Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnxt / bnxt_sriov.c
blobff53e597938adabfdc93035d3de3ed9aa98925c1
1 /* Broadcom NetXtreme-C/E network driver.
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 * Copyright (c) 2016-2018 Broadcom Limited
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 struct bnxt_vf_info *vf, u16 event_id)
28 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr;
29 struct hwrm_fwd_async_event_cmpl_input req = {0};
30 struct hwrm_async_event_cmpl *async_cmpl;
31 int rc = 0;
33 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
34 if (vf)
35 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
36 else
37 /* broadcast this async event to all VFs */
38 req.encap_async_event_target_id = cpu_to_le16(0xffff);
39 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
40 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
41 async_cmpl->event_id = cpu_to_le16(event_id);
43 mutex_lock(&bp->hwrm_cmd_lock);
44 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
46 if (rc) {
47 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
48 rc);
49 goto fwd_async_event_cmpl_exit;
52 if (resp->error_code) {
53 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n",
54 resp->error_code);
55 rc = -1;
58 fwd_async_event_cmpl_exit:
59 mutex_unlock(&bp->hwrm_cmd_lock);
60 return rc;
63 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
65 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
66 netdev_err(bp->dev, "vf ndo called though PF is down\n");
67 return -EINVAL;
69 if (!bp->pf.active_vfs) {
70 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
71 return -EINVAL;
73 if (vf_id >= bp->pf.active_vfs) {
74 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
75 return -EINVAL;
77 return 0;
80 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
82 struct hwrm_func_cfg_input req = {0};
83 struct bnxt *bp = netdev_priv(dev);
84 struct bnxt_vf_info *vf;
85 bool old_setting = false;
86 u32 func_flags;
87 int rc;
89 if (bp->hwrm_spec_code < 0x10701)
90 return -ENOTSUPP;
92 rc = bnxt_vf_ndo_prep(bp, vf_id);
93 if (rc)
94 return rc;
96 vf = &bp->pf.vf[vf_id];
97 if (vf->flags & BNXT_VF_SPOOFCHK)
98 old_setting = true;
99 if (old_setting == setting)
100 return 0;
102 if (setting)
103 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
104 else
105 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
106 /*TODO: if the driver supports VLAN filter on guest VLAN,
107 * the spoof check should also include vlan anti-spoofing
109 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
110 req.fid = cpu_to_le16(vf->fw_fid);
111 req.flags = cpu_to_le32(func_flags);
112 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
113 if (!rc) {
114 if (setting)
115 vf->flags |= BNXT_VF_SPOOFCHK;
116 else
117 vf->flags &= ~BNXT_VF_SPOOFCHK;
119 return rc;
122 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
124 struct bnxt *bp = netdev_priv(dev);
125 struct bnxt_vf_info *vf;
127 if (bnxt_vf_ndo_prep(bp, vf_id))
128 return -EINVAL;
130 vf = &bp->pf.vf[vf_id];
131 if (trusted)
132 vf->flags |= BNXT_VF_TRUST;
133 else
134 vf->flags &= ~BNXT_VF_TRUST;
136 return 0;
139 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
140 struct ifla_vf_info *ivi)
142 struct bnxt *bp = netdev_priv(dev);
143 struct bnxt_vf_info *vf;
144 int rc;
146 rc = bnxt_vf_ndo_prep(bp, vf_id);
147 if (rc)
148 return rc;
150 ivi->vf = vf_id;
151 vf = &bp->pf.vf[vf_id];
153 if (is_valid_ether_addr(vf->mac_addr))
154 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
155 else
156 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
157 ivi->max_tx_rate = vf->max_tx_rate;
158 ivi->min_tx_rate = vf->min_tx_rate;
159 ivi->vlan = vf->vlan;
160 if (vf->flags & BNXT_VF_QOS)
161 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
162 else
163 ivi->qos = 0;
164 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
165 ivi->trusted = !!(vf->flags & BNXT_VF_TRUST);
166 if (!(vf->flags & BNXT_VF_LINK_FORCED))
167 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
168 else if (vf->flags & BNXT_VF_LINK_UP)
169 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
170 else
171 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
173 return 0;
176 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
178 struct hwrm_func_cfg_input req = {0};
179 struct bnxt *bp = netdev_priv(dev);
180 struct bnxt_vf_info *vf;
181 int rc;
183 rc = bnxt_vf_ndo_prep(bp, vf_id);
184 if (rc)
185 return rc;
186 /* reject bc or mc mac addr, zero mac addr means allow
187 * VF to use its own mac addr
189 if (is_multicast_ether_addr(mac)) {
190 netdev_err(dev, "Invalid VF ethernet address\n");
191 return -EINVAL;
193 vf = &bp->pf.vf[vf_id];
195 memcpy(vf->mac_addr, mac, ETH_ALEN);
196 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
197 req.fid = cpu_to_le16(vf->fw_fid);
198 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
199 memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
200 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
203 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
204 __be16 vlan_proto)
206 struct hwrm_func_cfg_input req = {0};
207 struct bnxt *bp = netdev_priv(dev);
208 struct bnxt_vf_info *vf;
209 u16 vlan_tag;
210 int rc;
212 if (bp->hwrm_spec_code < 0x10201)
213 return -ENOTSUPP;
215 if (vlan_proto != htons(ETH_P_8021Q))
216 return -EPROTONOSUPPORT;
218 rc = bnxt_vf_ndo_prep(bp, vf_id);
219 if (rc)
220 return rc;
222 /* TODO: needed to implement proper handling of user priority,
223 * currently fail the command if there is valid priority
225 if (vlan_id > 4095 || qos)
226 return -EINVAL;
228 vf = &bp->pf.vf[vf_id];
229 vlan_tag = vlan_id;
230 if (vlan_tag == vf->vlan)
231 return 0;
233 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
234 req.fid = cpu_to_le16(vf->fw_fid);
235 req.dflt_vlan = cpu_to_le16(vlan_tag);
236 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
237 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
238 if (!rc)
239 vf->vlan = vlan_tag;
240 return rc;
243 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
244 int max_tx_rate)
246 struct hwrm_func_cfg_input req = {0};
247 struct bnxt *bp = netdev_priv(dev);
248 struct bnxt_vf_info *vf;
249 u32 pf_link_speed;
250 int rc;
252 rc = bnxt_vf_ndo_prep(bp, vf_id);
253 if (rc)
254 return rc;
256 vf = &bp->pf.vf[vf_id];
257 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
258 if (max_tx_rate > pf_link_speed) {
259 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
260 max_tx_rate, vf_id);
261 return -EINVAL;
264 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
265 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
266 min_tx_rate, vf_id);
267 return -EINVAL;
269 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
270 return 0;
271 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
272 req.fid = cpu_to_le16(vf->fw_fid);
273 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
274 req.max_bw = cpu_to_le32(max_tx_rate);
275 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
276 req.min_bw = cpu_to_le32(min_tx_rate);
277 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
278 if (!rc) {
279 vf->min_tx_rate = min_tx_rate;
280 vf->max_tx_rate = max_tx_rate;
282 return rc;
285 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
287 struct bnxt *bp = netdev_priv(dev);
288 struct bnxt_vf_info *vf;
289 int rc;
291 rc = bnxt_vf_ndo_prep(bp, vf_id);
292 if (rc)
293 return rc;
295 vf = &bp->pf.vf[vf_id];
297 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
298 switch (link) {
299 case IFLA_VF_LINK_STATE_AUTO:
300 vf->flags |= BNXT_VF_LINK_UP;
301 break;
302 case IFLA_VF_LINK_STATE_DISABLE:
303 vf->flags |= BNXT_VF_LINK_FORCED;
304 break;
305 case IFLA_VF_LINK_STATE_ENABLE:
306 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
307 break;
308 default:
309 netdev_err(bp->dev, "Invalid link option\n");
310 rc = -EINVAL;
311 break;
313 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
314 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
315 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
316 return rc;
319 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
321 int i;
322 struct bnxt_vf_info *vf;
324 for (i = 0; i < num_vfs; i++) {
325 vf = &bp->pf.vf[i];
326 memset(vf, 0, sizeof(*vf));
328 return 0;
331 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
333 int i, rc = 0;
334 struct bnxt_pf_info *pf = &bp->pf;
335 struct hwrm_func_vf_resc_free_input req = {0};
337 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
339 mutex_lock(&bp->hwrm_cmd_lock);
340 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
341 req.vf_id = cpu_to_le16(i);
342 rc = _hwrm_send_message(bp, &req, sizeof(req),
343 HWRM_CMD_TIMEOUT);
344 if (rc)
345 break;
347 mutex_unlock(&bp->hwrm_cmd_lock);
348 return rc;
351 static void bnxt_free_vf_resources(struct bnxt *bp)
353 struct pci_dev *pdev = bp->pdev;
354 int i;
356 kfree(bp->pf.vf_event_bmap);
357 bp->pf.vf_event_bmap = NULL;
359 for (i = 0; i < 4; i++) {
360 if (bp->pf.hwrm_cmd_req_addr[i]) {
361 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
362 bp->pf.hwrm_cmd_req_addr[i],
363 bp->pf.hwrm_cmd_req_dma_addr[i]);
364 bp->pf.hwrm_cmd_req_addr[i] = NULL;
368 bp->pf.active_vfs = 0;
369 kfree(bp->pf.vf);
370 bp->pf.vf = NULL;
373 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
375 struct pci_dev *pdev = bp->pdev;
376 u32 nr_pages, size, i, j, k = 0;
378 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
379 if (!bp->pf.vf)
380 return -ENOMEM;
382 bnxt_set_vf_attr(bp, num_vfs);
384 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
385 nr_pages = size / BNXT_PAGE_SIZE;
386 if (size & (BNXT_PAGE_SIZE - 1))
387 nr_pages++;
389 for (i = 0; i < nr_pages; i++) {
390 bp->pf.hwrm_cmd_req_addr[i] =
391 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
392 &bp->pf.hwrm_cmd_req_dma_addr[i],
393 GFP_KERNEL);
395 if (!bp->pf.hwrm_cmd_req_addr[i])
396 return -ENOMEM;
398 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
399 struct bnxt_vf_info *vf = &bp->pf.vf[k];
401 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
402 j * BNXT_HWRM_REQ_MAX_SIZE;
403 vf->hwrm_cmd_req_dma_addr =
404 bp->pf.hwrm_cmd_req_dma_addr[i] + j *
405 BNXT_HWRM_REQ_MAX_SIZE;
406 k++;
410 /* Max 128 VF's */
411 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
412 if (!bp->pf.vf_event_bmap)
413 return -ENOMEM;
415 bp->pf.hwrm_cmd_req_pages = nr_pages;
416 return 0;
419 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
421 struct hwrm_func_buf_rgtr_input req = {0};
423 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
425 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
426 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
427 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
428 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
429 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
430 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
431 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
433 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
436 /* Only called by PF to reserve resources for VFs, returns actual number of
437 * VFs configured, or < 0 on error.
439 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs)
441 struct hwrm_func_vf_resource_cfg_input req = {0};
442 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
443 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
444 u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
445 struct bnxt_pf_info *pf = &bp->pf;
446 int i, rc = 0, min = 1;
448 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
450 vf_cp_rings = bnxt_get_max_func_cp_rings_for_en(bp) - bp->cp_nr_rings;
451 vf_stat_ctx = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
452 if (bp->flags & BNXT_FLAG_AGG_RINGS)
453 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
454 else
455 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
456 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
457 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
458 vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
459 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
461 req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
462 req.max_rsscos_ctx = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
463 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
464 min = 0;
465 req.min_rsscos_ctx = cpu_to_le16(min);
467 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
468 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
469 req.min_cmpl_rings = cpu_to_le16(min);
470 req.min_tx_rings = cpu_to_le16(min);
471 req.min_rx_rings = cpu_to_le16(min);
472 req.min_l2_ctxs = cpu_to_le16(min);
473 req.min_vnics = cpu_to_le16(min);
474 req.min_stat_ctx = cpu_to_le16(min);
475 req.min_hw_ring_grps = cpu_to_le16(min);
476 } else {
477 vf_cp_rings /= num_vfs;
478 vf_tx_rings /= num_vfs;
479 vf_rx_rings /= num_vfs;
480 vf_vnics /= num_vfs;
481 vf_stat_ctx /= num_vfs;
482 vf_ring_grps /= num_vfs;
484 req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
485 req.min_tx_rings = cpu_to_le16(vf_tx_rings);
486 req.min_rx_rings = cpu_to_le16(vf_rx_rings);
487 req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
488 req.min_vnics = cpu_to_le16(vf_vnics);
489 req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
490 req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
492 req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
493 req.max_tx_rings = cpu_to_le16(vf_tx_rings);
494 req.max_rx_rings = cpu_to_le16(vf_rx_rings);
495 req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
496 req.max_vnics = cpu_to_le16(vf_vnics);
497 req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
498 req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
500 mutex_lock(&bp->hwrm_cmd_lock);
501 for (i = 0; i < num_vfs; i++) {
502 req.vf_id = cpu_to_le16(pf->first_vf_id + i);
503 rc = _hwrm_send_message(bp, &req, sizeof(req),
504 HWRM_CMD_TIMEOUT);
505 if (rc) {
506 rc = -ENOMEM;
507 break;
509 pf->active_vfs = i + 1;
510 pf->vf[i].fw_fid = pf->first_vf_id + i;
512 mutex_unlock(&bp->hwrm_cmd_lock);
513 if (pf->active_vfs) {
514 u16 n = pf->active_vfs;
516 hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
517 hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
518 hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
520 hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
521 hw_resc->max_rsscos_ctxs -= pf->active_vfs;
522 hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
523 hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
525 rc = pf->active_vfs;
527 return rc;
530 /* Only called by PF to reserve resources for VFs, returns actual number of
531 * VFs configured, or < 0 on error.
533 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
535 u32 rc = 0, mtu, i;
536 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
537 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
538 u16 vf_ring_grps, max_stat_ctxs;
539 struct hwrm_func_cfg_input req = {0};
540 struct bnxt_pf_info *pf = &bp->pf;
541 int total_vf_tx_rings = 0;
543 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
545 max_stat_ctxs = hw_resc->max_stat_ctxs;
547 /* Remaining rings are distributed equally amongs VF's for now */
548 vf_cp_rings = (bnxt_get_max_func_cp_rings_for_en(bp) -
549 bp->cp_nr_rings) / num_vfs;
550 vf_stat_ctx = (max_stat_ctxs - bp->num_stat_ctxs) / num_vfs;
551 if (bp->flags & BNXT_FLAG_AGG_RINGS)
552 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
553 num_vfs;
554 else
555 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
556 num_vfs;
557 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
558 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
559 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
560 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
562 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
563 FUNC_CFG_REQ_ENABLES_MRU |
564 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
565 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
566 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
567 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
568 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
569 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
570 FUNC_CFG_REQ_ENABLES_NUM_VNICS |
571 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
573 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
574 req.mru = cpu_to_le16(mtu);
575 req.mtu = cpu_to_le16(mtu);
577 req.num_rsscos_ctxs = cpu_to_le16(1);
578 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
579 req.num_tx_rings = cpu_to_le16(vf_tx_rings);
580 req.num_rx_rings = cpu_to_le16(vf_rx_rings);
581 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
582 req.num_l2_ctxs = cpu_to_le16(4);
584 req.num_vnics = cpu_to_le16(vf_vnics);
585 /* FIXME spec currently uses 1 bit for stats ctx */
586 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
588 mutex_lock(&bp->hwrm_cmd_lock);
589 for (i = 0; i < num_vfs; i++) {
590 int vf_tx_rsvd = vf_tx_rings;
592 req.fid = cpu_to_le16(pf->first_vf_id + i);
593 rc = _hwrm_send_message(bp, &req, sizeof(req),
594 HWRM_CMD_TIMEOUT);
595 if (rc)
596 break;
597 pf->active_vfs = i + 1;
598 pf->vf[i].fw_fid = le16_to_cpu(req.fid);
599 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
600 &vf_tx_rsvd);
601 if (rc)
602 break;
603 total_vf_tx_rings += vf_tx_rsvd;
605 mutex_unlock(&bp->hwrm_cmd_lock);
606 if (rc)
607 rc = -ENOMEM;
608 if (pf->active_vfs) {
609 hw_resc->max_tx_rings -= total_vf_tx_rings;
610 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
611 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
612 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
613 hw_resc->max_rsscos_ctxs -= num_vfs;
614 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
615 hw_resc->max_vnics -= vf_vnics * num_vfs;
616 rc = pf->active_vfs;
618 return rc;
621 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs)
623 if (BNXT_NEW_RM(bp))
624 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs);
625 else
626 return bnxt_hwrm_func_cfg(bp, num_vfs);
629 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
631 int rc = 0, vfs_supported;
632 int min_rx_rings, min_tx_rings, min_rss_ctxs;
633 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
634 int tx_ok = 0, rx_ok = 0, rss_ok = 0;
635 int avail_cp, avail_stat;
637 /* Check if we can enable requested num of vf's. At a mininum
638 * we require 1 RX 1 TX rings for each VF. In this minimum conf
639 * features like TPA will not be available.
641 vfs_supported = *num_vfs;
643 avail_cp = bnxt_get_max_func_cp_rings_for_en(bp) - bp->cp_nr_rings;
644 avail_stat = hw_resc->max_stat_ctxs - bp->num_stat_ctxs;
645 avail_cp = min_t(int, avail_cp, avail_stat);
647 while (vfs_supported) {
648 min_rx_rings = vfs_supported;
649 min_tx_rings = vfs_supported;
650 min_rss_ctxs = vfs_supported;
652 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
653 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
654 min_rx_rings)
655 rx_ok = 1;
656 } else {
657 if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
658 min_rx_rings)
659 rx_ok = 1;
661 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
662 avail_cp < min_rx_rings)
663 rx_ok = 0;
665 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
666 avail_cp >= min_tx_rings)
667 tx_ok = 1;
669 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
670 min_rss_ctxs)
671 rss_ok = 1;
673 if (tx_ok && rx_ok && rss_ok)
674 break;
676 vfs_supported--;
679 if (!vfs_supported) {
680 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
681 return -EINVAL;
684 if (vfs_supported != *num_vfs) {
685 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
686 *num_vfs, vfs_supported);
687 *num_vfs = vfs_supported;
690 rc = bnxt_alloc_vf_resources(bp, *num_vfs);
691 if (rc)
692 goto err_out1;
694 /* Reserve resources for VFs */
695 rc = bnxt_func_cfg(bp, *num_vfs);
696 if (rc != *num_vfs) {
697 if (rc <= 0) {
698 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
699 *num_vfs = 0;
700 goto err_out2;
702 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", rc);
703 *num_vfs = rc;
706 /* Register buffers for VFs */
707 rc = bnxt_hwrm_func_buf_rgtr(bp);
708 if (rc)
709 goto err_out2;
711 bnxt_ulp_sriov_cfg(bp, *num_vfs);
713 rc = pci_enable_sriov(bp->pdev, *num_vfs);
714 if (rc)
715 goto err_out2;
717 return 0;
719 err_out2:
720 /* Free the resources reserved for various VF's */
721 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
723 err_out1:
724 bnxt_free_vf_resources(bp);
726 return rc;
729 void bnxt_sriov_disable(struct bnxt *bp)
731 u16 num_vfs = pci_num_vf(bp->pdev);
733 if (!num_vfs)
734 return;
736 /* synchronize VF and VF-rep create and destroy */
737 mutex_lock(&bp->sriov_lock);
738 bnxt_vf_reps_destroy(bp);
740 if (pci_vfs_assigned(bp->pdev)) {
741 bnxt_hwrm_fwd_async_event_cmpl(
742 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
743 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
744 num_vfs);
745 } else {
746 pci_disable_sriov(bp->pdev);
747 /* Free the HW resources reserved for various VF's */
748 bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
750 mutex_unlock(&bp->sriov_lock);
752 bnxt_free_vf_resources(bp);
754 /* Reclaim all resources for the PF. */
755 rtnl_lock();
756 bnxt_restore_pf_fw_resources(bp);
757 rtnl_unlock();
759 bnxt_ulp_sriov_cfg(bp, 0);
762 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
764 struct net_device *dev = pci_get_drvdata(pdev);
765 struct bnxt *bp = netdev_priv(dev);
767 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
768 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
769 return 0;
772 rtnl_lock();
773 if (!netif_running(dev)) {
774 netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
775 rtnl_unlock();
776 return 0;
778 bp->sriov_cfg = true;
779 rtnl_unlock();
781 if (pci_vfs_assigned(bp->pdev)) {
782 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
783 num_vfs = 0;
784 goto sriov_cfg_exit;
787 /* Check if enabled VFs is same as requested */
788 if (num_vfs && num_vfs == bp->pf.active_vfs)
789 goto sriov_cfg_exit;
791 /* if there are previous existing VFs, clean them up */
792 bnxt_sriov_disable(bp);
793 if (!num_vfs)
794 goto sriov_cfg_exit;
796 bnxt_sriov_enable(bp, &num_vfs);
798 sriov_cfg_exit:
799 bp->sriov_cfg = false;
800 wake_up(&bp->sriov_cfg_wait);
802 return num_vfs;
805 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
806 void *encap_resp, __le64 encap_resp_addr,
807 __le16 encap_resp_cpr, u32 msg_size)
809 int rc = 0;
810 struct hwrm_fwd_resp_input req = {0};
811 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
813 if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
814 return -EINVAL;
816 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
818 /* Set the new target id */
819 req.target_id = cpu_to_le16(vf->fw_fid);
820 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
821 req.encap_resp_len = cpu_to_le16(msg_size);
822 req.encap_resp_addr = encap_resp_addr;
823 req.encap_resp_cmpl_ring = encap_resp_cpr;
824 memcpy(req.encap_resp, encap_resp, msg_size);
826 mutex_lock(&bp->hwrm_cmd_lock);
827 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
829 if (rc) {
830 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
831 goto fwd_resp_exit;
834 if (resp->error_code) {
835 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n",
836 resp->error_code);
837 rc = -1;
840 fwd_resp_exit:
841 mutex_unlock(&bp->hwrm_cmd_lock);
842 return rc;
845 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
846 u32 msg_size)
848 int rc = 0;
849 struct hwrm_reject_fwd_resp_input req = {0};
850 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
852 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
853 return -EINVAL;
855 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
856 /* Set the new target id */
857 req.target_id = cpu_to_le16(vf->fw_fid);
858 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
859 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
861 mutex_lock(&bp->hwrm_cmd_lock);
862 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
864 if (rc) {
865 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
866 goto fwd_err_resp_exit;
869 if (resp->error_code) {
870 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n",
871 resp->error_code);
872 rc = -1;
875 fwd_err_resp_exit:
876 mutex_unlock(&bp->hwrm_cmd_lock);
877 return rc;
880 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
881 u32 msg_size)
883 int rc = 0;
884 struct hwrm_exec_fwd_resp_input req = {0};
885 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
887 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
888 return -EINVAL;
890 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
891 /* Set the new target id */
892 req.target_id = cpu_to_le16(vf->fw_fid);
893 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
894 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
896 mutex_lock(&bp->hwrm_cmd_lock);
897 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
899 if (rc) {
900 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
901 goto exec_fwd_resp_exit;
904 if (resp->error_code) {
905 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n",
906 resp->error_code);
907 rc = -1;
910 exec_fwd_resp_exit:
911 mutex_unlock(&bp->hwrm_cmd_lock);
912 return rc;
915 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
917 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
918 struct hwrm_func_vf_cfg_input *req =
919 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
921 /* Allow VF to set a valid MAC address, if trust is set to on or
922 * if the PF assigned MAC address is zero
924 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
925 if (is_valid_ether_addr(req->dflt_mac_addr) &&
926 ((vf->flags & BNXT_VF_TRUST) ||
927 !is_valid_ether_addr(vf->mac_addr) ||
928 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
929 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
930 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
932 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
934 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
937 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
939 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
940 struct hwrm_cfa_l2_filter_alloc_input *req =
941 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
942 bool mac_ok = false;
944 if (!is_valid_ether_addr((const u8 *)req->l2_addr))
945 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
947 /* Allow VF to set a valid MAC address, if trust is set to on.
948 * Or VF MAC address must first match MAC address in PF's context.
949 * Otherwise, it must match the VF MAC address if firmware spec >=
950 * 1.2.2
952 if (vf->flags & BNXT_VF_TRUST) {
953 mac_ok = true;
954 } else if (is_valid_ether_addr(vf->mac_addr)) {
955 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
956 mac_ok = true;
957 } else if (is_valid_ether_addr(vf->vf_mac_addr)) {
958 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
959 mac_ok = true;
960 } else {
961 /* There are two cases:
962 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
963 * to the PF and so it doesn't have to match
964 * 2.Allow VF to modify it's own MAC when PF has not assigned a
965 * valid MAC address and firmware spec >= 0x10202
967 mac_ok = true;
969 if (mac_ok)
970 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
971 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
974 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
976 int rc = 0;
978 if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
979 /* real link */
980 rc = bnxt_hwrm_exec_fwd_resp(
981 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
982 } else {
983 struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
984 struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
986 phy_qcfg_req =
987 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
988 mutex_lock(&bp->hwrm_cmd_lock);
989 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
990 sizeof(phy_qcfg_resp));
991 mutex_unlock(&bp->hwrm_cmd_lock);
992 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
993 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
994 phy_qcfg_resp.valid = 1;
996 if (vf->flags & BNXT_VF_LINK_UP) {
997 /* if physical link is down, force link up on VF */
998 if (phy_qcfg_resp.link !=
999 PORT_PHY_QCFG_RESP_LINK_LINK) {
1000 phy_qcfg_resp.link =
1001 PORT_PHY_QCFG_RESP_LINK_LINK;
1002 phy_qcfg_resp.link_speed = cpu_to_le16(
1003 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1004 phy_qcfg_resp.duplex_cfg =
1005 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1006 phy_qcfg_resp.duplex_state =
1007 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1008 phy_qcfg_resp.pause =
1009 (PORT_PHY_QCFG_RESP_PAUSE_TX |
1010 PORT_PHY_QCFG_RESP_PAUSE_RX);
1012 } else {
1013 /* force link down */
1014 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1015 phy_qcfg_resp.link_speed = 0;
1016 phy_qcfg_resp.duplex_state =
1017 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1018 phy_qcfg_resp.pause = 0;
1020 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1021 phy_qcfg_req->resp_addr,
1022 phy_qcfg_req->cmpl_ring,
1023 sizeof(phy_qcfg_resp));
1025 return rc;
1028 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1030 int rc = 0;
1031 struct input *encap_req = vf->hwrm_cmd_req_addr;
1032 u32 req_type = le16_to_cpu(encap_req->req_type);
1034 switch (req_type) {
1035 case HWRM_FUNC_VF_CFG:
1036 rc = bnxt_vf_configure_mac(bp, vf);
1037 break;
1038 case HWRM_CFA_L2_FILTER_ALLOC:
1039 rc = bnxt_vf_validate_set_mac(bp, vf);
1040 break;
1041 case HWRM_FUNC_CFG:
1042 /* TODO Validate if VF is allowed to change mac address,
1043 * mtu, num of rings etc
1045 rc = bnxt_hwrm_exec_fwd_resp(
1046 bp, vf, sizeof(struct hwrm_func_cfg_input));
1047 break;
1048 case HWRM_PORT_PHY_QCFG:
1049 rc = bnxt_vf_set_link(bp, vf);
1050 break;
1051 default:
1052 break;
1054 return rc;
1057 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1059 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1061 /* Scan through VF's and process commands */
1062 while (1) {
1063 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1064 if (vf_id >= active_vfs)
1065 break;
1067 clear_bit(vf_id, bp->pf.vf_event_bmap);
1068 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1069 i = vf_id + 1;
1073 void bnxt_update_vf_mac(struct bnxt *bp)
1075 struct hwrm_func_qcaps_input req = {0};
1076 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1078 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1079 req.fid = cpu_to_le16(0xffff);
1081 mutex_lock(&bp->hwrm_cmd_lock);
1082 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1083 goto update_vf_mac_exit;
1085 /* Store MAC address from the firmware. There are 2 cases:
1086 * 1. MAC address is valid. It is assigned from the PF and we
1087 * need to override the current VF MAC address with it.
1088 * 2. MAC address is zero. The VF will use a random MAC address by
1089 * default but the stored zero MAC will allow the VF user to change
1090 * the random MAC address using ndo_set_mac_address() if he wants.
1092 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1093 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1095 /* overwrite netdev dev_addr with admin VF MAC */
1096 if (is_valid_ether_addr(bp->vf.mac_addr))
1097 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1098 update_vf_mac_exit:
1099 mutex_unlock(&bp->hwrm_cmd_lock);
1102 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1104 struct hwrm_func_vf_cfg_input req = {0};
1105 int rc = 0;
1107 if (!BNXT_VF(bp))
1108 return 0;
1110 if (bp->hwrm_spec_code < 0x10202) {
1111 if (is_valid_ether_addr(bp->vf.mac_addr))
1112 rc = -EADDRNOTAVAIL;
1113 goto mac_done;
1115 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1116 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1117 memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1118 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1119 mac_done:
1120 if (rc && strict) {
1121 rc = -EADDRNOTAVAIL;
1122 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1123 mac);
1124 return rc;
1126 return 0;
1128 #else
1130 void bnxt_sriov_disable(struct bnxt *bp)
1134 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1136 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1139 void bnxt_update_vf_mac(struct bnxt *bp)
1143 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1145 return 0;
1147 #endif