rx_agg_bmap
);
774 rx_agg_buf
= &rxr
->rx_agg_ring
[sw_prod
];
775 rxr
->rx_sw_agg_prod
= NEXT_RX_AGG(sw_prod
);
777 rx_agg_buf
->page
= page
;
778 rx_agg_buf
->offset
= offset
;
779 rx_agg_buf
->mapping
= mapping
;
780 rxbd
->rx_bd_haddr
= cpu_to_le64(mapping
);
781 rxbd
->rx_bd_opaque
= sw_prod
;
785 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi
*bnapi
, u16 cp_cons
,
788 struct bnxt
*bp
= bnapi
->bp
;
789 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
790 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
791 u16 prod
= rxr
->rx_agg_prod
;
792 u16 sw_prod
= rxr
->rx_sw_agg_prod
;
795 for (i
= 0; i
< agg_bufs
; i
++) {
797 struct rx_agg_cmp
*agg
;
798 struct bnxt_sw_rx_agg_bd
*cons_rx_buf
, *prod_rx_buf
;
799 struct rx_bd
*prod_bd
;
802 agg
= (struct rx_agg_cmp
*)
803 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
804 cons
= agg
->rx_agg_cmp_opaque
;
805 __clear_bit(cons
, rxr
->rx_agg_bmap
);
807 if (unlikely(test_bit(sw_prod
, rxr
->rx_agg_bmap
)))
808 sw_prod
= bnxt_find_next_agg_idx(rxr
, sw_prod
);
810 __set_bit(sw_prod
, rxr
->rx_agg_bmap
);
811 prod_rx_buf
= &rxr
->rx_agg_ring
[sw_prod
];
812 cons_rx_buf
= &rxr
->rx_agg_ring
[cons
];
814 /* It is possible for sw_prod to be equal to cons, so
815 * set cons_rx_buf->page to NULL first.
817 page
= cons_rx_buf
->page
;
818 cons_rx_buf
->page
= NULL
;
819 prod_rx_buf
->page
= page
;
820 prod_rx_buf
->offset
= cons_rx_buf
->offset
;
822 prod_rx_buf
->mapping
= cons_rx_buf
->mapping
;
824 prod_bd
= &rxr
->rx_agg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
826 prod_bd
->rx_bd_haddr
= cpu_to_le64(cons_rx_buf
->mapping
);
827 prod_bd
->rx_bd_opaque
= sw_prod
;
829 prod
= NEXT_RX_AGG(prod
);
830 sw_prod
= NEXT_RX_AGG(sw_prod
);
831 cp_cons
= NEXT_CMP(cp_cons
);
833 rxr
->rx_agg_prod
= prod
;
834 rxr
->rx_sw_agg_prod
= sw_prod
;
837 static struct sk_buff
*bnxt_rx_page_skb(struct bnxt
*bp
,
838 struct bnxt_rx_ring_info
*rxr
,
839 u16 cons
, void *data
, u8
*data_ptr
,
841 unsigned int offset_and_len
)
843 unsigned int payload
= offset_and_len
>> 16;
844 unsigned int len
= offset_and_len
& 0xffff;
845 struct skb_frag_struct
*frag
;
846 struct page
*page
= data
;
847 u16 prod
= rxr
->rx_prod
;
851 err
= bnxt_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
853 bnxt_reuse_rx_data(rxr
, cons
, data
);
856 dma_addr
-= bp
->rx_dma_offset
;
857 dma_unmap_page_attrs(&bp
->pdev
->dev
, dma_addr
, PAGE_SIZE
, bp
->rx_dir
,
858 DMA_ATTR_WEAK_ORDERING
);
860 if (unlikely(!payload
))
861 payload
= eth_get_headlen(data_ptr
, len
);
863 skb
= napi_alloc_skb(&rxr
->bnapi
->napi
, payload
);
869 off
= (void *)data_ptr
- page_address(page
);
870 skb_add_rx_frag(skb
, 0, page
, off
, len
, PAGE_SIZE
);
871 memcpy(skb
->data
- NET_IP_ALIGN
, data_ptr
- NET_IP_ALIGN
,
872 payload
+ NET_IP_ALIGN
);
874 frag
= &skb_shinfo(skb
)->frags
[0];
875 skb_frag_size_sub(frag
, payload
);
876 frag
->page_offset
+= payload
;
877 skb
->data_len
-= payload
;
878 skb
->tail
+= payload
;
883 static struct sk_buff
*bnxt_rx_skb(struct bnxt
*bp
,
884 struct bnxt_rx_ring_info
*rxr
, u16 cons
,
885 void *data
, u8
*data_ptr
,
887 unsigned int offset_and_len
)
889 u16 prod
= rxr
->rx_prod
;
893 err
= bnxt_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
895 bnxt_reuse_rx_data(rxr
, cons
, data
);
899 skb
= build_skb(data
, 0);
900 dma_unmap_single_attrs(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
901 bp
->rx_dir
, DMA_ATTR_WEAK_ORDERING
);
907 skb_reserve(skb
, bp
->rx_offset
);
908 skb_put(skb
, offset_and_len
& 0xffff);
912 static struct sk_buff
*bnxt_rx_pages(struct bnxt
*bp
, struct bnxt_napi
*bnapi
,
913 struct sk_buff
*skb
, u16 cp_cons
,
916 struct pci_dev
*pdev
= bp
->pdev
;
917 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
918 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
919 u16 prod
= rxr
->rx_agg_prod
;
922 for (i
= 0; i
< agg_bufs
; i
++) {
924 struct rx_agg_cmp
*agg
;
925 struct bnxt_sw_rx_agg_bd
*cons_rx_buf
;
929 agg
= (struct rx_agg_cmp
*)
930 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
931 cons
= agg
->rx_agg_cmp_opaque
;
932 frag_len
= (le32_to_cpu(agg
->rx_agg_cmp_len_flags_type
) &
933 RX_AGG_CMP_LEN
) >> RX_AGG_CMP_LEN_SHIFT
;
935 cons_rx_buf
= &rxr
->rx_agg_ring
[cons
];
936 skb_fill_page_desc(skb
, i
, cons_rx_buf
->page
,
937 cons_rx_buf
->offset
, frag_len
);
938 __clear_bit(cons
, rxr
->rx_agg_bmap
);
940 /* It is possible for bnxt_alloc_rx_page() to allocate
941 * a sw_prod index that equals the cons index, so we
942 * need to clear the cons entry now.
944 mapping
= cons_rx_buf
->mapping
;
945 page
= cons_rx_buf
->page
;
946 cons_rx_buf
->page
= NULL
;
948 if (bnxt_alloc_rx_page(bp
, rxr
, prod
, GFP_ATOMIC
) != 0) {
949 struct skb_shared_info
*shinfo
;
950 unsigned int nr_frags
;
952 shinfo
= skb_shinfo(skb
);
953 nr_frags
= --shinfo
->nr_frags
;
954 __skb_frag_set_page(&shinfo
->frags
[nr_frags
], NULL
);
958 cons_rx_buf
->page
= page
;
960 /* Update prod since possibly some pages have been
963 rxr
->rx_agg_prod
= prod
;
964 bnxt_reuse_rx_agg_bufs(bnapi
, cp_cons
, agg_bufs
- i
);
968 dma_unmap_page_attrs(&pdev
->dev
, mapping
, BNXT_RX_PAGE_SIZE
,
970 DMA_ATTR_WEAK_ORDERING
);
972 skb
->data_len
+= frag_len
;
973 skb
->len
+= frag_len
;
974 skb
->truesize
+= PAGE_SIZE
;
976 prod
= NEXT_RX_AGG(prod
);
977 cp_cons
= NEXT_CMP(cp_cons
);
979 rxr
->rx_agg_prod
= prod
;
983 static int bnxt_agg_bufs_valid(struct bnxt
*bp
, struct bnxt_cp_ring_info
*cpr
,
984 u8 agg_bufs
, u32
*raw_cons
)
987 struct rx_agg_cmp
*agg
;
989 *raw_cons
= ADV_RAW_CMP(*raw_cons
, agg_bufs
);
990 last
= RING_CMP(*raw_cons
);
991 agg
= (struct rx_agg_cmp
*)
992 &cpr
->cp_desc_ring
[CP_RING(last
)][CP_IDX(last
)];
993 return RX_AGG_CMP_VALID(agg
, *raw_cons
);
996 static inline struct sk_buff
*bnxt_copy_skb(struct bnxt_napi
*bnapi
, u8
*data
,
1000 struct bnxt
*bp
= bnapi
->bp
;
1001 struct pci_dev
*pdev
= bp
->pdev
;
1002 struct sk_buff
*skb
;
1004 skb
= napi_alloc_skb(&bnapi
->napi
, len
);
1008 dma_sync_single_for_cpu(&pdev
->dev
, mapping
, bp
->rx_copy_thresh
,
1011 memcpy(skb
->data
- NET_IP_ALIGN
, data
- NET_IP_ALIGN
,
1012 len
+ NET_IP_ALIGN
);
1014 dma_sync_single_for_device(&pdev
->dev
, mapping
, bp
->rx_copy_thresh
,
1021 static int bnxt_discard_rx(struct bnxt
*bp
, struct bnxt_napi
*bnapi
,
1022 u32
*raw_cons
, void *cmp
)
1024 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1025 struct rx_cmp
*rxcmp
= cmp
;
1026 u32 tmp_raw_cons
= *raw_cons
;
1027 u8 cmp_type
, agg_bufs
= 0;
1029 cmp_type
= RX_CMP_TYPE(rxcmp
);
1031 if (cmp_type
== CMP_TYPE_RX_L2_CMP
) {
1032 agg_bufs
= (le32_to_cpu(rxcmp
->rx_cmp_misc_v1
) &
1034 RX_CMP_AGG_BUFS_SHIFT
;
1035 } else if (cmp_type
== CMP_TYPE_RX_L2_TPA_END_CMP
) {
1036 struct rx_tpa_end_cmp
*tpa_end
= cmp
;
1038 agg_bufs
= (le32_to_cpu(tpa_end
->rx_tpa_end_cmp_misc_v1
) &
1039 RX_TPA_END_CMP_AGG_BUFS
) >>
1040 RX_TPA_END_CMP_AGG_BUFS_SHIFT
;
1044 if (!bnxt_agg_bufs_valid(bp
, cpr
, agg_bufs
, &tmp_raw_cons
))
1047 *raw_cons
= tmp_raw_cons
;
1051 static void bnxt_queue_sp_work(struct bnxt
*bp
)
1054 queue_work(bnxt_pf_wq
, &bp
->sp_task
);
1056 schedule_work(&bp
->sp_task
);
1059 static void bnxt_cancel_sp_work(struct bnxt
*bp
)
1062 flush_workqueue(bnxt_pf_wq
);
1064 cancel_work_sync(&bp
->sp_task
);
1067 static void bnxt_sched_reset(struct bnxt
*bp
, struct bnxt_rx_ring_info
*rxr
)
1069 if (!rxr
->bnapi
->in_reset
) {
1070 rxr
->bnapi
->in_reset
= true;
1071 set_bit(BNXT_RESET_TASK_SP_EVENT
, &bp
->sp_event
);
1072 bnxt_queue_sp_work(bp
);
1074 rxr
->rx_next_cons
= 0xffff;
1077 static void bnxt_tpa_start(struct bnxt
*bp
, struct bnxt_rx_ring_info
*rxr
,
1078 struct rx_tpa_start_cmp
*tpa_start
,
1079 struct rx_tpa_start_cmp_ext
*tpa_start1
)
1081 u8 agg_id
= TPA_START_AGG_ID(tpa_start
);
1083 struct bnxt_tpa_info
*tpa_info
;
1084 struct bnxt_sw_rx_bd
*cons_rx_buf
, *prod_rx_buf
;
1085 struct rx_bd
*prod_bd
;
1088 cons
= tpa_start
->rx_tpa_start_cmp_opaque
;
1089 prod
= rxr
->rx_prod
;
1090 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
1091 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
1092 tpa_info
= &rxr
->rx_tpa
[agg_id
];
1094 if (unlikely(cons
!= rxr
->rx_next_cons
)) {
1095 netdev_warn(bp
->dev
, "TPA cons %x != expected cons %x\n",
1096 cons
, rxr
->rx_next_cons
);
1097 bnxt_sched_reset(bp
, rxr
);
1100 /* Store cfa_code in tpa_info to use in tpa_end
1101 * completion processing.
1103 tpa_info
->cfa_code
= TPA_START_CFA_CODE(tpa_start1
);
1104 prod_rx_buf
->data
= tpa_info
->data
;
1105 prod_rx_buf
->data_ptr
= tpa_info
->data_ptr
;
1107 mapping
= tpa_info
->mapping
;
1108 prod_rx_buf
->mapping
= mapping
;
1110 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
1112 prod_bd
->rx_bd_haddr
= cpu_to_le64(mapping
);
1114 tpa_info
->data
= cons_rx_buf
->data
;
1115 tpa_info
->data_ptr
= cons_rx_buf
->data_ptr
;
1116 cons_rx_buf
->data
= NULL
;
1117 tpa_info
->mapping
= cons_rx_buf
->mapping
;
1120 le32_to_cpu(tpa_start
->rx_tpa_start_cmp_len_flags_type
) >>
1121 RX_TPA_START_CMP_LEN_SHIFT
;
1122 if (likely(TPA_START_HASH_VALID(tpa_start
))) {
1123 u32 hash_type
= TPA_START_HASH_TYPE(tpa_start
);
1125 tpa_info
->hash_type
= PKT_HASH_TYPE_L4
;
1126 tpa_info
->gso_type
= SKB_GSO_TCPV4
;
1127 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1128 if (hash_type
== 3 || TPA_START_IS_IPV6(tpa_start1
))
1129 tpa_info
->gso_type
= SKB_GSO_TCPV6
;
1130 tpa_info
->rss_hash
=
1131 le32_to_cpu(tpa_start
->rx_tpa_start_cmp_rss_hash
);
1133 tpa_info
->hash_type
= PKT_HASH_TYPE_NONE
;
1134 tpa_info
->gso_type
= 0;
1135 if (netif_msg_rx_err(bp
))
1136 netdev_warn(bp
->dev
, "TPA packet without valid hash\n");
1138 tpa_info
->flags2
= le32_to_cpu(tpa_start1
->rx_tpa_start_cmp_flags2
);
1139 tpa_info
->metadata
= le32_to_cpu(tpa_start1
->rx_tpa_start_cmp_metadata
);
1140 tpa_info
->hdr_info
= le32_to_cpu(tpa_start1
->rx_tpa_start_cmp_hdr_info
);
1142 rxr
->rx_prod
= NEXT_RX(prod
);
1143 cons
= NEXT_RX(cons
);
1144 rxr
->rx_next_cons
= NEXT_RX(cons
);
1145 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
1147 bnxt_reuse_rx_data(rxr
, cons
, cons_rx_buf
->data
);
1148 rxr
->rx_prod
= NEXT_RX(rxr
->rx_prod
);
1149 cons_rx_buf
->data
= NULL
;
1152 static void bnxt_abort_tpa(struct bnxt
*bp
, struct bnxt_napi
*bnapi
,
1153 u16 cp_cons
, u32 agg_bufs
)
1156 bnxt_reuse_rx_agg_bufs(bnapi
, cp_cons
, agg_bufs
);
1159 static struct sk_buff
*bnxt_gro_func_5731x(struct bnxt_tpa_info
*tpa_info
,
1160 int payload_off
, int tcp_ts
,
1161 struct sk_buff
*skb
)
1166 u16 outer_ip_off
, inner_ip_off
, inner_mac_off
;
1167 u32 hdr_info
= tpa_info
->hdr_info
;
1168 bool loopback
= false;
1170 inner_ip_off
= BNXT_TPA_INNER_L3_OFF(hdr_info
);
1171 inner_mac_off
= BNXT_TPA_INNER_L2_OFF(hdr_info
);
1172 outer_ip_off
= BNXT_TPA_OUTER_L3_OFF(hdr_info
);
1174 /* If the packet is an internal loopback packet, the offsets will
1175 * have an extra 4 bytes.
1177 if (inner_mac_off
== 4) {
1179 } else if (inner_mac_off
> 4) {
1180 __be16 proto
= *((__be16
*)(skb
->data
+ inner_ip_off
-
1183 /* We only support inner iPv4/ipv6. If we don't see the
1184 * correct protocol ID, it must be a loopback packet where
1185 * the offsets are off by 4.
1187 if (proto
!= htons(ETH_P_IP
) && proto
!= htons(ETH_P_IPV6
))
1191 /* internal loopback packet, subtract all offsets by 4 */
1197 nw_off
= inner_ip_off
- ETH_HLEN
;
1198 skb_set_network_header(skb
, nw_off
);
1199 if (tpa_info
->flags2
& RX_TPA_START_CMP_FLAGS2_IP_TYPE
) {
1200 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
1202 skb_set_transport_header(skb
, nw_off
+ sizeof(struct ipv6hdr
));
1203 len
= skb
->len
- skb_transport_offset(skb
);
1205 th
->check
= ~tcp_v6_check(len
, &iph
->saddr
, &iph
->daddr
, 0);
1207 struct iphdr
*iph
= ip_hdr(skb
);
1209 skb_set_transport_header(skb
, nw_off
+ sizeof(struct iphdr
));
1210 len
= skb
->len
- skb_transport_offset(skb
);
1212 th
->check
= ~tcp_v4_check(len
, iph
->saddr
, iph
->daddr
, 0);
1215 if (inner_mac_off
) { /* tunnel */
1216 struct udphdr
*uh
= NULL
;
1217 __be16 proto
= *((__be16
*)(skb
->data
+ outer_ip_off
-
1220 if (proto
== htons(ETH_P_IP
)) {
1221 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
1223 if (iph
->protocol
== IPPROTO_UDP
)
1224 uh
= (struct udphdr
*)(iph
+ 1);
1226 struct ipv6hdr
*iph
= (struct ipv6hdr
*)skb
->data
;
1228 if (iph
->nexthdr
== IPPROTO_UDP
)
1229 uh
= (struct udphdr
*)(iph
+ 1);
1233 skb_shinfo(skb
)->gso_type
|=
1234 SKB_GSO_UDP_TUNNEL_CSUM
;
1236 skb_shinfo(skb
)->gso_type
|= SKB_GSO_UDP_TUNNEL
;
1243 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
1244 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1246 static struct sk_buff
*bnxt_gro_func_5730x(struct bnxt_tpa_info
*tpa_info
,
1247 int payload_off
, int tcp_ts
,
1248 struct sk_buff
*skb
)
1252 int len
, nw_off
, tcp_opt_len
= 0;
1257 if (tpa_info
->gso_type
== SKB_GSO_TCPV4
) {
1260 nw_off
= payload_off
- BNXT_IPV4_HDR_SIZE
- tcp_opt_len
-
1262 skb_set_network_header(skb
, nw_off
);
1264 skb_set_transport_header(skb
, nw_off
+ sizeof(struct iphdr
));
1265 len
= skb
->len
- skb_transport_offset(skb
);
1267 th
->check
= ~tcp_v4_check(len
, iph
->saddr
, iph
->daddr
, 0);
1268 } else if (tpa_info
->gso_type
== SKB_GSO_TCPV6
) {
1269 struct ipv6hdr
*iph
;
1271 nw_off
= payload_off
- BNXT_IPV6_HDR_SIZE
- tcp_opt_len
-
1273 skb_set_network_header(skb
, nw_off
);
1274 iph
= ipv6_hdr(skb
);
1275 skb_set_transport_header(skb
, nw_off
+ sizeof(struct ipv6hdr
));
1276 len
= skb
->len
- skb_transport_offset(skb
);
1278 th
->check
= ~tcp_v6_check(len
, &iph
->saddr
, &iph
->daddr
, 0);
1280 dev_kfree_skb_any(skb
);
1284 if (nw_off
) { /* tunnel */
1285 struct udphdr
*uh
= NULL
;
1287 if (skb
->protocol
== htons(ETH_P_IP
)) {
1288 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
1290 if (iph
->protocol
== IPPROTO_UDP
)
1291 uh
= (struct udphdr
*)(iph
+ 1);
1293 struct ipv6hdr
*iph
= (struct ipv6hdr
*)skb
->data
;
1295 if (iph
->nexthdr
== IPPROTO_UDP
)
1296 uh
= (struct udphdr
*)(iph
+ 1);
1300 skb_shinfo(skb
)->gso_type
|=
1301 SKB_GSO_UDP_TUNNEL_CSUM
;
1303 skb_shinfo(skb
)->gso_type
|= SKB_GSO_UDP_TUNNEL
;
1310 static inline struct sk_buff
*bnxt_gro_skb(struct bnxt
*bp
,
1311 struct bnxt_tpa_info
*tpa_info
,
1312 struct rx_tpa_end_cmp
*tpa_end
,
1313 struct rx_tpa_end_cmp_ext
*tpa_end1
,
1314 struct sk_buff
*skb
)
1320 segs
= TPA_END_TPA_SEGS(tpa_end
);
1324 NAPI_GRO_CB(skb
)->count
= segs
;
1325 skb_shinfo(skb
)->gso_size
=
1326 le32_to_cpu(tpa_end1
->rx_tpa_end_cmp_seg_len
);
1327 skb_shinfo(skb
)->gso_type
= tpa_info
->gso_type
;
1328 payload_off
= (le32_to_cpu(tpa_end
->rx_tpa_end_cmp_misc_v1
) &
1329 RX_TPA_END_CMP_PAYLOAD_OFFSET
) >>
1330 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT
;
1331 skb
= bp
->gro_func(tpa_info
, payload_off
, TPA_END_GRO_TS(tpa_end
), skb
);
1333 tcp_gro_complete(skb
);
1338 /* Given the cfa_code of a received packet determine which
1339 * netdev (vf-rep or PF) the packet is destined to.
1341 static struct net_device
*bnxt_get_pkt_dev(struct bnxt
*bp
, u16 cfa_code
)
1343 struct net_device
*dev
= bnxt_get_vf_rep(bp
, cfa_code
);
1345 /* if vf-rep dev is NULL, the must belongs to the PF */
1346 return dev
? dev
: bp
->dev
;
1349 static inline struct sk_buff
*bnxt_tpa_end(struct bnxt
*bp
,
1350 struct bnxt_napi
*bnapi
,
1352 struct rx_tpa_end_cmp
*tpa_end
,
1353 struct rx_tpa_end_cmp_ext
*tpa_end1
,
1356 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1357 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
1358 u8 agg_id
= TPA_END_AGG_ID(tpa_end
);
1359 u8
*data_ptr
, agg_bufs
;
1360 u16 cp_cons
= RING_CMP(*raw_cons
);
1362 struct bnxt_tpa_info
*tpa_info
;
1364 struct sk_buff
*skb
;
1367 if (unlikely(bnapi
->in_reset
)) {
1368 int rc
= bnxt_discard_rx(bp
, bnapi
, raw_cons
, tpa_end
);
1371 return ERR_PTR(-EBUSY
);
1375 tpa_info
= &rxr
->rx_tpa
[agg_id
];
1376 data
= tpa_info
->data
;
1377 data_ptr
= tpa_info
->data_ptr
;
1379 len
= tpa_info
->len
;
1380 mapping
= tpa_info
->mapping
;
1382 agg_bufs
= (le32_to_cpu(tpa_end
->rx_tpa_end_cmp_misc_v1
) &
1383 RX_TPA_END_CMP_AGG_BUFS
) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT
;
1386 if (!bnxt_agg_bufs_valid(bp
, cpr
, agg_bufs
, raw_cons
))
1387 return ERR_PTR(-EBUSY
);
1389 *event
|= BNXT_AGG_EVENT
;
1390 cp_cons
= NEXT_CMP(cp_cons
);
1393 if (unlikely(agg_bufs
> MAX_SKB_FRAGS
|| TPA_END_ERRORS(tpa_end1
))) {
1394 bnxt_abort_tpa(bp
, bnapi
, cp_cons
, agg_bufs
);
1395 if (agg_bufs
> MAX_SKB_FRAGS
)
1396 netdev_warn(bp
->dev
, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1397 agg_bufs
, (int)MAX_SKB_FRAGS
);
1401 if (len
<= bp
->rx_copy_thresh
) {
1402 skb
= bnxt_copy_skb(bnapi
, data_ptr
, len
, mapping
);
1404 bnxt_abort_tpa(bp
, bnapi
, cp_cons
, agg_bufs
);
1409 dma_addr_t new_mapping
;
1411 new_data
= __bnxt_alloc_rx_data(bp
, &new_mapping
, GFP_ATOMIC
);
1413 bnxt_abort_tpa(bp
, bnapi
, cp_cons
, agg_bufs
);
1417 tpa_info
->data
= new_data
;
1418 tpa_info
->data_ptr
= new_data
+ bp
->rx_offset
;
1419 tpa_info
->mapping
= new_mapping
;
1421 skb
= build_skb(data
, 0);
1422 dma_unmap_single_attrs(&bp
->pdev
->dev
, mapping
,
1423 bp
->rx_buf_use_size
, bp
->rx_dir
,
1424 DMA_ATTR_WEAK_ORDERING
);
1428 bnxt_abort_tpa(bp
, bnapi
, cp_cons
, agg_bufs
);
1431 skb_reserve(skb
, bp
->rx_offset
);
1436 skb
= bnxt_rx_pages(bp
, bnapi
, skb
, cp_cons
, agg_bufs
);
1438 /* Page reuse already handled by bnxt_rx_pages(). */
1444 eth_type_trans(skb
, bnxt_get_pkt_dev(bp
, tpa_info
->cfa_code
));
1446 if (tpa_info
->hash_type
!= PKT_HASH_TYPE_NONE
)
1447 skb_set_hash(skb
, tpa_info
->rss_hash
, tpa_info
->hash_type
);
1449 if ((tpa_info
->flags2
& RX_CMP_FLAGS2_META_FORMAT_VLAN
) &&
1450 (skb
->dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)) {
1451 u16 vlan_proto
= tpa_info
->metadata
>>
1452 RX_CMP_FLAGS2_METADATA_TPID_SFT
;
1453 u16 vtag
= tpa_info
->metadata
& RX_CMP_FLAGS2_METADATA_TCI_MASK
;
1455 __vlan_hwaccel_put_tag(skb
, htons(vlan_proto
), vtag
);
1458 skb_checksum_none_assert(skb
);
1459 if (likely(tpa_info
->flags2
& RX_TPA_START_CMP_FLAGS2_L4_CS_CALC
)) {
1460 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1462 (tpa_info
->flags2
& RX_CMP_FLAGS2_T_L4_CS_CALC
) >> 3;
1465 if (TPA_END_GRO(tpa_end
))
1466 skb
= bnxt_gro_skb(bp
, tpa_info
, tpa_end
, tpa_end1
, skb
);
1471 static void bnxt_deliver_skb(struct bnxt
*bp
, struct bnxt_napi
*bnapi
,
1472 struct sk_buff
*skb
)
1474 if (skb
->dev
!= bp
->dev
) {
1475 /* this packet belongs to a vf-rep */
1476 bnxt_vf_rep_rx(bp
, skb
);
1479 skb_record_rx_queue(skb
, bnapi
->index
);
1480 napi_gro_receive(&bnapi
->napi
, skb
);
1483 /* returns the following:
1484 * 1 - 1 packet successfully received
1485 * 0 - successful TPA_START, packet not completed yet
1486 * -EBUSY - completion ring does not have all the agg buffers yet
1487 * -ENOMEM - packet aborted due to out of memory
1488 * -EIO - packet aborted due to hw error indicated in BD
1490 static int bnxt_rx_pkt(struct bnxt
*bp
, struct bnxt_napi
*bnapi
, u32
*raw_cons
,
1493 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1494 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
1495 struct net_device
*dev
= bp
->dev
;
1496 struct rx_cmp
*rxcmp
;
1497 struct rx_cmp_ext
*rxcmp1
;
1498 u32 tmp_raw_cons
= *raw_cons
;
1499 u16 cfa_code
, cons
, prod
, cp_cons
= RING_CMP(tmp_raw_cons
);
1500 struct bnxt_sw_rx_bd
*rx_buf
;
1502 u8
*data_ptr
, agg_bufs
, cmp_type
;
1503 dma_addr_t dma_addr
;
1504 struct sk_buff
*skb
;
1509 rxcmp
= (struct rx_cmp
*)
1510 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
1512 tmp_raw_cons
= NEXT_RAW_CMP(tmp_raw_cons
);
1513 cp_cons
= RING_CMP(tmp_raw_cons
);
1514 rxcmp1
= (struct rx_cmp_ext
*)
1515 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
1517 if (!RX_CMP_VALID(rxcmp1
, tmp_raw_cons
))
1520 cmp_type
= RX_CMP_TYPE(rxcmp
);
1522 prod
= rxr
->rx_prod
;
1524 if (cmp_type
== CMP_TYPE_RX_L2_TPA_START_CMP
) {
1525 bnxt_tpa_start(bp
, rxr
, (struct rx_tpa_start_cmp
*)rxcmp
,
1526 (struct rx_tpa_start_cmp_ext
*)rxcmp1
);
1528 *event
|= BNXT_RX_EVENT
;
1529 goto next_rx_no_prod_no_len
;
1531 } else if (cmp_type
== CMP_TYPE_RX_L2_TPA_END_CMP
) {
1532 skb
= bnxt_tpa_end(bp
, bnapi
, &tmp_raw_cons
,
1533 (struct rx_tpa_end_cmp
*)rxcmp
,
1534 (struct rx_tpa_end_cmp_ext
*)rxcmp1
, event
);
1541 bnxt_deliver_skb(bp
, bnapi
, skb
);
1544 *event
|= BNXT_RX_EVENT
;
1545 goto next_rx_no_prod_no_len
;
1548 cons
= rxcmp
->rx_cmp_opaque
;
1549 if (unlikely(cons
!= rxr
->rx_next_cons
)) {
1550 int rc1
= bnxt_discard_rx(bp
, bnapi
, raw_cons
, rxcmp
);
1552 netdev_warn(bp
->dev
, "RX cons %x != expected cons %x\n",
1553 cons
, rxr
->rx_next_cons
);
1554 bnxt_sched_reset(bp
, rxr
);
1557 rx_buf
= &rxr
->rx_buf_ring
[cons
];
1558 data
= rx_buf
->data
;
1559 data_ptr
= rx_buf
->data_ptr
;
1562 misc
= le32_to_cpu(rxcmp
->rx_cmp_misc_v1
);
1563 agg_bufs
= (misc
& RX_CMP_AGG_BUFS
) >> RX_CMP_AGG_BUFS_SHIFT
;
1566 if (!bnxt_agg_bufs_valid(bp
, cpr
, agg_bufs
, &tmp_raw_cons
))
1569 cp_cons
= NEXT_CMP(cp_cons
);
1570 *event
|= BNXT_AGG_EVENT
;
1572 *event
|= BNXT_RX_EVENT
;
1574 rx_buf
->data
= NULL
;
1575 if (rxcmp1
->rx_cmp_cfa_code_errors_v2
& RX_CMP_L2_ERRORS
) {
1576 u32 rx_err
= le32_to_cpu(rxcmp1
->rx_cmp_cfa_code_errors_v2
);
1578 bnxt_reuse_rx_data(rxr
, cons
, data
);
1580 bnxt_reuse_rx_agg_bufs(bnapi
, cp_cons
, agg_bufs
);
1583 if (rx_err
& RX_CMPL_ERRORS_BUFFER_ERROR_MASK
) {
1584 netdev_warn(bp
->dev
, "RX buffer error %x\n", rx_err
);
1585 bnxt_sched_reset(bp
, rxr
);
1587 goto next_rx_no_len
;
1590 len
= le32_to_cpu(rxcmp
->rx_cmp_len_flags_type
) >> RX_CMP_LEN_SHIFT
;
1591 dma_addr
= rx_buf
->mapping
;
1593 if (bnxt_rx_xdp(bp
, rxr
, cons
, data
, &data_ptr
, &len
, event
)) {
1598 if (len
<= bp
->rx_copy_thresh
) {
1599 skb
= bnxt_copy_skb(bnapi
, data_ptr
, len
, dma_addr
);
1600 bnxt_reuse_rx_data(rxr
, cons
, data
);
1603 bnxt_reuse_rx_agg_bufs(bnapi
, cp_cons
, agg_bufs
);
1610 if (rx_buf
->data_ptr
== data_ptr
)
1611 payload
= misc
& RX_CMP_PAYLOAD_OFFSET
;
1614 skb
= bp
->rx_skb_func(bp
, rxr
, cons
, data
, data_ptr
, dma_addr
,
1623 skb
= bnxt_rx_pages(bp
, bnapi
, skb
, cp_cons
, agg_bufs
);
1630 if (RX_CMP_HASH_VALID(rxcmp
)) {
1631 u32 hash_type
= RX_CMP_HASH_TYPE(rxcmp
);
1632 enum pkt_hash_types type
= PKT_HASH_TYPE_L4
;
1634 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1635 if (hash_type
!= 1 && hash_type
!= 3)
1636 type
= PKT_HASH_TYPE_L3
;
1637 skb_set_hash(skb
, le32_to_cpu(rxcmp
->rx_cmp_rss_hash
), type
);
1640 cfa_code
= RX_CMP_CFA_CODE(rxcmp1
);
1641 skb
->protocol
= eth_type_trans(skb
, bnxt_get_pkt_dev(bp
, cfa_code
));
1643 if ((rxcmp1
->rx_cmp_flags2
&
1644 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN
)) &&
1645 (skb
->dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)) {
1646 u32 meta_data
= le32_to_cpu(rxcmp1
->rx_cmp_meta_data
);
1647 u16 vtag
= meta_data
& RX_CMP_FLAGS2_METADATA_TCI_MASK
;
1648 u16 vlan_proto
= meta_data
>> RX_CMP_FLAGS2_METADATA_TPID_SFT
;
1650 __vlan_hwaccel_put_tag(skb
, htons(vlan_proto
), vtag
);
1653 skb_checksum_none_assert(skb
);
1654 if (RX_CMP_L4_CS_OK(rxcmp1
)) {
1655 if (dev
->features
& NETIF_F_RXCSUM
) {
1656 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1657 skb
->csum_level
= RX_CMP_ENCAP(rxcmp1
);
1660 if (rxcmp1
->rx_cmp_cfa_code_errors_v2
& RX_CMP_L4_CS_ERR_BITS
) {
1661 if (dev
->features
& NETIF_F_RXCSUM
)
1662 cpr
->rx_l4_csum_errors
++;
1666 bnxt_deliver_skb(bp
, bnapi
, skb
);
1670 cpr
->rx_packets
+= 1;
1671 cpr
->rx_bytes
+= len
;
1674 rxr
->rx_prod
= NEXT_RX(prod
);
1675 rxr
->rx_next_cons
= NEXT_RX(cons
);
1677 next_rx_no_prod_no_len
:
1678 *raw_cons
= tmp_raw_cons
;
1683 /* In netpoll mode, if we are using a combined completion ring, we need to
1684 * discard the rx packets and recycle the buffers.
1686 static int bnxt_force_rx_discard(struct bnxt
*bp
, struct bnxt_napi
*bnapi
,
1687 u32
*raw_cons
, u8
*event
)
1689 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1690 u32 tmp_raw_cons
= *raw_cons
;
1691 struct rx_cmp_ext
*rxcmp1
;
1692 struct rx_cmp
*rxcmp
;
1696 cp_cons
= RING_CMP(tmp_raw_cons
);
1697 rxcmp
= (struct rx_cmp
*)
1698 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
1700 tmp_raw_cons
= NEXT_RAW_CMP(tmp_raw_cons
);
1701 cp_cons
= RING_CMP(tmp_raw_cons
);
1702 rxcmp1
= (struct rx_cmp_ext
*)
1703 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
1705 if (!RX_CMP_VALID(rxcmp1
, tmp_raw_cons
))
1708 cmp_type
= RX_CMP_TYPE(rxcmp
);
1709 if (cmp_type
== CMP_TYPE_RX_L2_CMP
) {
1710 rxcmp1
->rx_cmp_cfa_code_errors_v2
|=
1711 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR
);
1712 } else if (cmp_type
== CMP_TYPE_RX_L2_TPA_END_CMP
) {
1713 struct rx_tpa_end_cmp_ext
*tpa_end1
;
1715 tpa_end1
= (struct rx_tpa_end_cmp_ext
*)rxcmp1
;
1716 tpa_end1
->rx_tpa_end_cmp_errors_v2
|=
1717 cpu_to_le32(RX_TPA_END_CMP_ERRORS
);
1719 return bnxt_rx_pkt(bp
, bnapi
, raw_cons
, event
);
1722 #define BNXT_GET_EVENT_PORT(data) \
1724 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1726 static int bnxt_async_event_process(struct bnxt
*bp
,
1727 struct hwrm_async_event_cmpl
*cmpl
)
1729 u16 event_id
= le16_to_cpu(cmpl
->event_id
);
1731 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1733 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE
: {
1734 u32 data1
= le32_to_cpu(cmpl
->event_data1
);
1735 struct bnxt_link_info
*link_info
= &bp
->link_info
;
1738 goto async_event_process_exit
;
1740 /* print unsupported speed warning in forced speed mode only */
1741 if (!(link_info
->autoneg
& BNXT_AUTONEG_SPEED
) &&
1742 (data1
& 0x20000)) {
1743 u16 fw_speed
= link_info
->force_link_speed
;
1744 u32 speed
= bnxt_fw_to_ethtool_speed(fw_speed
);
1746 if (speed
!= SPEED_UNKNOWN
)
1747 netdev_warn(bp
->dev
, "Link speed %d no longer supported\n",
1750 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT
, &bp
->sp_event
);
1753 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE
:
1754 set_bit(BNXT_LINK_CHNG_SP_EVENT
, &bp
->sp_event
);
1756 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD
:
1757 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT
, &bp
->sp_event
);
1759 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED
: {
1760 u32 data1
= le32_to_cpu(cmpl
->event_data1
);
1761 u16 port_id
= BNXT_GET_EVENT_PORT(data1
);
1766 if (bp
->pf
.port_id
!= port_id
)
1769 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT
, &bp
->sp_event
);
1772 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE
:
1774 goto async_event_process_exit
;
1775 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT
, &bp
->sp_event
);
1778 goto async_event_process_exit
;
1780 bnxt_queue_sp_work(bp
);
1781 async_event_process_exit
:
1782 bnxt_ulp_async_events(bp
, cmpl
);
1786 static int bnxt_hwrm_handler(struct bnxt
*bp
, struct tx_cmp
*txcmp
)
1788 u16 cmpl_type
= TX_CMP_TYPE(txcmp
), vf_id
, seq_id
;
1789 struct hwrm_cmpl
*h_cmpl
= (struct hwrm_cmpl
*)txcmp
;
1790 struct hwrm_fwd_req_cmpl
*fwd_req_cmpl
=
1791 (struct hwrm_fwd_req_cmpl
*)txcmp
;
1793 switch (cmpl_type
) {
1794 case CMPL_BASE_TYPE_HWRM_DONE
:
1795 seq_id
= le16_to_cpu(h_cmpl
->sequence_id
);
1796 if (seq_id
== bp
->hwrm_intr_seq_id
)
1797 bp
->hwrm_intr_seq_id
= HWRM_SEQ_ID_INVALID
;
1799 netdev_err(bp
->dev
, "Invalid hwrm seq id %d\n", seq_id
);
1802 case CMPL_BASE_TYPE_HWRM_FWD_REQ
:
1803 vf_id
= le16_to_cpu(fwd_req_cmpl
->source_id
);
1805 if ((vf_id
< bp
->pf
.first_vf_id
) ||
1806 (vf_id
>= bp
->pf
.first_vf_id
+ bp
->pf
.active_vfs
)) {
1807 netdev_err(bp
->dev
, "Msg contains invalid VF id %x\n",
1812 set_bit(vf_id
- bp
->pf
.first_vf_id
, bp
->pf
.vf_event_bmap
);
1813 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT
, &bp
->sp_event
);
1814 bnxt_queue_sp_work(bp
);
1817 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT
:
1818 bnxt_async_event_process(bp
,
1819 (struct hwrm_async_event_cmpl
*)txcmp
);
1828 static irqreturn_t
bnxt_msix(int irq
, void *dev_instance
)
1830 struct bnxt_napi
*bnapi
= dev_instance
;
1831 struct bnxt
*bp
= bnapi
->bp
;
1832 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1833 u32 cons
= RING_CMP(cpr
->cp_raw_cons
);
1836 prefetch(&cpr
->cp_desc_ring
[CP_RING(cons
)][CP_IDX(cons
)]);
1837 napi_schedule(&bnapi
->napi
);
1841 static inline int bnxt_has_work(struct bnxt
*bp
, struct bnxt_cp_ring_info
*cpr
)
1843 u32 raw_cons
= cpr
->cp_raw_cons
;
1844 u16 cons
= RING_CMP(raw_cons
);
1845 struct tx_cmp
*txcmp
;
1847 txcmp
= &cpr
->cp_desc_ring
[CP_RING(cons
)][CP_IDX(cons
)];
1849 return TX_CMP_VALID(txcmp
, raw_cons
);
1852 static irqreturn_t
bnxt_inta(int irq
, void *dev_instance
)
1854 struct bnxt_napi
*bnapi
= dev_instance
;
1855 struct bnxt
*bp
= bnapi
->bp
;
1856 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1857 u32 cons
= RING_CMP(cpr
->cp_raw_cons
);
1860 prefetch(&cpr
->cp_desc_ring
[CP_RING(cons
)][CP_IDX(cons
)]);
1862 if (!bnxt_has_work(bp
, cpr
)) {
1863 int_status
= readl(bp
->bar0
+ BNXT_CAG_REG_LEGACY_INT_STATUS
);
1864 /* return if erroneous interrupt */
1865 if (!(int_status
& (0x10000 << cpr
->cp_ring_struct
.fw_ring_id
)))
1869 /* disable ring IRQ */
1870 BNXT_CP_DB_IRQ_DIS(cpr
->cp_doorbell
);
1872 /* Return here if interrupt is shared and is disabled. */
1873 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
1876 napi_schedule(&bnapi
->napi
);
1880 static int bnxt_poll_work(struct bnxt
*bp
, struct bnxt_napi
*bnapi
, int budget
)
1882 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1883 u32 raw_cons
= cpr
->cp_raw_cons
;
1888 struct tx_cmp
*txcmp
;
1893 cons
= RING_CMP(raw_cons
);
1894 txcmp
= &cpr
->cp_desc_ring
[CP_RING(cons
)][CP_IDX(cons
)];
1896 if (!TX_CMP_VALID(txcmp
, raw_cons
))
1899 /* The valid test of the entry must be done first before
1900 * reading any further.
1903 if (TX_CMP_TYPE(txcmp
) == CMP_TYPE_TX_L2_CMP
) {
1905 /* return full budget so NAPI will complete. */
1906 if (unlikely(tx_pkts
> bp
->tx_wake_thresh
)) {
1908 raw_cons
= NEXT_RAW_CMP(raw_cons
);
1911 } else if ((TX_CMP_TYPE(txcmp
) & 0x30) == 0x10) {
1913 rc
= bnxt_rx_pkt(bp
, bnapi
, &raw_cons
, &event
);
1915 rc
= bnxt_force_rx_discard(bp
, bnapi
, &raw_cons
,
1917 if (likely(rc
>= 0))
1919 /* Increment rx_pkts when rc is -ENOMEM to count towards
1920 * the NAPI budget. Otherwise, we may potentially loop
1921 * here forever if we consistently cannot allocate
1924 else if (rc
== -ENOMEM
&& budget
)
1926 else if (rc
== -EBUSY
) /* partial completion */
1928 } else if (unlikely((TX_CMP_TYPE(txcmp
) ==
1929 CMPL_BASE_TYPE_HWRM_DONE
) ||
1930 (TX_CMP_TYPE(txcmp
) ==
1931 CMPL_BASE_TYPE_HWRM_FWD_REQ
) ||
1932 (TX_CMP_TYPE(txcmp
) ==
1933 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT
))) {
1934 bnxt_hwrm_handler(bp
, txcmp
);
1936 raw_cons
= NEXT_RAW_CMP(raw_cons
);
1938 if (rx_pkts
&& rx_pkts
== budget
)
1942 if (event
& BNXT_TX_EVENT
) {
1943 struct bnxt_tx_ring_info
*txr
= bnapi
->tx_ring
;
1944 void __iomem
*db
= txr
->tx_doorbell
;
1945 u16 prod
= txr
->tx_prod
;
1947 /* Sync BD data before updating doorbell */
1950 bnxt_db_write_relaxed(bp
, db
, DB_KEY_TX
| prod
);
1953 cpr
->cp_raw_cons
= raw_cons
;
1954 /* ACK completion ring before freeing tx ring and producing new
1955 * buffers in rx/agg rings to prevent overflowing the completion
1958 BNXT_CP_DB(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
1961 bnapi
->tx_int(bp
, bnapi
, tx_pkts
);
1963 if (event
& BNXT_RX_EVENT
) {
1964 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
1966 bnxt_db_write(bp
, rxr
->rx_doorbell
, DB_KEY_RX
| rxr
->rx_prod
);
1967 if (event
& BNXT_AGG_EVENT
)
1968 bnxt_db_write(bp
, rxr
->rx_agg_doorbell
,
1969 DB_KEY_RX
| rxr
->rx_agg_prod
);
1974 static int bnxt_poll_nitroa0(struct napi_struct
*napi
, int budget
)
1976 struct bnxt_napi
*bnapi
= container_of(napi
, struct bnxt_napi
, napi
);
1977 struct bnxt
*bp
= bnapi
->bp
;
1978 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
1979 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
1980 struct tx_cmp
*txcmp
;
1981 struct rx_cmp_ext
*rxcmp1
;
1982 u32 cp_cons
, tmp_raw_cons
;
1983 u32 raw_cons
= cpr
->cp_raw_cons
;
1990 cp_cons
= RING_CMP(raw_cons
);
1991 txcmp
= &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
1993 if (!TX_CMP_VALID(txcmp
, raw_cons
))
1996 if ((TX_CMP_TYPE(txcmp
) & 0x30) == 0x10) {
1997 tmp_raw_cons
= NEXT_RAW_CMP(raw_cons
);
1998 cp_cons
= RING_CMP(tmp_raw_cons
);
1999 rxcmp1
= (struct rx_cmp_ext
*)
2000 &cpr
->cp_desc_ring
[CP_RING(cp_cons
)][CP_IDX(cp_cons
)];
2002 if (!RX_CMP_VALID(rxcmp1
, tmp_raw_cons
))
2005 /* force an error to recycle the buffer */
2006 rxcmp1
->rx_cmp_cfa_code_errors_v2
|=
2007 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR
);
2009 rc
= bnxt_rx_pkt(bp
, bnapi
, &raw_cons
, &event
);
2010 if (likely(rc
== -EIO
) && budget
)
2012 else if (rc
== -EBUSY
) /* partial completion */
2014 } else if (unlikely(TX_CMP_TYPE(txcmp
) ==
2015 CMPL_BASE_TYPE_HWRM_DONE
)) {
2016 bnxt_hwrm_handler(bp
, txcmp
);
2019 "Invalid completion received on special ring\n");
2021 raw_cons
= NEXT_RAW_CMP(raw_cons
);
2023 if (rx_pkts
== budget
)
2027 cpr
->cp_raw_cons
= raw_cons
;
2028 BNXT_CP_DB(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
2029 bnxt_db_write(bp
, rxr
->rx_doorbell
, DB_KEY_RX
| rxr
->rx_prod
);
2031 if (event
& BNXT_AGG_EVENT
)
2032 bnxt_db_write(bp
, rxr
->rx_agg_doorbell
,
2033 DB_KEY_RX
| rxr
->rx_agg_prod
);
2035 if (!bnxt_has_work(bp
, cpr
) && rx_pkts
< budget
) {
2036 napi_complete_done(napi
, rx_pkts
);
2037 BNXT_CP_DB_REARM(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
2042 static int bnxt_poll(struct napi_struct
*napi
, int budget
)
2044 struct bnxt_napi
*bnapi
= container_of(napi
, struct bnxt_napi
, napi
);
2045 struct bnxt
*bp
= bnapi
->bp
;
2046 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
2050 work_done
+= bnxt_poll_work(bp
, bnapi
, budget
- work_done
);
2052 if (work_done
>= budget
) {
2054 BNXT_CP_DB_REARM(cpr
->cp_doorbell
,
2059 if (!bnxt_has_work(bp
, cpr
)) {
2060 if (napi_complete_done(napi
, work_done
))
2061 BNXT_CP_DB_REARM(cpr
->cp_doorbell
,
2066 if (bp
->flags
& BNXT_FLAG_DIM
) {
2067 struct net_dim_sample dim_sample
;
2069 net_dim_sample(cpr
->event_ctr
,
2073 net_dim(&cpr
->dim
, dim_sample
);
2079 static void bnxt_free_tx_skbs(struct bnxt
*bp
)
2082 struct pci_dev
*pdev
= bp
->pdev
;
2087 max_idx
= bp
->tx_nr_pages
* TX_DESC_CNT
;
2088 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
2089 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
2092 for (j
= 0; j
< max_idx
;) {
2093 struct bnxt_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
2094 struct sk_buff
*skb
= tx_buf
->skb
;
2104 if (tx_buf
->is_push
) {
2110 dma_unmap_single(&pdev
->dev
,
2111 dma_unmap_addr(tx_buf
, mapping
),
2115 last
= tx_buf
->nr_frags
;
2117 for (k
= 0; k
< last
; k
++, j
++) {
2118 int ring_idx
= j
& bp
->tx_ring_mask
;
2119 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[k
];
2121 tx_buf
= &txr
->tx_buf_ring
[ring_idx
];
2124 dma_unmap_addr(tx_buf
, mapping
),
2125 skb_frag_size(frag
), PCI_DMA_TODEVICE
);
2129 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
2133 static void bnxt_free_rx_skbs(struct bnxt
*bp
)
2135 int i
, max_idx
, max_agg_idx
;
2136 struct pci_dev
*pdev
= bp
->pdev
;
2141 max_idx
= bp
->rx_nr_pages
* RX_DESC_CNT
;
2142 max_agg_idx
= bp
->rx_agg_nr_pages
* RX_DESC_CNT
;
2143 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
2144 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
2148 for (j
= 0; j
< MAX_TPA
; j
++) {
2149 struct bnxt_tpa_info
*tpa_info
=
2151 u8
*data
= tpa_info
->data
;
2156 dma_unmap_single_attrs(&pdev
->dev
,
2158 bp
->rx_buf_use_size
,
2160 DMA_ATTR_WEAK_ORDERING
);
2162 tpa_info
->data
= NULL
;
2168 for (j
= 0; j
< max_idx
; j
++) {
2169 struct bnxt_sw_rx_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
2170 dma_addr_t mapping
= rx_buf
->mapping
;
2171 void *data
= rx_buf
->data
;
2176 rx_buf
->data
= NULL
;
2178 if (BNXT_RX_PAGE_MODE(bp
)) {
2179 mapping
-= bp
->rx_dma_offset
;
2180 dma_unmap_page_attrs(&pdev
->dev
, mapping
,
2181 PAGE_SIZE
, bp
->rx_dir
,
2182 DMA_ATTR_WEAK_ORDERING
);
2185 dma_unmap_single_attrs(&pdev
->dev
, mapping
,
2186 bp
->rx_buf_use_size
,
2188 DMA_ATTR_WEAK_ORDERING
);
2193 for (j
= 0; j
< max_agg_idx
; j
++) {
2194 struct bnxt_sw_rx_agg_bd
*rx_agg_buf
=
2195 &rxr
->rx_agg_ring
[j
];
2196 struct page
*page
= rx_agg_buf
->page
;
2201 dma_unmap_page_attrs(&pdev
->dev
, rx_agg_buf
->mapping
,
2204 DMA_ATTR_WEAK_ORDERING
);
2206 rx_agg_buf
->page
= NULL
;
2207 __clear_bit(j
, rxr
->rx_agg_bmap
);
2212 __free_page(rxr
->rx_page
);
2213 rxr
->rx_page
= NULL
;
2218 static void bnxt_free_skbs(struct bnxt
*bp
)
2220 bnxt_free_tx_skbs(bp
);
2221 bnxt_free_rx_skbs(bp
);
2224 static void bnxt_free_ring(struct bnxt
*bp
, struct bnxt_ring_struct
*ring
)
2226 struct pci_dev
*pdev
= bp
->pdev
;
2229 for (i
= 0; i
< ring
->nr_pages
; i
++) {
2230 if (!ring
->pg_arr
[i
])
2233 dma_free_coherent(&pdev
->dev
, ring
->page_size
,
2234 ring
->pg_arr
[i
], ring
->dma_arr
[i
]);
2236 ring
->pg_arr
[i
] = NULL
;
2239 dma_free_coherent(&pdev
->dev
, ring
->nr_pages
* 8,
2240 ring
->pg_tbl
, ring
->pg_tbl_map
);
2241 ring
->pg_tbl
= NULL
;
2243 if (ring
->vmem_size
&& *ring
->vmem
) {
2249 static int bnxt_alloc_ring(struct bnxt
*bp
, struct bnxt_ring_struct
*ring
)
2252 struct pci_dev
*pdev
= bp
->pdev
;
2254 if (ring
->nr_pages
> 1) {
2255 ring
->pg_tbl
= dma_alloc_coherent(&pdev
->dev
,
2263 for (i
= 0; i
< ring
->nr_pages
; i
++) {
2264 ring
->pg_arr
[i
] = dma_alloc_coherent(&pdev
->dev
,
2268 if (!ring
->pg_arr
[i
])
2271 if (ring
->nr_pages
> 1)
2272 ring
->pg_tbl
[i
] = cpu_to_le64(ring
->dma_arr
[i
]);
2275 if (ring
->vmem_size
) {
2276 *ring
->vmem
= vzalloc(ring
->vmem_size
);
2283 static void bnxt_free_rx_rings(struct bnxt
*bp
)
2290 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
2291 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
2292 struct bnxt_ring_struct
*ring
;
2295 bpf_prog_put(rxr
->xdp_prog
);
2297 if (xdp_rxq_info_is_reg(&rxr
->xdp_rxq
))
2298 xdp_rxq_info_unreg(&rxr
->xdp_rxq
);
2303 kfree(rxr
->rx_agg_bmap
);
2304 rxr
->rx_agg_bmap
= NULL
;
2306 ring
= &rxr
->rx_ring_struct
;
2307 bnxt_free_ring(bp
, ring
);
2309 ring
= &rxr
->rx_agg_ring_struct
;
2310 bnxt_free_ring(bp
, ring
);
2314 static int bnxt_alloc_rx_rings(struct bnxt
*bp
)
2316 int i
, rc
, agg_rings
= 0, tpa_rings
= 0;
2321 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
2324 if (bp
->flags
& BNXT_FLAG_TPA
)
2327 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
2328 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
2329 struct bnxt_ring_struct
*ring
;
2331 ring
= &rxr
->rx_ring_struct
;
2333 rc
= xdp_rxq_info_reg(&rxr
->xdp_rxq
, bp
->dev
, i
);
2337 rc
= bnxt_alloc_ring(bp
, ring
);
2344 ring
= &rxr
->rx_agg_ring_struct
;
2345 rc
= bnxt_alloc_ring(bp
, ring
);
2350 rxr
->rx_agg_bmap_size
= bp
->rx_agg_ring_mask
+ 1;
2351 mem_size
= rxr
->rx_agg_bmap_size
/ 8;
2352 rxr
->rx_agg_bmap
= kzalloc(mem_size
, GFP_KERNEL
);
2353 if (!rxr
->rx_agg_bmap
)
2357 rxr
->rx_tpa
= kcalloc(MAX_TPA
,
2358 sizeof(struct bnxt_tpa_info
),
2368 static void bnxt_free_tx_rings(struct bnxt
*bp
)
2371 struct pci_dev
*pdev
= bp
->pdev
;
2376 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
2377 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
2378 struct bnxt_ring_struct
*ring
;
2381 dma_free_coherent(&pdev
->dev
, bp
->tx_push_size
,
2382 txr
->tx_push
, txr
->tx_push_mapping
);
2383 txr
->tx_push
= NULL
;
2386 ring
= &txr
->tx_ring_struct
;
2388 bnxt_free_ring(bp
, ring
);
2392 static int bnxt_alloc_tx_rings(struct bnxt
*bp
)
2395 struct pci_dev
*pdev
= bp
->pdev
;
2397 bp
->tx_push_size
= 0;
2398 if (bp
->tx_push_thresh
) {
2401 push_size
= L1_CACHE_ALIGN(sizeof(struct tx_push_bd
) +
2402 bp
->tx_push_thresh
);
2404 if (push_size
> 256) {
2406 bp
->tx_push_thresh
= 0;
2409 bp
->tx_push_size
= push_size
;
2412 for (i
= 0, j
= 0; i
< bp
->tx_nr_rings
; i
++) {
2413 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
2414 struct bnxt_ring_struct
*ring
;
2417 ring
= &txr
->tx_ring_struct
;
2419 rc
= bnxt_alloc_ring(bp
, ring
);
2423 ring
->grp_idx
= txr
->bnapi
->index
;
2424 if (bp
->tx_push_size
) {
2427 /* One pre-allocated DMA buffer to backup
2430 txr
->tx_push
= dma_alloc_coherent(&pdev
->dev
,
2432 &txr
->tx_push_mapping
,
2438 mapping
= txr
->tx_push_mapping
+
2439 sizeof(struct tx_push_bd
);
2440 txr
->data_mapping
= cpu_to_le64(mapping
);
2442 memset(txr
->tx_push
, 0, sizeof(struct tx_push_bd
));
2444 qidx
= bp
->tc_to_qidx
[j
];
2445 ring
->queue_id
= bp
->q_info
[qidx
].queue_id
;
2446 if (i
< bp
->tx_nr_rings_xdp
)
2448 if (i
% bp
->tx_nr_rings_per_tc
== (bp
->tx_nr_rings_per_tc
- 1))
2454 static void bnxt_free_cp_rings(struct bnxt
*bp
)
2461 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
2462 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
2463 struct bnxt_cp_ring_info
*cpr
;
2464 struct bnxt_ring_struct
*ring
;
2469 cpr
= &bnapi
->cp_ring
;
2470 ring
= &cpr
->cp_ring_struct
;
2472 bnxt_free_ring(bp
, ring
);
2476 static int bnxt_alloc_cp_rings(struct bnxt
*bp
)
2478 int i
, rc
, ulp_base_vec
, ulp_msix
;
2480 ulp_msix
= bnxt_get_ulp_msix_num(bp
);
2481 ulp_base_vec
= bnxt_get_ulp_msix_base(bp
);
2482 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
2483 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
2484 struct bnxt_cp_ring_info
*cpr
;
2485 struct bnxt_ring_struct
*ring
;
2490 cpr
= &bnapi
->cp_ring
;
2491 ring
= &cpr
->cp_ring_struct
;
2493 rc
= bnxt_alloc_ring(bp
, ring
);
2497 if (ulp_msix
&& i
>= ulp_base_vec
)
2498 ring
->map_idx
= i
+ ulp_msix
;
2505 static void bnxt_init_ring_struct(struct bnxt
*bp
)
2509 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
2510 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
2511 struct bnxt_cp_ring_info
*cpr
;
2512 struct bnxt_rx_ring_info
*rxr
;
2513 struct bnxt_tx_ring_info
*txr
;
2514 struct bnxt_ring_struct
*ring
;
2519 cpr
= &bnapi
->cp_ring
;
2520 ring
= &cpr
->cp_ring_struct
;
2521 ring
->nr_pages
= bp
->cp_nr_pages
;
2522 ring
->page_size
= HW_CMPD_RING_SIZE
;
2523 ring
->pg_arr
= (void **)cpr
->cp_desc_ring
;
2524 ring
->dma_arr
= cpr
->cp_desc_mapping
;
2525 ring
->vmem_size
= 0;
2527 rxr
= bnapi
->rx_ring
;
2531 ring
= &rxr
->rx_ring_struct
;
2532 ring
->nr_pages
= bp
->rx_nr_pages
;
2533 ring
->page_size
= HW_RXBD_RING_SIZE
;
2534 ring
->pg_arr
= (void **)rxr
->rx_desc_ring
;
2535 ring
->dma_arr
= rxr
->rx_desc_mapping
;
2536 ring
->vmem_size
= SW_RXBD_RING_SIZE
* bp
->rx_nr_pages
;
2537 ring
->vmem
= (void **)&rxr
->rx_buf_ring
;
2539 ring
= &rxr
->rx_agg_ring_struct
;
2540 ring
->nr_pages
= bp
->rx_agg_nr_pages
;
2541 ring
->page_size
= HW_RXBD_RING_SIZE
;
2542 ring
->pg_arr
= (void **)rxr
->rx_agg_desc_ring
;
2543 ring
->dma_arr
= rxr
->rx_agg_desc_mapping
;
2544 ring
->vmem_size
= SW_RXBD_AGG_RING_SIZE
* bp
->rx_agg_nr_pages
;
2545 ring
->vmem
= (void **)&rxr
->rx_agg_ring
;
2548 txr
= bnapi
->tx_ring
;
2552 ring
= &txr
->tx_ring_struct
;
2553 ring
->nr_pages
= bp
->tx_nr_pages
;
2554 ring
->page_size
= HW_RXBD_RING_SIZE
;
2555 ring
->pg_arr
= (void **)txr
->tx_desc_ring
;
2556 ring
->dma_arr
= txr
->tx_desc_mapping
;
2557 ring
->vmem_size
= SW_TXBD_RING_SIZE
* bp
->tx_nr_pages
;
2558 ring
->vmem
= (void **)&txr
->tx_buf_ring
;
2562 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct
*ring
, u32 type
)
2566 struct rx_bd
**rx_buf_ring
;
2568 rx_buf_ring
= (struct rx_bd
**)ring
->pg_arr
;
2569 for (i
= 0, prod
= 0; i
< ring
->nr_pages
; i
++) {
2573 rxbd
= rx_buf_ring
[i
];
2577 for (j
= 0; j
< RX_DESC_CNT
; j
++, rxbd
++, prod
++) {
2578 rxbd
->rx_bd_len_flags_type
= cpu_to_le32(type
);
2579 rxbd
->rx_bd_opaque
= prod
;
2584 static int bnxt_init_one_rx_ring(struct bnxt
*bp
, int ring_nr
)
2586 struct net_device
*dev
= bp
->dev
;
2587 struct bnxt_rx_ring_info
*rxr
;
2588 struct bnxt_ring_struct
*ring
;
2592 type
= (bp
->rx_buf_use_size
<< RX_BD_LEN_SHIFT
) |
2593 RX_BD_TYPE_RX_PACKET_BD
| RX_BD_FLAGS_EOP
;
2595 if (NET_IP_ALIGN
== 2)
2596 type
|= RX_BD_FLAGS_SOP
;
2598 rxr
= &bp
->rx_ring
[ring_nr
];
2599 ring
= &rxr
->rx_ring_struct
;
2600 bnxt_init_rxbd_pages(ring
, type
);
2602 if (BNXT_RX_PAGE_MODE(bp
) && bp
->xdp_prog
) {
2603 rxr
->xdp_prog
= bpf_prog_add(bp
->xdp_prog
, 1);
2604 if (IS_ERR(rxr
->xdp_prog
)) {
2605 int rc
= PTR_ERR(rxr
->xdp_prog
);
2607 rxr
->xdp_prog
= NULL
;
2611 prod
= rxr
->rx_prod
;
2612 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
2613 if (bnxt_alloc_rx_data(bp
, rxr
, prod
, GFP_KERNEL
) != 0) {
2614 netdev_warn(dev
, "init'ed rx ring %d with %d/%d skbs only\n",
2615 ring_nr
, i
, bp
->rx_ring_size
);
2618 prod
= NEXT_RX(prod
);
2620 rxr
->rx_prod
= prod
;
2621 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
2623 ring
= &rxr
->rx_agg_ring_struct
;
2624 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
2626 if (!(bp
->flags
& BNXT_FLAG_AGG_RINGS
))
2629 type
= ((u32
)BNXT_RX_PAGE_SIZE
<< RX_BD_LEN_SHIFT
) |
2630 RX_BD_TYPE_RX_AGG_BD
| RX_BD_FLAGS_SOP
;
2632 bnxt_init_rxbd_pages(ring
, type
);
2634 prod
= rxr
->rx_agg_prod
;
2635 for (i
= 0; i
< bp
->rx_agg_ring_size
; i
++) {
2636 if (bnxt_alloc_rx_page(bp
, rxr
, prod
, GFP_KERNEL
) != 0) {
2637 netdev_warn(dev
, "init'ed rx ring %d with %d/%d pages only\n",
2638 ring_nr
, i
, bp
->rx_ring_size
);
2641 prod
= NEXT_RX_AGG(prod
);
2643 rxr
->rx_agg_prod
= prod
;
2645 if (bp
->flags
& BNXT_FLAG_TPA
) {
2650 for (i
= 0; i
< MAX_TPA
; i
++) {
2651 data
= __bnxt_alloc_rx_data(bp
, &mapping
,
2656 rxr
->rx_tpa
[i
].data
= data
;
2657 rxr
->rx_tpa
[i
].data_ptr
= data
+ bp
->rx_offset
;
2658 rxr
->rx_tpa
[i
].mapping
= mapping
;
2661 netdev_err(bp
->dev
, "No resource allocated for LRO/GRO\n");
2669 static void bnxt_init_cp_rings(struct bnxt
*bp
)
2673 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
2674 struct bnxt_cp_ring_info
*cpr
= &bp
->bnapi
[i
]->cp_ring
;
2675 struct bnxt_ring_struct
*ring
= &cpr
->cp_ring_struct
;
2677 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
2678 cpr
->rx_ring_coal
.coal_ticks
= bp
->rx_coal
.coal_ticks
;
2679 cpr
->rx_ring_coal
.coal_bufs
= bp
->rx_coal
.coal_bufs
;
2683 static int bnxt_init_rx_rings(struct bnxt
*bp
)
2687 if (BNXT_RX_PAGE_MODE(bp
)) {
2688 bp
->rx_offset
= NET_IP_ALIGN
+ XDP_PACKET_HEADROOM
;
2689 bp
->rx_dma_offset
= XDP_PACKET_HEADROOM
;
2691 bp
->rx_offset
= BNXT_RX_OFFSET
;
2692 bp
->rx_dma_offset
= BNXT_RX_DMA_OFFSET
;
2695 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
2696 rc
= bnxt_init_one_rx_ring(bp
, i
);
2704 static int bnxt_init_tx_rings(struct bnxt
*bp
)
2708 bp
->tx_wake_thresh
= max_t(int, bp
->tx_ring_size
/ 2,
2711 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
2712 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
2713 struct bnxt_ring_struct
*ring
= &txr
->tx_ring_struct
;
2715 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
2721 static void bnxt_free_ring_grps(struct bnxt
*bp
)
2723 kfree(bp
->grp_info
);
2724 bp
->grp_info
= NULL
;
2727 static int bnxt_init_ring_grps(struct bnxt
*bp
, bool irq_re_init
)
2732 bp
->grp_info
= kcalloc(bp
->cp_nr_rings
,
2733 sizeof(struct bnxt_ring_grp_info
),
2738 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
2740 bp
->grp_info
[i
].fw_stats_ctx
= INVALID_HW_RING_ID
;
2741 bp
->grp_info
[i
].fw_grp_id
= INVALID_HW_RING_ID
;
2742 bp
->grp_info
[i
].rx_fw_ring_id
= INVALID_HW_RING_ID
;
2743 bp
->grp_info
[i
].agg_fw_ring_id
= INVALID_HW_RING_ID
;
2744 bp
->grp_info
[i
].cp_fw_ring_id
= INVALID_HW_RING_ID
;
2749 static void bnxt_free_vnics(struct bnxt
*bp
)
2751 kfree(bp
->vnic_info
);
2752 bp
->vnic_info
= NULL
;
2756 static int bnxt_alloc_vnics(struct bnxt
*bp
)
2760 #ifdef CONFIG_RFS_ACCEL
2761 if (bp
->flags
& BNXT_FLAG_RFS
)
2762 num_vnics
+= bp
->rx_nr_rings
;
2765 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
2768 bp
->vnic_info
= kcalloc(num_vnics
, sizeof(struct bnxt_vnic_info
),
2773 bp
->nr_vnics
= num_vnics
;
2777 static void bnxt_init_vnics(struct bnxt
*bp
)
2781 for (i
= 0; i
< bp
->nr_vnics
; i
++) {
2782 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[i
];
2784 vnic
->fw_vnic_id
= INVALID_HW_RING_ID
;
2785 vnic
->fw_rss_cos_lb_ctx
[0] = INVALID_HW_RING_ID
;
2786 vnic
->fw_rss_cos_lb_ctx
[1] = INVALID_HW_RING_ID
;
2787 vnic
->fw_l2_ctx_id
= INVALID_HW_RING_ID
;
2789 if (bp
->vnic_info
[i
].rss_hash_key
) {
2791 prandom_bytes(vnic
->rss_hash_key
,
2794 memcpy(vnic
->rss_hash_key
,
2795 bp
->vnic_info
[0].rss_hash_key
,
2801 static int bnxt_calc_nr_ring_pages(u32 ring_size
, int desc_per_pg
)
2805 pages
= ring_size
/ desc_per_pg
;
2812 while (pages
& (pages
- 1))
2818 void bnxt_set_tpa_flags(struct bnxt
*bp
)
2820 bp
->flags
&= ~BNXT_FLAG_TPA
;
2821 if (bp
->flags
& BNXT_FLAG_NO_AGG_RINGS
)
2823 if (bp
->dev
->features
& NETIF_F_LRO
)
2824 bp
->flags
|= BNXT_FLAG_LRO
;
2825 else if (bp
->dev
->features
& NETIF_F_GRO_HW
)
2826 bp
->flags
|= BNXT_FLAG_GRO
;
2829 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2832 void bnxt_set_ring_params(struct bnxt
*bp
)
2834 u32 ring_size
, rx_size
, rx_space
;
2835 u32 agg_factor
= 0, agg_ring_size
= 0;
2837 /* 8 for CRC and VLAN */
2838 rx_size
= SKB_DATA_ALIGN(bp
->dev
->mtu
+ ETH_HLEN
+ NET_IP_ALIGN
+ 8);
2840 rx_space
= rx_size
+ NET_SKB_PAD
+
2841 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
2843 bp
->rx_copy_thresh
= BNXT_RX_COPY_THRESH
;
2844 ring_size
= bp
->rx_ring_size
;
2845 bp
->rx_agg_ring_size
= 0;
2846 bp
->rx_agg_nr_pages
= 0;
2848 if (bp
->flags
& BNXT_FLAG_TPA
)
2849 agg_factor
= min_t(u32
, 4, 65536 / BNXT_RX_PAGE_SIZE
);
2851 bp
->flags
&= ~BNXT_FLAG_JUMBO
;
2852 if (rx_space
> PAGE_SIZE
&& !(bp
->flags
& BNXT_FLAG_NO_AGG_RINGS
)) {
2855 bp
->flags
|= BNXT_FLAG_JUMBO
;
2856 jumbo_factor
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
2857 if (jumbo_factor
> agg_factor
)
2858 agg_factor
= jumbo_factor
;
2860 agg_ring_size
= ring_size
* agg_factor
;
2862 if (agg_ring_size
) {
2863 bp
->rx_agg_nr_pages
= bnxt_calc_nr_ring_pages(agg_ring_size
,
2865 if (bp
->rx_agg_nr_pages
> MAX_RX_AGG_PAGES
) {
2866 u32 tmp
= agg_ring_size
;
2868 bp
->rx_agg_nr_pages
= MAX_RX_AGG_PAGES
;
2869 agg_ring_size
= MAX_RX_AGG_PAGES
* RX_DESC_CNT
- 1;
2870 netdev_warn(bp
->dev
, "rx agg ring size %d reduced to %d.\n",
2871 tmp
, agg_ring_size
);
2873 bp
->rx_agg_ring_size
= agg_ring_size
;
2874 bp
->rx_agg_ring_mask
= (bp
->rx_agg_nr_pages
* RX_DESC_CNT
) - 1;
2875 rx_size
= SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH
+ NET_IP_ALIGN
);
2876 rx_space
= rx_size
+ NET_SKB_PAD
+
2877 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
2880 bp
->rx_buf_use_size
= rx_size
;
2881 bp
->rx_buf_size
= rx_space
;
2883 bp
->rx_nr_pages
= bnxt_calc_nr_ring_pages(ring_size
, RX_DESC_CNT
);
2884 bp
->rx_ring_mask
= (bp
->rx_nr_pages
* RX_DESC_CNT
) - 1;
2886 ring_size
= bp
->tx_ring_size
;
2887 bp
->tx_nr_pages
= bnxt_calc_nr_ring_pages(ring_size
, TX_DESC_CNT
);
2888 bp
->tx_ring_mask
= (bp
->tx_nr_pages
* TX_DESC_CNT
) - 1;
2890 ring_size
= bp
->rx_ring_size
* (2 + agg_factor
) + bp
->tx_ring_size
;
2891 bp
->cp_ring_size
= ring_size
;
2893 bp
->cp_nr_pages
= bnxt_calc_nr_ring_pages(ring_size
, CP_DESC_CNT
);
2894 if (bp
->cp_nr_pages
> MAX_CP_PAGES
) {
2895 bp
->cp_nr_pages
= MAX_CP_PAGES
;
2896 bp
->cp_ring_size
= MAX_CP_PAGES
* CP_DESC_CNT
- 1;
2897 netdev_warn(bp
->dev
, "completion ring size %d reduced to %d.\n",
2898 ring_size
, bp
->cp_ring_size
);
2900 bp
->cp_bit
= bp
->cp_nr_pages
* CP_DESC_CNT
;
2901 bp
->cp_ring_mask
= bp
->cp_bit
- 1;
2904 /* Changing allocation mode of RX rings.
2905 * TODO: Update when extending xdp_rxq_info to support allocation modes.
2907 int bnxt_set_rx_skb_mode(struct bnxt
*bp
, bool page_mode
)
2910 if (bp
->dev
->mtu
> BNXT_MAX_PAGE_MODE_MTU
)
2913 min_t(u16
, bp
->max_mtu
, BNXT_MAX_PAGE_MODE_MTU
);
2914 bp
->flags
&= ~BNXT_FLAG_AGG_RINGS
;
2915 bp
->flags
|= BNXT_FLAG_NO_AGG_RINGS
| BNXT_FLAG_RX_PAGE_MODE
;
2916 bp
->rx_dir
= DMA_BIDIRECTIONAL
;
2917 bp
->rx_skb_func
= bnxt_rx_page_skb
;
2918 /* Disable LRO or GRO_HW */
2919 netdev_update_features(bp
->dev
);
2921 bp
->dev
->max_mtu
= bp
->max_mtu
;
2922 bp
->flags
&= ~BNXT_FLAG_RX_PAGE_MODE
;
2923 bp
->rx_dir
= DMA_FROM_DEVICE
;
2924 bp
->rx_skb_func
= bnxt_rx_skb
;
2929 static void bnxt_free_vnic_attributes(struct bnxt
*bp
)
2932 struct bnxt_vnic_info
*vnic
;
2933 struct pci_dev
*pdev
= bp
->pdev
;
2938 for (i
= 0; i
< bp
->nr_vnics
; i
++) {
2939 vnic
= &bp
->vnic_info
[i
];
2941 kfree(vnic
->fw_grp_ids
);
2942 vnic
->fw_grp_ids
= NULL
;
2944 kfree(vnic
->uc_list
);
2945 vnic
->uc_list
= NULL
;
2947 if (vnic
->mc_list
) {
2948 dma_free_coherent(&pdev
->dev
, vnic
->mc_list_size
,
2949 vnic
->mc_list
, vnic
->mc_list_mapping
);
2950 vnic
->mc_list
= NULL
;
2953 if (vnic
->rss_table
) {
2954 dma_free_coherent(&pdev
->dev
, PAGE_SIZE
,
2956 vnic
->rss_table_dma_addr
);
2957 vnic
->rss_table
= NULL
;
2960 vnic
->rss_hash_key
= NULL
;
2965 static int bnxt_alloc_vnic_attributes(struct bnxt
*bp
)
2967 int i
, rc
= 0, size
;
2968 struct bnxt_vnic_info
*vnic
;
2969 struct pci_dev
*pdev
= bp
->pdev
;
2972 for (i
= 0; i
< bp
->nr_vnics
; i
++) {
2973 vnic
= &bp
->vnic_info
[i
];
2975 if (vnic
->flags
& BNXT_VNIC_UCAST_FLAG
) {
2976 int mem_size
= (BNXT_MAX_UC_ADDRS
- 1) * ETH_ALEN
;
2979 vnic
->uc_list
= kmalloc(mem_size
, GFP_KERNEL
);
2980 if (!vnic
->uc_list
) {
2987 if (vnic
->flags
& BNXT_VNIC_MCAST_FLAG
) {
2988 vnic
->mc_list_size
= BNXT_MAX_MC_ADDRS
* ETH_ALEN
;
2990 dma_alloc_coherent(&pdev
->dev
,
2992 &vnic
->mc_list_mapping
,
2994 if (!vnic
->mc_list
) {
3000 if (vnic
->flags
& BNXT_VNIC_RSS_FLAG
)
3001 max_rings
= bp
->rx_nr_rings
;
3005 vnic
->fw_grp_ids
= kcalloc(max_rings
, sizeof(u16
), GFP_KERNEL
);
3006 if (!vnic
->fw_grp_ids
) {
3011 if ((bp
->flags
& BNXT_FLAG_NEW_RSS_CAP
) &&
3012 !(vnic
->flags
& BNXT_VNIC_RSS_FLAG
))
3015 /* Allocate rss table and hash key */
3016 vnic
->rss_table
= dma_alloc_coherent(&pdev
->dev
, PAGE_SIZE
,
3017 &vnic
->rss_table_dma_addr
,
3019 if (!vnic
->rss_table
) {
3024 size
= L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE
* sizeof(u16
));
3026 vnic
->rss_hash_key
= ((void *)vnic
->rss_table
) + size
;
3027 vnic
->rss_hash_key_dma_addr
= vnic
->rss_table_dma_addr
+ size
;
3035 static void bnxt_free_hwrm_resources(struct bnxt
*bp
)
3037 struct pci_dev
*pdev
= bp
->pdev
;
3039 if (bp
->hwrm_cmd_resp_addr
) {
3040 dma_free_coherent(&pdev
->dev
, PAGE_SIZE
, bp
->hwrm_cmd_resp_addr
,
3041 bp
->hwrm_cmd_resp_dma_addr
);
3042 bp
->hwrm_cmd_resp_addr
= NULL
;
3046 static int bnxt_alloc_hwrm_resources(struct bnxt
*bp
)
3048 struct pci_dev
*pdev
= bp
->pdev
;
3050 bp
->hwrm_cmd_resp_addr
= dma_alloc_coherent(&pdev
->dev
, PAGE_SIZE
,
3051 &bp
->hwrm_cmd_resp_dma_addr
,
3053 if (!bp
->hwrm_cmd_resp_addr
)
3059 static void bnxt_free_hwrm_short_cmd_req(struct bnxt
*bp
)
3061 if (bp
->hwrm_short_cmd_req_addr
) {
3062 struct pci_dev
*pdev
= bp
->pdev
;
3064 dma_free_coherent(&pdev
->dev
, BNXT_HWRM_MAX_REQ_LEN
,
3065 bp
->hwrm_short_cmd_req_addr
,
3066 bp
->hwrm_short_cmd_req_dma_addr
);
3067 bp
->hwrm_short_cmd_req_addr
= NULL
;
3071 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt
*bp
)
3073 struct pci_dev
*pdev
= bp
->pdev
;
3075 bp
->hwrm_short_cmd_req_addr
=
3076 dma_alloc_coherent(&pdev
->dev
, BNXT_HWRM_MAX_REQ_LEN
,
3077 &bp
->hwrm_short_cmd_req_dma_addr
,
3079 if (!bp
->hwrm_short_cmd_req_addr
)
3085 static void bnxt_free_stats(struct bnxt
*bp
)
3088 struct pci_dev
*pdev
= bp
->pdev
;
3090 bp
->flags
&= ~BNXT_FLAG_PORT_STATS
;
3091 bp
->flags
&= ~BNXT_FLAG_PORT_STATS_EXT
;
3093 if (bp
->hw_rx_port_stats
) {
3094 dma_free_coherent(&pdev
->dev
, bp
->hw_port_stats_size
,
3095 bp
->hw_rx_port_stats
,
3096 bp
->hw_rx_port_stats_map
);
3097 bp
->hw_rx_port_stats
= NULL
;
3100 if (bp
->hw_rx_port_stats_ext
) {
3101 dma_free_coherent(&pdev
->dev
, sizeof(struct rx_port_stats_ext
),
3102 bp
->hw_rx_port_stats_ext
,
3103 bp
->hw_rx_port_stats_ext_map
);
3104 bp
->hw_rx_port_stats_ext
= NULL
;
3110 size
= sizeof(struct ctx_hw_stats
);
3112 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3113 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
3114 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
3116 if (cpr
->hw_stats
) {
3117 dma_free_coherent(&pdev
->dev
, size
, cpr
->hw_stats
,
3119 cpr
->hw_stats
= NULL
;
3124 static int bnxt_alloc_stats(struct bnxt
*bp
)
3127 struct pci_dev
*pdev
= bp
->pdev
;
3129 size
= sizeof(struct ctx_hw_stats
);
3131 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3132 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
3133 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
3135 cpr
->hw_stats
= dma_alloc_coherent(&pdev
->dev
, size
,
3141 cpr
->hw_stats_ctx_id
= INVALID_STATS_CTX_ID
;
3144 if (BNXT_PF(bp
) && bp
->chip_num
!= CHIP_NUM_58700
) {
3145 bp
->hw_port_stats_size
= sizeof(struct rx_port_stats
) +
3146 sizeof(struct tx_port_stats
) + 1024;
3148 bp
->hw_rx_port_stats
=
3149 dma_alloc_coherent(&pdev
->dev
, bp
->hw_port_stats_size
,
3150 &bp
->hw_rx_port_stats_map
,
3152 if (!bp
->hw_rx_port_stats
)
3155 bp
->hw_tx_port_stats
= (void *)(bp
->hw_rx_port_stats
+ 1) +
3157 bp
->hw_tx_port_stats_map
= bp
->hw_rx_port_stats_map
+
3158 sizeof(struct rx_port_stats
) + 512;
3159 bp
->flags
|= BNXT_FLAG_PORT_STATS
;
3161 /* Display extended statistics only if FW supports it */
3162 if (bp
->hwrm_spec_code
< 0x10804 ||
3163 bp
->hwrm_spec_code
== 0x10900)
3166 bp
->hw_rx_port_stats_ext
=
3167 dma_zalloc_coherent(&pdev
->dev
,
3168 sizeof(struct rx_port_stats_ext
),
3169 &bp
->hw_rx_port_stats_ext_map
,
3171 if (!bp
->hw_rx_port_stats_ext
)
3174 bp
->flags
|= BNXT_FLAG_PORT_STATS_EXT
;
3179 static void bnxt_clear_ring_indices(struct bnxt
*bp
)
3186 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3187 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
3188 struct bnxt_cp_ring_info
*cpr
;
3189 struct bnxt_rx_ring_info
*rxr
;
3190 struct bnxt_tx_ring_info
*txr
;
3195 cpr
= &bnapi
->cp_ring
;
3196 cpr
->cp_raw_cons
= 0;
3198 txr
= bnapi
->tx_ring
;
3204 rxr
= bnapi
->rx_ring
;
3207 rxr
->rx_agg_prod
= 0;
3208 rxr
->rx_sw_agg_prod
= 0;
3209 rxr
->rx_next_cons
= 0;
3214 static void bnxt_free_ntp_fltrs(struct bnxt
*bp
, bool irq_reinit
)
3216 #ifdef CONFIG_RFS_ACCEL
3219 /* Under rtnl_lock and all our NAPIs have been disabled. It's
3220 * safe to delete the hash table.
3222 for (i
= 0; i
< BNXT_NTP_FLTR_HASH_SIZE
; i
++) {
3223 struct hlist_head
*head
;
3224 struct hlist_node
*tmp
;
3225 struct bnxt_ntuple_filter
*fltr
;
3227 head
= &bp
->ntp_fltr_hash_tbl
[i
];
3228 hlist_for_each_entry_safe(fltr
, tmp
, head
, hash
) {
3229 hlist_del(&fltr
->hash
);
3234 kfree(bp
->ntp_fltr_bmap
);
3235 bp
->ntp_fltr_bmap
= NULL
;
3237 bp
->ntp_fltr_count
= 0;
3241 static int bnxt_alloc_ntp_fltrs(struct bnxt
*bp
)
3243 #ifdef CONFIG_RFS_ACCEL
3246 if (!(bp
->flags
& BNXT_FLAG_RFS
))
3249 for (i
= 0; i
< BNXT_NTP_FLTR_HASH_SIZE
; i
++)
3250 INIT_HLIST_HEAD(&bp
->ntp_fltr_hash_tbl
[i
]);
3252 bp
->ntp_fltr_count
= 0;
3253 bp
->ntp_fltr_bmap
= kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR
),
3257 if (!bp
->ntp_fltr_bmap
)
3266 static void bnxt_free_mem(struct bnxt
*bp
, bool irq_re_init
)
3268 bnxt_free_vnic_attributes(bp
);
3269 bnxt_free_tx_rings(bp
);
3270 bnxt_free_rx_rings(bp
);
3271 bnxt_free_cp_rings(bp
);
3272 bnxt_free_ntp_fltrs(bp
, irq_re_init
);
3274 bnxt_free_stats(bp
);
3275 bnxt_free_ring_grps(bp
);
3276 bnxt_free_vnics(bp
);
3277 kfree(bp
->tx_ring_map
);
3278 bp
->tx_ring_map
= NULL
;
3286 bnxt_clear_ring_indices(bp
);
3290 static int bnxt_alloc_mem(struct bnxt
*bp
, bool irq_re_init
)
3292 int i
, j
, rc
, size
, arr_size
;
3296 /* Allocate bnapi mem pointer array and mem block for
3299 arr_size
= L1_CACHE_ALIGN(sizeof(struct bnxt_napi
*) *
3301 size
= L1_CACHE_ALIGN(sizeof(struct bnxt_napi
));
3302 bnapi
= kzalloc(arr_size
+ size
* bp
->cp_nr_rings
, GFP_KERNEL
);
3308 for (i
= 0; i
< bp
->cp_nr_rings
; i
++, bnapi
+= size
) {
3309 bp
->bnapi
[i
] = bnapi
;
3310 bp
->bnapi
[i
]->index
= i
;
3311 bp
->bnapi
[i
]->bp
= bp
;
3314 bp
->rx_ring
= kcalloc(bp
->rx_nr_rings
,
3315 sizeof(struct bnxt_rx_ring_info
),
3320 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
3321 bp
->rx_ring
[i
].bnapi
= bp
->bnapi
[i
];
3322 bp
->bnapi
[i
]->rx_ring
= &bp
->rx_ring
[i
];
3325 bp
->tx_ring
= kcalloc(bp
->tx_nr_rings
,
3326 sizeof(struct bnxt_tx_ring_info
),
3331 bp
->tx_ring_map
= kcalloc(bp
->tx_nr_rings
, sizeof(u16
),
3334 if (!bp
->tx_ring_map
)
3337 if (bp
->flags
& BNXT_FLAG_SHARED_RINGS
)
3340 j
= bp
->rx_nr_rings
;
3342 for (i
= 0; i
< bp
->tx_nr_rings
; i
++, j
++) {
3343 bp
->tx_ring
[i
].bnapi
= bp
->bnapi
[j
];
3344 bp
->bnapi
[j
]->tx_ring
= &bp
->tx_ring
[i
];
3345 bp
->tx_ring_map
[i
] = bp
->tx_nr_rings_xdp
+ i
;
3346 if (i
>= bp
->tx_nr_rings_xdp
) {
3347 bp
->tx_ring
[i
].txq_index
= i
-
3348 bp
->tx_nr_rings_xdp
;
3349 bp
->bnapi
[j
]->tx_int
= bnxt_tx_int
;
3351 bp
->bnapi
[j
]->flags
|= BNXT_NAPI_FLAG_XDP
;
3352 bp
->bnapi
[j
]->tx_int
= bnxt_tx_int_xdp
;
3356 rc
= bnxt_alloc_stats(bp
);
3360 rc
= bnxt_alloc_ntp_fltrs(bp
);
3364 rc
= bnxt_alloc_vnics(bp
);
3369 bnxt_init_ring_struct(bp
);
3371 rc
= bnxt_alloc_rx_rings(bp
);
3375 rc
= bnxt_alloc_tx_rings(bp
);
3379 rc
= bnxt_alloc_cp_rings(bp
);
3383 bp
->vnic_info
[0].flags
|= BNXT_VNIC_RSS_FLAG
| BNXT_VNIC_MCAST_FLAG
|
3384 BNXT_VNIC_UCAST_FLAG
;
3385 rc
= bnxt_alloc_vnic_attributes(bp
);
3391 bnxt_free_mem(bp
, true);
3395 static void bnxt_disable_int(struct bnxt
*bp
)
3402 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3403 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
3404 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
3405 struct bnxt_ring_struct
*ring
= &cpr
->cp_ring_struct
;
3407 if (ring
->fw_ring_id
!= INVALID_HW_RING_ID
)
3408 BNXT_CP_DB(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
3412 static int bnxt_cp_num_to_irq_num(struct bnxt
*bp
, int n
)
3414 struct bnxt_napi
*bnapi
= bp
->bnapi
[n
];
3415 struct bnxt_cp_ring_info
*cpr
;
3417 cpr
= &bnapi
->cp_ring
;
3418 return cpr
->cp_ring_struct
.map_idx
;
3421 static void bnxt_disable_int_sync(struct bnxt
*bp
)
3425 atomic_inc(&bp
->intr_sem
);
3427 bnxt_disable_int(bp
);
3428 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3429 int map_idx
= bnxt_cp_num_to_irq_num(bp
, i
);
3431 synchronize_irq(bp
->irq_tbl
[map_idx
].vector
);
3435 static void bnxt_enable_int(struct bnxt
*bp
)
3439 atomic_set(&bp
->intr_sem
, 0);
3440 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
3441 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
3442 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
3444 BNXT_CP_DB_REARM(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
3448 void bnxt_hwrm_cmd_hdr_init(struct bnxt
*bp
, void *request
, u16 req_type
,
3449 u16 cmpl_ring
, u16 target_id
)
3451 struct input
*req
= request
;
3453 req
->req_type
= cpu_to_le16(req_type
);
3454 req
->cmpl_ring
= cpu_to_le16(cmpl_ring
);
3455 req
->target_id
= cpu_to_le16(target_id
);
3456 req
->resp_addr
= cpu_to_le64(bp
->hwrm_cmd_resp_dma_addr
);
3459 static int bnxt_hwrm_do_send_msg(struct bnxt
*bp
, void *msg
, u32 msg_len
,
3460 int timeout
, bool silent
)
3462 int i
, intr_process
, rc
, tmo_count
;
3463 struct input
*req
= msg
;
3467 u16 cp_ring_id
, len
= 0;
3468 struct hwrm_err_output
*resp
= bp
->hwrm_cmd_resp_addr
;
3469 u16 max_req_len
= BNXT_HWRM_MAX_REQ_LEN
;
3470 struct hwrm_short_input short_input
= {0};
3472 req
->seq_id
= cpu_to_le16(bp
->hwrm_cmd_seq
++);
3473 memset(resp
, 0, PAGE_SIZE
);
3474 cp_ring_id
= le16_to_cpu(req
->cmpl_ring
);
3475 intr_process
= (cp_ring_id
== INVALID_HW_RING_ID
) ? 0 : 1;
3477 if (bp
->fw_cap
& BNXT_FW_CAP_SHORT_CMD
) {
3478 void *short_cmd_req
= bp
->hwrm_short_cmd_req_addr
;
3480 memcpy(short_cmd_req
, req
, msg_len
);
3481 memset(short_cmd_req
+ msg_len
, 0, BNXT_HWRM_MAX_REQ_LEN
-
3484 short_input
.req_type
= req
->req_type
;
3485 short_input
.signature
=
3486 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD
);
3487 short_input
.size
= cpu_to_le16(msg_len
);
3488 short_input
.req_addr
=
3489 cpu_to_le64(bp
->hwrm_short_cmd_req_dma_addr
);
3491 data
= (u32
*)&short_input
;
3492 msg_len
= sizeof(short_input
);
3494 /* Sync memory write before updating doorbell */
3497 max_req_len
= BNXT_HWRM_SHORT_REQ_LEN
;
3500 /* Write request msg to hwrm channel */
3501 __iowrite32_copy(bp
->bar0
, data
, msg_len
/ 4);
3503 for (i
= msg_len
; i
< max_req_len
; i
+= 4)
3504 writel(0, bp
->bar0
+ i
);
3506 /* currently supports only one outstanding message */
3508 bp
->hwrm_intr_seq_id
= le16_to_cpu(req
->seq_id
);
3510 /* Ring channel doorbell */
3511 writel(1, bp
->bar0
+ 0x100);
3514 timeout
= DFLT_HWRM_CMD_TIMEOUT
;
3515 /* convert timeout to usec */
3519 /* Short timeout for the first few iterations:
3520 * number of loops = number of loops for short timeout +
3521 * number of loops for standard timeout.
3523 tmo_count
= HWRM_SHORT_TIMEOUT_COUNTER
;
3524 timeout
= timeout
- HWRM_SHORT_MIN_TIMEOUT
* HWRM_SHORT_TIMEOUT_COUNTER
;
3525 tmo_count
+= DIV_ROUND_UP(timeout
, HWRM_MIN_TIMEOUT
);
3526 resp_len
= bp
->hwrm_cmd_resp_addr
+ HWRM_RESP_LEN_OFFSET
;
3528 /* Wait until hwrm response cmpl interrupt is processed */
3529 while (bp
->hwrm_intr_seq_id
!= HWRM_SEQ_ID_INVALID
&&
3531 /* on first few passes, just barely sleep */
3532 if (i
< HWRM_SHORT_TIMEOUT_COUNTER
)
3533 usleep_range(HWRM_SHORT_MIN_TIMEOUT
,
3534 HWRM_SHORT_MAX_TIMEOUT
);
3536 usleep_range(HWRM_MIN_TIMEOUT
,
3540 if (bp
->hwrm_intr_seq_id
!= HWRM_SEQ_ID_INVALID
) {
3541 netdev_err(bp
->dev
, "Resp cmpl intr err msg: 0x%x\n",
3542 le16_to_cpu(req
->req_type
));
3545 len
= (le32_to_cpu(*resp_len
) & HWRM_RESP_LEN_MASK
) >>
3547 valid
= bp
->hwrm_cmd_resp_addr
+ len
- 1;
3551 /* Check if response len is updated */
3552 for (i
= 0; i
< tmo_count
; i
++) {
3553 len
= (le32_to_cpu(*resp_len
) & HWRM_RESP_LEN_MASK
) >>
3557 /* on first few passes, just barely sleep */
3558 if (i
< HWRM_SHORT_TIMEOUT_COUNTER
)
3559 usleep_range(HWRM_SHORT_MIN_TIMEOUT
,
3560 HWRM_SHORT_MAX_TIMEOUT
);
3562 usleep_range(HWRM_MIN_TIMEOUT
,
3566 if (i
>= tmo_count
) {
3567 netdev_err(bp
->dev
, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3568 HWRM_TOTAL_TIMEOUT(i
),
3569 le16_to_cpu(req
->req_type
),
3570 le16_to_cpu(req
->seq_id
), len
);
3574 /* Last byte of resp contains valid bit */
3575 valid
= bp
->hwrm_cmd_resp_addr
+ len
- 1;
3576 for (j
= 0; j
< HWRM_VALID_BIT_DELAY_USEC
; j
++) {
3577 /* make sure we read from updated DMA memory */
3584 if (j
>= HWRM_VALID_BIT_DELAY_USEC
) {
3585 netdev_err(bp
->dev
, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3586 HWRM_TOTAL_TIMEOUT(i
),
3587 le16_to_cpu(req
->req_type
),
3588 le16_to_cpu(req
->seq_id
), len
, *valid
);
3593 /* Zero valid bit for compatibility. Valid bit in an older spec
3594 * may become a new field in a newer spec. We must make sure that
3595 * a new field not implemented by old spec will read zero.
3598 rc
= le16_to_cpu(resp
->error_code
);
3600 netdev_err(bp
->dev
, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3601 le16_to_cpu(resp
->req_type
),
3602 le16_to_cpu(resp
->seq_id
), rc
);
3606 int _hwrm_send_message(struct bnxt
*bp
, void *msg
, u32 msg_len
, int timeout
)
3608 return bnxt_hwrm_do_send_msg(bp
, msg
, msg_len
, timeout
, false);
3611 int _hwrm_send_message_silent(struct bnxt
*bp
, void *msg
, u32 msg_len
,
3614 return bnxt_hwrm_do_send_msg(bp
, msg
, msg_len
, timeout
, true);
3617 int hwrm_send_message(struct bnxt
*bp
, void *msg
, u32 msg_len
, int timeout
)
3621 mutex_lock(&bp
->hwrm_cmd_lock
);
3622 rc
= _hwrm_send_message(bp
, msg
, msg_len
, timeout
);
3623 mutex_unlock(&bp
->hwrm_cmd_lock
);
3627 int hwrm_send_message_silent(struct bnxt
*bp
, void *msg
, u32 msg_len
,
3632 mutex_lock(&bp
->hwrm_cmd_lock
);
3633 rc
= bnxt_hwrm_do_send_msg(bp
, msg
, msg_len
, timeout
, true);
3634 mutex_unlock(&bp
->hwrm_cmd_lock
);
3638 int bnxt_hwrm_func_rgtr_async_events(struct bnxt
*bp
, unsigned long *bmap
,
3641 struct hwrm_func_drv_rgtr_input req
= {0};
3642 DECLARE_BITMAP(async_events_bmap
, 256);
3643 u32
*events
= (u32
*)async_events_bmap
;
3646 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_DRV_RGTR
, -1, -1);
3649 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD
);
3651 memset(async_events_bmap
, 0, sizeof(async_events_bmap
));
3652 for (i
= 0; i
< ARRAY_SIZE(bnxt_async_events_arr
); i
++)
3653 __set_bit(bnxt_async_events_arr
[i
], async_events_bmap
);
3655 if (bmap
&& bmap_size
) {
3656 for (i
= 0; i
< bmap_size
; i
++) {
3657 if (test_bit(i
, bmap
))
3658 __set_bit(i
, async_events_bmap
);
3662 for (i
= 0; i
< 8; i
++)
3663 req
.async_event_fwd
[i
] |= cpu_to_le32(events
[i
]);
3665 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3668 static int bnxt_hwrm_func_drv_rgtr(struct bnxt
*bp
)
3670 struct hwrm_func_drv_rgtr_output
*resp
= bp
->hwrm_cmd_resp_addr
;
3671 struct hwrm_func_drv_rgtr_input req
= {0};
3674 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_DRV_RGTR
, -1, -1);
3677 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE
|
3678 FUNC_DRV_RGTR_REQ_ENABLES_VER
);
3680 req
.os_type
= cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX
);
3681 req
.flags
= cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE
);
3682 req
.ver_maj_8b
= DRV_VER_MAJ
;
3683 req
.ver_min_8b
= DRV_VER_MIN
;
3684 req
.ver_upd_8b
= DRV_VER_UPD
;
3685 req
.ver_maj
= cpu_to_le16(DRV_VER_MAJ
);
3686 req
.ver_min
= cpu_to_le16(DRV_VER_MIN
);
3687 req
.ver_upd
= cpu_to_le16(DRV_VER_UPD
);
3693 memset(data
, 0, sizeof(data
));
3694 for (i
= 0; i
< ARRAY_SIZE(bnxt_vf_req_snif
); i
++) {
3695 u16 cmd
= bnxt_vf_req_snif
[i
];
3696 unsigned int bit
, idx
;
3700 data
[idx
] |= 1 << bit
;
3703 for (i
= 0; i
< 8; i
++)
3704 req
.vf_req_fwd
[i
] = cpu_to_le32(data
[i
]);
3707 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD
);
3710 mutex_lock(&bp
->hwrm_cmd_lock
);
3711 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3714 else if (resp
->flags
&
3715 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED
))
3716 bp
->fw_cap
|= BNXT_FW_CAP_IF_CHANGE
;
3717 mutex_unlock(&bp
->hwrm_cmd_lock
);
3721 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt
*bp
)
3723 struct hwrm_func_drv_unrgtr_input req
= {0};
3725 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_DRV_UNRGTR
, -1, -1);
3726 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3729 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt
*bp
, u8 tunnel_type
)
3732 struct hwrm_tunnel_dst_port_free_input req
= {0};
3734 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_TUNNEL_DST_PORT_FREE
, -1, -1);
3735 req
.tunnel_type
= tunnel_type
;
3737 switch (tunnel_type
) {
3738 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN
:
3739 req
.tunnel_dst_port_id
= bp
->vxlan_fw_dst_port_id
;
3741 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE
:
3742 req
.tunnel_dst_port_id
= bp
->nge_fw_dst_port_id
;
3748 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3750 netdev_err(bp
->dev
, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3755 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt
*bp
, __be16 port
,
3759 struct hwrm_tunnel_dst_port_alloc_input req
= {0};
3760 struct hwrm_tunnel_dst_port_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
3762 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_TUNNEL_DST_PORT_ALLOC
, -1, -1);
3764 req
.tunnel_type
= tunnel_type
;
3765 req
.tunnel_dst_port_val
= port
;
3767 mutex_lock(&bp
->hwrm_cmd_lock
);
3768 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3770 netdev_err(bp
->dev
, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3775 switch (tunnel_type
) {
3776 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN
:
3777 bp
->vxlan_fw_dst_port_id
= resp
->tunnel_dst_port_id
;
3779 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE
:
3780 bp
->nge_fw_dst_port_id
= resp
->tunnel_dst_port_id
;
3787 mutex_unlock(&bp
->hwrm_cmd_lock
);
3791 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt
*bp
, u16 vnic_id
)
3793 struct hwrm_cfa_l2_set_rx_mask_input req
= {0};
3794 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
3796 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_CFA_L2_SET_RX_MASK
, -1, -1);
3797 req
.vnic_id
= cpu_to_le32(vnic
->fw_vnic_id
);
3799 req
.num_mc_entries
= cpu_to_le32(vnic
->mc_list_count
);
3800 req
.mc_tbl_addr
= cpu_to_le64(vnic
->mc_list_mapping
);
3801 req
.mask
= cpu_to_le32(vnic
->rx_mask
);
3802 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3805 #ifdef CONFIG_RFS_ACCEL
3806 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt
*bp
,
3807 struct bnxt_ntuple_filter
*fltr
)
3809 struct hwrm_cfa_ntuple_filter_free_input req
= {0};
3811 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_CFA_NTUPLE_FILTER_FREE
, -1, -1);
3812 req
.ntuple_filter_id
= fltr
->filter_id
;
3813 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3816 #define BNXT_NTP_FLTR_FLAGS \
3817 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3818 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3819 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3820 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3821 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3822 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3823 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3824 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3825 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3826 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3827 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3828 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3829 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3830 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3832 #define BNXT_NTP_TUNNEL_FLTR_FLAG \
3833 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3835 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt
*bp
,
3836 struct bnxt_ntuple_filter
*fltr
)
3839 struct hwrm_cfa_ntuple_filter_alloc_input req
= {0};
3840 struct hwrm_cfa_ntuple_filter_alloc_output
*resp
=
3841 bp
->hwrm_cmd_resp_addr
;
3842 struct flow_keys
*keys
= &fltr
->fkeys
;
3843 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[fltr
->rxq
+ 1];
3845 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_CFA_NTUPLE_FILTER_ALLOC
, -1, -1);
3846 req
.l2_filter_id
= bp
->vnic_info
[0].fw_l2_filter_id
[fltr
->l2_fltr_idx
];
3848 req
.enables
= cpu_to_le32(BNXT_NTP_FLTR_FLAGS
);
3850 req
.ethertype
= htons(ETH_P_IP
);
3851 memcpy(req
.src_macaddr
, fltr
->src_mac_addr
, ETH_ALEN
);
3852 req
.ip_addr_type
= CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4
;
3853 req
.ip_protocol
= keys
->basic
.ip_proto
;
3855 if (keys
->basic
.n_proto
== htons(ETH_P_IPV6
)) {
3858 req
.ethertype
= htons(ETH_P_IPV6
);
3860 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6
;
3861 *(struct in6_addr
*)&req
.src_ipaddr
[0] =
3862 keys
->addrs
.v6addrs
.src
;
3863 *(struct in6_addr
*)&req
.dst_ipaddr
[0] =
3864 keys
->addrs
.v6addrs
.dst
;
3865 for (i
= 0; i
< 4; i
++) {
3866 req
.src_ipaddr_mask
[i
] = cpu_to_be32(0xffffffff);
3867 req
.dst_ipaddr_mask
[i
] = cpu_to_be32(0xffffffff);
3870 req
.src_ipaddr
[0] = keys
->addrs
.v4addrs
.src
;
3871 req
.src_ipaddr_mask
[0] = cpu_to_be32(0xffffffff);
3872 req
.dst_ipaddr
[0] = keys
->addrs
.v4addrs
.dst
;
3873 req
.dst_ipaddr_mask
[0] = cpu_to_be32(0xffffffff);
3875 if (keys
->control
.flags
& FLOW_DIS_ENCAPSULATION
) {
3876 req
.enables
|= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG
);
3878 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL
;
3881 req
.src_port
= keys
->ports
.src
;
3882 req
.src_port_mask
= cpu_to_be16(0xffff);
3883 req
.dst_port
= keys
->ports
.dst
;
3884 req
.dst_port_mask
= cpu_to_be16(0xffff);
3886 req
.dst_id
= cpu_to_le16(vnic
->fw_vnic_id
);
3887 mutex_lock(&bp
->hwrm_cmd_lock
);
3888 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3890 fltr
->filter_id
= resp
->ntuple_filter_id
;
3891 mutex_unlock(&bp
->hwrm_cmd_lock
);
3896 static int bnxt_hwrm_set_vnic_filter(struct bnxt
*bp
, u16 vnic_id
, u16 idx
,
3900 struct hwrm_cfa_l2_filter_alloc_input req
= {0};
3901 struct hwrm_cfa_l2_filter_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
3903 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_CFA_L2_FILTER_ALLOC
, -1, -1);
3904 req
.flags
= cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX
);
3905 if (!BNXT_CHIP_TYPE_NITRO_A0(bp
))
3907 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST
);
3908 req
.dst_id
= cpu_to_le16(bp
->vnic_info
[vnic_id
].fw_vnic_id
);
3910 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR
|
3911 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID
|
3912 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK
);
3913 memcpy(req
.l2_addr
, mac_addr
, ETH_ALEN
);
3914 req
.l2_addr_mask
[0] = 0xff;
3915 req
.l2_addr_mask
[1] = 0xff;
3916 req
.l2_addr_mask
[2] = 0xff;
3917 req
.l2_addr_mask
[3] = 0xff;
3918 req
.l2_addr_mask
[4] = 0xff;
3919 req
.l2_addr_mask
[5] = 0xff;
3921 mutex_lock(&bp
->hwrm_cmd_lock
);
3922 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
3924 bp
->vnic_info
[vnic_id
].fw_l2_filter_id
[idx
] =
3926 mutex_unlock(&bp
->hwrm_cmd_lock
);
3930 static int bnxt_hwrm_clear_vnic_filter(struct bnxt
*bp
)
3932 u16 i
, j
, num_of_vnics
= 1; /* only vnic 0 supported */
3935 /* Any associated ntuple filters will also be cleared by firmware. */
3936 mutex_lock(&bp
->hwrm_cmd_lock
);
3937 for (i
= 0; i
< num_of_vnics
; i
++) {
3938 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[i
];
3940 for (j
= 0; j
< vnic
->uc_filter_count
; j
++) {
3941 struct hwrm_cfa_l2_filter_free_input req
= {0};
3943 bnxt_hwrm_cmd_hdr_init(bp
, &req
,
3944 HWRM_CFA_L2_FILTER_FREE
, -1, -1);
3946 req
.l2_filter_id
= vnic
->fw_l2_filter_id
[j
];
3948 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
3951 vnic
->uc_filter_count
= 0;
3953 mutex_unlock(&bp
->hwrm_cmd_lock
);
3958 static int bnxt_hwrm_vnic_set_tpa(struct bnxt
*bp
, u16 vnic_id
, u32 tpa_flags
)
3960 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
3961 struct hwrm_vnic_tpa_cfg_input req
= {0};
3963 if (vnic
->fw_vnic_id
== INVALID_HW_RING_ID
)
3966 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_TPA_CFG
, -1, -1);
3969 u16 mss
= bp
->dev
->mtu
- 40;
3970 u32 nsegs
, n
, segs
= 0, flags
;
3972 flags
= VNIC_TPA_CFG_REQ_FLAGS_TPA
|
3973 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA
|
3974 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE
|
3975 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN
|
3976 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ
;
3977 if (tpa_flags
& BNXT_FLAG_GRO
)
3978 flags
|= VNIC_TPA_CFG_REQ_FLAGS_GRO
;
3980 req
.flags
= cpu_to_le32(flags
);
3983 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS
|
3984 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS
|
3985 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN
);
3987 /* Number of segs are log2 units, and first packet is not
3988 * included as part of this units.
3990 if (mss
<= BNXT_RX_PAGE_SIZE
) {
3991 n
= BNXT_RX_PAGE_SIZE
/ mss
;
3992 nsegs
= (MAX_SKB_FRAGS
- 1) * n
;
3994 n
= mss
/ BNXT_RX_PAGE_SIZE
;
3995 if (mss
& (BNXT_RX_PAGE_SIZE
- 1))
3997 nsegs
= (MAX_SKB_FRAGS
- n
) / n
;
4000 segs
= ilog2(nsegs
);
4001 req
.max_agg_segs
= cpu_to_le16(segs
);
4002 req
.max_aggs
= cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX
);
4004 req
.min_agg_len
= cpu_to_le32(512);
4006 req
.vnic_id
= cpu_to_le16(vnic
->fw_vnic_id
);
4008 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4011 static int bnxt_hwrm_vnic_set_rss(struct bnxt
*bp
, u16 vnic_id
, bool set_rss
)
4013 u32 i
, j
, max_rings
;
4014 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
4015 struct hwrm_vnic_rss_cfg_input req
= {0};
4017 if (vnic
->fw_rss_cos_lb_ctx
[0] == INVALID_HW_RING_ID
)
4020 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_RSS_CFG
, -1, -1);
4022 req
.hash_type
= cpu_to_le32(bp
->rss_hash_cfg
);
4023 req
.hash_mode_flags
= VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT
;
4024 if (vnic
->flags
& BNXT_VNIC_RSS_FLAG
) {
4025 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
4026 max_rings
= bp
->rx_nr_rings
- 1;
4028 max_rings
= bp
->rx_nr_rings
;
4033 /* Fill the RSS indirection table with ring group ids */
4034 for (i
= 0, j
= 0; i
< HW_HASH_INDEX_SIZE
; i
++, j
++) {
4037 vnic
->rss_table
[i
] = cpu_to_le16(vnic
->fw_grp_ids
[j
]);
4040 req
.ring_grp_tbl_addr
= cpu_to_le64(vnic
->rss_table_dma_addr
);
4041 req
.hash_key_tbl_addr
=
4042 cpu_to_le64(vnic
->rss_hash_key_dma_addr
);
4044 req
.rss_ctx_idx
= cpu_to_le16(vnic
->fw_rss_cos_lb_ctx
[0]);
4045 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4048 static int bnxt_hwrm_vnic_set_hds(struct bnxt
*bp
, u16 vnic_id
)
4050 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
4051 struct hwrm_vnic_plcmodes_cfg_input req
= {0};
4053 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_PLCMODES_CFG
, -1, -1);
4054 req
.flags
= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT
|
4055 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4
|
4056 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6
);
4058 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID
|
4059 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID
);
4060 /* thresholds not implemented in firmware yet */
4061 req
.jumbo_thresh
= cpu_to_le16(bp
->rx_copy_thresh
);
4062 req
.hds_threshold
= cpu_to_le16(bp
->rx_copy_thresh
);
4063 req
.vnic_id
= cpu_to_le32(vnic
->fw_vnic_id
);
4064 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4067 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt
*bp
, u16 vnic_id
,
4070 struct hwrm_vnic_rss_cos_lb_ctx_free_input req
= {0};
4072 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_RSS_COS_LB_CTX_FREE
, -1, -1);
4073 req
.rss_cos_lb_ctx_id
=
4074 cpu_to_le16(bp
->vnic_info
[vnic_id
].fw_rss_cos_lb_ctx
[ctx_idx
]);
4076 hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4077 bp
->vnic_info
[vnic_id
].fw_rss_cos_lb_ctx
[ctx_idx
] = INVALID_HW_RING_ID
;
4080 static void bnxt_hwrm_vnic_ctx_free(struct bnxt
*bp
)
4084 for (i
= 0; i
< bp
->nr_vnics
; i
++) {
4085 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[i
];
4087 for (j
= 0; j
< BNXT_MAX_CTX_PER_VNIC
; j
++) {
4088 if (vnic
->fw_rss_cos_lb_ctx
[j
] != INVALID_HW_RING_ID
)
4089 bnxt_hwrm_vnic_ctx_free_one(bp
, i
, j
);
4092 bp
->rsscos_nr_ctxs
= 0;
4095 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt
*bp
, u16 vnic_id
, u16 ctx_idx
)
4098 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req
= {0};
4099 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output
*resp
=
4100 bp
->hwrm_cmd_resp_addr
;
4102 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC
, -1,
4105 mutex_lock(&bp
->hwrm_cmd_lock
);
4106 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4108 bp
->vnic_info
[vnic_id
].fw_rss_cos_lb_ctx
[ctx_idx
] =
4109 le16_to_cpu(resp
->rss_cos_lb_ctx_id
);
4110 mutex_unlock(&bp
->hwrm_cmd_lock
);
4115 static u32
bnxt_get_roce_vnic_mode(struct bnxt
*bp
)
4117 if (bp
->flags
& BNXT_FLAG_ROCE_MIRROR_CAP
)
4118 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE
;
4119 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE
;
4122 int bnxt_hwrm_vnic_cfg(struct bnxt
*bp
, u16 vnic_id
)
4124 unsigned int ring
= 0, grp_idx
;
4125 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
4126 struct hwrm_vnic_cfg_input req
= {0};
4129 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_CFG
, -1, -1);
4131 req
.enables
= cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP
);
4132 /* Only RSS support for now TBD: COS & LB */
4133 if (vnic
->fw_rss_cos_lb_ctx
[0] != INVALID_HW_RING_ID
) {
4134 req
.rss_rule
= cpu_to_le16(vnic
->fw_rss_cos_lb_ctx
[0]);
4135 req
.enables
|= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE
|
4136 VNIC_CFG_REQ_ENABLES_MRU
);
4137 } else if (vnic
->flags
& BNXT_VNIC_RFS_NEW_RSS_FLAG
) {
4139 cpu_to_le16(bp
->vnic_info
[0].fw_rss_cos_lb_ctx
[0]);
4140 req
.enables
|= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE
|
4141 VNIC_CFG_REQ_ENABLES_MRU
);
4142 req
.flags
|= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE
);
4144 req
.rss_rule
= cpu_to_le16(0xffff);
4147 if (BNXT_CHIP_TYPE_NITRO_A0(bp
) &&
4148 (vnic
->fw_rss_cos_lb_ctx
[0] != INVALID_HW_RING_ID
)) {
4149 req
.cos_rule
= cpu_to_le16(vnic
->fw_rss_cos_lb_ctx
[1]);
4150 req
.enables
|= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE
);
4152 req
.cos_rule
= cpu_to_le16(0xffff);
4155 if (vnic
->flags
& BNXT_VNIC_RSS_FLAG
)
4157 else if (vnic
->flags
& BNXT_VNIC_RFS_FLAG
)
4159 else if ((vnic_id
== 1) && BNXT_CHIP_TYPE_NITRO_A0(bp
))
4160 ring
= bp
->rx_nr_rings
- 1;
4162 grp_idx
= bp
->rx_ring
[ring
].bnapi
->index
;
4163 req
.vnic_id
= cpu_to_le16(vnic
->fw_vnic_id
);
4164 req
.dflt_ring_grp
= cpu_to_le16(bp
->grp_info
[grp_idx
].fw_grp_id
);
4166 req
.lb_rule
= cpu_to_le16(0xffff);
4167 req
.mru
= cpu_to_le16(bp
->dev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
+
4170 #ifdef CONFIG_BNXT_SRIOV
4172 def_vlan
= bp
->vf
.vlan
;
4174 if ((bp
->flags
& BNXT_FLAG_STRIP_VLAN
) || def_vlan
)
4175 req
.flags
|= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE
);
4176 if (!vnic_id
&& bnxt_ulp_registered(bp
->edev
, BNXT_ROCE_ULP
))
4177 req
.flags
|= cpu_to_le32(bnxt_get_roce_vnic_mode(bp
));
4179 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4182 static int bnxt_hwrm_vnic_free_one(struct bnxt
*bp
, u16 vnic_id
)
4186 if (bp
->vnic_info
[vnic_id
].fw_vnic_id
!= INVALID_HW_RING_ID
) {
4187 struct hwrm_vnic_free_input req
= {0};
4189 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_FREE
, -1, -1);
4191 cpu_to_le32(bp
->vnic_info
[vnic_id
].fw_vnic_id
);
4193 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4196 bp
->vnic_info
[vnic_id
].fw_vnic_id
= INVALID_HW_RING_ID
;
4201 static void bnxt_hwrm_vnic_free(struct bnxt
*bp
)
4205 for (i
= 0; i
< bp
->nr_vnics
; i
++)
4206 bnxt_hwrm_vnic_free_one(bp
, i
);
4209 static int bnxt_hwrm_vnic_alloc(struct bnxt
*bp
, u16 vnic_id
,
4210 unsigned int start_rx_ring_idx
,
4211 unsigned int nr_rings
)
4214 unsigned int i
, j
, grp_idx
, end_idx
= start_rx_ring_idx
+ nr_rings
;
4215 struct hwrm_vnic_alloc_input req
= {0};
4216 struct hwrm_vnic_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4218 /* map ring groups to this vnic */
4219 for (i
= start_rx_ring_idx
, j
= 0; i
< end_idx
; i
++, j
++) {
4220 grp_idx
= bp
->rx_ring
[i
].bnapi
->index
;
4221 if (bp
->grp_info
[grp_idx
].fw_grp_id
== INVALID_HW_RING_ID
) {
4222 netdev_err(bp
->dev
, "Not enough ring groups avail:%x req:%x\n",
4226 bp
->vnic_info
[vnic_id
].fw_grp_ids
[j
] =
4227 bp
->grp_info
[grp_idx
].fw_grp_id
;
4230 bp
->vnic_info
[vnic_id
].fw_rss_cos_lb_ctx
[0] = INVALID_HW_RING_ID
;
4231 bp
->vnic_info
[vnic_id
].fw_rss_cos_lb_ctx
[1] = INVALID_HW_RING_ID
;
4233 req
.flags
= cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT
);
4235 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_ALLOC
, -1, -1);
4237 mutex_lock(&bp
->hwrm_cmd_lock
);
4238 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4240 bp
->vnic_info
[vnic_id
].fw_vnic_id
= le32_to_cpu(resp
->vnic_id
);
4241 mutex_unlock(&bp
->hwrm_cmd_lock
);
4245 static int bnxt_hwrm_vnic_qcaps(struct bnxt
*bp
)
4247 struct hwrm_vnic_qcaps_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4248 struct hwrm_vnic_qcaps_input req
= {0};
4251 if (bp
->hwrm_spec_code
< 0x10600)
4254 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VNIC_QCAPS
, -1, -1);
4255 mutex_lock(&bp
->hwrm_cmd_lock
);
4256 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4258 u32 flags
= le32_to_cpu(resp
->flags
);
4260 if (flags
& VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP
)
4261 bp
->flags
|= BNXT_FLAG_NEW_RSS_CAP
;
4263 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP
)
4264 bp
->flags
|= BNXT_FLAG_ROCE_MIRROR_CAP
;
4266 mutex_unlock(&bp
->hwrm_cmd_lock
);
4270 static int bnxt_hwrm_ring_grp_alloc(struct bnxt
*bp
)
4275 mutex_lock(&bp
->hwrm_cmd_lock
);
4276 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
4277 struct hwrm_ring_grp_alloc_input req
= {0};
4278 struct hwrm_ring_grp_alloc_output
*resp
=
4279 bp
->hwrm_cmd_resp_addr
;
4280 unsigned int grp_idx
= bp
->rx_ring
[i
].bnapi
->index
;
4282 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_RING_GRP_ALLOC
, -1, -1);
4284 req
.cr
= cpu_to_le16(bp
->grp_info
[grp_idx
].cp_fw_ring_id
);
4285 req
.rr
= cpu_to_le16(bp
->grp_info
[grp_idx
].rx_fw_ring_id
);
4286 req
.ar
= cpu_to_le16(bp
->grp_info
[grp_idx
].agg_fw_ring_id
);
4287 req
.sc
= cpu_to_le16(bp
->grp_info
[grp_idx
].fw_stats_ctx
);
4289 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
4294 bp
->grp_info
[grp_idx
].fw_grp_id
=
4295 le32_to_cpu(resp
->ring_group_id
);
4297 mutex_unlock(&bp
->hwrm_cmd_lock
);
4301 static int bnxt_hwrm_ring_grp_free(struct bnxt
*bp
)
4305 struct hwrm_ring_grp_free_input req
= {0};
4310 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_RING_GRP_FREE
, -1, -1);
4312 mutex_lock(&bp
->hwrm_cmd_lock
);
4313 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
4314 if (bp
->grp_info
[i
].fw_grp_id
== INVALID_HW_RING_ID
)
4317 cpu_to_le32(bp
->grp_info
[i
].fw_grp_id
);
4319 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
4323 bp
->grp_info
[i
].fw_grp_id
= INVALID_HW_RING_ID
;
4325 mutex_unlock(&bp
->hwrm_cmd_lock
);
4329 static int hwrm_ring_alloc_send_msg(struct bnxt
*bp
,
4330 struct bnxt_ring_struct
*ring
,
4331 u32 ring_type
, u32 map_index
)
4333 int rc
= 0, err
= 0;
4334 struct hwrm_ring_alloc_input req
= {0};
4335 struct hwrm_ring_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4336 struct bnxt_ring_grp_info
*grp_info
;
4339 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_RING_ALLOC
, -1, -1);
4342 if (ring
->nr_pages
> 1) {
4343 req
.page_tbl_addr
= cpu_to_le64(ring
->pg_tbl_map
);
4344 /* Page size is in log2 units */
4345 req
.page_size
= BNXT_PAGE_SHIFT
;
4346 req
.page_tbl_depth
= 1;
4348 req
.page_tbl_addr
= cpu_to_le64(ring
->dma_arr
[0]);
4351 /* Association of ring index with doorbell index and MSIX number */
4352 req
.logical_id
= cpu_to_le16(map_index
);
4354 switch (ring_type
) {
4355 case HWRM_RING_ALLOC_TX
:
4356 req
.ring_type
= RING_ALLOC_REQ_RING_TYPE_TX
;
4357 /* Association of transmit ring with completion ring */
4358 grp_info
= &bp
->grp_info
[ring
->grp_idx
];
4359 req
.cmpl_ring_id
= cpu_to_le16(grp_info
->cp_fw_ring_id
);
4360 req
.length
= cpu_to_le32(bp
->tx_ring_mask
+ 1);
4361 req
.stat_ctx_id
= cpu_to_le32(grp_info
->fw_stats_ctx
);
4362 req
.queue_id
= cpu_to_le16(ring
->queue_id
);
4364 case HWRM_RING_ALLOC_RX
:
4365 req
.ring_type
= RING_ALLOC_REQ_RING_TYPE_RX
;
4366 req
.length
= cpu_to_le32(bp
->rx_ring_mask
+ 1);
4368 case HWRM_RING_ALLOC_AGG
:
4369 req
.ring_type
= RING_ALLOC_REQ_RING_TYPE_RX
;
4370 req
.length
= cpu_to_le32(bp
->rx_agg_ring_mask
+ 1);
4372 case HWRM_RING_ALLOC_CMPL
:
4373 req
.ring_type
= RING_ALLOC_REQ_RING_TYPE_L2_CMPL
;
4374 req
.length
= cpu_to_le32(bp
->cp_ring_mask
+ 1);
4375 if (bp
->flags
& BNXT_FLAG_USING_MSIX
)
4376 req
.int_mode
= RING_ALLOC_REQ_INT_MODE_MSIX
;
4379 netdev_err(bp
->dev
, "hwrm alloc invalid ring type %d\n",
4384 mutex_lock(&bp
->hwrm_cmd_lock
);
4385 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4386 err
= le16_to_cpu(resp
->error_code
);
4387 ring_id
= le16_to_cpu(resp
->ring_id
);
4388 mutex_unlock(&bp
->hwrm_cmd_lock
);
4391 netdev_err(bp
->dev
, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4392 ring_type
, rc
, err
);
4395 ring
->fw_ring_id
= ring_id
;
4399 static int bnxt_hwrm_set_async_event_cr(struct bnxt
*bp
, int idx
)
4404 struct hwrm_func_cfg_input req
= {0};
4406 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_CFG
, -1, -1);
4407 req
.fid
= cpu_to_le16(0xffff);
4408 req
.enables
= cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR
);
4409 req
.async_event_cr
= cpu_to_le16(idx
);
4410 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4412 struct hwrm_func_vf_cfg_input req
= {0};
4414 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_VF_CFG
, -1, -1);
4416 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR
);
4417 req
.async_event_cr
= cpu_to_le16(idx
);
4418 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4423 static int bnxt_hwrm_ring_alloc(struct bnxt
*bp
)
4427 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
4428 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
4429 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
4430 struct bnxt_ring_struct
*ring
= &cpr
->cp_ring_struct
;
4431 u32 map_idx
= ring
->map_idx
;
4433 cpr
->cp_doorbell
= bp
->bar1
+ map_idx
* 0x80;
4434 rc
= hwrm_ring_alloc_send_msg(bp
, ring
, HWRM_RING_ALLOC_CMPL
,
4438 BNXT_CP_DB(cpr
->cp_doorbell
, cpr
->cp_raw_cons
);
4439 bp
->grp_info
[i
].cp_fw_ring_id
= ring
->fw_ring_id
;
4442 rc
= bnxt_hwrm_set_async_event_cr(bp
, ring
->fw_ring_id
);
4444 netdev_warn(bp
->dev
, "Failed to set async event completion ring.\n");
4448 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
4449 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
4450 struct bnxt_ring_struct
*ring
= &txr
->tx_ring_struct
;
4453 rc
= hwrm_ring_alloc_send_msg(bp
, ring
, HWRM_RING_ALLOC_TX
,
4457 txr
->tx_doorbell
= bp
->bar1
+ map_idx
* 0x80;
4460 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
4461 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
4462 struct bnxt_ring_struct
*ring
= &rxr
->rx_ring_struct
;
4463 u32 map_idx
= rxr
->bnapi
->index
;
4465 rc
= hwrm_ring_alloc_send_msg(bp
, ring
, HWRM_RING_ALLOC_RX
,
4469 rxr
->rx_doorbell
= bp
->bar1
+ map_idx
* 0x80;
4470 writel(DB_KEY_RX
| rxr
->rx_prod
, rxr
->rx_doorbell
);
4471 bp
->grp_info
[map_idx
].rx_fw_ring_id
= ring
->fw_ring_id
;
4474 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
) {
4475 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
4476 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
4477 struct bnxt_ring_struct
*ring
=
4478 &rxr
->rx_agg_ring_struct
;
4479 u32 grp_idx
= ring
->grp_idx
;
4480 u32 map_idx
= grp_idx
+ bp
->rx_nr_rings
;
4482 rc
= hwrm_ring_alloc_send_msg(bp
, ring
,
4483 HWRM_RING_ALLOC_AGG
,
4488 rxr
->rx_agg_doorbell
= bp
->bar1
+ map_idx
* 0x80;
4489 writel(DB_KEY_RX
| rxr
->rx_agg_prod
,
4490 rxr
->rx_agg_doorbell
);
4491 bp
->grp_info
[grp_idx
].agg_fw_ring_id
= ring
->fw_ring_id
;
4498 static int hwrm_ring_free_send_msg(struct bnxt
*bp
,
4499 struct bnxt_ring_struct
*ring
,
4500 u32 ring_type
, int cmpl_ring_id
)
4503 struct hwrm_ring_free_input req
= {0};
4504 struct hwrm_ring_free_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4507 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_RING_FREE
, cmpl_ring_id
, -1);
4508 req
.ring_type
= ring_type
;
4509 req
.ring_id
= cpu_to_le16(ring
->fw_ring_id
);
4511 mutex_lock(&bp
->hwrm_cmd_lock
);
4512 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4513 error_code
= le16_to_cpu(resp
->error_code
);
4514 mutex_unlock(&bp
->hwrm_cmd_lock
);
4516 if (rc
|| error_code
) {
4517 netdev_err(bp
->dev
, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4518 ring_type
, rc
, error_code
);
4524 static void bnxt_hwrm_ring_free(struct bnxt
*bp
, bool close_path
)
4531 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
4532 struct bnxt_tx_ring_info
*txr
= &bp
->tx_ring
[i
];
4533 struct bnxt_ring_struct
*ring
= &txr
->tx_ring_struct
;
4534 u32 grp_idx
= txr
->bnapi
->index
;
4535 u32 cmpl_ring_id
= bp
->grp_info
[grp_idx
].cp_fw_ring_id
;
4537 if (ring
->fw_ring_id
!= INVALID_HW_RING_ID
) {
4538 hwrm_ring_free_send_msg(bp
, ring
,
4539 RING_FREE_REQ_RING_TYPE_TX
,
4540 close_path
? cmpl_ring_id
:
4541 INVALID_HW_RING_ID
);
4542 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
4546 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
4547 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
4548 struct bnxt_ring_struct
*ring
= &rxr
->rx_ring_struct
;
4549 u32 grp_idx
= rxr
->bnapi
->index
;
4550 u32 cmpl_ring_id
= bp
->grp_info
[grp_idx
].cp_fw_ring_id
;
4552 if (ring
->fw_ring_id
!= INVALID_HW_RING_ID
) {
4553 hwrm_ring_free_send_msg(bp
, ring
,
4554 RING_FREE_REQ_RING_TYPE_RX
,
4555 close_path
? cmpl_ring_id
:
4556 INVALID_HW_RING_ID
);
4557 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
4558 bp
->grp_info
[grp_idx
].rx_fw_ring_id
=
4563 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
4564 struct bnxt_rx_ring_info
*rxr
= &bp
->rx_ring
[i
];
4565 struct bnxt_ring_struct
*ring
= &rxr
->rx_agg_ring_struct
;
4566 u32 grp_idx
= rxr
->bnapi
->index
;
4567 u32 cmpl_ring_id
= bp
->grp_info
[grp_idx
].cp_fw_ring_id
;
4569 if (ring
->fw_ring_id
!= INVALID_HW_RING_ID
) {
4570 hwrm_ring_free_send_msg(bp
, ring
,
4571 RING_FREE_REQ_RING_TYPE_RX
,
4572 close_path
? cmpl_ring_id
:
4573 INVALID_HW_RING_ID
);
4574 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
4575 bp
->grp_info
[grp_idx
].agg_fw_ring_id
=
4580 /* The completion rings are about to be freed. After that the
4581 * IRQ doorbell will not work anymore. So we need to disable
4584 bnxt_disable_int_sync(bp
);
4586 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
4587 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
4588 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
4589 struct bnxt_ring_struct
*ring
= &cpr
->cp_ring_struct
;
4591 if (ring
->fw_ring_id
!= INVALID_HW_RING_ID
) {
4592 hwrm_ring_free_send_msg(bp
, ring
,
4593 RING_FREE_REQ_RING_TYPE_L2_CMPL
,
4594 INVALID_HW_RING_ID
);
4595 ring
->fw_ring_id
= INVALID_HW_RING_ID
;
4596 bp
->grp_info
[i
].cp_fw_ring_id
= INVALID_HW_RING_ID
;
4601 static int bnxt_hwrm_get_rings(struct bnxt
*bp
)
4603 struct hwrm_func_qcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4604 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
4605 struct hwrm_func_qcfg_input req
= {0};
4608 if (bp
->hwrm_spec_code
< 0x10601)
4611 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_QCFG
, -1, -1);
4612 req
.fid
= cpu_to_le16(0xffff);
4613 mutex_lock(&bp
->hwrm_cmd_lock
);
4614 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4616 mutex_unlock(&bp
->hwrm_cmd_lock
);
4620 hw_resc
->resv_tx_rings
= le16_to_cpu(resp
->alloc_tx_rings
);
4621 if (BNXT_NEW_RM(bp
)) {
4624 hw_resc
->resv_rx_rings
= le16_to_cpu(resp
->alloc_rx_rings
);
4625 hw_resc
->resv_hw_ring_grps
=
4626 le32_to_cpu(resp
->alloc_hw_ring_grps
);
4627 hw_resc
->resv_vnics
= le16_to_cpu(resp
->alloc_vnics
);
4628 cp
= le16_to_cpu(resp
->alloc_cmpl_rings
);
4629 stats
= le16_to_cpu(resp
->alloc_stat_ctx
);
4630 cp
= min_t(u16
, cp
, stats
);
4631 hw_resc
->resv_cp_rings
= cp
;
4633 mutex_unlock(&bp
->hwrm_cmd_lock
);
4637 /* Caller must hold bp->hwrm_cmd_lock */
4638 int __bnxt_hwrm_get_tx_rings(struct bnxt
*bp
, u16 fid
, int *tx_rings
)
4640 struct hwrm_func_qcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
4641 struct hwrm_func_qcfg_input req
= {0};
4644 if (bp
->hwrm_spec_code
< 0x10601)
4647 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_QCFG
, -1, -1);
4648 req
.fid
= cpu_to_le16(fid
);
4649 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4651 *tx_rings
= le16_to_cpu(resp
->alloc_tx_rings
);
4657 __bnxt_hwrm_reserve_pf_rings(struct bnxt
*bp
, struct hwrm_func_cfg_input
*req
,
4658 int tx_rings
, int rx_rings
, int ring_grps
,
4659 int cp_rings
, int vnics
)
4663 bnxt_hwrm_cmd_hdr_init(bp
, req
, HWRM_FUNC_CFG
, -1, -1);
4664 req
->fid
= cpu_to_le16(0xffff);
4665 enables
|= tx_rings
? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS
: 0;
4666 req
->num_tx_rings
= cpu_to_le16(tx_rings
);
4667 if (BNXT_NEW_RM(bp
)) {
4668 enables
|= rx_rings
? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS
: 0;
4669 enables
|= cp_rings
? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS
|
4670 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS
: 0;
4671 enables
|= ring_grps
?
4672 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS
: 0;
4673 enables
|= vnics
? FUNC_CFG_REQ_ENABLES_NUM_VNICS
: 0;
4675 req
->num_rx_rings
= cpu_to_le16(rx_rings
);
4676 req
->num_hw_ring_grps
= cpu_to_le16(ring_grps
);
4677 req
->num_cmpl_rings
= cpu_to_le16(cp_rings
);
4678 req
->num_stat_ctxs
= req
->num_cmpl_rings
;
4679 req
->num_vnics
= cpu_to_le16(vnics
);
4681 req
->enables
= cpu_to_le32(enables
);
4685 __bnxt_hwrm_reserve_vf_rings(struct bnxt
*bp
,
4686 struct hwrm_func_vf_cfg_input
*req
, int tx_rings
,
4687 int rx_rings
, int ring_grps
, int cp_rings
,
4692 bnxt_hwrm_cmd_hdr_init(bp
, req
, HWRM_FUNC_VF_CFG
, -1, -1);
4693 enables
|= tx_rings
? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS
: 0;
4694 enables
|= rx_rings
? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS
: 0;
4695 enables
|= cp_rings
? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS
|
4696 FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS
: 0;
4697 enables
|= ring_grps
? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS
: 0;
4698 enables
|= vnics
? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS
: 0;
4700 req
->num_tx_rings
= cpu_to_le16(tx_rings
);
4701 req
->num_rx_rings
= cpu_to_le16(rx_rings
);
4702 req
->num_hw_ring_grps
= cpu_to_le16(ring_grps
);
4703 req
->num_cmpl_rings
= cpu_to_le16(cp_rings
);
4704 req
->num_stat_ctxs
= req
->num_cmpl_rings
;
4705 req
->num_vnics
= cpu_to_le16(vnics
);
4707 req
->enables
= cpu_to_le32(enables
);
4711 bnxt_hwrm_reserve_pf_rings(struct bnxt
*bp
, int tx_rings
, int rx_rings
,
4712 int ring_grps
, int cp_rings
, int vnics
)
4714 struct hwrm_func_cfg_input req
= {0};
4717 __bnxt_hwrm_reserve_pf_rings(bp
, &req
, tx_rings
, rx_rings
, ring_grps
,
4722 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4726 if (bp
->hwrm_spec_code
< 0x10601)
4727 bp
->hw_resc
.resv_tx_rings
= tx_rings
;
4729 rc
= bnxt_hwrm_get_rings(bp
);
4734 bnxt_hwrm_reserve_vf_rings(struct bnxt
*bp
, int tx_rings
, int rx_rings
,
4735 int ring_grps
, int cp_rings
, int vnics
)
4737 struct hwrm_func_vf_cfg_input req
= {0};
4740 if (!BNXT_NEW_RM(bp
)) {
4741 bp
->hw_resc
.resv_tx_rings
= tx_rings
;
4745 __bnxt_hwrm_reserve_vf_rings(bp
, &req
, tx_rings
, rx_rings
, ring_grps
,
4747 req
.enables
|= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS
|
4748 FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS
);
4749 req
.num_rsscos_ctxs
= cpu_to_le16(BNXT_VF_MAX_RSS_CTX
);
4750 req
.num_l2_ctxs
= cpu_to_le16(BNXT_VF_MAX_L2_CTX
);
4751 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4755 rc
= bnxt_hwrm_get_rings(bp
);
4759 static int bnxt_hwrm_reserve_rings(struct bnxt
*bp
, int tx
, int rx
, int grp
,
4763 return bnxt_hwrm_reserve_pf_rings(bp
, tx
, rx
, grp
, cp
, vnic
);
4765 return bnxt_hwrm_reserve_vf_rings(bp
, tx
, rx
, grp
, cp
, vnic
);
4768 static int bnxt_cp_rings_in_use(struct bnxt
*bp
)
4770 int cp
= bp
->cp_nr_rings
;
4771 int ulp_msix
, ulp_base
;
4773 ulp_msix
= bnxt_get_ulp_msix_num(bp
);
4775 ulp_base
= bnxt_get_ulp_msix_base(bp
);
4777 if ((ulp_base
+ ulp_msix
) > cp
)
4778 cp
= ulp_base
+ ulp_msix
;
4783 static bool bnxt_need_reserve_rings(struct bnxt
*bp
)
4785 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
4786 int cp
= bnxt_cp_rings_in_use(bp
);
4787 int rx
= bp
->rx_nr_rings
;
4788 int vnic
= 1, grp
= rx
;
4790 if (bp
->hwrm_spec_code
< 0x10601)
4793 if (hw_resc
->resv_tx_rings
!= bp
->tx_nr_rings
)
4796 if (bp
->flags
& BNXT_FLAG_RFS
)
4798 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
4800 if (BNXT_NEW_RM(bp
) &&
4801 (hw_resc
->resv_rx_rings
!= rx
|| hw_resc
->resv_cp_rings
!= cp
||
4802 hw_resc
->resv_hw_ring_grps
!= grp
|| hw_resc
->resv_vnics
!= vnic
))
4807 static int bnxt_trim_rings(struct bnxt
*bp
, int *rx
, int *tx
, int max
,
4810 static int __bnxt_reserve_rings(struct bnxt
*bp
)
4812 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
4813 int cp
= bnxt_cp_rings_in_use(bp
);
4814 int tx
= bp
->tx_nr_rings
;
4815 int rx
= bp
->rx_nr_rings
;
4816 int grp
, rx_rings
, rc
;
4820 if (!bnxt_need_reserve_rings(bp
))
4823 if (bp
->flags
& BNXT_FLAG_SHARED_RINGS
)
4825 if (bp
->flags
& BNXT_FLAG_RFS
)
4827 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
4829 grp
= bp
->rx_nr_rings
;
4831 rc
= bnxt_hwrm_reserve_rings(bp
, tx
, rx
, grp
, cp
, vnic
);
4835 tx
= hw_resc
->resv_tx_rings
;
4836 if (BNXT_NEW_RM(bp
)) {
4837 rx
= hw_resc
->resv_rx_rings
;
4838 cp
= hw_resc
->resv_cp_rings
;
4839 grp
= hw_resc
->resv_hw_ring_grps
;
4840 vnic
= hw_resc
->resv_vnics
;
4844 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
) {
4848 if (netif_running(bp
->dev
))
4851 bp
->flags
&= ~BNXT_FLAG_AGG_RINGS
;
4852 bp
->flags
|= BNXT_FLAG_NO_AGG_RINGS
;
4853 bp
->dev
->hw_features
&= ~NETIF_F_LRO
;
4854 bp
->dev
->features
&= ~NETIF_F_LRO
;
4855 bnxt_set_ring_params(bp
);
4858 rx_rings
= min_t(int, rx_rings
, grp
);
4859 rc
= bnxt_trim_rings(bp
, &rx_rings
, &tx
, cp
, sh
);
4860 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
4862 cp
= sh
? max_t(int, tx
, rx_rings
) : tx
+ rx_rings
;
4863 bp
->tx_nr_rings
= tx
;
4864 bp
->rx_nr_rings
= rx_rings
;
4865 bp
->cp_nr_rings
= cp
;
4867 if (!tx
|| !rx
|| !cp
|| !grp
|| !vnic
)
4873 static int bnxt_hwrm_check_vf_rings(struct bnxt
*bp
, int tx_rings
, int rx_rings
,
4874 int ring_grps
, int cp_rings
, int vnics
)
4876 struct hwrm_func_vf_cfg_input req
= {0};
4880 if (!BNXT_NEW_RM(bp
))
4883 __bnxt_hwrm_reserve_vf_rings(bp
, &req
, tx_rings
, rx_rings
, ring_grps
,
4885 flags
= FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST
|
4886 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST
|
4887 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST
|
4888 FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST
|
4889 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST
|
4890 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST
;
4892 req
.flags
= cpu_to_le32(flags
);
4893 rc
= hwrm_send_message_silent(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4899 static int bnxt_hwrm_check_pf_rings(struct bnxt
*bp
, int tx_rings
, int rx_rings
,
4900 int ring_grps
, int cp_rings
, int vnics
)
4902 struct hwrm_func_cfg_input req
= {0};
4906 __bnxt_hwrm_reserve_pf_rings(bp
, &req
, tx_rings
, rx_rings
, ring_grps
,
4908 flags
= FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST
;
4909 if (BNXT_NEW_RM(bp
))
4910 flags
|= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST
|
4911 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST
|
4912 FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST
|
4913 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST
|
4914 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST
;
4916 req
.flags
= cpu_to_le32(flags
);
4917 rc
= hwrm_send_message_silent(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
4923 static int bnxt_hwrm_check_rings(struct bnxt
*bp
, int tx_rings
, int rx_rings
,
4924 int ring_grps
, int cp_rings
, int vnics
)
4926 if (bp
->hwrm_spec_code
< 0x10801)
4930 return bnxt_hwrm_check_pf_rings(bp
, tx_rings
, rx_rings
,
4931 ring_grps
, cp_rings
, vnics
);
4933 return bnxt_hwrm_check_vf_rings(bp
, tx_rings
, rx_rings
, ring_grps
,
4937 static void bnxt_hwrm_set_coal_params(struct bnxt_coal
*hw_coal
,
4938 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input
*req
)
4940 u16 val
, tmr
, max
, flags
;
4942 max
= hw_coal
->bufs_per_record
* 128;
4943 if (hw_coal
->budget
)
4944 max
= hw_coal
->bufs_per_record
* hw_coal
->budget
;
4946 val
= clamp_t(u16
, hw_coal
->coal_bufs
, 1, max
);
4947 req
->num_cmpl_aggr_int
= cpu_to_le16(val
);
4949 /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4950 val
= min_t(u16
, val
, 63);
4951 req
->num_cmpl_dma_aggr
= cpu_to_le16(val
);
4953 /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4954 val
= clamp_t(u16
, hw_coal
->coal_bufs_irq
, 1, 63);
4955 req
->num_cmpl_dma_aggr_during_int
= cpu_to_le16(val
);
4957 tmr
= BNXT_USEC_TO_COAL_TIMER(hw_coal
->coal_ticks
);
4958 tmr
= max_t(u16
, tmr
, 1);
4959 req
->int_lat_tmr_max
= cpu_to_le16(tmr
);
4961 /* min timer set to 1/2 of interrupt timer */
4963 req
->int_lat_tmr_min
= cpu_to_le16(val
);
4965 /* buf timer set to 1/4 of interrupt timer */
4966 val
= max_t(u16
, tmr
/ 4, 1);
4967 req
->cmpl_aggr_dma_tmr
= cpu_to_le16(val
);
4969 tmr
= BNXT_USEC_TO_COAL_TIMER(hw_coal
->coal_ticks_irq
);
4970 tmr
= max_t(u16
, tmr
, 1);
4971 req
->cmpl_aggr_dma_tmr_during_int
= cpu_to_le16(tmr
);
4973 flags
= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET
;
4974 if (hw_coal
->idle_thresh
&& hw_coal
->coal_ticks
< hw_coal
->idle_thresh
)
4975 flags
|= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE
;
4976 req
->flags
= cpu_to_le16(flags
);
4979 int bnxt_hwrm_set_ring_coal(struct bnxt
*bp
, struct bnxt_napi
*bnapi
)
4981 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx
= {0};
4982 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
4983 struct bnxt_coal coal
;
4984 unsigned int grp_idx
;
4986 /* Tick values in micro seconds.
4987 * 1 coal_buf x bufs_per_record = 1 completion record.
4989 memcpy(&coal
, &bp
->rx_coal
, sizeof(struct bnxt_coal
));
4991 coal
.coal_ticks
= cpr
->rx_ring_coal
.coal_ticks
;
4992 coal
.coal_bufs
= cpr
->rx_ring_coal
.coal_bufs
;
4994 if (!bnapi
->rx_ring
)
4997 bnxt_hwrm_cmd_hdr_init(bp
, &req_rx
,
4998 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS
, -1, -1);
5000 bnxt_hwrm_set_coal_params(&coal
, &req_rx
);
5002 grp_idx
= bnapi
->index
;
5003 req_rx
.ring_id
= cpu_to_le16(bp
->grp_info
[grp_idx
].cp_fw_ring_id
);
5005 return hwrm_send_message(bp
, &req_rx
, sizeof(req_rx
),
5009 int bnxt_hwrm_set_coal(struct bnxt
*bp
)
5012 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx
= {0},
5015 bnxt_hwrm_cmd_hdr_init(bp
, &req_rx
,
5016 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS
, -1, -1);
5017 bnxt_hwrm_cmd_hdr_init(bp
, &req_tx
,
5018 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS
, -1, -1);
5020 bnxt_hwrm_set_coal_params(&bp
->rx_coal
, &req_rx
);
5021 bnxt_hwrm_set_coal_params(&bp
->tx_coal
, &req_tx
);
5023 mutex_lock(&bp
->hwrm_cmd_lock
);
5024 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
5025 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
5028 if (!bnapi
->rx_ring
)
5030 req
->ring_id
= cpu_to_le16(bp
->grp_info
[i
].cp_fw_ring_id
);
5032 rc
= _hwrm_send_message(bp
, req
, sizeof(*req
),
5037 mutex_unlock(&bp
->hwrm_cmd_lock
);
5041 static int bnxt_hwrm_stat_ctx_free(struct bnxt
*bp
)
5044 struct hwrm_stat_ctx_free_input req
= {0};
5049 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
5052 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_STAT_CTX_FREE
, -1, -1);
5054 mutex_lock(&bp
->hwrm_cmd_lock
);
5055 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
5056 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
5057 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
5059 if (cpr
->hw_stats_ctx_id
!= INVALID_STATS_CTX_ID
) {
5060 req
.stat_ctx_id
= cpu_to_le32(cpr
->hw_stats_ctx_id
);
5062 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
5067 cpr
->hw_stats_ctx_id
= INVALID_STATS_CTX_ID
;
5070 mutex_unlock(&bp
->hwrm_cmd_lock
);
5074 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt
*bp
)
5077 struct hwrm_stat_ctx_alloc_input req
= {0};
5078 struct hwrm_stat_ctx_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5080 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
5083 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_STAT_CTX_ALLOC
, -1, -1);
5085 req
.update_period_ms
= cpu_to_le32(bp
->stats_coal_ticks
/ 1000);
5087 mutex_lock(&bp
->hwrm_cmd_lock
);
5088 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
5089 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
5090 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
5092 req
.stats_dma_addr
= cpu_to_le64(cpr
->hw_stats_map
);
5094 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
5099 cpr
->hw_stats_ctx_id
= le32_to_cpu(resp
->stat_ctx_id
);
5101 bp
->grp_info
[i
].fw_stats_ctx
= cpr
->hw_stats_ctx_id
;
5103 mutex_unlock(&bp
->hwrm_cmd_lock
);
5107 static int bnxt_hwrm_func_qcfg(struct bnxt
*bp
)
5109 struct hwrm_func_qcfg_input req
= {0};
5110 struct hwrm_func_qcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5114 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_QCFG
, -1, -1);
5115 req
.fid
= cpu_to_le16(0xffff);
5116 mutex_lock(&bp
->hwrm_cmd_lock
);
5117 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5119 goto func_qcfg_exit
;
5121 #ifdef CONFIG_BNXT_SRIOV
5123 struct bnxt_vf_info
*vf
= &bp
->vf
;
5125 vf
->vlan
= le16_to_cpu(resp
->vlan
) & VLAN_VID_MASK
;
5128 flags
= le16_to_cpu(resp
->flags
);
5129 if (flags
& (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED
|
5130 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED
)) {
5131 bp
->fw_cap
|= BNXT_FW_CAP_LLDP_AGENT
;
5132 if (flags
& FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED
)
5133 bp
->fw_cap
|= BNXT_FW_CAP_DCBX_AGENT
;
5135 if (BNXT_PF(bp
) && (flags
& FUNC_QCFG_RESP_FLAGS_MULTI_HOST
))
5136 bp
->flags
|= BNXT_FLAG_MULTI_HOST
;
5138 switch (resp
->port_partition_type
) {
5139 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0
:
5140 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5
:
5141 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0
:
5142 bp
->port_partition_type
= resp
->port_partition_type
;
5145 if (bp
->hwrm_spec_code
< 0x10707 ||
5146 resp
->evb_mode
== FUNC_QCFG_RESP_EVB_MODE_VEB
)
5147 bp
->br_mode
= BRIDGE_MODE_VEB
;
5148 else if (resp
->evb_mode
== FUNC_QCFG_RESP_EVB_MODE_VEPA
)
5149 bp
->br_mode
= BRIDGE_MODE_VEPA
;
5151 bp
->br_mode
= BRIDGE_MODE_UNDEF
;
5153 bp
->max_mtu
= le16_to_cpu(resp
->max_mtu_configured
);
5155 bp
->max_mtu
= BNXT_MAX_MTU
;
5158 mutex_unlock(&bp
->hwrm_cmd_lock
);
5162 int bnxt_hwrm_func_resc_qcaps(struct bnxt
*bp
, bool all
)
5164 struct hwrm_func_resource_qcaps_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5165 struct hwrm_func_resource_qcaps_input req
= {0};
5166 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
5169 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_RESOURCE_QCAPS
, -1, -1);
5170 req
.fid
= cpu_to_le16(0xffff);
5172 mutex_lock(&bp
->hwrm_cmd_lock
);
5173 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5176 goto hwrm_func_resc_qcaps_exit
;
5179 hw_resc
->max_tx_sch_inputs
= le16_to_cpu(resp
->max_tx_scheduler_inputs
);
5181 goto hwrm_func_resc_qcaps_exit
;
5183 hw_resc
->min_rsscos_ctxs
= le16_to_cpu(resp
->min_rsscos_ctx
);
5184 hw_resc
->max_rsscos_ctxs
= le16_to_cpu(resp
->max_rsscos_ctx
);
5185 hw_resc
->min_cp_rings
= le16_to_cpu(resp
->min_cmpl_rings
);
5186 hw_resc
->max_cp_rings
= le16_to_cpu(resp
->max_cmpl_rings
);
5187 hw_resc
->min_tx_rings
= le16_to_cpu(resp
->min_tx_rings
);
5188 hw_resc
->max_tx_rings
= le16_to_cpu(resp
->max_tx_rings
);
5189 hw_resc
->min_rx_rings
= le16_to_cpu(resp
->min_rx_rings
);
5190 hw_resc
->max_rx_rings
= le16_to_cpu(resp
->max_rx_rings
);
5191 hw_resc
->min_hw_ring_grps
= le16_to_cpu(resp
->min_hw_ring_grps
);
5192 hw_resc
->max_hw_ring_grps
= le16_to_cpu(resp
->max_hw_ring_grps
);
5193 hw_resc
->min_l2_ctxs
= le16_to_cpu(resp
->min_l2_ctxs
);
5194 hw_resc
->max_l2_ctxs
= le16_to_cpu(resp
->max_l2_ctxs
);
5195 hw_resc
->min_vnics
= le16_to_cpu(resp
->min_vnics
);
5196 hw_resc
->max_vnics
= le16_to_cpu(resp
->max_vnics
);
5197 hw_resc
->min_stat_ctxs
= le16_to_cpu(resp
->min_stat_ctx
);
5198 hw_resc
->max_stat_ctxs
= le16_to_cpu(resp
->max_stat_ctx
);
5201 struct bnxt_pf_info
*pf
= &bp
->pf
;
5203 pf
->vf_resv_strategy
=
5204 le16_to_cpu(resp
->vf_reservation_strategy
);
5205 if (pf
->vf_resv_strategy
> BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC
)
5206 pf
->vf_resv_strategy
= BNXT_VF_RESV_STRATEGY_MAXIMAL
;
5208 hwrm_func_resc_qcaps_exit
:
5209 mutex_unlock(&bp
->hwrm_cmd_lock
);
5213 static int __bnxt_hwrm_func_qcaps(struct bnxt
*bp
)
5216 struct hwrm_func_qcaps_input req
= {0};
5217 struct hwrm_func_qcaps_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5218 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
5221 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_QCAPS
, -1, -1);
5222 req
.fid
= cpu_to_le16(0xffff);
5224 mutex_lock(&bp
->hwrm_cmd_lock
);
5225 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5227 goto hwrm_func_qcaps_exit
;
5229 flags
= le32_to_cpu(resp
->flags
);
5230 if (flags
& FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED
)
5231 bp
->flags
|= BNXT_FLAG_ROCEV1_CAP
;
5232 if (flags
& FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED
)
5233 bp
->flags
|= BNXT_FLAG_ROCEV2_CAP
;
5235 bp
->tx_push_thresh
= 0;
5236 if (flags
& FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED
)
5237 bp
->tx_push_thresh
= BNXT_TX_PUSH_THRESH
;
5239 hw_resc
->max_rsscos_ctxs
= le16_to_cpu(resp
->max_rsscos_ctx
);
5240 hw_resc
->max_cp_rings
= le16_to_cpu(resp
->max_cmpl_rings
);
5241 hw_resc
->max_tx_rings
= le16_to_cpu(resp
->max_tx_rings
);
5242 hw_resc
->max_rx_rings
= le16_to_cpu(resp
->max_rx_rings
);
5243 hw_resc
->max_hw_ring_grps
= le32_to_cpu(resp
->max_hw_ring_grps
);
5244 if (!hw_resc
->max_hw_ring_grps
)
5245 hw_resc
->max_hw_ring_grps
= hw_resc
->max_tx_rings
;
5246 hw_resc
->max_l2_ctxs
= le16_to_cpu(resp
->max_l2_ctxs
);
5247 hw_resc
->max_vnics
= le16_to_cpu(resp
->max_vnics
);
5248 hw_resc
->max_stat_ctxs
= le16_to_cpu(resp
->max_stat_ctx
);
5251 struct bnxt_pf_info
*pf
= &bp
->pf
;
5253 pf
->fw_fid
= le16_to_cpu(resp
->fid
);
5254 pf
->port_id
= le16_to_cpu(resp
->port_id
);
5255 bp
->dev
->dev_port
= pf
->port_id
;
5256 memcpy(pf
->mac_addr
, resp
->mac_address
, ETH_ALEN
);
5257 pf
->first_vf_id
= le16_to_cpu(resp
->first_vf_id
);
5258 pf
->max_vfs
= le16_to_cpu(resp
->max_vfs
);
5259 pf
->max_encap_records
= le32_to_cpu(resp
->max_encap_records
);
5260 pf
->max_decap_records
= le32_to_cpu(resp
->max_decap_records
);
5261 pf
->max_tx_em_flows
= le32_to_cpu(resp
->max_tx_em_flows
);
5262 pf
->max_tx_wm_flows
= le32_to_cpu(resp
->max_tx_wm_flows
);
5263 pf
->max_rx_em_flows
= le32_to_cpu(resp
->max_rx_em_flows
);
5264 pf
->max_rx_wm_flows
= le32_to_cpu(resp
->max_rx_wm_flows
);
5265 if (flags
& FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED
)
5266 bp
->flags
|= BNXT_FLAG_WOL_CAP
;
5268 #ifdef CONFIG_BNXT_SRIOV
5269 struct bnxt_vf_info
*vf
= &bp
->vf
;
5271 vf
->fw_fid
= le16_to_cpu(resp
->fid
);
5272 memcpy(vf
->mac_addr
, resp
->mac_address
, ETH_ALEN
);
5276 hwrm_func_qcaps_exit
:
5277 mutex_unlock(&bp
->hwrm_cmd_lock
);
5281 static int bnxt_hwrm_func_qcaps(struct bnxt
*bp
)
5285 rc
= __bnxt_hwrm_func_qcaps(bp
);
5288 if (bp
->hwrm_spec_code
>= 0x10803) {
5289 rc
= bnxt_hwrm_func_resc_qcaps(bp
, true);
5291 bp
->fw_cap
|= BNXT_FW_CAP_NEW_RM
;
5296 static int bnxt_hwrm_func_reset(struct bnxt
*bp
)
5298 struct hwrm_func_reset_input req
= {0};
5300 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_RESET
, -1, -1);
5303 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_RESET_TIMEOUT
);
5306 static int bnxt_hwrm_queue_qportcfg(struct bnxt
*bp
)
5309 struct hwrm_queue_qportcfg_input req
= {0};
5310 struct hwrm_queue_qportcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5314 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_QUEUE_QPORTCFG
, -1, -1);
5316 mutex_lock(&bp
->hwrm_cmd_lock
);
5317 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5321 if (!resp
->max_configurable_queues
) {
5325 bp
->max_tc
= resp
->max_configurable_queues
;
5326 bp
->max_lltc
= resp
->max_configurable_lossless_queues
;
5327 if (bp
->max_tc
> BNXT_MAX_QUEUE
)
5328 bp
->max_tc
= BNXT_MAX_QUEUE
;
5330 no_rdma
= !(bp
->flags
& BNXT_FLAG_ROCE_CAP
);
5331 qptr
= &resp
->queue_id0
;
5332 for (i
= 0, j
= 0; i
< bp
->max_tc
; i
++) {
5333 bp
->q_info
[j
].queue_id
= *qptr
++;
5334 bp
->q_info
[j
].queue_profile
= *qptr
++;
5335 bp
->tc_to_qidx
[j
] = j
;
5336 if (!BNXT_CNPQ(bp
->q_info
[j
].queue_profile
) ||
5337 (no_rdma
&& BNXT_PF(bp
)))
5340 bp
->max_tc
= max_t(u8
, j
, 1);
5342 if (resp
->queue_cfg_info
& QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG
)
5345 if (bp
->max_lltc
> bp
->max_tc
)
5346 bp
->max_lltc
= bp
->max_tc
;
5349 mutex_unlock(&bp
->hwrm_cmd_lock
);
5353 static int bnxt_hwrm_ver_get(struct bnxt
*bp
)
5356 struct hwrm_ver_get_input req
= {0};
5357 struct hwrm_ver_get_output
*resp
= bp
->hwrm_cmd_resp_addr
;
5360 bp
->hwrm_max_req_len
= HWRM_MAX_REQ_LEN
;
5361 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_VER_GET
, -1, -1);
5362 req
.hwrm_intf_maj
= HWRM_VERSION_MAJOR
;
5363 req
.hwrm_intf_min
= HWRM_VERSION_MINOR
;
5364 req
.hwrm_intf_upd
= HWRM_VERSION_UPDATE
;
5365 mutex_lock(&bp
->hwrm_cmd_lock
);
5366 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5368 goto hwrm_ver_get_exit
;
5370 memcpy(&bp
->ver_resp
, resp
, sizeof(struct hwrm_ver_get_output
));
5372 bp
->hwrm_spec_code
= resp
->hwrm_intf_maj_8b
<< 16 |
5373 resp
->hwrm_intf_min_8b
<< 8 |
5374 resp
->hwrm_intf_upd_8b
;
5375 if (resp
->hwrm_intf_maj_8b
< 1) {
5376 netdev_warn(bp
->dev
, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5377 resp
->hwrm_intf_maj_8b
, resp
->hwrm_intf_min_8b
,
5378 resp
->hwrm_intf_upd_8b
);
5379 netdev_warn(bp
->dev
, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5381 snprintf(bp
->fw_ver_str
, BC_HWRM_STR_LEN
, "%d.%d.%d.%d",
5382 resp
->hwrm_fw_maj_8b
, resp
->hwrm_fw_min_8b
,
5383 resp
->hwrm_fw_bld_8b
, resp
->hwrm_fw_rsvd_8b
);
5385 bp
->hwrm_cmd_timeout
= le16_to_cpu(resp
->def_req_timeout
);
5386 if (!bp
->hwrm_cmd_timeout
)
5387 bp
->hwrm_cmd_timeout
= DFLT_HWRM_CMD_TIMEOUT
;
5389 if (resp
->hwrm_intf_maj_8b
>= 1)
5390 bp
->hwrm_max_req_len
= le16_to_cpu(resp
->max_req_win_len
);
5392 bp
->chip_num
= le16_to_cpu(resp
->chip_num
);
5393 if (bp
->chip_num
== CHIP_NUM_58700
&& !resp
->chip_rev
&&
5395 bp
->flags
|= BNXT_FLAG_CHIP_NITRO_A0
;
5397 dev_caps_cfg
= le32_to_cpu(resp
->dev_caps_cfg
);
5398 if ((dev_caps_cfg
& VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED
) &&
5399 (dev_caps_cfg
& VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED
))
5400 bp
->fw_cap
|= BNXT_FW_CAP_SHORT_CMD
;
5403 mutex_unlock(&bp
->hwrm_cmd_lock
);
5407 int bnxt_hwrm_fw_set_time(struct bnxt
*bp
)
5409 struct hwrm_fw_set_time_input req
= {0};
5411 time64_t now
= ktime_get_real_seconds();
5413 if ((BNXT_VF(bp
) && bp
->hwrm_spec_code
< 0x10901) ||
5414 bp
->hwrm_spec_code
< 0x10400)
5417 time64_to_tm(now
, 0, &tm
);
5418 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FW_SET_TIME
, -1, -1);
5419 req
.year
= cpu_to_le16(1900 + tm
.tm_year
);
5420 req
.month
= 1 + tm
.tm_mon
;
5421 req
.day
= tm
.tm_mday
;
5422 req
.hour
= tm
.tm_hour
;
5423 req
.minute
= tm
.tm_min
;
5424 req
.second
= tm
.tm_sec
;
5425 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5428 static int bnxt_hwrm_port_qstats(struct bnxt
*bp
)
5431 struct bnxt_pf_info
*pf
= &bp
->pf
;
5432 struct hwrm_port_qstats_input req
= {0};
5434 if (!(bp
->flags
& BNXT_FLAG_PORT_STATS
))
5437 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_QSTATS
, -1, -1);
5438 req
.port_id
= cpu_to_le16(pf
->port_id
);
5439 req
.tx_stat_host_addr
= cpu_to_le64(bp
->hw_tx_port_stats_map
);
5440 req
.rx_stat_host_addr
= cpu_to_le64(bp
->hw_rx_port_stats_map
);
5441 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5445 static int bnxt_hwrm_port_qstats_ext(struct bnxt
*bp
)
5447 struct hwrm_port_qstats_ext_input req
= {0};
5448 struct bnxt_pf_info
*pf
= &bp
->pf
;
5450 if (!(bp
->flags
& BNXT_FLAG_PORT_STATS_EXT
))
5453 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_QSTATS_EXT
, -1, -1);
5454 req
.port_id
= cpu_to_le16(pf
->port_id
);
5455 req
.rx_stat_size
= cpu_to_le16(sizeof(struct rx_port_stats_ext
));
5456 req
.rx_stat_host_addr
= cpu_to_le64(bp
->hw_rx_port_stats_ext_map
);
5457 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5460 static void bnxt_hwrm_free_tunnel_ports(struct bnxt
*bp
)
5462 if (bp
->vxlan_port_cnt
) {
5463 bnxt_hwrm_tunnel_dst_port_free(
5464 bp
, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN
);
5466 bp
->vxlan_port_cnt
= 0;
5467 if (bp
->nge_port_cnt
) {
5468 bnxt_hwrm_tunnel_dst_port_free(
5469 bp
, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE
);
5471 bp
->nge_port_cnt
= 0;
5474 static int bnxt_set_tpa(struct bnxt
*bp
, bool set_tpa
)
5480 tpa_flags
= bp
->flags
& BNXT_FLAG_TPA
;
5481 for (i
= 0; i
< bp
->nr_vnics
; i
++) {
5482 rc
= bnxt_hwrm_vnic_set_tpa(bp
, i
, tpa_flags
);
5484 netdev_err(bp
->dev
, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5492 static void bnxt_hwrm_clear_vnic_rss(struct bnxt
*bp
)
5496 for (i
= 0; i
< bp
->nr_vnics
; i
++)
5497 bnxt_hwrm_vnic_set_rss(bp
, i
, false);
5500 static void bnxt_hwrm_resource_free(struct bnxt
*bp
, bool close_path
,
5503 if (bp
->vnic_info
) {
5504 bnxt_hwrm_clear_vnic_filter(bp
);
5505 /* clear all RSS setting before free vnic ctx */
5506 bnxt_hwrm_clear_vnic_rss(bp
);
5507 bnxt_hwrm_vnic_ctx_free(bp
);
5508 /* before free the vnic, undo the vnic tpa settings */
5509 if (bp
->flags
& BNXT_FLAG_TPA
)
5510 bnxt_set_tpa(bp
, false);
5511 bnxt_hwrm_vnic_free(bp
);
5513 bnxt_hwrm_ring_free(bp
, close_path
);
5514 bnxt_hwrm_ring_grp_free(bp
);
5516 bnxt_hwrm_stat_ctx_free(bp
);
5517 bnxt_hwrm_free_tunnel_ports(bp
);
5521 static int bnxt_hwrm_set_br_mode(struct bnxt
*bp
, u16 br_mode
)
5523 struct hwrm_func_cfg_input req
= {0};
5526 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_CFG
, -1, -1);
5527 req
.fid
= cpu_to_le16(0xffff);
5528 req
.enables
= cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE
);
5529 if (br_mode
== BRIDGE_MODE_VEB
)
5530 req
.evb_mode
= FUNC_CFG_REQ_EVB_MODE_VEB
;
5531 else if (br_mode
== BRIDGE_MODE_VEPA
)
5532 req
.evb_mode
= FUNC_CFG_REQ_EVB_MODE_VEPA
;
5535 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5541 static int bnxt_hwrm_set_cache_line_size(struct bnxt
*bp
, int size
)
5543 struct hwrm_func_cfg_input req
= {0};
5546 if (BNXT_VF(bp
) || bp
->hwrm_spec_code
< 0x10803)
5549 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_CFG
, -1, -1);
5550 req
.fid
= cpu_to_le16(0xffff);
5551 req
.enables
= cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE
);
5552 req
.options
= FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64
;
5554 req
.options
= FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128
;
5556 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
5562 static int bnxt_setup_vnic(struct bnxt
*bp
, u16 vnic_id
)
5564 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[vnic_id
];
5567 if (vnic
->flags
& BNXT_VNIC_RFS_NEW_RSS_FLAG
)
5570 /* allocate context for vnic */
5571 rc
= bnxt_hwrm_vnic_ctx_alloc(bp
, vnic_id
, 0);
5573 netdev_err(bp
->dev
, "hwrm vnic %d alloc failure rc: %x\n",
5575 goto vnic_setup_err
;
5577 bp
->rsscos_nr_ctxs
++;
5579 if (BNXT_CHIP_TYPE_NITRO_A0(bp
)) {
5580 rc
= bnxt_hwrm_vnic_ctx_alloc(bp
, vnic_id
, 1);
5582 netdev_err(bp
->dev
, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5584 goto vnic_setup_err
;
5586 bp
->rsscos_nr_ctxs
++;
5590 /* configure default vnic, ring grp */
5591 rc
= bnxt_hwrm_vnic_cfg(bp
, vnic_id
);
5593 netdev_err(bp
->dev
, "hwrm vnic %d cfg failure rc: %x\n",
5595 goto vnic_setup_err
;
5598 /* Enable RSS hashing on vnic */
5599 rc
= bnxt_hwrm_vnic_set_rss(bp
, vnic_id
, true);
5601 netdev_err(bp
->dev
, "hwrm vnic %d set rss failure rc: %x\n",
5603 goto vnic_setup_err
;
5606 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
) {
5607 rc
= bnxt_hwrm_vnic_set_hds(bp
, vnic_id
);
5609 netdev_err(bp
->dev
, "hwrm vnic %d set hds failure rc: %x\n",
5618 static int bnxt_alloc_rfs_vnics(struct bnxt
*bp
)
5620 #ifdef CONFIG_RFS_ACCEL
5623 for (i
= 0; i
< bp
->rx_nr_rings
; i
++) {
5624 struct bnxt_vnic_info
*vnic
;
5625 u16 vnic_id
= i
+ 1;
5628 if (vnic_id
>= bp
->nr_vnics
)
5631 vnic
= &bp
->vnic_info
[vnic_id
];
5632 vnic
->flags
|= BNXT_VNIC_RFS_FLAG
;
5633 if (bp
->flags
& BNXT_FLAG_NEW_RSS_CAP
)
5634 vnic
->flags
|= BNXT_VNIC_RFS_NEW_RSS_FLAG
;
5635 rc
= bnxt_hwrm_vnic_alloc(bp
, vnic_id
, ring_id
, 1);
5637 netdev_err(bp
->dev
, "hwrm vnic %d alloc failure rc: %x\n",
5641 rc
= bnxt_setup_vnic(bp
, vnic_id
);
5651 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5652 static bool bnxt_promisc_ok(struct bnxt
*bp
)
5654 #ifdef CONFIG_BNXT_SRIOV
5655 if (BNXT_VF(bp
) && !bp
->vf
.vlan
)
5661 static int bnxt_setup_nitroa0_vnic(struct bnxt
*bp
)
5663 unsigned int rc
= 0;
5665 rc
= bnxt_hwrm_vnic_alloc(bp
, 1, bp
->rx_nr_rings
- 1, 1);
5667 netdev_err(bp
->dev
, "Cannot allocate special vnic for NS2 A0: %x\n",
5672 rc
= bnxt_hwrm_vnic_cfg(bp
, 1);
5674 netdev_err(bp
->dev
, "Cannot allocate special vnic for NS2 A0: %x\n",
5681 static int bnxt_cfg_rx_mode(struct bnxt
*);
5682 static bool bnxt_mc_list_updated(struct bnxt
*, u32
*);
5684 static int bnxt_init_chip(struct bnxt
*bp
, bool irq_re_init
)
5686 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
5688 unsigned int rx_nr_rings
= bp
->rx_nr_rings
;
5691 rc
= bnxt_hwrm_stat_ctx_alloc(bp
);
5693 netdev_err(bp
->dev
, "hwrm stat ctx alloc failure rc: %x\n",
5699 rc
= bnxt_hwrm_ring_alloc(bp
);
5701 netdev_err(bp
->dev
, "hwrm ring alloc failure rc: %x\n", rc
);
5705 rc
= bnxt_hwrm_ring_grp_alloc(bp
);
5707 netdev_err(bp
->dev
, "hwrm_ring_grp alloc failure: %x\n", rc
);
5711 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
5714 /* default vnic 0 */
5715 rc
= bnxt_hwrm_vnic_alloc(bp
, 0, 0, rx_nr_rings
);
5717 netdev_err(bp
->dev
, "hwrm vnic alloc failure rc: %x\n", rc
);
5721 rc
= bnxt_setup_vnic(bp
, 0);
5725 if (bp
->flags
& BNXT_FLAG_RFS
) {
5726 rc
= bnxt_alloc_rfs_vnics(bp
);
5731 if (bp
->flags
& BNXT_FLAG_TPA
) {
5732 rc
= bnxt_set_tpa(bp
, true);
5738 bnxt_update_vf_mac(bp
);
5740 /* Filter for default vnic 0 */
5741 rc
= bnxt_hwrm_set_vnic_filter(bp
, 0, 0, bp
->dev
->dev_addr
);
5743 netdev_err(bp
->dev
, "HWRM vnic filter failure rc: %x\n", rc
);
5746 vnic
->uc_filter_count
= 1;
5749 if (bp
->dev
->flags
& IFF_BROADCAST
)
5750 vnic
->rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST
;
5752 if ((bp
->dev
->flags
& IFF_PROMISC
) && bnxt_promisc_ok(bp
))
5753 vnic
->rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS
;
5755 if (bp
->dev
->flags
& IFF_ALLMULTI
) {
5756 vnic
->rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST
;
5757 vnic
->mc_list_count
= 0;
5761 bnxt_mc_list_updated(bp
, &mask
);
5762 vnic
->rx_mask
|= mask
;
5765 rc
= bnxt_cfg_rx_mode(bp
);
5769 rc
= bnxt_hwrm_set_coal(bp
);
5771 netdev_warn(bp
->dev
, "HWRM set coalescing failure rc: %x\n",
5774 if (BNXT_CHIP_TYPE_NITRO_A0(bp
)) {
5775 rc
= bnxt_setup_nitroa0_vnic(bp
);
5777 netdev_err(bp
->dev
, "Special vnic setup failure for NS2 A0 rc: %x\n",
5782 bnxt_hwrm_func_qcfg(bp
);
5783 netdev_update_features(bp
->dev
);
5789 bnxt_hwrm_resource_free(bp
, 0, true);
5794 static int bnxt_shutdown_nic(struct bnxt
*bp
, bool irq_re_init
)
5796 bnxt_hwrm_resource_free(bp
, 1, irq_re_init
);
5800 static int bnxt_init_nic(struct bnxt
*bp
, bool irq_re_init
)
5802 bnxt_init_cp_rings(bp
);
5803 bnxt_init_rx_rings(bp
);
5804 bnxt_init_tx_rings(bp
);
5805 bnxt_init_ring_grps(bp
, irq_re_init
);
5806 bnxt_init_vnics(bp
);
5808 return bnxt_init_chip(bp
, irq_re_init
);
5811 static int bnxt_set_real_num_queues(struct bnxt
*bp
)
5814 struct net_device
*dev
= bp
->dev
;
5816 rc
= netif_set_real_num_tx_queues(dev
, bp
->tx_nr_rings
-
5817 bp
->tx_nr_rings_xdp
);
5821 rc
= netif_set_real_num_rx_queues(dev
, bp
->rx_nr_rings
);
5825 #ifdef CONFIG_RFS_ACCEL
5826 if (bp
->flags
& BNXT_FLAG_RFS
)
5827 dev
->rx_cpu_rmap
= alloc_irq_cpu_rmap(bp
->rx_nr_rings
);
5833 static int bnxt_trim_rings(struct bnxt
*bp
, int *rx
, int *tx
, int max
,
5836 int _rx
= *rx
, _tx
= *tx
;
5839 *rx
= min_t(int, _rx
, max
);
5840 *tx
= min_t(int, _tx
, max
);
5845 while (_rx
+ _tx
> max
) {
5846 if (_rx
> _tx
&& _rx
> 1)
5857 static void bnxt_setup_msix(struct bnxt
*bp
)
5859 const int len
= sizeof(bp
->irq_tbl
[0].name
);
5860 struct net_device
*dev
= bp
->dev
;
5863 tcs
= netdev_get_num_tc(dev
);
5867 for (i
= 0; i
< tcs
; i
++) {
5868 count
= bp
->tx_nr_rings_per_tc
;
5870 netdev_set_tc_queue(dev
, i
, count
, off
);
5874 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
5875 int map_idx
= bnxt_cp_num_to_irq_num(bp
, i
);
5878 if (bp
->flags
& BNXT_FLAG_SHARED_RINGS
)
5880 else if (i
< bp
->rx_nr_rings
)
5885 snprintf(bp
->irq_tbl
[map_idx
].name
, len
, "%s-%s-%d", dev
->name
,
5887 bp
->irq_tbl
[map_idx
].handler
= bnxt_msix
;
5891 static void bnxt_setup_inta(struct bnxt
*bp
)
5893 const int len
= sizeof(bp
->irq_tbl
[0].name
);
5895 if (netdev_get_num_tc(bp
->dev
))
5896 netdev_reset_tc(bp
->dev
);
5898 snprintf(bp
->irq_tbl
[0].name
, len
, "%s-%s-%d", bp
->dev
->name
, "TxRx",
5900 bp
->irq_tbl
[0].handler
= bnxt_inta
;
5903 static int bnxt_setup_int_mode(struct bnxt
*bp
)
5907 if (bp
->flags
& BNXT_FLAG_USING_MSIX
)
5908 bnxt_setup_msix(bp
);
5910 bnxt_setup_inta(bp
);
5912 rc
= bnxt_set_real_num_queues(bp
);
5916 #ifdef CONFIG_RFS_ACCEL
5917 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt
*bp
)
5919 return bp
->hw_resc
.max_rsscos_ctxs
;
5922 static unsigned int bnxt_get_max_func_vnics(struct bnxt
*bp
)
5924 return bp
->hw_resc
.max_vnics
;
5928 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt
*bp
)
5930 return bp
->hw_resc
.max_stat_ctxs
;
5933 void bnxt_set_max_func_stat_ctxs(struct bnxt
*bp
, unsigned int max
)
5935 bp
->hw_resc
.max_stat_ctxs
= max
;
5938 unsigned int bnxt_get_max_func_cp_rings(struct bnxt
*bp
)
5940 return bp
->hw_resc
.max_cp_rings
;
5943 unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt
*bp
)
5945 return bp
->hw_resc
.max_cp_rings
- bnxt_get_ulp_msix_num(bp
);
5948 static unsigned int bnxt_get_max_func_irqs(struct bnxt
*bp
)
5950 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
5952 return min_t(unsigned int, hw_resc
->max_irqs
, hw_resc
->max_cp_rings
);
5955 static void bnxt_set_max_func_irqs(struct bnxt
*bp
, unsigned int max_irqs
)
5957 bp
->hw_resc
.max_irqs
= max_irqs
;
5960 int bnxt_get_avail_msix(struct bnxt
*bp
, int num
)
5962 int max_cp
= bnxt_get_max_func_cp_rings(bp
);
5963 int max_irq
= bnxt_get_max_func_irqs(bp
);
5964 int total_req
= bp
->cp_nr_rings
+ num
;
5965 int max_idx
, avail_msix
;
5967 max_idx
= min_t(int, bp
->total_irqs
, max_cp
);
5968 avail_msix
= max_idx
- bp
->cp_nr_rings
;
5969 if (!BNXT_NEW_RM(bp
) || avail_msix
>= num
)
5972 if (max_irq
< total_req
) {
5973 num
= max_irq
- bp
->cp_nr_rings
;
5980 static int bnxt_get_num_msix(struct bnxt
*bp
)
5982 if (!BNXT_NEW_RM(bp
))
5983 return bnxt_get_max_func_irqs(bp
);
5985 return bnxt_cp_rings_in_use(bp
);
5988 static int bnxt_init_msix(struct bnxt
*bp
)
5990 int i
, total_vecs
, max
, rc
= 0, min
= 1, ulp_msix
;
5991 struct msix_entry
*msix_ent
;
5993 total_vecs
= bnxt_get_num_msix(bp
);
5994 max
= bnxt_get_max_func_irqs(bp
);
5995 if (total_vecs
> max
)
6001 msix_ent
= kcalloc(total_vecs
, sizeof(struct msix_entry
), GFP_KERNEL
);
6005 for (i
= 0; i
< total_vecs
; i
++) {
6006 msix_ent
[i
].entry
= i
;
6007 msix_ent
[i
].vector
= 0;
6010 if (!(bp
->flags
& BNXT_FLAG_SHARED_RINGS
))
6013 total_vecs
= pci_enable_msix_range(bp
->pdev
, msix_ent
, min
, total_vecs
);
6014 ulp_msix
= bnxt_get_ulp_msix_num(bp
);
6015 if (total_vecs
< 0 || total_vecs
< ulp_msix
) {
6017 goto msix_setup_exit
;
6020 bp
->irq_tbl
= kcalloc(total_vecs
, sizeof(struct bnxt_irq
), GFP_KERNEL
);
6022 for (i
= 0; i
< total_vecs
; i
++)
6023 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6025 bp
->total_irqs
= total_vecs
;
6026 /* Trim rings based upon num of vectors allocated */
6027 rc
= bnxt_trim_rings(bp
, &bp
->rx_nr_rings
, &bp
->tx_nr_rings
,
6028 total_vecs
- ulp_msix
, min
== 1);
6030 goto msix_setup_exit
;
6032 bp
->cp_nr_rings
= (min
== 1) ?
6033 max_t(int, bp
->tx_nr_rings
, bp
->rx_nr_rings
) :
6034 bp
->tx_nr_rings
+ bp
->rx_nr_rings
;
6038 goto msix_setup_exit
;
6040 bp
->flags
|= BNXT_FLAG_USING_MSIX
;
6045 netdev_err(bp
->dev
, "bnxt_init_msix err: %x\n", rc
);
6048 pci_disable_msix(bp
->pdev
);
6053 static int bnxt_init_inta(struct bnxt
*bp
)
6055 bp
->irq_tbl
= kcalloc(1, sizeof(struct bnxt_irq
), GFP_KERNEL
);
6060 bp
->rx_nr_rings
= 1;
6061 bp
->tx_nr_rings
= 1;
6062 bp
->cp_nr_rings
= 1;
6063 bp
->flags
|= BNXT_FLAG_SHARED_RINGS
;
6064 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6068 static int bnxt_init_int_mode(struct bnxt
*bp
)
6072 if (bp
->flags
& BNXT_FLAG_MSIX_CAP
)
6073 rc
= bnxt_init_msix(bp
);
6075 if (!(bp
->flags
& BNXT_FLAG_USING_MSIX
) && BNXT_PF(bp
)) {
6076 /* fallback to INTA */
6077 rc
= bnxt_init_inta(bp
);
6082 static void bnxt_clear_int_mode(struct bnxt
*bp
)
6084 if (bp
->flags
& BNXT_FLAG_USING_MSIX
)
6085 pci_disable_msix(bp
->pdev
);
6089 bp
->flags
&= ~BNXT_FLAG_USING_MSIX
;
6092 int bnxt_reserve_rings(struct bnxt
*bp
)
6094 int tcs
= netdev_get_num_tc(bp
->dev
);
6095 bool reinit_irq
= false;
6098 if (!bnxt_need_reserve_rings(bp
))
6101 if (BNXT_NEW_RM(bp
) && (bnxt_get_num_msix(bp
) != bp
->total_irqs
)) {
6102 bnxt_ulp_irq_stop(bp
);
6103 bnxt_clear_int_mode(bp
);
6106 rc
= __bnxt_reserve_rings(bp
);
6109 rc
= bnxt_init_int_mode(bp
);
6110 bnxt_ulp_irq_restart(bp
, rc
);
6113 netdev_err(bp
->dev
, "ring reservation/IRQ init failure rc: %d\n", rc
);
6116 if (tcs
&& (bp
->tx_nr_rings_per_tc
* tcs
!= bp
->tx_nr_rings
)) {
6117 netdev_err(bp
->dev
, "tx ring reservation failure\n");
6118 netdev_reset_tc(bp
->dev
);
6119 bp
->tx_nr_rings_per_tc
= bp
->tx_nr_rings
;
6122 bp
->num_stat_ctxs
= bp
->cp_nr_rings
;
6126 static void bnxt_free_irq(struct bnxt
*bp
)
6128 struct bnxt_irq
*irq
;
6131 #ifdef CONFIG_RFS_ACCEL
6132 free_irq_cpu_rmap(bp
->dev
->rx_cpu_rmap
);
6133 bp
->dev
->rx_cpu_rmap
= NULL
;
6135 if (!bp
->irq_tbl
|| !bp
->bnapi
)
6138 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
6139 int map_idx
= bnxt_cp_num_to_irq_num(bp
, i
);
6141 irq
= &bp
->irq_tbl
[map_idx
];
6142 if (irq
->requested
) {
6143 if (irq
->have_cpumask
) {
6144 irq_set_affinity_hint(irq
->vector
, NULL
);
6145 free_cpumask_var(irq
->cpu_mask
);
6146 irq
->have_cpumask
= 0;
6148 free_irq(irq
->vector
, bp
->bnapi
[i
]);
6155 static int bnxt_request_irq(struct bnxt
*bp
)
6158 unsigned long flags
= 0;
6159 #ifdef CONFIG_RFS_ACCEL
6160 struct cpu_rmap
*rmap
;
6163 rc
= bnxt_setup_int_mode(bp
);
6165 netdev_err(bp
->dev
, "bnxt_setup_int_mode err: %x\n",
6169 #ifdef CONFIG_RFS_ACCEL
6170 rmap
= bp
->dev
->rx_cpu_rmap
;
6172 if (!(bp
->flags
& BNXT_FLAG_USING_MSIX
))
6173 flags
= IRQF_SHARED
;
6175 for (i
= 0, j
= 0; i
< bp
->cp_nr_rings
; i
++) {
6176 int map_idx
= bnxt_cp_num_to_irq_num(bp
, i
);
6177 struct bnxt_irq
*irq
= &bp
->irq_tbl
[map_idx
];
6179 #ifdef CONFIG_RFS_ACCEL
6180 if (rmap
&& bp
->bnapi
[i
]->rx_ring
) {
6181 rc
= irq_cpu_rmap_add(rmap
, irq
->vector
);
6183 netdev_warn(bp
->dev
, "failed adding irq rmap for ring %d\n",
6188 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6195 if (zalloc_cpumask_var(&irq
->cpu_mask
, GFP_KERNEL
)) {
6196 int numa_node
= dev_to_node(&bp
->pdev
->dev
);
6198 irq
->have_cpumask
= 1;
6199 cpumask_set_cpu(cpumask_local_spread(i
, numa_node
),
6201 rc
= irq_set_affinity_hint(irq
->vector
, irq
->cpu_mask
);
6203 netdev_warn(bp
->dev
,
6204 "Set affinity failed, IRQ = %d\n",
6213 static void bnxt_del_napi(struct bnxt
*bp
)
6220 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
6221 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
6223 napi_hash_del(&bnapi
->napi
);
6224 netif_napi_del(&bnapi
->napi
);
6226 /* We called napi_hash_del() before netif_napi_del(), we need
6227 * to respect an RCU grace period before freeing napi structures.
6232 static void bnxt_init_napi(struct bnxt
*bp
)
6235 unsigned int cp_nr_rings
= bp
->cp_nr_rings
;
6236 struct bnxt_napi
*bnapi
;
6238 if (bp
->flags
& BNXT_FLAG_USING_MSIX
) {
6239 if (BNXT_CHIP_TYPE_NITRO_A0(bp
))
6241 for (i
= 0; i
< cp_nr_rings
; i
++) {
6242 bnapi
= bp
->bnapi
[i
];
6243 netif_napi_add(bp
->dev
, &bnapi
->napi
,
6246 if (BNXT_CHIP_TYPE_NITRO_A0(bp
)) {
6247 bnapi
= bp
->bnapi
[cp_nr_rings
];
6248 netif_napi_add(bp
->dev
, &bnapi
->napi
,
6249 bnxt_poll_nitroa0
, 64);
6252 bnapi
= bp
->bnapi
[0];
6253 netif_napi_add(bp
->dev
, &bnapi
->napi
, bnxt_poll
, 64);
6257 static void bnxt_disable_napi(struct bnxt
*bp
)
6264 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
6265 struct bnxt_cp_ring_info
*cpr
= &bp
->bnapi
[i
]->cp_ring
;
6267 if (bp
->bnapi
[i
]->rx_ring
)
6268 cancel_work_sync(&cpr
->dim
.work
);
6270 napi_disable(&bp
->bnapi
[i
]->napi
);
6274 static void bnxt_enable_napi(struct bnxt
*bp
)
6278 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
6279 struct bnxt_cp_ring_info
*cpr
= &bp
->bnapi
[i
]->cp_ring
;
6280 bp
->bnapi
[i
]->in_reset
= false;
6282 if (bp
->bnapi
[i
]->rx_ring
) {
6283 INIT_WORK(&cpr
->dim
.work
, bnxt_dim_work
);
6284 cpr
->dim
.mode
= NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE
;
6286 napi_enable(&bp
->bnapi
[i
]->napi
);
6290 void bnxt_tx_disable(struct bnxt
*bp
)
6293 struct bnxt_tx_ring_info
*txr
;
6296 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
6297 txr
= &bp
->tx_ring
[i
];
6298 txr
->dev_state
= BNXT_DEV_STATE_CLOSING
;
6301 /* Stop all TX queues */
6302 netif_tx_disable(bp
->dev
);
6303 netif_carrier_off(bp
->dev
);
6306 void bnxt_tx_enable(struct bnxt
*bp
)
6309 struct bnxt_tx_ring_info
*txr
;
6311 for (i
= 0; i
< bp
->tx_nr_rings
; i
++) {
6312 txr
= &bp
->tx_ring
[i
];
6315 netif_tx_wake_all_queues(bp
->dev
);
6316 if (bp
->link_info
.link_up
)
6317 netif_carrier_on(bp
->dev
);
6320 static void bnxt_report_link(struct bnxt
*bp
)
6322 if (bp
->link_info
.link_up
) {
6324 const char *flow_ctrl
;
6328 netif_carrier_on(bp
->dev
);
6329 if (bp
->link_info
.duplex
== BNXT_LINK_DUPLEX_FULL
)
6333 if (bp
->link_info
.pause
== BNXT_LINK_PAUSE_BOTH
)
6334 flow_ctrl
= "ON - receive & transmit";
6335 else if (bp
->link_info
.pause
== BNXT_LINK_PAUSE_TX
)
6336 flow_ctrl
= "ON - transmit";
6337 else if (bp
->link_info
.pause
== BNXT_LINK_PAUSE_RX
)
6338 flow_ctrl
= "ON - receive";
6341 speed
= bnxt_fw_to_ethtool_speed(bp
->link_info
.link_speed
);
6342 netdev_info(bp
->dev
, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6343 speed
, duplex
, flow_ctrl
);
6344 if (bp
->flags
& BNXT_FLAG_EEE_CAP
)
6345 netdev_info(bp
->dev
, "EEE is %s\n",
6346 bp
->eee
.eee_active
? "active" :
6348 fec
= bp
->link_info
.fec_cfg
;
6349 if (!(fec
& PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED
))
6350 netdev_info(bp
->dev
, "FEC autoneg %s encodings: %s\n",
6351 (fec
& BNXT_FEC_AUTONEG
) ? "on" : "off",
6352 (fec
& BNXT_FEC_ENC_BASE_R
) ? "BaseR" :
6353 (fec
& BNXT_FEC_ENC_RS
) ? "RS" : "None");
6355 netif_carrier_off(bp
->dev
);
6356 netdev_err(bp
->dev
, "NIC Link is Down\n");
6360 static int bnxt_hwrm_phy_qcaps(struct bnxt
*bp
)
6363 struct hwrm_port_phy_qcaps_input req
= {0};
6364 struct hwrm_port_phy_qcaps_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6365 struct bnxt_link_info
*link_info
= &bp
->link_info
;
6367 if (bp
->hwrm_spec_code
< 0x10201)
6370 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_PHY_QCAPS
, -1, -1);
6372 mutex_lock(&bp
->hwrm_cmd_lock
);
6373 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6375 goto hwrm_phy_qcaps_exit
;
6377 if (resp
->flags
& PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED
) {
6378 struct ethtool_eee
*eee
= &bp
->eee
;
6379 u16 fw_speeds
= le16_to_cpu(resp
->supported_speeds_eee_mode
);
6381 bp
->flags
|= BNXT_FLAG_EEE_CAP
;
6382 eee
->supported
= _bnxt_fw_to_ethtool_adv_spds(fw_speeds
, 0);
6383 bp
->lpi_tmr_lo
= le32_to_cpu(resp
->tx_lpi_timer_low
) &
6384 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK
;
6385 bp
->lpi_tmr_hi
= le32_to_cpu(resp
->valid_tx_lpi_timer_high
) &
6386 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK
;
6388 if (resp
->flags
& PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED
) {
6390 bp
->test_info
->flags
|= BNXT_TEST_FL_EXT_LPBK
;
6392 if (resp
->supported_speeds_auto_mode
)
6393 link_info
->support_auto_speeds
=
6394 le16_to_cpu(resp
->supported_speeds_auto_mode
);
6396 bp
->port_count
= resp
->port_cnt
;
6398 hwrm_phy_qcaps_exit
:
6399 mutex_unlock(&bp
->hwrm_cmd_lock
);
6403 static int bnxt_update_link(struct bnxt
*bp
, bool chng_link_state
)
6406 struct bnxt_link_info
*link_info
= &bp
->link_info
;
6407 struct hwrm_port_phy_qcfg_input req
= {0};
6408 struct hwrm_port_phy_qcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6409 u8 link_up
= link_info
->link_up
;
6412 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_PHY_QCFG
, -1, -1);
6414 mutex_lock(&bp
->hwrm_cmd_lock
);
6415 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6417 mutex_unlock(&bp
->hwrm_cmd_lock
);
6421 memcpy(&link_info
->phy_qcfg_resp
, resp
, sizeof(*resp
));
6422 link_info
->phy_link_status
= resp
->link
;
6423 link_info
->duplex
= resp
->duplex_cfg
;
6424 if (bp
->hwrm_spec_code
>= 0x10800)
6425 link_info
->duplex
= resp
->duplex_state
;
6426 link_info
->pause
= resp
->pause
;
6427 link_info
->auto_mode
= resp
->auto_mode
;
6428 link_info
->auto_pause_setting
= resp
->auto_pause
;
6429 link_info
->lp_pause
= resp
->link_partner_adv_pause
;
6430 link_info
->force_pause_setting
= resp
->force_pause
;
6431 link_info
->duplex_setting
= resp
->duplex_cfg
;
6432 if (link_info
->phy_link_status
== BNXT_LINK_LINK
)
6433 link_info
->link_speed
= le16_to_cpu(resp
->link_speed
);
6435 link_info
->link_speed
= 0;
6436 link_info
->force_link_speed
= le16_to_cpu(resp
->force_link_speed
);
6437 link_info
->support_speeds
= le16_to_cpu(resp
->support_speeds
);
6438 link_info
->auto_link_speeds
= le16_to_cpu(resp
->auto_link_speed_mask
);
6439 link_info
->lp_auto_link_speeds
=
6440 le16_to_cpu(resp
->link_partner_adv_speeds
);
6441 link_info
->preemphasis
= le32_to_cpu(resp
->preemphasis
);
6442 link_info
->phy_ver
[0] = resp
->phy_maj
;
6443 link_info
->phy_ver
[1] = resp
->phy_min
;
6444 link_info
->phy_ver
[2] = resp
->phy_bld
;
6445 link_info
->media_type
= resp
->media_type
;
6446 link_info
->phy_type
= resp
->phy_type
;
6447 link_info
->transceiver
= resp
->xcvr_pkg_type
;
6448 link_info
->phy_addr
= resp
->eee_config_phy_addr
&
6449 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK
;
6450 link_info
->module_status
= resp
->module_status
;
6452 if (bp
->flags
& BNXT_FLAG_EEE_CAP
) {
6453 struct ethtool_eee
*eee
= &bp
->eee
;
6456 eee
->eee_active
= 0;
6457 if (resp
->eee_config_phy_addr
&
6458 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE
) {
6459 eee
->eee_active
= 1;
6460 fw_speeds
= le16_to_cpu(
6461 resp
->link_partner_adv_eee_link_speed_mask
);
6462 eee
->lp_advertised
=
6463 _bnxt_fw_to_ethtool_adv_spds(fw_speeds
, 0);
6466 /* Pull initial EEE config */
6467 if (!chng_link_state
) {
6468 if (resp
->eee_config_phy_addr
&
6469 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED
)
6470 eee
->eee_enabled
= 1;
6472 fw_speeds
= le16_to_cpu(resp
->adv_eee_link_speed_mask
);
6474 _bnxt_fw_to_ethtool_adv_spds(fw_speeds
, 0);
6476 if (resp
->eee_config_phy_addr
&
6477 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI
) {
6480 eee
->tx_lpi_enabled
= 1;
6481 tmr
= resp
->xcvr_identifier_type_tx_lpi_timer
;
6482 eee
->tx_lpi_timer
= le32_to_cpu(tmr
) &
6483 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK
;
6488 link_info
->fec_cfg
= PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED
;
6489 if (bp
->hwrm_spec_code
>= 0x10504)
6490 link_info
->fec_cfg
= le16_to_cpu(resp
->fec_cfg
);
6492 /* TODO: need to add more logic to report VF link */
6493 if (chng_link_state
) {
6494 if (link_info
->phy_link_status
== BNXT_LINK_LINK
)
6495 link_info
->link_up
= 1;
6497 link_info
->link_up
= 0;
6498 if (link_up
!= link_info
->link_up
)
6499 bnxt_report_link(bp
);
6501 /* alwasy link down if not require to update link state */
6502 link_info
->link_up
= 0;
6504 mutex_unlock(&bp
->hwrm_cmd_lock
);
6506 if (!BNXT_SINGLE_PF(bp
))
6509 diff
= link_info
->support_auto_speeds
^ link_info
->advertising
;
6510 if ((link_info
->support_auto_speeds
| diff
) !=
6511 link_info
->support_auto_speeds
) {
6512 /* An advertised speed is no longer supported, so we need to
6513 * update the advertisement settings. Caller holds RTNL
6514 * so we can modify link settings.
6516 link_info
->advertising
= link_info
->support_auto_speeds
;
6517 if (link_info
->autoneg
& BNXT_AUTONEG_SPEED
)
6518 bnxt_hwrm_set_link_setting(bp
, true, false);
6523 static void bnxt_get_port_module_status(struct bnxt
*bp
)
6525 struct bnxt_link_info
*link_info
= &bp
->link_info
;
6526 struct hwrm_port_phy_qcfg_output
*resp
= &link_info
->phy_qcfg_resp
;
6529 if (bnxt_update_link(bp
, true))
6532 module_status
= link_info
->module_status
;
6533 switch (module_status
) {
6534 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX
:
6535 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN
:
6536 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG
:
6537 netdev_warn(bp
->dev
, "Unqualified SFP+ module detected on port %d\n",
6539 if (bp
->hwrm_spec_code
>= 0x10201) {
6540 netdev_warn(bp
->dev
, "Module part number %s\n",
6541 resp
->phy_vendor_partnumber
);
6543 if (module_status
== PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX
)
6544 netdev_warn(bp
->dev
, "TX is disabled\n");
6545 if (module_status
== PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN
)
6546 netdev_warn(bp
->dev
, "SFP+ module is shutdown\n");
6551 bnxt_hwrm_set_pause_common(struct bnxt
*bp
, struct hwrm_port_phy_cfg_input
*req
)
6553 if (bp
->link_info
.autoneg
& BNXT_AUTONEG_FLOW_CTRL
) {
6554 if (bp
->hwrm_spec_code
>= 0x10201)
6556 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE
;
6557 if (bp
->link_info
.req_flow_ctrl
& BNXT_LINK_PAUSE_RX
)
6558 req
->auto_pause
|= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX
;
6559 if (bp
->link_info
.req_flow_ctrl
& BNXT_LINK_PAUSE_TX
)
6560 req
->auto_pause
|= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX
;
6562 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE
);
6564 if (bp
->link_info
.req_flow_ctrl
& BNXT_LINK_PAUSE_RX
)
6565 req
->force_pause
|= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX
;
6566 if (bp
->link_info
.req_flow_ctrl
& BNXT_LINK_PAUSE_TX
)
6567 req
->force_pause
|= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX
;
6569 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE
);
6570 if (bp
->hwrm_spec_code
>= 0x10201) {
6571 req
->auto_pause
= req
->force_pause
;
6572 req
->enables
|= cpu_to_le32(
6573 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE
);
6578 static void bnxt_hwrm_set_link_common(struct bnxt
*bp
,
6579 struct hwrm_port_phy_cfg_input
*req
)
6581 u8 autoneg
= bp
->link_info
.autoneg
;
6582 u16 fw_link_speed
= bp
->link_info
.req_link_speed
;
6583 u16 advertising
= bp
->link_info
.advertising
;
6585 if (autoneg
& BNXT_AUTONEG_SPEED
) {
6587 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK
;
6589 req
->enables
|= cpu_to_le32(
6590 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK
);
6591 req
->auto_link_speed_mask
= cpu_to_le16(advertising
);
6593 req
->enables
|= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE
);
6595 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG
);
6597 req
->force_link_speed
= cpu_to_le16(fw_link_speed
);
6598 req
->flags
|= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE
);
6601 /* tell chimp that the setting takes effect immediately */
6602 req
->flags
|= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY
);
6605 int bnxt_hwrm_set_pause(struct bnxt
*bp
)
6607 struct hwrm_port_phy_cfg_input req
= {0};
6610 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_PHY_CFG
, -1, -1);
6611 bnxt_hwrm_set_pause_common(bp
, &req
);
6613 if ((bp
->link_info
.autoneg
& BNXT_AUTONEG_FLOW_CTRL
) ||
6614 bp
->link_info
.force_link_chng
)
6615 bnxt_hwrm_set_link_common(bp
, &req
);
6617 mutex_lock(&bp
->hwrm_cmd_lock
);
6618 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6619 if (!rc
&& !(bp
->link_info
.autoneg
& BNXT_AUTONEG_FLOW_CTRL
)) {
6620 /* since changing of pause setting doesn't trigger any link
6621 * change event, the driver needs to update the current pause
6622 * result upon successfully return of the phy_cfg command
6624 bp
->link_info
.pause
=
6625 bp
->link_info
.force_pause_setting
= bp
->link_info
.req_flow_ctrl
;
6626 bp
->link_info
.auto_pause_setting
= 0;
6627 if (!bp
->link_info
.force_link_chng
)
6628 bnxt_report_link(bp
);
6630 bp
->link_info
.force_link_chng
= false;
6631 mutex_unlock(&bp
->hwrm_cmd_lock
);
6635 static void bnxt_hwrm_set_eee(struct bnxt
*bp
,
6636 struct hwrm_port_phy_cfg_input
*req
)
6638 struct ethtool_eee
*eee
= &bp
->eee
;
6640 if (eee
->eee_enabled
) {
6642 u32 flags
= PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE
;
6644 if (eee
->tx_lpi_enabled
)
6645 flags
|= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE
;
6647 flags
|= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE
;
6649 req
->flags
|= cpu_to_le32(flags
);
6650 eee_speeds
= bnxt_get_fw_auto_link_speeds(eee
->advertised
);
6651 req
->eee_link_speed_mask
= cpu_to_le16(eee_speeds
);
6652 req
->tx_lpi_timer
= cpu_to_le32(eee
->tx_lpi_timer
);
6654 req
->flags
|= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE
);
6658 int bnxt_hwrm_set_link_setting(struct bnxt
*bp
, bool set_pause
, bool set_eee
)
6660 struct hwrm_port_phy_cfg_input req
= {0};
6662 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_PHY_CFG
, -1, -1);
6664 bnxt_hwrm_set_pause_common(bp
, &req
);
6666 bnxt_hwrm_set_link_common(bp
, &req
);
6669 bnxt_hwrm_set_eee(bp
, &req
);
6670 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6673 static int bnxt_hwrm_shutdown_link(struct bnxt
*bp
)
6675 struct hwrm_port_phy_cfg_input req
= {0};
6677 if (!BNXT_SINGLE_PF(bp
))
6680 if (pci_num_vf(bp
->pdev
))
6683 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_PHY_CFG
, -1, -1);
6684 req
.flags
= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN
);
6685 return hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6688 static int bnxt_hwrm_if_change(struct bnxt
*bp
, bool up
)
6690 struct hwrm_func_drv_if_change_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6691 struct hwrm_func_drv_if_change_input req
= {0};
6692 bool resc_reinit
= false;
6695 if (!(bp
->fw_cap
& BNXT_FW_CAP_IF_CHANGE
))
6698 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_FUNC_DRV_IF_CHANGE
, -1, -1);
6700 req
.flags
= cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP
);
6701 mutex_lock(&bp
->hwrm_cmd_lock
);
6702 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6703 if (!rc
&& (resp
->flags
&
6704 cpu_to_le32(FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE
)))
6706 mutex_unlock(&bp
->hwrm_cmd_lock
);
6708 if (up
&& resc_reinit
&& BNXT_NEW_RM(bp
)) {
6709 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
6711 rc
= bnxt_hwrm_func_resc_qcaps(bp
, true);
6712 hw_resc
->resv_cp_rings
= 0;
6713 hw_resc
->resv_tx_rings
= 0;
6714 hw_resc
->resv_rx_rings
= 0;
6715 hw_resc
->resv_hw_ring_grps
= 0;
6716 hw_resc
->resv_vnics
= 0;
6717 bp
->tx_nr_rings
= 0;
6718 bp
->rx_nr_rings
= 0;
6723 static int bnxt_hwrm_port_led_qcaps(struct bnxt
*bp
)
6725 struct hwrm_port_led_qcaps_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6726 struct hwrm_port_led_qcaps_input req
= {0};
6727 struct bnxt_pf_info
*pf
= &bp
->pf
;
6730 if (BNXT_VF(bp
) || bp
->hwrm_spec_code
< 0x10601)
6733 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_PORT_LED_QCAPS
, -1, -1);
6734 req
.port_id
= cpu_to_le16(pf
->port_id
);
6735 mutex_lock(&bp
->hwrm_cmd_lock
);
6736 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6738 mutex_unlock(&bp
->hwrm_cmd_lock
);
6741 if (resp
->num_leds
> 0 && resp
->num_leds
< BNXT_MAX_LED
) {
6744 bp
->num_leds
= resp
->num_leds
;
6745 memcpy(bp
->leds
, &resp
->led0_id
, sizeof(bp
->leds
[0]) *
6747 for (i
= 0; i
< bp
->num_leds
; i
++) {
6748 struct bnxt_led_info
*led
= &bp
->leds
[i
];
6749 __le16 caps
= led
->led_state_caps
;
6751 if (!led
->led_group_id
||
6752 !BNXT_LED_ALT_BLINK_CAP(caps
)) {
6758 mutex_unlock(&bp
->hwrm_cmd_lock
);
6762 int bnxt_hwrm_alloc_wol_fltr(struct bnxt
*bp
)
6764 struct hwrm_wol_filter_alloc_input req
= {0};
6765 struct hwrm_wol_filter_alloc_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6768 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_WOL_FILTER_ALLOC
, -1, -1);
6769 req
.port_id
= cpu_to_le16(bp
->pf
.port_id
);
6770 req
.wol_type
= WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT
;
6771 req
.enables
= cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS
);
6772 memcpy(req
.mac_address
, bp
->dev
->dev_addr
, ETH_ALEN
);
6773 mutex_lock(&bp
->hwrm_cmd_lock
);
6774 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6776 bp
->wol_filter_id
= resp
->wol_filter_id
;
6777 mutex_unlock(&bp
->hwrm_cmd_lock
);
6781 int bnxt_hwrm_free_wol_fltr(struct bnxt
*bp
)
6783 struct hwrm_wol_filter_free_input req
= {0};
6786 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_WOL_FILTER_FREE
, -1, -1);
6787 req
.port_id
= cpu_to_le16(bp
->pf
.port_id
);
6788 req
.enables
= cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID
);
6789 req
.wol_filter_id
= bp
->wol_filter_id
;
6790 rc
= hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6794 static u16
bnxt_hwrm_get_wol_fltrs(struct bnxt
*bp
, u16 handle
)
6796 struct hwrm_wol_filter_qcfg_input req
= {0};
6797 struct hwrm_wol_filter_qcfg_output
*resp
= bp
->hwrm_cmd_resp_addr
;
6798 u16 next_handle
= 0;
6801 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_WOL_FILTER_QCFG
, -1, -1);
6802 req
.port_id
= cpu_to_le16(bp
->pf
.port_id
);
6803 req
.handle
= cpu_to_le16(handle
);
6804 mutex_lock(&bp
->hwrm_cmd_lock
);
6805 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
);
6807 next_handle
= le16_to_cpu(resp
->next_handle
);
6808 if (next_handle
!= 0) {
6809 if (resp
->wol_type
==
6810 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT
) {
6812 bp
->wol_filter_id
= resp
->wol_filter_id
;
6816 mutex_unlock(&bp
->hwrm_cmd_lock
);
6820 static void bnxt_get_wol_settings(struct bnxt
*bp
)
6824 if (!BNXT_PF(bp
) || !(bp
->flags
& BNXT_FLAG_WOL_CAP
))
6828 handle
= bnxt_hwrm_get_wol_fltrs(bp
, handle
);
6829 } while (handle
&& handle
!= 0xffff);
6832 #ifdef CONFIG_BNXT_HWMON
6833 static ssize_t
bnxt_show_temp(struct device
*dev
,
6834 struct device_attribute
*devattr
, char *buf
)
6836 struct hwrm_temp_monitor_query_input req
= {0};
6837 struct hwrm_temp_monitor_query_output
*resp
;
6838 struct bnxt
*bp
= dev_get_drvdata(dev
);
6841 resp
= bp
->hwrm_cmd_resp_addr
;
6842 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_TEMP_MONITOR_QUERY
, -1, -1);
6843 mutex_lock(&bp
->hwrm_cmd_lock
);
6844 if (!_hwrm_send_message(bp
, &req
, sizeof(req
), HWRM_CMD_TIMEOUT
))
6845 temp
= resp
->temp
* 1000; /* display millidegree */
6846 mutex_unlock(&bp
->hwrm_cmd_lock
);
6848 return sprintf(buf
, "%u\n", temp
);
6850 static SENSOR_DEVICE_ATTR(temp1_input
, 0444, bnxt_show_temp
, NULL
, 0);
6852 static struct attribute
*bnxt_attrs
[] = {
6853 &sensor_dev_attr_temp1_input
.dev_attr
.attr
,
6856 ATTRIBUTE_GROUPS(bnxt
);
6858 static void bnxt_hwmon_close(struct bnxt
*bp
)
6860 if (bp
->hwmon_dev
) {
6861 hwmon_device_unregister(bp
->hwmon_dev
);
6862 bp
->hwmon_dev
= NULL
;
6866 static void bnxt_hwmon_open(struct bnxt
*bp
)
6868 struct pci_dev
*pdev
= bp
->pdev
;
6870 bp
->hwmon_dev
= hwmon_device_register_with_groups(&pdev
->dev
,
6871 DRV_MODULE_NAME
, bp
,
6873 if (IS_ERR(bp
->hwmon_dev
)) {
6874 bp
->hwmon_dev
= NULL
;
6875 dev_warn(&pdev
->dev
, "Cannot register hwmon device\n");
6879 static void bnxt_hwmon_close(struct bnxt
*bp
)
6883 static void bnxt_hwmon_open(struct bnxt
*bp
)
6888 static bool bnxt_eee_config_ok(struct bnxt
*bp
)
6890 struct ethtool_eee
*eee
= &bp
->eee
;
6891 struct bnxt_link_info
*link_info
= &bp
->link_info
;
6893 if (!(bp
->flags
& BNXT_FLAG_EEE_CAP
))
6896 if (eee
->eee_enabled
) {
6898 _bnxt_fw_to_ethtool_adv_spds(link_info
->advertising
, 0);
6900 if (!(link_info
->autoneg
& BNXT_AUTONEG_SPEED
)) {
6901 eee
->eee_enabled
= 0;
6904 if (eee
->advertised
& ~advertising
) {
6905 eee
->advertised
= advertising
& eee
->supported
;
6912 static int bnxt_update_phy_setting(struct bnxt
*bp
)
6915 bool update_link
= false;
6916 bool update_pause
= false;
6917 bool update_eee
= false;
6918 struct bnxt_link_info
*link_info
= &bp
->link_info
;
6920 rc
= bnxt_update_link(bp
, true);
6922 netdev_err(bp
->dev
, "failed to update link (rc: %x)\n",
6926 if (!BNXT_SINGLE_PF(bp
))
6929 if ((link_info
->autoneg
& BNXT_AUTONEG_FLOW_CTRL
) &&
6930 (link_info
->auto_pause_setting
& BNXT_LINK_PAUSE_BOTH
) !=
6931 link_info
->req_flow_ctrl
)
6932 update_pause
= true;
6933 if (!(link_info
->autoneg
& BNXT_AUTONEG_FLOW_CTRL
) &&
6934 link_info
->force_pause_setting
!= link_info
->req_flow_ctrl
)
6935 update_pause
= true;
6936 if (!(link_info
->autoneg
& BNXT_AUTONEG_SPEED
)) {
6937 if (BNXT_AUTO_MODE(link_info
->auto_mode
))
6939 if (link_info
->req_link_speed
!= link_info
->force_link_speed
)
6941 if (link_info
->req_duplex
!= link_info
->duplex_setting
)
6944 if (link_info
->auto_mode
== BNXT_LINK_AUTO_NONE
)
6946 if (link_info
->advertising
!= link_info
->auto_link_speeds
)
6950 /* The last close may have shutdown the link, so need to call
6951 * PHY_CFG to bring it back up.
6953 if (!netif_carrier_ok(bp
->dev
))
6956 if (!bnxt_eee_config_ok(bp
))
6960 rc
= bnxt_hwrm_set_link_setting(bp
, update_pause
, update_eee
);
6961 else if (update_pause
)
6962 rc
= bnxt_hwrm_set_pause(bp
);
6964 netdev_err(bp
->dev
, "failed to update phy setting (rc: %x)\n",
6972 /* Common routine to pre-map certain register block to different GRC window.
6973 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6974 * in PF and 3 windows in VF that can be customized to map in different
6977 static void bnxt_preset_reg_win(struct bnxt
*bp
)
6980 /* CAG registers map to GRC window #4 */
6981 writel(BNXT_CAG_REG_BASE
,
6982 bp
->bar0
+ BNXT_GRCPF_REG_WINDOW_BASE_OUT
+ 12);
6986 static int bnxt_init_dflt_ring_mode(struct bnxt
*bp
);
6988 static int __bnxt_open_nic(struct bnxt
*bp
, bool irq_re_init
, bool link_re_init
)
6992 bnxt_preset_reg_win(bp
);
6993 netif_carrier_off(bp
->dev
);
6995 /* Reserve rings now if none were reserved at driver probe. */
6996 rc
= bnxt_init_dflt_ring_mode(bp
);
6998 netdev_err(bp
->dev
, "Failed to reserve default rings at open\n");
7001 rc
= bnxt_reserve_rings(bp
);
7005 if ((bp
->flags
& BNXT_FLAG_RFS
) &&
7006 !(bp
->flags
& BNXT_FLAG_USING_MSIX
)) {
7007 /* disable RFS if falling back to INTA */
7008 bp
->dev
->hw_features
&= ~NETIF_F_NTUPLE
;
7009 bp
->flags
&= ~BNXT_FLAG_RFS
;
7012 rc
= bnxt_alloc_mem(bp
, irq_re_init
);
7014 netdev_err(bp
->dev
, "bnxt_alloc_mem err: %x\n", rc
);
7015 goto open_err_free_mem
;
7020 rc
= bnxt_request_irq(bp
);
7022 netdev_err(bp
->dev
, "bnxt_request_irq err: %x\n", rc
);
7027 bnxt_enable_napi(bp
);
7028 bnxt_debug_dev_init(bp
);
7030 rc
= bnxt_init_nic(bp
, irq_re_init
);
7032 netdev_err(bp
->dev
, "bnxt_init_nic err: %x\n", rc
);
7037 mutex_lock(&bp
->link_lock
);
7038 rc
= bnxt_update_phy_setting(bp
);
7039 mutex_unlock(&bp
->link_lock
);
7041 netdev_warn(bp
->dev
, "failed to update phy settings\n");
7042 if (BNXT_SINGLE_PF(bp
)) {
7043 bp
->link_info
.phy_retry
= true;
7044 bp
->link_info
.phy_retry_expires
=
7051 udp_tunnel_get_rx_info(bp
->dev
);
7053 set_bit(BNXT_STATE_OPEN
, &bp
->state
);
7054 bnxt_enable_int(bp
);
7055 /* Enable TX queues */
7057 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7058 /* Poll link status and check for SFP+ module status */
7059 bnxt_get_port_module_status(bp
);
7061 /* VF-reps may need to be re-opened after the PF is re-opened */
7063 bnxt_vf_reps_open(bp
);
7067 bnxt_debug_dev_exit(bp
);
7068 bnxt_disable_napi(bp
);
7076 bnxt_free_mem(bp
, true);
7080 /* rtnl_lock held */
7081 int bnxt_open_nic(struct bnxt
*bp
, bool irq_re_init
, bool link_re_init
)
7085 rc
= __bnxt_open_nic(bp
, irq_re_init
, link_re_init
);
7087 netdev_err(bp
->dev
, "nic open fail (rc: %x)\n", rc
);
7093 /* rtnl_lock held, open the NIC half way by allocating all resources, but
7094 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
7097 int bnxt_half_open_nic(struct bnxt
*bp
)
7101 rc
= bnxt_alloc_mem(bp
, false);
7103 netdev_err(bp
->dev
, "bnxt_alloc_mem err: %x\n", rc
);
7106 rc
= bnxt_init_nic(bp
, false);
7108 netdev_err(bp
->dev
, "bnxt_init_nic err: %x\n", rc
);
7115 bnxt_free_mem(bp
, false);
7120 /* rtnl_lock held, this call can only be made after a previous successful
7121 * call to bnxt_half_open_nic().
7123 void bnxt_half_close_nic(struct bnxt
*bp
)
7125 bnxt_hwrm_resource_free(bp
, false, false);
7127 bnxt_free_mem(bp
, false);
7130 static int bnxt_open(struct net_device
*dev
)
7132 struct bnxt
*bp
= netdev_priv(dev
);
7135 bnxt_hwrm_if_change(bp
, true);
7136 rc
= __bnxt_open_nic(bp
, true, true);
7138 bnxt_hwrm_if_change(bp
, false);
7140 bnxt_hwmon_open(bp
);
7145 static bool bnxt_drv_busy(struct bnxt
*bp
)
7147 return (test_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
) ||
7148 test_bit(BNXT_STATE_READ_STATS
, &bp
->state
));
7151 static void bnxt_get_ring_stats(struct bnxt
*bp
,
7152 struct rtnl_link_stats64
*stats
);
7154 static void __bnxt_close_nic(struct bnxt
*bp
, bool irq_re_init
,
7157 /* Close the VF-reps before closing PF */
7159 bnxt_vf_reps_close(bp
);
7161 /* Change device state to avoid TX queue wake up's */
7162 bnxt_tx_disable(bp
);
7164 clear_bit(BNXT_STATE_OPEN
, &bp
->state
);
7165 smp_mb__after_atomic();
7166 while (bnxt_drv_busy(bp
))
7169 /* Flush rings and and disable interrupts */
7170 bnxt_shutdown_nic(bp
, irq_re_init
);
7172 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7174 bnxt_debug_dev_exit(bp
);
7175 bnxt_disable_napi(bp
);
7176 del_timer_sync(&bp
->timer
);
7179 /* Save ring stats before shutdown */
7180 if (bp
->bnapi
&& irq_re_init
)
7181 bnxt_get_ring_stats(bp
, &bp
->net_stats_prev
);
7186 bnxt_free_mem(bp
, irq_re_init
);
7189 int bnxt_close_nic(struct bnxt
*bp
, bool irq_re_init
, bool link_re_init
)
7193 #ifdef CONFIG_BNXT_SRIOV
7194 if (bp
->sriov_cfg
) {
7195 rc
= wait_event_interruptible_timeout(bp
->sriov_cfg_wait
,
7197 BNXT_SRIOV_CFG_WAIT_TMO
);
7199 netdev_warn(bp
->dev
, "timeout waiting for SRIOV config operation to complete!\n");
7202 __bnxt_close_nic(bp
, irq_re_init
, link_re_init
);
7206 static int bnxt_close(struct net_device
*dev
)
7208 struct bnxt
*bp
= netdev_priv(dev
);
7210 bnxt_hwmon_close(bp
);
7211 bnxt_close_nic(bp
, true, true);
7212 bnxt_hwrm_shutdown_link(bp
);
7213 bnxt_hwrm_if_change(bp
, false);
7217 /* rtnl_lock held */
7218 static int bnxt_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7224 if (!netif_running(dev
))
7231 if (!netif_running(dev
))
7243 static void bnxt_get_ring_stats(struct bnxt
*bp
,
7244 struct rtnl_link_stats64
*stats
)
7249 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
7250 struct bnxt_napi
*bnapi
= bp
->bnapi
[i
];
7251 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
7252 struct ctx_hw_stats
*hw_stats
= cpr
->hw_stats
;
7254 stats
->rx_packets
+= le64_to_cpu(hw_stats
->rx_ucast_pkts
);
7255 stats
->rx_packets
+= le64_to_cpu(hw_stats
->rx_mcast_pkts
);
7256 stats
->rx_packets
+= le64_to_cpu(hw_stats
->rx_bcast_pkts
);
7258 stats
->tx_packets
+= le64_to_cpu(hw_stats
->tx_ucast_pkts
);
7259 stats
->tx_packets
+= le64_to_cpu(hw_stats
->tx_mcast_pkts
);
7260 stats
->tx_packets
+= le64_to_cpu(hw_stats
->tx_bcast_pkts
);
7262 stats
->rx_bytes
+= le64_to_cpu(hw_stats
->rx_ucast_bytes
);
7263 stats
->rx_bytes
+= le64_to_cpu(hw_stats
->rx_mcast_bytes
);
7264 stats
->rx_bytes
+= le64_to_cpu(hw_stats
->rx_bcast_bytes
);
7266 stats
->tx_bytes
+= le64_to_cpu(hw_stats
->tx_ucast_bytes
);
7267 stats
->tx_bytes
+= le64_to_cpu(hw_stats
->tx_mcast_bytes
);
7268 stats
->tx_bytes
+= le64_to_cpu(hw_stats
->tx_bcast_bytes
);
7270 stats
->rx_missed_errors
+=
7271 le64_to_cpu(hw_stats
->rx_discard_pkts
);
7273 stats
->multicast
+= le64_to_cpu(hw_stats
->rx_mcast_pkts
);
7275 stats
->tx_dropped
+= le64_to_cpu(hw_stats
->tx_drop_pkts
);
7279 static void bnxt_add_prev_stats(struct bnxt
*bp
,
7280 struct rtnl_link_stats64
*stats
)
7282 struct rtnl_link_stats64
*prev_stats
= &bp
->net_stats_prev
;
7284 stats
->rx_packets
+= prev_stats
->rx_packets
;
7285 stats
->tx_packets
+= prev_stats
->tx_packets
;
7286 stats
->rx_bytes
+= prev_stats
->rx_bytes
;
7287 stats
->tx_bytes
+= prev_stats
->tx_bytes
;
7288 stats
->rx_missed_errors
+= prev_stats
->rx_missed_errors
;
7289 stats
->multicast
+= prev_stats
->multicast
;
7290 stats
->tx_dropped
+= prev_stats
->tx_dropped
;
7294 bnxt_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*stats
)
7296 struct bnxt
*bp
= netdev_priv(dev
);
7298 set_bit(BNXT_STATE_READ_STATS
, &bp
->state
);
7299 /* Make sure bnxt_close_nic() sees that we are reading stats before
7300 * we check the BNXT_STATE_OPEN flag.
7302 smp_mb__after_atomic();
7303 if (!test_bit(BNXT_STATE_OPEN
, &bp
->state
)) {
7304 clear_bit(BNXT_STATE_READ_STATS
, &bp
->state
);
7305 *stats
= bp
->net_stats_prev
;
7309 bnxt_get_ring_stats(bp
, stats
);
7310 bnxt_add_prev_stats(bp
, stats
);
7312 if (bp
->flags
& BNXT_FLAG_PORT_STATS
) {
7313 struct rx_port_stats
*rx
= bp
->hw_rx_port_stats
;
7314 struct tx_port_stats
*tx
= bp
->hw_tx_port_stats
;
7316 stats
->rx_crc_errors
= le64_to_cpu(rx
->rx_fcs_err_frames
);
7317 stats
->rx_frame_errors
= le64_to_cpu(rx
->rx_align_err_frames
);
7318 stats
->rx_length_errors
= le64_to_cpu(rx
->rx_undrsz_frames
) +
7319 le64_to_cpu(rx
->rx_ovrsz_frames
) +
7320 le64_to_cpu(rx
->rx_runt_frames
);
7321 stats
->rx_errors
= le64_to_cpu(rx
->rx_false_carrier_frames
) +
7322 le64_to_cpu(rx
->rx_jbr_frames
);
7323 stats
->collisions
= le64_to_cpu(tx
->tx_total_collisions
);
7324 stats
->tx_fifo_errors
= le64_to_cpu(tx
->tx_fifo_underruns
);
7325 stats
->tx_errors
= le64_to_cpu(tx
->tx_err
);
7327 clear_bit(BNXT_STATE_READ_STATS
, &bp
->state
);
7330 static bool bnxt_mc_list_updated(struct bnxt
*bp
, u32
*rx_mask
)
7332 struct net_device
*dev
= bp
->dev
;
7333 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
7334 struct netdev_hw_addr
*ha
;
7337 bool update
= false;
7340 netdev_for_each_mc_addr(ha
, dev
) {
7341 if (mc_count
>= BNXT_MAX_MC_ADDRS
) {
7342 *rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST
;
7343 vnic
->mc_list_count
= 0;
7347 if (!ether_addr_equal(haddr
, vnic
->mc_list
+ off
)) {
7348 memcpy(vnic
->mc_list
+ off
, haddr
, ETH_ALEN
);
7355 *rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST
;
7357 if (mc_count
!= vnic
->mc_list_count
) {
7358 vnic
->mc_list_count
= mc_count
;
7364 static bool bnxt_uc_list_updated(struct bnxt
*bp
)
7366 struct net_device
*dev
= bp
->dev
;
7367 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
7368 struct netdev_hw_addr
*ha
;
7371 if (netdev_uc_count(dev
) != (vnic
->uc_filter_count
- 1))
7374 netdev_for_each_uc_addr(ha
, dev
) {
7375 if (!ether_addr_equal(ha
->addr
, vnic
->uc_list
+ off
))
7383 static void bnxt_set_rx_mode(struct net_device
*dev
)
7385 struct bnxt
*bp
= netdev_priv(dev
);
7386 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
7387 u32 mask
= vnic
->rx_mask
;
7388 bool mc_update
= false;
7391 if (!netif_running(dev
))
7394 mask
&= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS
|
7395 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST
|
7396 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST
|
7397 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST
);
7399 if ((dev
->flags
& IFF_PROMISC
) && bnxt_promisc_ok(bp
))
7400 mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS
;
7402 uc_update
= bnxt_uc_list_updated(bp
);
7404 if (dev
->flags
& IFF_BROADCAST
)
7405 mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST
;
7406 if (dev
->flags
& IFF_ALLMULTI
) {
7407 mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST
;
7408 vnic
->mc_list_count
= 0;
7410 mc_update
= bnxt_mc_list_updated(bp
, &mask
);
7413 if (mask
!= vnic
->rx_mask
|| uc_update
|| mc_update
) {
7414 vnic
->rx_mask
= mask
;
7416 set_bit(BNXT_RX_MASK_SP_EVENT
, &bp
->sp_event
);
7417 bnxt_queue_sp_work(bp
);
7421 static int bnxt_cfg_rx_mode(struct bnxt
*bp
)
7423 struct net_device
*dev
= bp
->dev
;
7424 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
7425 struct netdev_hw_addr
*ha
;
7429 netif_addr_lock_bh(dev
);
7430 uc_update
= bnxt_uc_list_updated(bp
);
7431 netif_addr_unlock_bh(dev
);
7436 mutex_lock(&bp
->hwrm_cmd_lock
);
7437 for (i
= 1; i
< vnic
->uc_filter_count
; i
++) {
7438 struct hwrm_cfa_l2_filter_free_input req
= {0};
7440 bnxt_hwrm_cmd_hdr_init(bp
, &req
, HWRM_CFA_L2_FILTER_FREE
, -1,
7443 req
.l2_filter_id
= vnic
->fw_l2_filter_id
[i
];
7445 rc
= _hwrm_send_message(bp
, &req
, sizeof(req
),
7448 mutex_unlock(&bp
->hwrm_cmd_lock
);
7450 vnic
->uc_filter_count
= 1;
7452 netif_addr_lock_bh(dev
);
7453 if (netdev_uc_count(dev
) > (BNXT_MAX_UC_ADDRS
- 1)) {
7454 vnic
->rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS
;
7456 netdev_for_each_uc_addr(ha
, dev
) {
7457 memcpy(vnic
->uc_list
+ off
, ha
->addr
, ETH_ALEN
);
7459 vnic
->uc_filter_count
++;
7462 netif_addr_unlock_bh(dev
);
7464 for (i
= 1, off
= 0; i
< vnic
->uc_filter_count
; i
++, off
+= ETH_ALEN
) {
7465 rc
= bnxt_hwrm_set_vnic_filter(bp
, 0, i
, vnic
->uc_list
+ off
);
7467 netdev_err(bp
->dev
, "HWRM vnic filter failure rc: %x\n",
7469 vnic
->uc_filter_count
= i
;
7475 rc
= bnxt_hwrm_cfa_l2_set_rx_mask(bp
, 0);
7476 if (rc
&& vnic
->mc_list_count
) {
7477 netdev_info(bp
->dev
, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
7479 vnic
->rx_mask
|= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST
;
7480 vnic
->mc_list_count
= 0;
7481 rc
= bnxt_hwrm_cfa_l2_set_rx_mask(bp
, 0);
7484 netdev_err(bp
->dev
, "HWRM cfa l2 rx mask failure rc: %d\n",
7490 static bool bnxt_can_reserve_rings(struct bnxt
*bp
)
7492 #ifdef CONFIG_BNXT_SRIOV
7493 if (BNXT_NEW_RM(bp
) && BNXT_VF(bp
)) {
7494 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
7496 /* No minimum rings were provisioned by the PF. Don't
7497 * reserve rings by default when device is down.
7499 if (hw_resc
->min_tx_rings
|| hw_resc
->resv_tx_rings
)
7502 if (!netif_running(bp
->dev
))
7509 /* If the chip and firmware supports RFS */
7510 static bool bnxt_rfs_supported(struct bnxt
*bp
)
7512 if (BNXT_PF(bp
) && !BNXT_CHIP_TYPE_NITRO_A0(bp
))
7514 if (bp
->flags
& BNXT_FLAG_NEW_RSS_CAP
)
7519 /* If runtime conditions support RFS */
7520 static bool bnxt_rfs_capable(struct bnxt
*bp
)
7522 #ifdef CONFIG_RFS_ACCEL
7523 int vnics
, max_vnics
, max_rss_ctxs
;
7525 if (!(bp
->flags
& BNXT_FLAG_MSIX_CAP
) || !bnxt_can_reserve_rings(bp
))
7528 vnics
= 1 + bp
->rx_nr_rings
;
7529 max_vnics
= bnxt_get_max_func_vnics(bp
);
7530 max_rss_ctxs
= bnxt_get_max_func_rss_ctxs(bp
);
7532 /* RSS contexts not a limiting factor */
7533 if (bp
->flags
& BNXT_FLAG_NEW_RSS_CAP
)
7534 max_rss_ctxs
= max_vnics
;
7535 if (vnics
> max_vnics
|| vnics
> max_rss_ctxs
) {
7536 if (bp
->rx_nr_rings
> 1)
7537 netdev_warn(bp
->dev
,
7538 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7539 min(max_rss_ctxs
- 1, max_vnics
- 1));
7543 if (!BNXT_NEW_RM(bp
))
7546 if (vnics
== bp
->hw_resc
.resv_vnics
)
7549 bnxt_hwrm_reserve_rings(bp
, 0, 0, 0, 0, vnics
);
7550 if (vnics
<= bp
->hw_resc
.resv_vnics
)
7553 netdev_warn(bp
->dev
, "Unable to reserve resources to support NTUPLE filters.\n");
7554 bnxt_hwrm_reserve_rings(bp
, 0, 0, 0, 0, 1);
7561 static netdev_features_t
bnxt_fix_features(struct net_device
*dev
,
7562 netdev_features_t features
)
7564 struct bnxt
*bp
= netdev_priv(dev
);
7565 netdev_features_t vlan_features
;
7567 if ((features
& NETIF_F_NTUPLE
) && !bnxt_rfs_capable(bp
))
7568 features
&= ~NETIF_F_NTUPLE
;
7570 if (bp
->flags
& BNXT_FLAG_NO_AGG_RINGS
)
7571 features
&= ~(NETIF_F_LRO
| NETIF_F_GRO_HW
);
7573 if (!(features
& NETIF_F_GRO
))
7574 features
&= ~NETIF_F_GRO_HW
;
7576 if (features
& NETIF_F_GRO_HW
)
7577 features
&= ~NETIF_F_LRO
;
7579 /* Both CTAG and STAG VLAN accelaration on the RX side have to be
7580 * turned on or off together.
7582 vlan_features
= features
& (NETIF_F_HW_VLAN_CTAG_RX
|
7583 NETIF_F_HW_VLAN_STAG_RX
);
7584 if (vlan_features
!= (NETIF_F_HW_VLAN_CTAG_RX
|
7585 NETIF_F_HW_VLAN_STAG_RX
)) {
7586 if (dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
7587 features
&= ~(NETIF_F_HW_VLAN_CTAG_RX
|
7588 NETIF_F_HW_VLAN_STAG_RX
);
7589 else if (vlan_features
)
7590 features
|= NETIF_F_HW_VLAN_CTAG_RX
|
7591 NETIF_F_HW_VLAN_STAG_RX
;
7593 #ifdef CONFIG_BNXT_SRIOV
7596 features
&= ~(NETIF_F_HW_VLAN_CTAG_RX
|
7597 NETIF_F_HW_VLAN_STAG_RX
);
7604 static int bnxt_set_features(struct net_device
*dev
, netdev_features_t features
)
7606 struct bnxt
*bp
= netdev_priv(dev
);
7607 u32 flags
= bp
->flags
;
7610 bool re_init
= false;
7611 bool update_tpa
= false;
7613 flags
&= ~BNXT_FLAG_ALL_CONFIG_FEATS
;
7614 if (features
& NETIF_F_GRO_HW
)
7615 flags
|= BNXT_FLAG_GRO
;
7616 else if (features
& NETIF_F_LRO
)
7617 flags
|= BNXT_FLAG_LRO
;
7619 if (bp
->flags
& BNXT_FLAG_NO_AGG_RINGS
)
7620 flags
&= ~BNXT_FLAG_TPA
;
7622 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
7623 flags
|= BNXT_FLAG_STRIP_VLAN
;
7625 if (features
& NETIF_F_NTUPLE
)
7626 flags
|= BNXT_FLAG_RFS
;
7628 changes
= flags
^ bp
->flags
;
7629 if (changes
& BNXT_FLAG_TPA
) {
7631 if ((bp
->flags
& BNXT_FLAG_TPA
) == 0 ||
7632 (flags
& BNXT_FLAG_TPA
) == 0)
7636 if (changes
& ~BNXT_FLAG_TPA
)
7639 if (flags
!= bp
->flags
) {
7640 u32 old_flags
= bp
->flags
;
7644 if (!test_bit(BNXT_STATE_OPEN
, &bp
->state
)) {
7646 bnxt_set_ring_params(bp
);
7651 bnxt_close_nic(bp
, false, false);
7653 bnxt_set_ring_params(bp
);
7655 return bnxt_open_nic(bp
, false, false);
7658 rc
= bnxt_set_tpa(bp
,
7659 (flags
& BNXT_FLAG_TPA
) ?
7662 bp
->flags
= old_flags
;
7668 static void bnxt_dump_tx_sw_state(struct bnxt_napi
*bnapi
)
7670 struct bnxt_tx_ring_info
*txr
= bnapi
->tx_ring
;
7671 int i
= bnapi
->index
;
7676 netdev_info(bnapi
->bp
->dev
, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7677 i
, txr
->tx_ring_struct
.fw_ring_id
, txr
->tx_prod
,
7681 static void bnxt_dump_rx_sw_state(struct bnxt_napi
*bnapi
)
7683 struct bnxt_rx_ring_info
*rxr
= bnapi
->rx_ring
;
7684 int i
= bnapi
->index
;
7689 netdev_info(bnapi
->bp
->dev
, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7690 i
, rxr
->rx_ring_struct
.fw_ring_id
, rxr
->rx_prod
,
7691 rxr
->rx_agg_ring_struct
.fw_ring_id
, rxr
->rx_agg_prod
,
7692 rxr
->rx_sw_agg_prod
);
7695 static void bnxt_dump_cp_sw_state(struct bnxt_napi
*bnapi
)
7697 struct bnxt_cp_ring_info
*cpr
= &bnapi
->cp_ring
;
7698 int i
= bnapi
->index
;
7700 netdev_info(bnapi
->bp
->dev
, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7701 i
, cpr
->cp_ring_struct
.fw_ring_id
, cpr
->cp_raw_cons
);
7704 static void bnxt_dbg_dump_states(struct bnxt
*bp
)
7707 struct bnxt_napi
*bnapi
;
7709 for (i
= 0; i
< bp
->cp_nr_rings
; i
++) {
7710 bnapi
= bp
->bnapi
[i
];
7711 if (netif_msg_drv(bp
)) {
7712 bnxt_dump_tx_sw_state(bnapi
);
7713 bnxt_dump_rx_sw_state(bnapi
);
7714 bnxt_dump_cp_sw_state(bnapi
);
7719 static void bnxt_reset_task(struct bnxt
*bp
, bool silent
)
7722 bnxt_dbg_dump_states(bp
);
7723 if (netif_running(bp
->dev
)) {
7728 bnxt_close_nic(bp
, false, false);
7729 rc
= bnxt_open_nic(bp
, false, false);
7735 static void bnxt_tx_timeout(struct net_device
*dev
)
7737 struct bnxt
*bp
= netdev_priv(dev
);
7739 netdev_err(bp
->dev
, "TX timeout detected, starting reset task!\n");
7740 set_bit(BNXT_RESET_TASK_SP_EVENT
, &bp
->sp_event
);
7741 bnxt_queue_sp_work(bp
);
7744 static void bnxt_timer(struct timer_list
*t
)
7746 struct bnxt
*bp
= from_timer(bp
, t
, timer
);
7747 struct net_device
*dev
= bp
->dev
;
7749 if (!netif_running(dev
))
7752 if (atomic_read(&bp
->intr_sem
) != 0)
7753 goto bnxt_restart_timer
;
7755 if (bp
->link_info
.link_up
&& (bp
->flags
& BNXT_FLAG_PORT_STATS
) &&
7756 bp
->stats_coal_ticks
) {
7757 set_bit(BNXT_PERIODIC_STATS_SP_EVENT
, &bp
->sp_event
);
7758 bnxt_queue_sp_work(bp
);
7761 if (bnxt_tc_flower_enabled(bp
)) {
7762 set_bit(BNXT_FLOW_STATS_SP_EVENT
, &bp
->sp_event
);
7763 bnxt_queue_sp_work(bp
);
7766 if (bp
->link_info
.phy_retry
) {
7767 if (time_after(jiffies
, bp
->link_info
.phy_retry_expires
)) {
7768 bp
->link_info
.phy_retry
= 0;
7769 netdev_warn(bp
->dev
, "failed to update phy settings after maximum retries.\n");
7771 set_bit(BNXT_UPDATE_PHY_SP_EVENT
, &bp
->sp_event
);
7772 bnxt_queue_sp_work(bp
);
7776 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7779 static void bnxt_rtnl_lock_sp(struct bnxt
*bp
)
7781 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7782 * set. If the device is being closed, bnxt_close() may be holding
7783 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
7784 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7786 clear_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
);
7790 static void bnxt_rtnl_unlock_sp(struct bnxt
*bp
)
7792 set_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
);
7796 /* Only called from bnxt_sp_task() */
7797 static void bnxt_reset(struct bnxt
*bp
, bool silent
)
7799 bnxt_rtnl_lock_sp(bp
);
7800 if (test_bit(BNXT_STATE_OPEN
, &bp
->state
))
7801 bnxt_reset_task(bp
, silent
);
7802 bnxt_rtnl_unlock_sp(bp
);
7805 static void bnxt_cfg_ntp_filters(struct bnxt
*);
7807 static void bnxt_sp_task(struct work_struct
*work
)
7809 struct bnxt
*bp
= container_of(work
, struct bnxt
, sp_task
);
7811 set_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
);
7812 smp_mb__after_atomic();
7813 if (!test_bit(BNXT_STATE_OPEN
, &bp
->state
)) {
7814 clear_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
);
7818 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT
, &bp
->sp_event
))
7819 bnxt_cfg_rx_mode(bp
);
7821 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT
, &bp
->sp_event
))
7822 bnxt_cfg_ntp_filters(bp
);
7823 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT
, &bp
->sp_event
))
7824 bnxt_hwrm_exec_fwd_req(bp
);
7825 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT
, &bp
->sp_event
)) {
7826 bnxt_hwrm_tunnel_dst_port_alloc(
7828 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN
);
7830 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT
, &bp
->sp_event
)) {
7831 bnxt_hwrm_tunnel_dst_port_free(
7832 bp
, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN
);
7834 if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT
, &bp
->sp_event
)) {
7835 bnxt_hwrm_tunnel_dst_port_alloc(
7837 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE
);
7839 if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT
, &bp
->sp_event
)) {
7840 bnxt_hwrm_tunnel_dst_port_free(
7841 bp
, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE
);
7843 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT
, &bp
->sp_event
)) {
7844 bnxt_hwrm_port_qstats(bp
);
7845 bnxt_hwrm_port_qstats_ext(bp
);
7848 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT
, &bp
->sp_event
)) {
7851 mutex_lock(&bp
->link_lock
);
7852 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT
,
7854 bnxt_hwrm_phy_qcaps(bp
);
7856 rc
= bnxt_update_link(bp
, true);
7857 mutex_unlock(&bp
->link_lock
);
7859 netdev_err(bp
->dev
, "SP task can't update link (rc: %x)\n",
7862 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT
, &bp
->sp_event
)) {
7865 mutex_lock(&bp
->link_lock
);
7866 rc
= bnxt_update_phy_setting(bp
);
7867 mutex_unlock(&bp
->link_lock
);
7869 netdev_warn(bp
->dev
, "update phy settings retry failed\n");
7871 bp
->link_info
.phy_retry
= false;
7872 netdev_info(bp
->dev
, "update phy settings retry succeeded\n");
7875 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT
, &bp
->sp_event
)) {
7876 mutex_lock(&bp
->link_lock
);
7877 bnxt_get_port_module_status(bp
);
7878 mutex_unlock(&bp
->link_lock
);
7881 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT
, &bp
->sp_event
))
7882 bnxt_tc_flow_stats_work(bp
);
7884 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
7885 * must be the last functions to be called before exiting.
7887 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT
, &bp
->sp_event
))
7888 bnxt_reset(bp
, false);
7890 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT
, &bp
->sp_event
))
7891 bnxt_reset(bp
, true);
7893 smp_mb__before_atomic();
7894 clear_bit(BNXT_STATE_IN_SP_TASK
, &bp
->state
);
7897 /* Under rtnl_lock */
7898 int bnxt_check_rings(struct bnxt
*bp
, int tx
, int rx
, bool sh
, int tcs
,
7901 int max_rx
, max_tx
, tx_sets
= 1;
7902 int tx_rings_needed
;
7909 rc
= bnxt_get_max_rings(bp
, &max_rx
, &max_tx
, sh
);
7916 tx_rings_needed
= tx
* tx_sets
+ tx_xdp
;
7917 if (max_tx
< tx_rings_needed
)
7921 if (bp
->flags
& BNXT_FLAG_RFS
)
7924 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
7926 cp
= sh
? max_t(int, tx_rings_needed
, rx
) : tx_rings_needed
+ rx
;
7927 if (BNXT_NEW_RM(bp
))
7928 cp
+= bnxt_get_ulp_msix_num(bp
);
7929 return bnxt_hwrm_check_rings(bp
, tx_rings_needed
, rx_rings
, rx
, cp
,
7933 static void bnxt_unmap_bars(struct bnxt
*bp
, struct pci_dev
*pdev
)
7936 pci_iounmap(pdev
, bp
->bar2
);
7941 pci_iounmap(pdev
, bp
->bar1
);
7946 pci_iounmap(pdev
, bp
->bar0
);
7951 static void bnxt_cleanup_pci(struct bnxt
*bp
)
7953 bnxt_unmap_bars(bp
, bp
->pdev
);
7954 pci_release_regions(bp
->pdev
);
7955 pci_disable_device(bp
->pdev
);
7958 static void bnxt_init_dflt_coal(struct bnxt
*bp
)
7960 struct bnxt_coal
*coal
;
7962 /* Tick values in micro seconds.
7963 * 1 coal_buf x bufs_per_record = 1 completion record.
7965 coal
= &bp
->rx_coal
;
7966 coal
->coal_ticks
= 14;
7967 coal
->coal_bufs
= 30;
7968 coal
->coal_ticks_irq
= 1;
7969 coal
->coal_bufs_irq
= 2;
7970 coal
->idle_thresh
= 50;
7971 coal
->bufs_per_record
= 2;
7972 coal
->budget
= 64; /* NAPI budget */
7974 coal
= &bp
->tx_coal
;
7975 coal
->coal_ticks
= 28;
7976 coal
->coal_bufs
= 30;
7977 coal
->coal_ticks_irq
= 2;
7978 coal
->coal_bufs_irq
= 2;
7979 coal
->bufs_per_record
= 1;
7981 bp
->stats_coal_ticks
= BNXT_DEF_STATS_COAL_TICKS
;
7984 static int bnxt_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7987 struct bnxt
*bp
= netdev_priv(dev
);
7989 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7991 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7992 rc
= pci_enable_device(pdev
);
7994 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7998 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8000 "Cannot find PCI device base address, aborting\n");
8002 goto init_err_disable
;
8005 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8007 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8008 goto init_err_disable
;
8011 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64)) != 0 &&
8012 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32)) != 0) {
8013 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8014 goto init_err_disable
;
8017 pci_set_master(pdev
);
8022 bp
->bar0
= pci_ioremap_bar(pdev
, 0);
8024 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
8026 goto init_err_release
;
8029 bp
->bar1
= pci_ioremap_bar(pdev
, 2);
8031 dev_err(&pdev
->dev
, "Cannot map doorbell registers, aborting\n");
8033 goto init_err_release
;
8036 bp
->bar2
= pci_ioremap_bar(pdev
, 4);
8038 dev_err(&pdev
->dev
, "Cannot map bar4 registers, aborting\n");
8040 goto init_err_release
;
8043 pci_enable_pcie_error_reporting(pdev
);
8045 INIT_WORK(&bp
->sp_task
, bnxt_sp_task
);
8047 spin_lock_init(&bp
->ntp_fltr_lock
);
8049 bp
->rx_ring_size
= BNXT_DEFAULT_RX_RING_SIZE
;
8050 bp
->tx_ring_size
= BNXT_DEFAULT_TX_RING_SIZE
;
8052 bnxt_init_dflt_coal(bp
);
8054 timer_setup(&bp
->timer
, bnxt_timer
, 0);
8055 bp
->current_interval
= BNXT_TIMER_INTERVAL
;
8057 clear_bit(BNXT_STATE_OPEN
, &bp
->state
);
8061 bnxt_unmap_bars(bp
, pdev
);
8062 pci_release_regions(pdev
);
8065 pci_disable_device(pdev
);
8071 /* rtnl_lock held */
8072 static int bnxt_change_mac_addr(struct net_device
*dev
, void *p
)
8074 struct sockaddr
*addr
= p
;
8075 struct bnxt
*bp
= netdev_priv(dev
);
8078 if (!is_valid_ether_addr(addr
->sa_data
))
8079 return -EADDRNOTAVAIL
;
8081 if (ether_addr_equal(addr
->sa_data
, dev
->dev_addr
))
8084 rc
= bnxt_approve_mac(bp
, addr
->sa_data
, true);
8088 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
8089 if (netif_running(dev
)) {
8090 bnxt_close_nic(bp
, false, false);
8091 rc
= bnxt_open_nic(bp
, false, false);
8097 /* rtnl_lock held */
8098 static int bnxt_change_mtu(struct net_device
*dev
, int new_mtu
)
8100 struct bnxt
*bp
= netdev_priv(dev
);
8102 if (netif_running(dev
))
8103 bnxt_close_nic(bp
, true, false);
8106 bnxt_set_ring_params(bp
);
8108 if (netif_running(dev
))
8109 return bnxt_open_nic(bp
, true, false);
8114 int bnxt_setup_mq_tc(struct net_device
*dev
, u8 tc
)
8116 struct bnxt
*bp
= netdev_priv(dev
);
8120 if (tc
> bp
->max_tc
) {
8121 netdev_err(dev
, "Too many traffic classes requested: %d. Max supported is %d.\n",
8126 if (netdev_get_num_tc(dev
) == tc
)
8129 if (bp
->flags
& BNXT_FLAG_SHARED_RINGS
)
8132 rc
= bnxt_check_rings(bp
, bp
->tx_nr_rings_per_tc
, bp
->rx_nr_rings
,
8133 sh
, tc
, bp
->tx_nr_rings_xdp
);
8137 /* Needs to close the device and do hw resource re-allocations */
8138 if (netif_running(bp
->dev
))
8139 bnxt_close_nic(bp
, true, false);
8142 bp
->tx_nr_rings
= bp
->tx_nr_rings_per_tc
* tc
;
8143 netdev_set_num_tc(dev
, tc
);
8145 bp
->tx_nr_rings
= bp
->tx_nr_rings_per_tc
;
8146 netdev_reset_tc(dev
);
8148 bp
->tx_nr_rings
+= bp
->tx_nr_rings_xdp
;
8149 bp
->cp_nr_rings
= sh
? max_t(int, bp
->tx_nr_rings
, bp
->rx_nr_rings
) :
8150 bp
->tx_nr_rings
+ bp
->rx_nr_rings
;
8151 bp
->num_stat_ctxs
= bp
->cp_nr_rings
;
8153 if (netif_running(bp
->dev
))
8154 return bnxt_open_nic(bp
, true, false);
8159 static int bnxt_setup_tc_block_cb(enum tc_setup_type type
, void *type_data
,
8162 struct bnxt
*bp
= cb_priv
;
8164 if (!bnxt_tc_flower_enabled(bp
) ||
8165 !tc_cls_can_offload_and_chain0(bp
->dev
, type_data
))
8169 case TC_SETUP_CLSFLOWER
:
8170 return bnxt_tc_setup_flower(bp
, bp
->pf
.fw_fid
, type_data
);
8176 static int bnxt_setup_tc_block(struct net_device
*dev
,
8177 struct tc_block_offload
*f
)
8179 struct bnxt
*bp
= netdev_priv(dev
);
8181 if (f
->binder_type
!= TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS
)
8184 switch (f
->command
) {
8186 return tcf_block_cb_register(f
->block
, bnxt_setup_tc_block_cb
,
8188 case TC_BLOCK_UNBIND
:
8189 tcf_block_cb_unregister(f
->block
, bnxt_setup_tc_block_cb
, bp
);
8196 static int bnxt_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
8200 case TC_SETUP_BLOCK
:
8201 return bnxt_setup_tc_block(dev
, type_data
);
8202 case TC_SETUP_QDISC_MQPRIO
: {
8203 struct tc_mqprio_qopt
*mqprio
= type_data
;
8205 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
8207 return bnxt_setup_mq_tc(dev
, mqprio
->num_tc
);
8214 #ifdef CONFIG_RFS_ACCEL
8215 static bool bnxt_fltr_match(struct bnxt_ntuple_filter
*f1
,
8216 struct bnxt_ntuple_filter
*f2
)
8218 struct flow_keys
*keys1
= &f1
->fkeys
;
8219 struct flow_keys
*keys2
= &f2
->fkeys
;
8221 if (keys1
->basic
.n_proto
!= keys2
->basic
.n_proto
||
8222 keys1
->basic
.ip_proto
!= keys2
->basic
.ip_proto
)
8225 if (keys1
->basic
.n_proto
== htons(ETH_P_IP
)) {
8226 if (keys1
->addrs
.v4addrs
.src
!= keys2
->addrs
.v4addrs
.src
||
8227 keys1
->addrs
.v4addrs
.dst
!= keys2
->addrs
.v4addrs
.dst
)
8230 if (memcmp(&keys1
->addrs
.v6addrs
.src
, &keys2
->addrs
.v6addrs
.src
,
8231 sizeof(keys1
->addrs
.v6addrs
.src
)) ||
8232 memcmp(&keys1
->addrs
.v6addrs
.dst
, &keys2
->addrs
.v6addrs
.dst
,
8233 sizeof(keys1
->addrs
.v6addrs
.dst
)))
8237 if (keys1
->ports
.ports
== keys2
->ports
.ports
&&
8238 keys1
->control
.flags
== keys2
->control
.flags
&&
8239 ether_addr_equal(f1
->src_mac_addr
, f2
->src_mac_addr
) &&
8240 ether_addr_equal(f1
->dst_mac_addr
, f2
->dst_mac_addr
))
8246 static int bnxt_rx_flow_steer(struct net_device
*dev
, const struct sk_buff
*skb
,
8247 u16 rxq_index
, u32 flow_id
)
8249 struct bnxt
*bp
= netdev_priv(dev
);
8250 struct bnxt_ntuple_filter
*fltr
, *new_fltr
;
8251 struct flow_keys
*fkeys
;
8252 struct ethhdr
*eth
= (struct ethhdr
*)skb_mac_header(skb
);
8253 int rc
= 0, idx
, bit_id
, l2_idx
= 0;
8254 struct hlist_head
*head
;
8256 if (!ether_addr_equal(dev
->dev_addr
, eth
->h_dest
)) {
8257 struct bnxt_vnic_info
*vnic
= &bp
->vnic_info
[0];
8260 netif_addr_lock_bh(dev
);
8261 for (j
= 0; j
< vnic
->uc_filter_count
; j
++, off
+= ETH_ALEN
) {
8262 if (ether_addr_equal(eth
->h_dest
,
8263 vnic
->uc_list
+ off
)) {
8268 netif_addr_unlock_bh(dev
);
8272 new_fltr
= kzalloc(sizeof(*new_fltr
), GFP_ATOMIC
);
8276 fkeys
= &new_fltr
->fkeys
;
8277 if (!skb_flow_dissect_flow_keys(skb
, fkeys
, 0)) {
8278 rc
= -EPROTONOSUPPORT
;
8282 if ((fkeys
->basic
.n_proto
!= htons(ETH_P_IP
) &&
8283 fkeys
->basic
.n_proto
!= htons(ETH_P_IPV6
)) ||
8284 ((fkeys
->basic
.ip_proto
!= IPPROTO_TCP
) &&
8285 (fkeys
->basic
.ip_proto
!= IPPROTO_UDP
))) {
8286 rc
= -EPROTONOSUPPORT
;
8289 if (fkeys
->basic
.n_proto
== htons(ETH_P_IPV6
) &&
8290 bp
->hwrm_spec_code
< 0x10601) {
8291 rc
= -EPROTONOSUPPORT
;
8294 if ((fkeys
->control
.flags
& FLOW_DIS_ENCAPSULATION
) &&
8295 bp
->hwrm_spec_code
< 0x10601) {
8296 rc
= -EPROTONOSUPPORT
;
8300 memcpy(new_fltr
->dst_mac_addr
, eth
->h_dest
, ETH_ALEN
);
8301 memcpy(new_fltr
->src_mac_addr
, eth
->h_source
, ETH_ALEN
);
8303 idx
= skb_get_hash_raw(skb
) & BNXT_NTP_FLTR_HASH_MASK
;
8304 head
= &bp
->ntp_fltr_hash_tbl
[idx
];
8306 hlist_for_each_entry_rcu(fltr
, head
, hash
) {
8307 if (bnxt_fltr_match(fltr
, new_fltr
)) {
8315 spin_lock_bh(&bp
->ntp_fltr_lock
);
8316 bit_id
= bitmap_find_free_region(bp
->ntp_fltr_bmap
,
8317 BNXT_NTP_FLTR_MAX_FLTR
, 0);
8319 spin_unlock_bh(&bp
->ntp_fltr_lock
);
8324 new_fltr
->sw_id
= (u16
)bit_id
;
8325 new_fltr
->flow_id
= flow_id
;
8326 new_fltr
->l2_fltr_idx
= l2_idx
;
8327 new_fltr
->rxq
= rxq_index
;
8328 hlist_add_head_rcu(&new_fltr
->hash
, head
);
8329 bp
->ntp_fltr_count
++;
8330 spin_unlock_bh(&bp
->ntp_fltr_lock
);
8332 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT
, &bp
->sp_event
);
8333 bnxt_queue_sp_work(bp
);
8335 return new_fltr
->sw_id
;
8342 static void bnxt_cfg_ntp_filters(struct bnxt
*bp
)
8346 for (i
= 0; i
< BNXT_NTP_FLTR_HASH_SIZE
; i
++) {
8347 struct hlist_head
*head
;
8348 struct hlist_node
*tmp
;
8349 struct bnxt_ntuple_filter
*fltr
;
8352 head
= &bp
->ntp_fltr_hash_tbl
[i
];
8353 hlist_for_each_entry_safe(fltr
, tmp
, head
, hash
) {
8356 if (test_bit(BNXT_FLTR_VALID
, &fltr
->state
)) {
8357 if (rps_may_expire_flow(bp
->dev
, fltr
->rxq
,
8360 bnxt_hwrm_cfa_ntuple_filter_free(bp
,
8365 rc
= bnxt_hwrm_cfa_ntuple_filter_alloc(bp
,
8370 set_bit(BNXT_FLTR_VALID
, &fltr
->state
);
8374 spin_lock_bh(&bp
->ntp_fltr_lock
);
8375 hlist_del_rcu(&fltr
->hash
);
8376 bp
->ntp_fltr_count
--;
8377 spin_unlock_bh(&bp
->ntp_fltr_lock
);
8379 clear_bit(fltr
->sw_id
, bp
->ntp_fltr_bmap
);
8384 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT
, &bp
->sp_event
))
8385 netdev_info(bp
->dev
, "Receive PF driver unload event!");
8390 static void bnxt_cfg_ntp_filters(struct bnxt
*bp
)
8394 #endif /* CONFIG_RFS_ACCEL */
8396 static void bnxt_udp_tunnel_add(struct net_device
*dev
,
8397 struct udp_tunnel_info
*ti
)
8399 struct bnxt
*bp
= netdev_priv(dev
);
8401 if (ti
->sa_family
!= AF_INET6
&& ti
->sa_family
!= AF_INET
)
8404 if (!netif_running(dev
))
8408 case UDP_TUNNEL_TYPE_VXLAN
:
8409 if (bp
->vxlan_port_cnt
&& bp
->vxlan_port
!= ti
->port
)
8412 bp
->vxlan_port_cnt
++;
8413 if (bp
->vxlan_port_cnt
== 1) {
8414 bp
->vxlan_port
= ti
->port
;
8415 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT
, &bp
->sp_event
);
8416 bnxt_queue_sp_work(bp
);
8419 case UDP_TUNNEL_TYPE_GENEVE
:
8420 if (bp
->nge_port_cnt
&& bp
->nge_port
!= ti
->port
)
8424 if (bp
->nge_port_cnt
== 1) {
8425 bp
->nge_port
= ti
->port
;
8426 set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT
, &bp
->sp_event
);
8433 bnxt_queue_sp_work(bp
);
8436 static void bnxt_udp_tunnel_del(struct net_device
*dev
,
8437 struct udp_tunnel_info
*ti
)
8439 struct bnxt
*bp
= netdev_priv(dev
);
8441 if (ti
->sa_family
!= AF_INET6
&& ti
->sa_family
!= AF_INET
)
8444 if (!netif_running(dev
))
8448 case UDP_TUNNEL_TYPE_VXLAN
:
8449 if (!bp
->vxlan_port_cnt
|| bp
->vxlan_port
!= ti
->port
)
8451 bp
->vxlan_port_cnt
--;
8453 if (bp
->vxlan_port_cnt
!= 0)
8456 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT
, &bp
->sp_event
);
8458 case UDP_TUNNEL_TYPE_GENEVE
:
8459 if (!bp
->nge_port_cnt
|| bp
->nge_port
!= ti
->port
)
8463 if (bp
->nge_port_cnt
!= 0)
8466 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT
, &bp
->sp_event
);
8472 bnxt_queue_sp_work(bp
);
8475 static int bnxt_bridge_getlink(struct sk_buff
*skb
, u32 pid
, u32 seq
,
8476 struct net_device
*dev
, u32 filter_mask
,
8479 struct bnxt
*bp
= netdev_priv(dev
);
8481 return ndo_dflt_bridge_getlink(skb
, pid
, seq
, dev
, bp
->br_mode
, 0, 0,
8482 nlflags
, filter_mask
, NULL
);
8485 static int bnxt_bridge_setlink(struct net_device
*dev
, struct nlmsghdr
*nlh
,
8488 struct bnxt
*bp
= netdev_priv(dev
);
8489 struct nlattr
*attr
, *br_spec
;
8492 if (bp
->hwrm_spec_code
< 0x10708 || !BNXT_SINGLE_PF(bp
))
8495 br_spec
= nlmsg_find_attr(nlh
, sizeof(struct ifinfomsg
), IFLA_AF_SPEC
);
8499 nla_for_each_nested(attr
, br_spec
, rem
) {
8502 if (nla_type(attr
) != IFLA_BRIDGE_MODE
)
8505 if (nla_len(attr
) < sizeof(mode
))
8508 mode
= nla_get_u16(attr
);
8509 if (mode
== bp
->br_mode
)
8512 rc
= bnxt_hwrm_set_br_mode(bp
, mode
);
8520 static int bnxt_get_phys_port_name(struct net_device
*dev
, char *buf
,
8523 struct bnxt
*bp
= netdev_priv(dev
);
8526 /* The PF and it's VF-reps only support the switchdev framework */
8530 rc
= snprintf(buf
, len
, "p%d", bp
->pf
.port_id
);
8537 int bnxt_port_attr_get(struct bnxt
*bp
, struct switchdev_attr
*attr
)
8539 if (bp
->eswitch_mode
!= DEVLINK_ESWITCH_MODE_SWITCHDEV
)
8542 /* The PF and it's VF-reps only support the switchdev framework */
8547 case SWITCHDEV_ATTR_ID_PORT_PARENT_ID
:
8548 attr
->u
.ppid
.id_len
= sizeof(bp
->switch_id
);
8549 memcpy(attr
->u
.ppid
.id
, bp
->switch_id
, attr
->u
.ppid
.id_len
);
8557 static int bnxt_swdev_port_attr_get(struct net_device
*dev
,
8558 struct switchdev_attr
*attr
)
8560 return bnxt_port_attr_get(netdev_priv(dev
), attr
);
8563 static const struct switchdev_ops bnxt_switchdev_ops
= {
8564 .switchdev_port_attr_get
= bnxt_swdev_port_attr_get
8567 static const struct net_device_ops bnxt_netdev_ops
= {
8568 .ndo_open
= bnxt_open
,
8569 .ndo_start_xmit
= bnxt_start_xmit
,
8570 .ndo_stop
= bnxt_close
,
8571 .ndo_get_stats64
= bnxt_get_stats64
,
8572 .ndo_set_rx_mode
= bnxt_set_rx_mode
,
8573 .ndo_do_ioctl
= bnxt_ioctl
,
8574 .ndo_validate_addr
= eth_validate_addr
,
8575 .ndo_set_mac_address
= bnxt_change_mac_addr
,
8576 .ndo_change_mtu
= bnxt_change_mtu
,
8577 .ndo_fix_features
= bnxt_fix_features
,
8578 .ndo_set_features
= bnxt_set_features
,
8579 .ndo_tx_timeout
= bnxt_tx_timeout
,
8580 #ifdef CONFIG_BNXT_SRIOV
8581 .ndo_get_vf_config
= bnxt_get_vf_config
,
8582 .ndo_set_vf_mac
= bnxt_set_vf_mac
,
8583 .ndo_set_vf_vlan
= bnxt_set_vf_vlan
,
8584 .ndo_set_vf_rate
= bnxt_set_vf_bw
,
8585 .ndo_set_vf_link_state
= bnxt_set_vf_link_state
,
8586 .ndo_set_vf_spoofchk
= bnxt_set_vf_spoofchk
,
8587 .ndo_set_vf_trust
= bnxt_set_vf_trust
,
8589 .ndo_setup_tc
= bnxt_setup_tc
,
8590 #ifdef CONFIG_RFS_ACCEL
8591 .ndo_rx_flow_steer
= bnxt_rx_flow_steer
,
8593 .ndo_udp_tunnel_add
= bnxt_udp_tunnel_add
,
8594 .ndo_udp_tunnel_del
= bnxt_udp_tunnel_del
,
8595 .ndo_bpf
= bnxt_xdp
,
8596 .ndo_bridge_getlink
= bnxt_bridge_getlink
,
8597 .ndo_bridge_setlink
= bnxt_bridge_setlink
,
8598 .ndo_get_phys_port_name
= bnxt_get_phys_port_name
8601 static void bnxt_remove_one(struct pci_dev
*pdev
)
8603 struct net_device
*dev
= pci_get_drvdata(pdev
);
8604 struct bnxt
*bp
= netdev_priv(dev
);
8607 bnxt_sriov_disable(bp
);
8608 bnxt_dl_unregister(bp
);
8611 pci_disable_pcie_error_reporting(pdev
);
8612 unregister_netdev(dev
);
8613 bnxt_shutdown_tc(bp
);
8614 bnxt_cancel_sp_work(bp
);
8617 bnxt_clear_int_mode(bp
);
8618 bnxt_hwrm_func_drv_unrgtr(bp
);
8619 bnxt_free_hwrm_resources(bp
);
8620 bnxt_free_hwrm_short_cmd_req(bp
);
8621 bnxt_ethtool_free(bp
);
8625 bnxt_cleanup_pci(bp
);
8629 static int bnxt_probe_phy(struct bnxt
*bp
)
8632 struct bnxt_link_info
*link_info
= &bp
->link_info
;
8634 rc
= bnxt_hwrm_phy_qcaps(bp
);
8636 netdev_err(bp
->dev
, "Probe phy can't get phy capabilities (rc: %x)\n",
8640 mutex_init(&bp
->link_lock
);
8642 rc
= bnxt_update_link(bp
, false);
8644 netdev_err(bp
->dev
, "Probe phy can't update link (rc: %x)\n",
8649 /* Older firmware does not have supported_auto_speeds, so assume
8650 * that all supported speeds can be autonegotiated.
8652 if (link_info
->auto_link_speeds
&& !link_info
->support_auto_speeds
)
8653 link_info
->support_auto_speeds
= link_info
->support_speeds
;
8655 /*initialize the ethool setting copy with NVM settings */
8656 if (BNXT_AUTO_MODE(link_info
->auto_mode
)) {
8657 link_info
->autoneg
= BNXT_AUTONEG_SPEED
;
8658 if (bp
->hwrm_spec_code
>= 0x10201) {
8659 if (link_info
->auto_pause_setting
&
8660 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE
)
8661 link_info
->autoneg
|= BNXT_AUTONEG_FLOW_CTRL
;
8663 link_info
->autoneg
|= BNXT_AUTONEG_FLOW_CTRL
;
8665 link_info
->advertising
= link_info
->auto_link_speeds
;
8667 link_info
->req_link_speed
= link_info
->force_link_speed
;
8668 link_info
->req_duplex
= link_info
->duplex_setting
;
8670 if (link_info
->autoneg
& BNXT_AUTONEG_FLOW_CTRL
)
8671 link_info
->req_flow_ctrl
=
8672 link_info
->auto_pause_setting
& BNXT_LINK_PAUSE_BOTH
;
8674 link_info
->req_flow_ctrl
= link_info
->force_pause_setting
;
8678 static int bnxt_get_max_irq(struct pci_dev
*pdev
)
8682 if (!pdev
->msix_cap
)
8685 pci_read_config_word(pdev
, pdev
->msix_cap
+ PCI_MSIX_FLAGS
, &ctrl
);
8686 return (ctrl
& PCI_MSIX_FLAGS_QSIZE
) + 1;
8689 static void _bnxt_get_max_rings(struct bnxt
*bp
, int *max_rx
, int *max_tx
,
8692 struct bnxt_hw_resc
*hw_resc
= &bp
->hw_resc
;
8693 int max_ring_grps
= 0;
8695 *max_tx
= hw_resc
->max_tx_rings
;
8696 *max_rx
= hw_resc
->max_rx_rings
;
8697 *max_cp
= min_t(int, bnxt_get_max_func_cp_rings_for_en(bp
),
8698 hw_resc
->max_irqs
- bnxt_get_ulp_msix_num(bp
));
8699 *max_cp
= min_t(int, *max_cp
, hw_resc
->max_stat_ctxs
);
8700 max_ring_grps
= hw_resc
->max_hw_ring_grps
;
8701 if (BNXT_CHIP_TYPE_NITRO_A0(bp
) && BNXT_PF(bp
)) {
8705 if (bp
->flags
& BNXT_FLAG_AGG_RINGS
)
8707 *max_rx
= min_t(int, *max_rx
, max_ring_grps
);
8710 int bnxt_get_max_rings(struct bnxt
*bp
, int *max_rx
, int *max_tx
, bool shared
)
8714 _bnxt_get_max_rings(bp
, &rx
, &tx
, &cp
);
8717 if (!rx
|| !tx
|| !cp
)
8720 return bnxt_trim_rings(bp
, max_rx
, max_tx
, cp
, shared
);
8723 static int bnxt_get_dflt_rings(struct bnxt
*bp
, int *max_rx
, int *max_tx
,
8728 rc
= bnxt_get_max_rings(bp
, max_rx
, max_tx
, shared
);
8729 if (rc
&& (bp
->flags
& BNXT_FLAG_AGG_RINGS
)) {
8730 /* Not enough rings, try disabling agg rings. */
8731 bp
->flags
&= ~BNXT_FLAG_AGG_RINGS
;
8732 rc
= bnxt_get_max_rings(bp
, max_rx
, max_tx
, shared
);
8734 /* set BNXT_FLAG_AGG_RINGS back for consistency */
8735 bp
->flags
|= BNXT_FLAG_AGG_RINGS
;
8738 bp
->flags
|= BNXT_FLAG_NO_AGG_RINGS
;
8739 bp
->dev
->hw_features
&= ~(NETIF_F_LRO
| NETIF_F_GRO_HW
);
8740 bp
->dev
->features
&= ~(NETIF_F_LRO
| NETIF_F_GRO_HW
);
8741 bnxt_set_ring_params(bp
);
8744 if (bp
->flags
& BNXT_FLAG_ROCE_CAP
) {
8745 int max_cp
, max_stat
, max_irq
;
8747 /* Reserve minimum resources for RoCE */
8748 max_cp
= bnxt_get_max_func_cp_rings(bp
);
8749 max_stat
= bnxt_get_max_func_stat_ctxs(bp
);
8750 max_irq
= bnxt_get_max_func_irqs(bp
);
8751 if (max_cp
<= BNXT_MIN_ROCE_CP_RINGS
||
8752 max_irq
<= BNXT_MIN_ROCE_CP_RINGS
||
8753 max_stat
<= BNXT_MIN_ROCE_STAT_CTXS
)
8756 max_cp
-= BNXT_MIN_ROCE_CP_RINGS
;
8757 max_irq
-= BNXT_MIN_ROCE_CP_RINGS
;
8758 max_stat
-= BNXT_MIN_ROCE_STAT_CTXS
;
8759 max_cp
= min_t(int, max_cp
, max_irq
);
8760 max_cp
= min_t(int, max_cp
, max_stat
);
8761 rc
= bnxt_trim_rings(bp
, max_rx
, max_tx
, max_cp
, shared
);
8768 /* In initial default shared ring setting, each shared ring must have a
8771 static void bnxt_trim_dflt_sh_rings(struct bnxt
*bp
)
8773 bp
->cp_nr_rings
= min_t(int, bp
->tx_nr_rings_per_tc
, bp
->rx_nr_rings
);
8774 bp
->rx_nr_rings
= bp
->cp_nr_rings
;
8775 bp
->tx_nr_rings_per_tc
= bp
->cp_nr_rings
;
8776 bp
->tx_nr_rings
= bp
->tx_nr_rings_per_tc
;
8779 static int bnxt_set_dflt_rings(struct bnxt
*bp
, bool sh
)
8781 int dflt_rings
, max_rx_rings
, max_tx_rings
, rc
;
8783 if (!bnxt_can_reserve_rings(bp
))
8787 bp
->flags
|= BNXT_FLAG_SHARED_RINGS
;
8788 dflt_rings
= netif_get_num_default_rss_queues();
8789 /* Reduce default rings on multi-port cards so that total default
8790 * rings do not exceed CPU count.
8792 if (bp
->port_count
> 1) {
8794 max_t(int, num_online_cpus() / bp
->port_count
, 1);
8796 dflt_rings
= min_t(int, dflt_rings
, max_rings
);
8798 rc
= bnxt_get_dflt_rings(bp
, &max_rx_rings
, &max_tx_rings
, sh
);
8801 bp
->rx_nr_rings
= min_t(int, dflt_rings
, max_rx_rings
);
8802 bp
->tx_nr_rings_per_tc
= min_t(int, dflt_rings
, max_tx_rings
);
8804 bnxt_trim_dflt_sh_rings(bp
);
8806 bp
->cp_nr_rings
= bp
->tx_nr_rings_per_tc
+ bp
->rx_nr_rings
;
8807 bp
->tx_nr_rings
= bp
->tx_nr_rings_per_tc
;
8809 rc
= __bnxt_reserve_rings(bp
);
8811 netdev_warn(bp
->dev
, "Unable to reserve tx rings\n");
8812 bp
->tx_nr_rings_per_tc
= bp
->tx_nr_rings
;
8814 bnxt_trim_dflt_sh_rings(bp
);
8816 /* Rings may have been trimmed, re-reserve the trimmed rings. */
8817 if (bnxt_need_reserve_rings(bp
)) {
8818 rc
= __bnxt_reserve_rings(bp
);
8820 netdev_warn(bp
->dev
, "2nd rings reservation failed.\n");
8821 bp
->tx_nr_rings_per_tc
= bp
->tx_nr_rings
;
8823 bp
->num_stat_ctxs
= bp
->cp_nr_rings
;
8824 if (BNXT_CHIP_TYPE_NITRO_A0(bp
)) {
8829 bp
->tx_nr_rings
= 0;
8830 bp
->rx_nr_rings
= 0;
8835 static int bnxt_init_dflt_ring_mode(struct bnxt
*bp
)
8839 if (bp
->tx_nr_rings
)
8842 bnxt_ulp_irq_stop(bp
);
8843 bnxt_clear_int_mode(bp
);
8844 rc
= bnxt_set_dflt_rings(bp
, true);
8846 netdev_err(bp
->dev
, "Not enough rings available.\n");
8847 goto init_dflt_ring_err
;
8849 rc
= bnxt_init_int_mode(bp
);
8851 goto init_dflt_ring_err
;
8853 bp
->tx_nr_rings_per_tc
= bp
->tx_nr_rings
;
8854 if (bnxt_rfs_supported(bp
) && bnxt_rfs_capable(bp
)) {
8855 bp
->flags
|= BNXT_FLAG_RFS
;
8856 bp
->dev
->features
|= NETIF_F_NTUPLE
;
8859 bnxt_ulp_irq_restart(bp
, rc
);
8863 int bnxt_restore_pf_fw_resources(struct bnxt
*bp
)
8868 bnxt_hwrm_func_qcaps(bp
);
8870 if (netif_running(bp
->dev
))
8871 __bnxt_close_nic(bp
, true, false);
8873 bnxt_ulp_irq_stop(bp
);
8874 bnxt_clear_int_mode(bp
);
8875 rc
= bnxt_init_int_mode(bp
);
8876 bnxt_ulp_irq_restart(bp
, rc
);
8878 if (netif_running(bp
->dev
)) {
8882 rc
= bnxt_open_nic(bp
, true, false);
8888 static int bnxt_init_mac_addr(struct bnxt
*bp
)
8893 memcpy(bp
->dev
->dev_addr
, bp
->pf
.mac_addr
, ETH_ALEN
);
8895 #ifdef CONFIG_BNXT_SRIOV
8896 struct bnxt_vf_info
*vf
= &bp
->vf
;
8897 bool strict_approval
= true;
8899 if (is_valid_ether_addr(vf
->mac_addr
)) {
8900 /* overwrite netdev dev_addr with admin VF MAC */
8901 memcpy(bp
->dev
->dev_addr
, vf
->mac_addr
, ETH_ALEN
);
8902 /* Older PF driver or firmware may not approve this
8905 strict_approval
= false;
8907 eth_hw_addr_random(bp
->dev
);
8909 rc
= bnxt_approve_mac(bp
, bp
->dev
->dev_addr
, strict_approval
);
8915 static int bnxt_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8917 static int version_printed
;
8918 struct net_device
*dev
;
8922 if (pci_is_bridge(pdev
))
8925 if (version_printed
++ == 0)
8926 pr_info("%s", version
);
8928 max_irqs
= bnxt_get_max_irq(pdev
);
8929 dev
= alloc_etherdev_mq(sizeof(*bp
), max_irqs
);
8933 bp
= netdev_priv(dev
);
8935 if (bnxt_vf_pciid(ent
->driver_data
))
8936 bp
->flags
|= BNXT_FLAG_VF
;
8939 bp
->flags
|= BNXT_FLAG_MSIX_CAP
;
8941 rc
= bnxt_init_board(pdev
, dev
);
8945 dev
->netdev_ops
= &bnxt_netdev_ops
;
8946 dev
->watchdog_timeo
= BNXT_TX_TIMEOUT
;
8947 dev
->ethtool_ops
= &bnxt_ethtool_ops
;
8948 SWITCHDEV_SET_OPS(dev
, &bnxt_switchdev_ops
);
8949 pci_set_drvdata(pdev
, dev
);
8951 rc
= bnxt_alloc_hwrm_resources(bp
);
8953 goto init_err_pci_clean
;
8955 mutex_init(&bp
->hwrm_cmd_lock
);
8956 rc
= bnxt_hwrm_ver_get(bp
);
8958 goto init_err_pci_clean
;
8960 if (bp
->fw_cap
& BNXT_FW_CAP_SHORT_CMD
) {
8961 rc
= bnxt_alloc_hwrm_short_cmd_req(bp
);
8963 goto init_err_pci_clean
;
8966 rc
= bnxt_hwrm_func_reset(bp
);
8968 goto init_err_pci_clean
;
8970 bnxt_hwrm_fw_set_time(bp
);
8972 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
| NETIF_F_SG
|
8973 NETIF_F_TSO
| NETIF_F_TSO6
|
8974 NETIF_F_GSO_UDP_TUNNEL
| NETIF_F_GSO_GRE
|
8975 NETIF_F_GSO_IPXIP4
|
8976 NETIF_F_GSO_UDP_TUNNEL_CSUM
| NETIF_F_GSO_GRE_CSUM
|
8977 NETIF_F_GSO_PARTIAL
| NETIF_F_RXHASH
|
8978 NETIF_F_RXCSUM
| NETIF_F_GRO
;
8980 if (!BNXT_CHIP_TYPE_NITRO_A0(bp
))
8981 dev
->hw_features
|= NETIF_F_LRO
;
8983 dev
->hw_enc_features
=
8984 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
| NETIF_F_SG
|
8985 NETIF_F_TSO
| NETIF_F_TSO6
|
8986 NETIF_F_GSO_UDP_TUNNEL
| NETIF_F_GSO_GRE
|
8987 NETIF_F_GSO_UDP_TUNNEL_CSUM
| NETIF_F_GSO_GRE_CSUM
|
8988 NETIF_F_GSO_IPXIP4
| NETIF_F_GSO_PARTIAL
;
8989 dev
->gso_partial_features
= NETIF_F_GSO_UDP_TUNNEL_CSUM
|
8990 NETIF_F_GSO_GRE_CSUM
;
8991 dev
->vlan_features
= dev
->hw_features
| NETIF_F_HIGHDMA
;
8992 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
8993 NETIF_F_HW_VLAN_STAG_RX
| NETIF_F_HW_VLAN_STAG_TX
;
8994 if (!BNXT_CHIP_TYPE_NITRO_A0(bp
))
8995 dev
->hw_features
|= NETIF_F_GRO_HW
;
8996 dev
->features
|= dev
->hw_features
| NETIF_F_HIGHDMA
;
8997 if (dev
->features
& NETIF_F_GRO_HW
)
8998 dev
->features
&= ~NETIF_F_LRO
;
8999 dev
->priv_flags
|= IFF_UNICAST_FLT
;
9001 #ifdef CONFIG_BNXT_SRIOV
9002 init_waitqueue_head(&bp
->sriov_cfg_wait
);
9003 mutex_init(&bp
->sriov_lock
);
9005 bp
->gro_func
= bnxt_gro_func_5730x
;
9006 if (BNXT_CHIP_P4_PLUS(bp
))
9007 bp
->gro_func
= bnxt_gro_func_5731x
;
9009 bp
->flags
|= BNXT_FLAG_DOUBLE_DB
;
9011 rc
= bnxt_hwrm_func_drv_rgtr(bp
);
9013 goto init_err_pci_clean
;
9015 rc
= bnxt_hwrm_func_rgtr_async_events(bp
, NULL
, 0);
9017 goto init_err_pci_clean
;
9019 bp
->ulp_probe
= bnxt_ulp_probe
;
9021 /* Get the MAX capabilities for this function */
9022 rc
= bnxt_hwrm_func_qcaps(bp
);
9024 netdev_err(bp
->dev
, "hwrm query capability failure rc: %x\n",
9027 goto init_err_pci_clean
;
9029 rc
= bnxt_init_mac_addr(bp
);
9031 dev_err(&pdev
->dev
, "Unable to initialize mac address.\n");
9032 rc
= -EADDRNOTAVAIL
;
9033 goto init_err_pci_clean
;
9035 rc
= bnxt_hwrm_queue_qportcfg(bp
);
9037 netdev_err(bp
->dev
, "hwrm query qportcfg failure rc: %x\n",
9040 goto init_err_pci_clean
;
9043 bnxt_hwrm_func_qcfg(bp
);
9044 bnxt_hwrm_port_led_qcaps(bp
);
9045 bnxt_ethtool_init(bp
);
9048 /* MTU range: 60 - FW defined max */
9049 dev
->min_mtu
= ETH_ZLEN
;
9050 dev
->max_mtu
= bp
->max_mtu
;
9052 rc
= bnxt_probe_phy(bp
);
9054 goto init_err_pci_clean
;
9056 bnxt_set_rx_skb_mode(bp
, false);
9057 bnxt_set_tpa_flags(bp
);
9058 bnxt_set_ring_params(bp
);
9059 bnxt_set_max_func_irqs(bp
, max_irqs
);
9060 rc
= bnxt_set_dflt_rings(bp
, true);
9062 netdev_err(bp
->dev
, "Not enough rings available.\n");
9064 goto init_err_pci_clean
;
9067 /* Default RSS hash cfg. */
9068 bp
->rss_hash_cfg
= VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4
|
9069 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4
|
9070 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6
|
9071 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6
;
9072 if (BNXT_CHIP_P4_PLUS(bp
) && bp
->hwrm_spec_code
>= 0x10501) {
9073 bp
->flags
|= BNXT_FLAG_UDP_RSS_CAP
;
9074 bp
->rss_hash_cfg
|= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4
|
9075 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6
;
9078 bnxt_hwrm_vnic_qcaps(bp
);
9079 if (bnxt_rfs_supported(bp
)) {
9080 dev
->hw_features
|= NETIF_F_NTUPLE
;
9081 if (bnxt_rfs_capable(bp
)) {
9082 bp
->flags
|= BNXT_FLAG_RFS
;
9083 dev
->features
|= NETIF_F_NTUPLE
;
9087 if (dev
->hw_features
& NETIF_F_HW_VLAN_CTAG_RX
)
9088 bp
->flags
|= BNXT_FLAG_STRIP_VLAN
;
9090 rc
= bnxt_init_int_mode(bp
);
9092 goto init_err_pci_clean
;
9094 /* No TC has been set yet and rings may have been trimmed due to
9095 * limited MSIX, so we re-initialize the TX rings per TC.
9097 bp
->tx_nr_rings_per_tc
= bp
->tx_nr_rings
;
9099 bnxt_get_wol_settings(bp
);
9100 if (bp
->flags
& BNXT_FLAG_WOL_CAP
)
9101 device_set_wakeup_enable(&pdev
->dev
, bp
->wol
);
9103 device_set_wakeup_capable(&pdev
->dev
, false);
9105 bnxt_hwrm_set_cache_line_size(bp
, cache_line_size());
9110 create_singlethread_workqueue("bnxt_pf_wq");
9112 dev_err(&pdev
->dev
, "Unable to create workqueue.\n");
9113 goto init_err_pci_clean
;
9119 rc
= register_netdev(dev
);
9121 goto init_err_cleanup_tc
;
9124 bnxt_dl_register(bp
);
9126 netdev_info(dev
, "%s found at mem %lx, node addr %pM\n",
9127 board_info
[ent
->driver_data
].name
,
9128 (long)pci_resource_start(pdev
, 0), dev
->dev_addr
);
9129 pcie_print_link_status(pdev
);
9133 init_err_cleanup_tc
:
9134 bnxt_shutdown_tc(bp
);
9135 bnxt_clear_int_mode(bp
);
9138 bnxt_free_hwrm_short_cmd_req(bp
);
9139 bnxt_free_hwrm_resources(bp
);
9140 bnxt_cleanup_pci(bp
);
9147 static void bnxt_shutdown(struct pci_dev
*pdev
)
9149 struct net_device
*dev
= pci_get_drvdata(pdev
);
9156 bp
= netdev_priv(dev
);
9160 if (netif_running(dev
))
9163 bnxt_ulp_shutdown(bp
);
9165 if (system_state
== SYSTEM_POWER_OFF
) {
9166 bnxt_clear_int_mode(bp
);
9167 pci_wake_from_d3(pdev
, bp
->wol
);
9168 pci_set_power_state(pdev
, PCI_D3hot
);
9175 #ifdef CONFIG_PM_SLEEP
9176 static int bnxt_suspend(struct device
*device
)
9178 struct pci_dev
*pdev
= to_pci_dev(device
);
9179 struct net_device
*dev
= pci_get_drvdata(pdev
);
9180 struct bnxt
*bp
= netdev_priv(dev
);
9184 if (netif_running(dev
)) {
9185 netif_device_detach(dev
);
9186 rc
= bnxt_close(dev
);
9188 bnxt_hwrm_func_drv_unrgtr(bp
);
9193 static int bnxt_resume(struct device
*device
)
9195 struct pci_dev
*pdev
= to_pci_dev(device
);
9196 struct net_device
*dev
= pci_get_drvdata(pdev
);
9197 struct bnxt
*bp
= netdev_priv(dev
);
9201 if (bnxt_hwrm_ver_get(bp
) || bnxt_hwrm_func_drv_rgtr(bp
)) {
9205 rc
= bnxt_hwrm_func_reset(bp
);
9210 bnxt_get_wol_settings(bp
);
9211 if (netif_running(dev
)) {
9212 rc
= bnxt_open(dev
);
9214 netif_device_attach(dev
);
9222 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops
, bnxt_suspend
, bnxt_resume
);
9223 #define BNXT_PM_OPS (&bnxt_pm_ops)
9227 #define BNXT_PM_OPS NULL
9229 #endif /* CONFIG_PM_SLEEP */
9232 * bnxt_io_error_detected - called when PCI error is detected
9233 * @pdev: Pointer to PCI device
9234 * @state: The current pci connection state
9236 * This function is called after a PCI bus error affecting
9237 * this device has been detected.
9239 static pci_ers_result_t
bnxt_io_error_detected(struct pci_dev
*pdev
,
9240 pci_channel_state_t state
)
9242 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9243 struct bnxt
*bp
= netdev_priv(netdev
);
9245 netdev_info(netdev
, "PCI I/O error detected\n");
9248 netif_device_detach(netdev
);
9252 if (state
== pci_channel_io_perm_failure
) {
9254 return PCI_ERS_RESULT_DISCONNECT
;
9257 if (netif_running(netdev
))
9260 pci_disable_device(pdev
);
9263 /* Request a slot slot reset. */
9264 return PCI_ERS_RESULT_NEED_RESET
;
9268 * bnxt_io_slot_reset - called after the pci bus has been reset.
9269 * @pdev: Pointer to PCI device
9271 * Restart the card from scratch, as if from a cold-boot.
9272 * At this point, the card has exprienced a hard reset,
9273 * followed by fixups by BIOS, and has its config space
9274 * set up identically to what it was at cold boot.
9276 static pci_ers_result_t
bnxt_io_slot_reset(struct pci_dev
*pdev
)
9278 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9279 struct bnxt
*bp
= netdev_priv(netdev
);
9281 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
9283 netdev_info(bp
->dev
, "PCI Slot Reset\n");
9287 if (pci_enable_device(pdev
)) {
9289 "Cannot re-enable PCI device after reset.\n");
9291 pci_set_master(pdev
);
9293 err
= bnxt_hwrm_func_reset(bp
);
9294 if (!err
&& netif_running(netdev
))
9295 err
= bnxt_open(netdev
);
9298 result
= PCI_ERS_RESULT_RECOVERED
;
9303 if (result
!= PCI_ERS_RESULT_RECOVERED
) {
9304 if (netif_running(netdev
))
9306 pci_disable_device(pdev
);
9311 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
9314 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9315 err
); /* non-fatal, continue */
9322 * bnxt_io_resume - called when traffic can start flowing again.
9323 * @pdev: Pointer to PCI device
9325 * This callback is called when the error recovery driver tells
9326 * us that its OK to resume normal operation.
9328 static void bnxt_io_resume(struct pci_dev
*pdev
)
9330 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9334 netif_device_attach(netdev
);
9339 static const struct pci_error_handlers bnxt_err_handler
= {
9340 .error_detected
= bnxt_io_error_detected
,
9341 .slot_reset
= bnxt_io_slot_reset
,
9342 .resume
= bnxt_io_resume
9345 static struct pci_driver bnxt_pci_driver
= {
9346 .name
= DRV_MODULE_NAME
,
9347 .id_table
= bnxt_pci_tbl
,
9348 .probe
= bnxt_init_one
,
9349 .remove
= bnxt_remove_one
,
9350 .shutdown
= bnxt_shutdown
,
9351 .driver
.pm
= BNXT_PM_OPS
,
9352 .err_handler
= &bnxt_err_handler
,
9353 #if defined(CONFIG_BNXT_SRIOV)
9354 .sriov_configure
= bnxt_sriov_configure
,
9358 static int __init
bnxt_init(void)
9361 return pci_register_driver(&bnxt_pci_driver
);
9364 static void __exit
bnxt_exit(void)
9366 pci_unregister_driver(&bnxt_pci_driver
);
9368 destroy_workqueue(bnxt_pf_wq
);
9372 module_init(bnxt_init
);
9373 module_exit(bnxt_exit
);