Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
blob15029a5e62b9b0148b5d2d7a1b02899036ae0314
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
56 * Generic information about the driver.
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
62 * Module Parameters.
63 * ==================
67 * Default ethtool "message level" for adapters.
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
74 * The driver uses the best interrupt scheme available on a platform in the
75 * order MSI-X then MSI. This parameter determines which of these schemes the
76 * driver may consider as follows:
78 * msi = 2: choose from among MSI-X and MSI
79 * msi = 1: only consider MSI interrupts
81 * Note that unlike the Physical Function driver, this Virtual Function driver
82 * does _not_ support legacy INTx interrupts (this limitation is mandated by
83 * the PCI-E SR-IOV standard).
85 #define MSI_MSIX 2
86 #define MSI_MSI 1
87 #define MSI_DEFAULT MSI_MSIX
89 static int msi = MSI_DEFAULT;
91 module_param(msi, int, 0644);
92 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
95 * Fundamental constants.
96 * ======================
99 enum {
100 MAX_TXQ_ENTRIES = 16384,
101 MAX_RSPQ_ENTRIES = 16384,
102 MAX_RX_BUFFERS = 16384,
104 MIN_TXQ_ENTRIES = 32,
105 MIN_RSPQ_ENTRIES = 128,
106 MIN_FL_ENTRIES = 16,
109 * For purposes of manipulating the Free List size we need to
110 * recognize that Free Lists are actually Egress Queues (the host
111 * produces free buffers which the hardware consumes), Egress Queues
112 * indices are all in units of Egress Context Units bytes, and free
113 * list entries are 64-bit PCI DMA addresses. And since the state of
114 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 * always have at least one Egress Unit's worth of Free List entries
116 * unused. See sge.c for more details ...
118 EQ_UNIT = SGE_EQ_IDXSIZE,
119 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
120 MIN_FL_RESID = FL_PER_EQ_UNIT,
124 * Global driver state.
125 * ====================
128 static struct dentry *cxgb4vf_debugfs_root;
131 * OS "Callback" functions.
132 * ========================
136 * The link status has changed on the indicated "port" (Virtual Interface).
138 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
140 struct net_device *dev = adapter->port[pidx];
143 * If the port is disabled or the current recorded "link up"
144 * status matches the new status, just return.
146 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
147 return;
150 * Tell the OS that the link status has changed and print a short
151 * informative message on the console about the event.
153 if (link_ok) {
154 const char *s;
155 const char *fc;
156 const struct port_info *pi = netdev_priv(dev);
158 switch (pi->link_cfg.speed) {
159 case 100:
160 s = "100Mbps";
161 break;
162 case 1000:
163 s = "1Gbps";
164 break;
165 case 10000:
166 s = "10Gbps";
167 break;
168 case 25000:
169 s = "25Gbps";
170 break;
171 case 40000:
172 s = "40Gbps";
173 break;
174 case 100000:
175 s = "100Gbps";
176 break;
178 default:
179 s = "unknown";
180 break;
183 switch ((int)pi->link_cfg.fc) {
184 case PAUSE_RX:
185 fc = "RX";
186 break;
188 case PAUSE_TX:
189 fc = "TX";
190 break;
192 case PAUSE_RX | PAUSE_TX:
193 fc = "RX/TX";
194 break;
196 default:
197 fc = "no";
198 break;
201 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
202 } else {
203 netdev_info(dev, "link down\n");
208 * THe port module type has changed on the indicated "port" (Virtual
209 * Interface).
211 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
213 static const char * const mod_str[] = {
214 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
216 const struct net_device *dev = adapter->port[pidx];
217 const struct port_info *pi = netdev_priv(dev);
219 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
220 dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
221 dev->name);
222 else if (pi->mod_type < ARRAY_SIZE(mod_str))
223 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
224 dev->name, mod_str[pi->mod_type]);
225 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
226 dev_info(adapter->pdev_dev, "%s: unsupported optical port "
227 "module inserted\n", dev->name);
228 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
229 dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
230 "forcing TWINAX\n", dev->name);
231 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
232 dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
233 dev->name);
234 else
235 dev_info(adapter->pdev_dev, "%s: unknown module type %d "
236 "inserted\n", dev->name, pi->mod_type);
240 * Net device operations.
241 * ======================
248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
249 * Interface).
251 static int link_start(struct net_device *dev)
253 int ret;
254 struct port_info *pi = netdev_priv(dev);
257 * We do not set address filters and promiscuity here, the stack does
258 * that step explicitly. Enable vlan accel.
260 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
261 true);
262 if (ret == 0) {
263 ret = t4vf_change_mac(pi->adapter, pi->viid,
264 pi->xact_addr_filt, dev->dev_addr, true);
265 if (ret >= 0) {
266 pi->xact_addr_filt = ret;
267 ret = 0;
272 * We don't need to actually "start the link" itself since the
273 * firmware will do that for us when the first Virtual Interface
274 * is enabled on a port.
276 if (ret == 0)
277 ret = t4vf_enable_pi(pi->adapter, pi, true, true);
279 /* The Virtual Interfaces are connected to an internal switch on the
280 * chip which allows VIs attached to the same port to talk to each
281 * other even when the port link is down. As a result, we generally
282 * want to always report a VI's link as being "up", provided there are
283 * no errors in enabling vi.
286 if (ret == 0)
287 netif_carrier_on(dev);
289 return ret;
293 * Name the MSI-X interrupts.
295 static void name_msix_vecs(struct adapter *adapter)
297 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
298 int pidx;
301 * Firmware events.
303 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
304 "%s-FWeventq", adapter->name);
305 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
308 * Ethernet queues.
310 for_each_port(adapter, pidx) {
311 struct net_device *dev = adapter->port[pidx];
312 const struct port_info *pi = netdev_priv(dev);
313 int qs, msi;
315 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
316 snprintf(adapter->msix_info[msi].desc, namelen,
317 "%s-%d", dev->name, qs);
318 adapter->msix_info[msi].desc[namelen] = 0;
324 * Request all of our MSI-X resources.
326 static int request_msix_queue_irqs(struct adapter *adapter)
328 struct sge *s = &adapter->sge;
329 int rxq, msi, err;
332 * Firmware events.
334 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
335 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
336 if (err)
337 return err;
340 * Ethernet queues.
342 msi = MSIX_IQFLINT;
343 for_each_ethrxq(s, rxq) {
344 err = request_irq(adapter->msix_info[msi].vec,
345 t4vf_sge_intr_msix, 0,
346 adapter->msix_info[msi].desc,
347 &s->ethrxq[rxq].rspq);
348 if (err)
349 goto err_free_irqs;
350 msi++;
352 return 0;
354 err_free_irqs:
355 while (--rxq >= 0)
356 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
357 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
358 return err;
362 * Free our MSI-X resources.
364 static void free_msix_queue_irqs(struct adapter *adapter)
366 struct sge *s = &adapter->sge;
367 int rxq, msi;
369 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
370 msi = MSIX_IQFLINT;
371 for_each_ethrxq(s, rxq)
372 free_irq(adapter->msix_info[msi++].vec,
373 &s->ethrxq[rxq].rspq);
377 * Turn on NAPI and start up interrupts on a response queue.
379 static void qenable(struct sge_rspq *rspq)
381 napi_enable(&rspq->napi);
384 * 0-increment the Going To Sleep register to start the timer and
385 * enable interrupts.
387 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
388 CIDXINC_V(0) |
389 SEINTARM_V(rspq->intr_params) |
390 INGRESSQID_V(rspq->cntxt_id));
394 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
396 static void enable_rx(struct adapter *adapter)
398 int rxq;
399 struct sge *s = &adapter->sge;
401 for_each_ethrxq(s, rxq)
402 qenable(&s->ethrxq[rxq].rspq);
403 qenable(&s->fw_evtq);
406 * The interrupt queue doesn't use NAPI so we do the 0-increment of
407 * its Going To Sleep register here to get it started.
409 if (adapter->flags & USING_MSI)
410 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
411 CIDXINC_V(0) |
412 SEINTARM_V(s->intrq.intr_params) |
413 INGRESSQID_V(s->intrq.cntxt_id));
418 * Wait until all NAPI handlers are descheduled.
420 static void quiesce_rx(struct adapter *adapter)
422 struct sge *s = &adapter->sge;
423 int rxq;
425 for_each_ethrxq(s, rxq)
426 napi_disable(&s->ethrxq[rxq].rspq.napi);
427 napi_disable(&s->fw_evtq.napi);
431 * Response queue handler for the firmware event queue.
433 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
434 const struct pkt_gl *gl)
437 * Extract response opcode and get pointer to CPL message body.
439 struct adapter *adapter = rspq->adapter;
440 u8 opcode = ((const struct rss_header *)rsp)->opcode;
441 void *cpl = (void *)(rsp + 1);
443 switch (opcode) {
444 case CPL_FW6_MSG: {
446 * We've received an asynchronous message from the firmware.
448 const struct cpl_fw6_msg *fw_msg = cpl;
449 if (fw_msg->type == FW6_TYPE_CMD_RPL)
450 t4vf_handle_fw_rpl(adapter, fw_msg->data);
451 break;
454 case CPL_FW4_MSG: {
455 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
457 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
458 opcode = CPL_OPCODE_G(ntohl(p->opcode_qid));
459 if (opcode != CPL_SGE_EGR_UPDATE) {
460 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
461 , opcode);
462 break;
464 cpl = (void *)p;
465 /*FALLTHROUGH*/
468 case CPL_SGE_EGR_UPDATE: {
470 * We've received an Egress Queue Status Update message. We
471 * get these, if the SGE is configured to send these when the
472 * firmware passes certain points in processing our TX
473 * Ethernet Queue or if we make an explicit request for one.
474 * We use these updates to determine when we may need to
475 * restart a TX Ethernet Queue which was stopped for lack of
476 * free TX Queue Descriptors ...
478 const struct cpl_sge_egr_update *p = cpl;
479 unsigned int qid = EGR_QID_G(be32_to_cpu(p->opcode_qid));
480 struct sge *s = &adapter->sge;
481 struct sge_txq *tq;
482 struct sge_eth_txq *txq;
483 unsigned int eq_idx;
486 * Perform sanity checking on the Queue ID to make sure it
487 * really refers to one of our TX Ethernet Egress Queues which
488 * is active and matches the queue's ID. None of these error
489 * conditions should ever happen so we may want to either make
490 * them fatal and/or conditionalized under DEBUG.
492 eq_idx = EQ_IDX(s, qid);
493 if (unlikely(eq_idx >= MAX_EGRQ)) {
494 dev_err(adapter->pdev_dev,
495 "Egress Update QID %d out of range\n", qid);
496 break;
498 tq = s->egr_map[eq_idx];
499 if (unlikely(tq == NULL)) {
500 dev_err(adapter->pdev_dev,
501 "Egress Update QID %d TXQ=NULL\n", qid);
502 break;
504 txq = container_of(tq, struct sge_eth_txq, q);
505 if (unlikely(tq->abs_id != qid)) {
506 dev_err(adapter->pdev_dev,
507 "Egress Update QID %d refers to TXQ %d\n",
508 qid, tq->abs_id);
509 break;
513 * Restart a stopped TX Queue which has less than half of its
514 * TX ring in use ...
516 txq->q.restarts++;
517 netif_tx_wake_queue(txq->txq);
518 break;
521 default:
522 dev_err(adapter->pdev_dev,
523 "unexpected CPL %#x on FW event queue\n", opcode);
526 return 0;
530 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
531 * to use and initializes them. We support multiple "Queue Sets" per port if
532 * we have MSI-X, otherwise just one queue set per port.
534 static int setup_sge_queues(struct adapter *adapter)
536 struct sge *s = &adapter->sge;
537 int err, pidx, msix;
540 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
541 * state.
543 bitmap_zero(s->starving_fl, MAX_EGRQ);
546 * If we're using MSI interrupt mode we need to set up a "forwarded
547 * interrupt" queue which we'll set up with our MSI vector. The rest
548 * of the ingress queues will be set up to forward their interrupts to
549 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
550 * the intrq's queue ID as the interrupt forwarding queue for the
551 * subsequent calls ...
553 if (adapter->flags & USING_MSI) {
554 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
555 adapter->port[0], 0, NULL, NULL);
556 if (err)
557 goto err_free_queues;
561 * Allocate our ingress queue for asynchronous firmware messages.
563 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
564 MSIX_FW, NULL, fwevtq_handler);
565 if (err)
566 goto err_free_queues;
569 * Allocate each "port"'s initial Queue Sets. These can be changed
570 * later on ... up to the point where any interface on the adapter is
571 * brought up at which point lots of things get nailed down
572 * permanently ...
574 msix = MSIX_IQFLINT;
575 for_each_port(adapter, pidx) {
576 struct net_device *dev = adapter->port[pidx];
577 struct port_info *pi = netdev_priv(dev);
578 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
579 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
580 int qs;
582 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
583 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
584 dev, msix++,
585 &rxq->fl, t4vf_ethrx_handler);
586 if (err)
587 goto err_free_queues;
589 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
590 netdev_get_tx_queue(dev, qs),
591 s->fw_evtq.cntxt_id);
592 if (err)
593 goto err_free_queues;
595 rxq->rspq.idx = qs;
596 memset(&rxq->stats, 0, sizeof(rxq->stats));
601 * Create the reverse mappings for the queues.
603 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
604 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
605 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
606 for_each_port(adapter, pidx) {
607 struct net_device *dev = adapter->port[pidx];
608 struct port_info *pi = netdev_priv(dev);
609 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
610 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
611 int qs;
613 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
614 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
615 EQ_MAP(s, txq->q.abs_id) = &txq->q;
618 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
619 * for Free Lists but since all of the Egress Queues
620 * (including Free Lists) have Relative Queue IDs
621 * which are computed as Absolute - Base Queue ID, we
622 * can synthesize the Absolute Queue IDs for the Free
623 * Lists. This is useful for debugging purposes when
624 * we want to dump Queue Contexts via the PF Driver.
626 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
627 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
630 return 0;
632 err_free_queues:
633 t4vf_free_sge_resources(adapter);
634 return err;
638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
639 * queues. We configure the RSS CPU lookup table to distribute to the number
640 * of HW receive queues, and the response queue lookup table to narrow that
641 * down to the response queues actually configured for each "port" (Virtual
642 * Interface). We always configure the RSS mapping for all ports since the
643 * mapping table has plenty of entries.
645 static int setup_rss(struct adapter *adapter)
647 int pidx;
649 for_each_port(adapter, pidx) {
650 struct port_info *pi = adap2pinfo(adapter, pidx);
651 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
652 u16 rss[MAX_PORT_QSETS];
653 int qs, err;
655 for (qs = 0; qs < pi->nqsets; qs++)
656 rss[qs] = rxq[qs].rspq.abs_id;
658 err = t4vf_config_rss_range(adapter, pi->viid,
659 0, pi->rss_size, rss, pi->nqsets);
660 if (err)
661 return err;
664 * Perform Global RSS Mode-specific initialization.
666 switch (adapter->params.rss.mode) {
667 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
669 * If Tunnel All Lookup isn't specified in the global
670 * RSS Configuration, then we need to specify a
671 * default Ingress Queue for any ingress packets which
672 * aren't hashed. We'll use our first ingress queue
673 * ...
675 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
676 union rss_vi_config config;
677 err = t4vf_read_rss_vi_config(adapter,
678 pi->viid,
679 &config);
680 if (err)
681 return err;
682 config.basicvirtual.defaultq =
683 rxq[0].rspq.abs_id;
684 err = t4vf_write_rss_vi_config(adapter,
685 pi->viid,
686 &config);
687 if (err)
688 return err;
690 break;
694 return 0;
698 * Bring the adapter up. Called whenever we go from no "ports" open to having
699 * one open. This function performs the actions necessary to make an adapter
700 * operational, such as completing the initialization of HW modules, and
701 * enabling interrupts. Must be called with the rtnl lock held. (Note that
702 * this is called "cxgb_up" in the PF Driver.)
704 static int adapter_up(struct adapter *adapter)
706 int err;
709 * If this is the first time we've been called, perform basic
710 * adapter setup. Once we've done this, many of our adapter
711 * parameters can no longer be changed ...
713 if ((adapter->flags & FULL_INIT_DONE) == 0) {
714 err = setup_sge_queues(adapter);
715 if (err)
716 return err;
717 err = setup_rss(adapter);
718 if (err) {
719 t4vf_free_sge_resources(adapter);
720 return err;
723 if (adapter->flags & USING_MSIX)
724 name_msix_vecs(adapter);
726 adapter->flags |= FULL_INIT_DONE;
730 * Acquire our interrupt resources. We only support MSI-X and MSI.
732 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
733 if (adapter->flags & USING_MSIX)
734 err = request_msix_queue_irqs(adapter);
735 else
736 err = request_irq(adapter->pdev->irq,
737 t4vf_intr_handler(adapter), 0,
738 adapter->name, adapter);
739 if (err) {
740 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
741 err);
742 return err;
746 * Enable NAPI ingress processing and return success.
748 enable_rx(adapter);
749 t4vf_sge_start(adapter);
751 return 0;
755 * Bring the adapter down. Called whenever the last "port" (Virtual
756 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
757 * Driver.)
759 static void adapter_down(struct adapter *adapter)
762 * Free interrupt resources.
764 if (adapter->flags & USING_MSIX)
765 free_msix_queue_irqs(adapter);
766 else
767 free_irq(adapter->pdev->irq, adapter);
770 * Wait for NAPI handlers to finish.
772 quiesce_rx(adapter);
776 * Start up a net device.
778 static int cxgb4vf_open(struct net_device *dev)
780 int err;
781 struct port_info *pi = netdev_priv(dev);
782 struct adapter *adapter = pi->adapter;
785 * If this is the first interface that we're opening on the "adapter",
786 * bring the "adapter" up now.
788 if (adapter->open_device_map == 0) {
789 err = adapter_up(adapter);
790 if (err)
791 return err;
795 * Note that this interface is up and start everything up ...
797 err = link_start(dev);
798 if (err)
799 goto err_unwind;
801 pi->vlan_id = t4vf_get_vf_vlan_acl(adapter);
803 netif_tx_start_all_queues(dev);
804 set_bit(pi->port_id, &adapter->open_device_map);
805 return 0;
807 err_unwind:
808 if (adapter->open_device_map == 0)
809 adapter_down(adapter);
810 return err;
814 * Shut down a net device. This routine is called "cxgb_close" in the PF
815 * Driver ...
817 static int cxgb4vf_stop(struct net_device *dev)
819 struct port_info *pi = netdev_priv(dev);
820 struct adapter *adapter = pi->adapter;
822 netif_tx_stop_all_queues(dev);
823 netif_carrier_off(dev);
824 t4vf_enable_pi(adapter, pi, false, false);
826 clear_bit(pi->port_id, &adapter->open_device_map);
827 if (adapter->open_device_map == 0)
828 adapter_down(adapter);
829 return 0;
833 * Translate our basic statistics into the standard "ifconfig" statistics.
835 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
837 struct t4vf_port_stats stats;
838 struct port_info *pi = netdev2pinfo(dev);
839 struct adapter *adapter = pi->adapter;
840 struct net_device_stats *ns = &dev->stats;
841 int err;
843 spin_lock(&adapter->stats_lock);
844 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
845 spin_unlock(&adapter->stats_lock);
847 memset(ns, 0, sizeof(*ns));
848 if (err)
849 return ns;
851 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
852 stats.tx_ucast_bytes + stats.tx_offload_bytes);
853 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
854 stats.tx_ucast_frames + stats.tx_offload_frames);
855 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
856 stats.rx_ucast_bytes);
857 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
858 stats.rx_ucast_frames);
859 ns->multicast = stats.rx_mcast_frames;
860 ns->tx_errors = stats.tx_drop_frames;
861 ns->rx_errors = stats.rx_err_frames;
863 return ns;
866 static inline int cxgb4vf_set_addr_hash(struct port_info *pi)
868 struct adapter *adapter = pi->adapter;
869 u64 vec = 0;
870 bool ucast = false;
871 struct hash_mac_addr *entry;
873 /* Calculate the hash vector for the updated list and program it */
874 list_for_each_entry(entry, &adapter->mac_hlist, list) {
875 ucast |= is_unicast_ether_addr(entry->addr);
876 vec |= (1ULL << hash_mac_addr(entry->addr));
878 return t4vf_set_addr_hash(adapter, pi->viid, ucast, vec, false);
881 static int cxgb4vf_mac_sync(struct net_device *netdev, const u8 *mac_addr)
883 struct port_info *pi = netdev_priv(netdev);
884 struct adapter *adapter = pi->adapter;
885 int ret;
886 u64 mhash = 0;
887 u64 uhash = 0;
888 bool free = false;
889 bool ucast = is_unicast_ether_addr(mac_addr);
890 const u8 *maclist[1] = {mac_addr};
891 struct hash_mac_addr *new_entry;
893 ret = t4vf_alloc_mac_filt(adapter, pi->viid, free, 1, maclist,
894 NULL, ucast ? &uhash : &mhash, false);
895 if (ret < 0)
896 goto out;
897 /* if hash != 0, then add the addr to hash addr list
898 * so on the end we will calculate the hash for the
899 * list and program it
901 if (uhash || mhash) {
902 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
903 if (!new_entry)
904 return -ENOMEM;
905 ether_addr_copy(new_entry->addr, mac_addr);
906 list_add_tail(&new_entry->list, &adapter->mac_hlist);
907 ret = cxgb4vf_set_addr_hash(pi);
909 out:
910 return ret < 0 ? ret : 0;
913 static int cxgb4vf_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
915 struct port_info *pi = netdev_priv(netdev);
916 struct adapter *adapter = pi->adapter;
917 int ret;
918 const u8 *maclist[1] = {mac_addr};
919 struct hash_mac_addr *entry, *tmp;
921 /* If the MAC address to be removed is in the hash addr
922 * list, delete it from the list and update hash vector
924 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, list) {
925 if (ether_addr_equal(entry->addr, mac_addr)) {
926 list_del(&entry->list);
927 kfree(entry);
928 return cxgb4vf_set_addr_hash(pi);
932 ret = t4vf_free_mac_filt(adapter, pi->viid, 1, maclist, false);
933 return ret < 0 ? -EINVAL : 0;
937 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
938 * If @mtu is -1 it is left unchanged.
940 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
942 struct port_info *pi = netdev_priv(dev);
944 __dev_uc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
945 __dev_mc_sync(dev, cxgb4vf_mac_sync, cxgb4vf_mac_unsync);
946 return t4vf_set_rxmode(pi->adapter, pi->viid, -1,
947 (dev->flags & IFF_PROMISC) != 0,
948 (dev->flags & IFF_ALLMULTI) != 0,
949 1, -1, sleep_ok);
953 * Set the current receive modes on the device.
955 static void cxgb4vf_set_rxmode(struct net_device *dev)
957 /* unfortunately we can't return errors to the stack */
958 set_rxmode(dev, -1, false);
962 * Find the entry in the interrupt holdoff timer value array which comes
963 * closest to the specified interrupt holdoff value.
965 static int closest_timer(const struct sge *s, int us)
967 int i, timer_idx = 0, min_delta = INT_MAX;
969 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
970 int delta = us - s->timer_val[i];
971 if (delta < 0)
972 delta = -delta;
973 if (delta < min_delta) {
974 min_delta = delta;
975 timer_idx = i;
978 return timer_idx;
981 static int closest_thres(const struct sge *s, int thres)
983 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
985 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
986 delta = thres - s->counter_val[i];
987 if (delta < 0)
988 delta = -delta;
989 if (delta < min_delta) {
990 min_delta = delta;
991 pktcnt_idx = i;
994 return pktcnt_idx;
998 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1000 static unsigned int qtimer_val(const struct adapter *adapter,
1001 const struct sge_rspq *rspq)
1003 unsigned int timer_idx = QINTR_TIMER_IDX_G(rspq->intr_params);
1005 return timer_idx < SGE_NTIMERS
1006 ? adapter->sge.timer_val[timer_idx]
1007 : 0;
1011 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1012 * @adapter: the adapter
1013 * @rspq: the RX response queue
1014 * @us: the hold-off time in us, or 0 to disable timer
1015 * @cnt: the hold-off packet count, or 0 to disable counter
1017 * Sets an RX response queue's interrupt hold-off time and packet count.
1018 * At least one of the two needs to be enabled for the queue to generate
1019 * interrupts.
1021 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1022 unsigned int us, unsigned int cnt)
1024 unsigned int timer_idx;
1027 * If both the interrupt holdoff timer and count are specified as
1028 * zero, default to a holdoff count of 1 ...
1030 if ((us | cnt) == 0)
1031 cnt = 1;
1034 * If an interrupt holdoff count has been specified, then find the
1035 * closest configured holdoff count and use that. If the response
1036 * queue has already been created, then update its queue context
1037 * parameters ...
1039 if (cnt) {
1040 int err;
1041 u32 v, pktcnt_idx;
1043 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1044 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1045 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1046 FW_PARAMS_PARAM_X_V(
1047 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1048 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1049 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1050 if (err)
1051 return err;
1053 rspq->pktcnt_idx = pktcnt_idx;
1057 * Compute the closest holdoff timer index from the supplied holdoff
1058 * timer value.
1060 timer_idx = (us == 0
1061 ? SGE_TIMER_RSTRT_CNTR
1062 : closest_timer(&adapter->sge, us));
1065 * Update the response queue's interrupt coalescing parameters and
1066 * return success.
1068 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
1069 QINTR_CNT_EN_V(cnt > 0));
1070 return 0;
1074 * Return a version number to identify the type of adapter. The scheme is:
1075 * - bits 0..9: chip version
1076 * - bits 10..15: chip revision
1078 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1081 * Chip version 4, revision 0x3f (cxgb4vf).
1083 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1087 * Execute the specified ioctl command.
1089 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1091 int ret = 0;
1093 switch (cmd) {
1095 * The VF Driver doesn't have access to any of the other
1096 * common Ethernet device ioctl()'s (like reading/writing
1097 * PHY registers, etc.
1100 default:
1101 ret = -EOPNOTSUPP;
1102 break;
1104 return ret;
1108 * Change the device's MTU.
1110 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1112 int ret;
1113 struct port_info *pi = netdev_priv(dev);
1115 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1116 -1, -1, -1, -1, true);
1117 if (!ret)
1118 dev->mtu = new_mtu;
1119 return ret;
1122 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1123 netdev_features_t features)
1126 * Since there is no support for separate rx/tx vlan accel
1127 * enable/disable make sure tx flag is always in same state as rx.
1129 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1130 features |= NETIF_F_HW_VLAN_CTAG_TX;
1131 else
1132 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1134 return features;
1137 static int cxgb4vf_set_features(struct net_device *dev,
1138 netdev_features_t features)
1140 struct port_info *pi = netdev_priv(dev);
1141 netdev_features_t changed = dev->features ^ features;
1143 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1144 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1145 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1147 return 0;
1151 * Change the devices MAC address.
1153 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1155 int ret;
1156 struct sockaddr *addr = _addr;
1157 struct port_info *pi = netdev_priv(dev);
1159 if (!is_valid_ether_addr(addr->sa_data))
1160 return -EADDRNOTAVAIL;
1162 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1163 addr->sa_data, true);
1164 if (ret < 0)
1165 return ret;
1167 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1168 pi->xact_addr_filt = ret;
1169 return 0;
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1174 * Poll all of our receive queues. This is called outside of normal interrupt
1175 * context.
1177 static void cxgb4vf_poll_controller(struct net_device *dev)
1179 struct port_info *pi = netdev_priv(dev);
1180 struct adapter *adapter = pi->adapter;
1182 if (adapter->flags & USING_MSIX) {
1183 struct sge_eth_rxq *rxq;
1184 int nqsets;
1186 rxq = &adapter->sge.ethrxq[pi->first_qset];
1187 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1188 t4vf_sge_intr_msix(0, &rxq->rspq);
1189 rxq++;
1191 } else
1192 t4vf_intr_handler(adapter)(0, adapter);
1194 #endif
1197 * Ethtool operations.
1198 * ===================
1200 * Note that we don't support any ethtool operations which change the physical
1201 * state of the port to which we're linked.
1205 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1206 * @port_type: Firmware Port Type
1207 * @mod_type: Firmware Module Type
1209 * Translate Firmware Port/Module type to Ethtool Port Type.
1211 static int from_fw_port_mod_type(enum fw_port_type port_type,
1212 enum fw_port_module_type mod_type)
1214 if (port_type == FW_PORT_TYPE_BT_SGMII ||
1215 port_type == FW_PORT_TYPE_BT_XFI ||
1216 port_type == FW_PORT_TYPE_BT_XAUI) {
1217 return PORT_TP;
1218 } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
1219 port_type == FW_PORT_TYPE_FIBER_XAUI) {
1220 return PORT_FIBRE;
1221 } else if (port_type == FW_PORT_TYPE_SFP ||
1222 port_type == FW_PORT_TYPE_QSFP_10G ||
1223 port_type == FW_PORT_TYPE_QSA ||
1224 port_type == FW_PORT_TYPE_QSFP ||
1225 port_type == FW_PORT_TYPE_CR4_QSFP ||
1226 port_type == FW_PORT_TYPE_CR_QSFP ||
1227 port_type == FW_PORT_TYPE_CR2_QSFP ||
1228 port_type == FW_PORT_TYPE_SFP28) {
1229 if (mod_type == FW_PORT_MOD_TYPE_LR ||
1230 mod_type == FW_PORT_MOD_TYPE_SR ||
1231 mod_type == FW_PORT_MOD_TYPE_ER ||
1232 mod_type == FW_PORT_MOD_TYPE_LRM)
1233 return PORT_FIBRE;
1234 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1235 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1236 return PORT_DA;
1237 else
1238 return PORT_OTHER;
1239 } else if (port_type == FW_PORT_TYPE_KR4_100G ||
1240 port_type == FW_PORT_TYPE_KR_SFP28 ||
1241 port_type == FW_PORT_TYPE_KR_XLAUI) {
1242 return PORT_NONE;
1245 return PORT_OTHER;
1249 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1250 * @port_type: Firmware Port Type
1251 * @fw_caps: Firmware Port Capabilities
1252 * @link_mode_mask: ethtool Link Mode Mask
1254 * Translate a Firmware Port Capabilities specification to an ethtool
1255 * Link Mode Mask.
1257 static void fw_caps_to_lmm(enum fw_port_type port_type,
1258 unsigned int fw_caps,
1259 unsigned long *link_mode_mask)
1261 #define SET_LMM(__lmm_name) \
1262 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1263 link_mode_mask)
1265 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1266 do { \
1267 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1268 SET_LMM(__lmm_name); \
1269 } while (0)
1271 switch (port_type) {
1272 case FW_PORT_TYPE_BT_SGMII:
1273 case FW_PORT_TYPE_BT_XFI:
1274 case FW_PORT_TYPE_BT_XAUI:
1275 SET_LMM(TP);
1276 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
1277 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1278 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1279 break;
1281 case FW_PORT_TYPE_KX4:
1282 case FW_PORT_TYPE_KX:
1283 SET_LMM(Backplane);
1284 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1285 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1286 break;
1288 case FW_PORT_TYPE_KR:
1289 SET_LMM(Backplane);
1290 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1291 break;
1293 case FW_PORT_TYPE_BP_AP:
1294 SET_LMM(Backplane);
1295 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1296 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1297 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1298 break;
1300 case FW_PORT_TYPE_BP4_AP:
1301 SET_LMM(Backplane);
1302 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1303 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
1304 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1305 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
1306 break;
1308 case FW_PORT_TYPE_FIBER_XFI:
1309 case FW_PORT_TYPE_FIBER_XAUI:
1310 case FW_PORT_TYPE_SFP:
1311 case FW_PORT_TYPE_QSFP_10G:
1312 case FW_PORT_TYPE_QSA:
1313 SET_LMM(FIBRE);
1314 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1315 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1316 break;
1318 case FW_PORT_TYPE_BP40_BA:
1319 case FW_PORT_TYPE_QSFP:
1320 SET_LMM(FIBRE);
1321 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1322 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1323 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1324 break;
1326 case FW_PORT_TYPE_CR_QSFP:
1327 case FW_PORT_TYPE_SFP28:
1328 SET_LMM(FIBRE);
1329 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1330 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
1331 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1332 break;
1334 case FW_PORT_TYPE_KR_SFP28:
1335 SET_LMM(Backplane);
1336 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1337 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1338 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
1339 break;
1341 case FW_PORT_TYPE_KR_XLAUI:
1342 SET_LMM(Backplane);
1343 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
1344 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
1345 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
1346 break;
1348 case FW_PORT_TYPE_CR2_QSFP:
1349 SET_LMM(FIBRE);
1350 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
1351 break;
1353 case FW_PORT_TYPE_KR4_100G:
1354 case FW_PORT_TYPE_CR4_QSFP:
1355 SET_LMM(FIBRE);
1356 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
1357 FW_CAPS_TO_LMM(SPEED_10G, 10000baseSR_Full);
1358 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
1359 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
1360 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
1361 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
1362 break;
1364 default:
1365 break;
1368 FW_CAPS_TO_LMM(ANEG, Autoneg);
1369 FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
1370 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
1372 #undef FW_CAPS_TO_LMM
1373 #undef SET_LMM
1376 static int cxgb4vf_get_link_ksettings(struct net_device *dev,
1377 struct ethtool_link_ksettings *link_ksettings)
1379 struct port_info *pi = netdev_priv(dev);
1380 struct ethtool_link_settings *base = &link_ksettings->base;
1382 /* For the nonce, the Firmware doesn't send up Port State changes
1383 * when the Virtual Interface attached to the Port is down. So
1384 * if it's down, let's grab any changes.
1386 if (!netif_running(dev))
1387 (void)t4vf_update_port_info(pi);
1389 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
1390 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
1391 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
1393 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
1395 if (pi->mdio_addr >= 0) {
1396 base->phy_address = pi->mdio_addr;
1397 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
1398 ? ETH_MDIO_SUPPORTS_C22
1399 : ETH_MDIO_SUPPORTS_C45);
1400 } else {
1401 base->phy_address = 255;
1402 base->mdio_support = 0;
1405 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
1406 link_ksettings->link_modes.supported);
1407 fw_caps_to_lmm(pi->port_type, pi->link_cfg.acaps,
1408 link_ksettings->link_modes.advertising);
1409 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
1410 link_ksettings->link_modes.lp_advertising);
1412 if (netif_carrier_ok(dev)) {
1413 base->speed = pi->link_cfg.speed;
1414 base->duplex = DUPLEX_FULL;
1415 } else {
1416 base->speed = SPEED_UNKNOWN;
1417 base->duplex = DUPLEX_UNKNOWN;
1420 if (pi->link_cfg.fc & PAUSE_RX) {
1421 if (pi->link_cfg.fc & PAUSE_TX) {
1422 ethtool_link_ksettings_add_link_mode(link_ksettings,
1423 advertising,
1424 Pause);
1425 } else {
1426 ethtool_link_ksettings_add_link_mode(link_ksettings,
1427 advertising,
1428 Asym_Pause);
1430 } else if (pi->link_cfg.fc & PAUSE_TX) {
1431 ethtool_link_ksettings_add_link_mode(link_ksettings,
1432 advertising,
1433 Asym_Pause);
1436 base->autoneg = pi->link_cfg.autoneg;
1437 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
1438 ethtool_link_ksettings_add_link_mode(link_ksettings,
1439 supported, Autoneg);
1440 if (pi->link_cfg.autoneg)
1441 ethtool_link_ksettings_add_link_mode(link_ksettings,
1442 advertising, Autoneg);
1444 return 0;
1447 /* Translate the Firmware FEC value into the ethtool value. */
1448 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
1450 unsigned int eth_fec = 0;
1452 if (fw_fec & FW_PORT_CAP32_FEC_RS)
1453 eth_fec |= ETHTOOL_FEC_RS;
1454 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1455 eth_fec |= ETHTOOL_FEC_BASER;
1457 /* if nothing is set, then FEC is off */
1458 if (!eth_fec)
1459 eth_fec = ETHTOOL_FEC_OFF;
1461 return eth_fec;
1464 /* Translate Common Code FEC value into ethtool value. */
1465 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
1467 unsigned int eth_fec = 0;
1469 if (cc_fec & FEC_AUTO)
1470 eth_fec |= ETHTOOL_FEC_AUTO;
1471 if (cc_fec & FEC_RS)
1472 eth_fec |= ETHTOOL_FEC_RS;
1473 if (cc_fec & FEC_BASER_RS)
1474 eth_fec |= ETHTOOL_FEC_BASER;
1476 /* if nothing is set, then FEC is off */
1477 if (!eth_fec)
1478 eth_fec = ETHTOOL_FEC_OFF;
1480 return eth_fec;
1483 static int cxgb4vf_get_fecparam(struct net_device *dev,
1484 struct ethtool_fecparam *fec)
1486 const struct port_info *pi = netdev_priv(dev);
1487 const struct link_config *lc = &pi->link_cfg;
1489 /* Translate the Firmware FEC Support into the ethtool value. We
1490 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1491 * any FEC is supported.
1493 fec->fec = fwcap_to_eth_fec(lc->pcaps);
1494 if (fec->fec != ETHTOOL_FEC_OFF)
1495 fec->fec |= ETHTOOL_FEC_AUTO;
1497 /* Translate the current internal FEC parameters into the
1498 * ethtool values.
1500 fec->active_fec = cc_to_eth_fec(lc->fec);
1501 return 0;
1505 * Return our driver information.
1507 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1508 struct ethtool_drvinfo *drvinfo)
1510 struct adapter *adapter = netdev2adap(dev);
1512 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1513 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1514 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1515 sizeof(drvinfo->bus_info));
1516 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1517 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1518 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1519 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1520 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1521 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1522 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1523 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1524 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1525 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1529 * Return current adapter message level.
1531 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1533 return netdev2adap(dev)->msg_enable;
1537 * Set current adapter message level.
1539 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1541 netdev2adap(dev)->msg_enable = msglevel;
1545 * Return the device's current Queue Set ring size parameters along with the
1546 * allowed maximum values. Since ethtool doesn't understand the concept of
1547 * multi-queue devices, we just return the current values associated with the
1548 * first Queue Set.
1550 static void cxgb4vf_get_ringparam(struct net_device *dev,
1551 struct ethtool_ringparam *rp)
1553 const struct port_info *pi = netdev_priv(dev);
1554 const struct sge *s = &pi->adapter->sge;
1556 rp->rx_max_pending = MAX_RX_BUFFERS;
1557 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1558 rp->rx_jumbo_max_pending = 0;
1559 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1561 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1562 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1563 rp->rx_jumbo_pending = 0;
1564 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1568 * Set the Queue Set ring size parameters for the device. Again, since
1569 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1570 * apply these new values across all of the Queue Sets associated with the
1571 * device -- after vetting them of course!
1573 static int cxgb4vf_set_ringparam(struct net_device *dev,
1574 struct ethtool_ringparam *rp)
1576 const struct port_info *pi = netdev_priv(dev);
1577 struct adapter *adapter = pi->adapter;
1578 struct sge *s = &adapter->sge;
1579 int qs;
1581 if (rp->rx_pending > MAX_RX_BUFFERS ||
1582 rp->rx_jumbo_pending ||
1583 rp->tx_pending > MAX_TXQ_ENTRIES ||
1584 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1585 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1586 rp->rx_pending < MIN_FL_ENTRIES ||
1587 rp->tx_pending < MIN_TXQ_ENTRIES)
1588 return -EINVAL;
1590 if (adapter->flags & FULL_INIT_DONE)
1591 return -EBUSY;
1593 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1594 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1595 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1596 s->ethtxq[qs].q.size = rp->tx_pending;
1598 return 0;
1602 * Return the interrupt holdoff timer and count for the first Queue Set on the
1603 * device. Our extension ioctl() (the cxgbtool interface) allows the
1604 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1606 static int cxgb4vf_get_coalesce(struct net_device *dev,
1607 struct ethtool_coalesce *coalesce)
1609 const struct port_info *pi = netdev_priv(dev);
1610 const struct adapter *adapter = pi->adapter;
1611 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1613 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1614 coalesce->rx_max_coalesced_frames =
1615 ((rspq->intr_params & QINTR_CNT_EN_F)
1616 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1617 : 0);
1618 return 0;
1622 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1623 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1624 * the interrupt holdoff timer on any of the device's Queue Sets.
1626 static int cxgb4vf_set_coalesce(struct net_device *dev,
1627 struct ethtool_coalesce *coalesce)
1629 const struct port_info *pi = netdev_priv(dev);
1630 struct adapter *adapter = pi->adapter;
1632 return set_rxq_intr_params(adapter,
1633 &adapter->sge.ethrxq[pi->first_qset].rspq,
1634 coalesce->rx_coalesce_usecs,
1635 coalesce->rx_max_coalesced_frames);
1639 * Report current port link pause parameter settings.
1641 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1642 struct ethtool_pauseparam *pauseparam)
1644 struct port_info *pi = netdev_priv(dev);
1646 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1647 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1648 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1652 * Identify the port by blinking the port's LED.
1654 static int cxgb4vf_phys_id(struct net_device *dev,
1655 enum ethtool_phys_id_state state)
1657 unsigned int val;
1658 struct port_info *pi = netdev_priv(dev);
1660 if (state == ETHTOOL_ID_ACTIVE)
1661 val = 0xffff;
1662 else if (state == ETHTOOL_ID_INACTIVE)
1663 val = 0;
1664 else
1665 return -EINVAL;
1667 return t4vf_identify_port(pi->adapter, pi->viid, val);
1671 * Port stats maintained per queue of the port.
1673 struct queue_port_stats {
1674 u64 tso;
1675 u64 tx_csum;
1676 u64 rx_csum;
1677 u64 vlan_ex;
1678 u64 vlan_ins;
1679 u64 lro_pkts;
1680 u64 lro_merged;
1684 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1685 * these need to match the order of statistics returned by
1686 * t4vf_get_port_stats().
1688 static const char stats_strings[][ETH_GSTRING_LEN] = {
1690 * These must match the layout of the t4vf_port_stats structure.
1692 "TxBroadcastBytes ",
1693 "TxBroadcastFrames ",
1694 "TxMulticastBytes ",
1695 "TxMulticastFrames ",
1696 "TxUnicastBytes ",
1697 "TxUnicastFrames ",
1698 "TxDroppedFrames ",
1699 "TxOffloadBytes ",
1700 "TxOffloadFrames ",
1701 "RxBroadcastBytes ",
1702 "RxBroadcastFrames ",
1703 "RxMulticastBytes ",
1704 "RxMulticastFrames ",
1705 "RxUnicastBytes ",
1706 "RxUnicastFrames ",
1707 "RxErrorFrames ",
1710 * These are accumulated per-queue statistics and must match the
1711 * order of the fields in the queue_port_stats structure.
1713 "TSO ",
1714 "TxCsumOffload ",
1715 "RxCsumGood ",
1716 "VLANextractions ",
1717 "VLANinsertions ",
1718 "GROPackets ",
1719 "GROMerged ",
1723 * Return the number of statistics in the specified statistics set.
1725 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1727 switch (sset) {
1728 case ETH_SS_STATS:
1729 return ARRAY_SIZE(stats_strings);
1730 default:
1731 return -EOPNOTSUPP;
1733 /*NOTREACHED*/
1737 * Return the strings for the specified statistics set.
1739 static void cxgb4vf_get_strings(struct net_device *dev,
1740 u32 sset,
1741 u8 *data)
1743 switch (sset) {
1744 case ETH_SS_STATS:
1745 memcpy(data, stats_strings, sizeof(stats_strings));
1746 break;
1751 * Small utility routine to accumulate queue statistics across the queues of
1752 * a "port".
1754 static void collect_sge_port_stats(const struct adapter *adapter,
1755 const struct port_info *pi,
1756 struct queue_port_stats *stats)
1758 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1759 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1760 int qs;
1762 memset(stats, 0, sizeof(*stats));
1763 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1764 stats->tso += txq->tso;
1765 stats->tx_csum += txq->tx_cso;
1766 stats->rx_csum += rxq->stats.rx_cso;
1767 stats->vlan_ex += rxq->stats.vlan_ex;
1768 stats->vlan_ins += txq->vlan_ins;
1769 stats->lro_pkts += rxq->stats.lro_pkts;
1770 stats->lro_merged += rxq->stats.lro_merged;
1775 * Return the ETH_SS_STATS statistics set.
1777 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1778 struct ethtool_stats *stats,
1779 u64 *data)
1781 struct port_info *pi = netdev2pinfo(dev);
1782 struct adapter *adapter = pi->adapter;
1783 int err = t4vf_get_port_stats(adapter, pi->pidx,
1784 (struct t4vf_port_stats *)data);
1785 if (err)
1786 memset(data, 0, sizeof(struct t4vf_port_stats));
1788 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1789 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1793 * Return the size of our register map.
1795 static int cxgb4vf_get_regs_len(struct net_device *dev)
1797 return T4VF_REGMAP_SIZE;
1801 * Dump a block of registers, start to end inclusive, into a buffer.
1803 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1804 unsigned int start, unsigned int end)
1806 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1808 for ( ; start <= end; start += sizeof(u32)) {
1810 * Avoid reading the Mailbox Control register since that
1811 * can trigger a Mailbox Ownership Arbitration cycle and
1812 * interfere with communication with the firmware.
1814 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1815 *bp++ = 0xffff;
1816 else
1817 *bp++ = t4_read_reg(adapter, start);
1822 * Copy our entire register map into the provided buffer.
1824 static void cxgb4vf_get_regs(struct net_device *dev,
1825 struct ethtool_regs *regs,
1826 void *regbuf)
1828 struct adapter *adapter = netdev2adap(dev);
1830 regs->version = mk_adap_vers(adapter);
1833 * Fill in register buffer with our register map.
1835 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1837 reg_block_dump(adapter, regbuf,
1838 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1839 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1840 reg_block_dump(adapter, regbuf,
1841 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1842 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1844 /* T5 adds new registers in the PL Register map.
1846 reg_block_dump(adapter, regbuf,
1847 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1848 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1849 ? PL_VF_WHOAMI_A : PL_VF_REVISION_A));
1850 reg_block_dump(adapter, regbuf,
1851 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1852 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1854 reg_block_dump(adapter, regbuf,
1855 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1856 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1860 * Report current Wake On LAN settings.
1862 static void cxgb4vf_get_wol(struct net_device *dev,
1863 struct ethtool_wolinfo *wol)
1865 wol->supported = 0;
1866 wol->wolopts = 0;
1867 memset(&wol->sopass, 0, sizeof(wol->sopass));
1871 * TCP Segmentation Offload flags which we support.
1873 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1875 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1876 .get_link_ksettings = cxgb4vf_get_link_ksettings,
1877 .get_fecparam = cxgb4vf_get_fecparam,
1878 .get_drvinfo = cxgb4vf_get_drvinfo,
1879 .get_msglevel = cxgb4vf_get_msglevel,
1880 .set_msglevel = cxgb4vf_set_msglevel,
1881 .get_ringparam = cxgb4vf_get_ringparam,
1882 .set_ringparam = cxgb4vf_set_ringparam,
1883 .get_coalesce = cxgb4vf_get_coalesce,
1884 .set_coalesce = cxgb4vf_set_coalesce,
1885 .get_pauseparam = cxgb4vf_get_pauseparam,
1886 .get_link = ethtool_op_get_link,
1887 .get_strings = cxgb4vf_get_strings,
1888 .set_phys_id = cxgb4vf_phys_id,
1889 .get_sset_count = cxgb4vf_get_sset_count,
1890 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1891 .get_regs_len = cxgb4vf_get_regs_len,
1892 .get_regs = cxgb4vf_get_regs,
1893 .get_wol = cxgb4vf_get_wol,
1897 * /sys/kernel/debug/cxgb4vf support code and data.
1898 * ================================================
1902 * Show Firmware Mailbox Command/Reply Log
1904 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1905 * it's possible that we can catch things during a log update and therefore
1906 * see partially corrupted log entries. But i9t's probably Good Enough(tm).
1907 * If we ever decide that we want to make sure that we're dumping a coherent
1908 * log, we'd need to perform locking in the mailbox logging and in
1909 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1910 * like we do for the Firmware Device Log. But as stated above, meh ...
1912 static int mboxlog_show(struct seq_file *seq, void *v)
1914 struct adapter *adapter = seq->private;
1915 struct mbox_cmd_log *log = adapter->mbox_log;
1916 struct mbox_cmd *entry;
1917 int entry_idx, i;
1919 if (v == SEQ_START_TOKEN) {
1920 seq_printf(seq,
1921 "%10s %15s %5s %5s %s\n",
1922 "Seq#", "Tstamp", "Atime", "Etime",
1923 "Command/Reply");
1924 return 0;
1927 entry_idx = log->cursor + ((uintptr_t)v - 2);
1928 if (entry_idx >= log->size)
1929 entry_idx -= log->size;
1930 entry = mbox_cmd_log_entry(log, entry_idx);
1932 /* skip over unused entries */
1933 if (entry->timestamp == 0)
1934 return 0;
1936 seq_printf(seq, "%10u %15llu %5d %5d",
1937 entry->seqno, entry->timestamp,
1938 entry->access, entry->execute);
1939 for (i = 0; i < MBOX_LEN / 8; i++) {
1940 u64 flit = entry->cmd[i];
1941 u32 hi = (u32)(flit >> 32);
1942 u32 lo = (u32)flit;
1944 seq_printf(seq, " %08x %08x", hi, lo);
1946 seq_puts(seq, "\n");
1947 return 0;
1950 static inline void *mboxlog_get_idx(struct seq_file *seq, loff_t pos)
1952 struct adapter *adapter = seq->private;
1953 struct mbox_cmd_log *log = adapter->mbox_log;
1955 return ((pos <= log->size) ? (void *)(uintptr_t)(pos + 1) : NULL);
1958 static void *mboxlog_start(struct seq_file *seq, loff_t *pos)
1960 return *pos ? mboxlog_get_idx(seq, *pos) : SEQ_START_TOKEN;
1963 static void *mboxlog_next(struct seq_file *seq, void *v, loff_t *pos)
1965 ++*pos;
1966 return mboxlog_get_idx(seq, *pos);
1969 static void mboxlog_stop(struct seq_file *seq, void *v)
1973 static const struct seq_operations mboxlog_seq_ops = {
1974 .start = mboxlog_start,
1975 .next = mboxlog_next,
1976 .stop = mboxlog_stop,
1977 .show = mboxlog_show
1980 static int mboxlog_open(struct inode *inode, struct file *file)
1982 int res = seq_open(file, &mboxlog_seq_ops);
1984 if (!res) {
1985 struct seq_file *seq = file->private_data;
1987 seq->private = inode->i_private;
1989 return res;
1992 static const struct file_operations mboxlog_fops = {
1993 .owner = THIS_MODULE,
1994 .open = mboxlog_open,
1995 .read = seq_read,
1996 .llseek = seq_lseek,
1997 .release = seq_release,
2001 * Show SGE Queue Set information. We display QPL Queues Sets per line.
2003 #define QPL 4
2005 static int sge_qinfo_show(struct seq_file *seq, void *v)
2007 struct adapter *adapter = seq->private;
2008 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2009 int qs, r = (uintptr_t)v - 1;
2011 if (r)
2012 seq_putc(seq, '\n');
2014 #define S3(fmt_spec, s, v) \
2015 do {\
2016 seq_printf(seq, "%-12s", s); \
2017 for (qs = 0; qs < n; ++qs) \
2018 seq_printf(seq, " %16" fmt_spec, v); \
2019 seq_putc(seq, '\n'); \
2020 } while (0)
2021 #define S(s, v) S3("s", s, v)
2022 #define T(s, v) S3("u", s, txq[qs].v)
2023 #define R(s, v) S3("u", s, rxq[qs].v)
2025 if (r < eth_entries) {
2026 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2027 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2028 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2030 S("QType:", "Ethernet");
2031 S("Interface:",
2032 (rxq[qs].rspq.netdev
2033 ? rxq[qs].rspq.netdev->name
2034 : "N/A"));
2035 S3("d", "Port:",
2036 (rxq[qs].rspq.netdev
2037 ? ((struct port_info *)
2038 netdev_priv(rxq[qs].rspq.netdev))->port_id
2039 : -1));
2040 T("TxQ ID:", q.abs_id);
2041 T("TxQ size:", q.size);
2042 T("TxQ inuse:", q.in_use);
2043 T("TxQ PIdx:", q.pidx);
2044 T("TxQ CIdx:", q.cidx);
2045 R("RspQ ID:", rspq.abs_id);
2046 R("RspQ size:", rspq.size);
2047 R("RspQE size:", rspq.iqe_len);
2048 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
2049 S3("u", "Intr pktcnt:",
2050 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
2051 R("RspQ CIdx:", rspq.cidx);
2052 R("RspQ Gen:", rspq.gen);
2053 R("FL ID:", fl.abs_id);
2054 R("FL size:", fl.size - MIN_FL_RESID);
2055 R("FL avail:", fl.avail);
2056 R("FL PIdx:", fl.pidx);
2057 R("FL CIdx:", fl.cidx);
2058 return 0;
2061 r -= eth_entries;
2062 if (r == 0) {
2063 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2065 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2066 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2067 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2068 qtimer_val(adapter, evtq));
2069 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2070 adapter->sge.counter_val[evtq->pktcnt_idx]);
2071 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
2072 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2073 } else if (r == 1) {
2074 const struct sge_rspq *intrq = &adapter->sge.intrq;
2076 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
2077 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
2078 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2079 qtimer_val(adapter, intrq));
2080 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2081 adapter->sge.counter_val[intrq->pktcnt_idx]);
2082 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
2083 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
2086 #undef R
2087 #undef T
2088 #undef S
2089 #undef S3
2091 return 0;
2095 * Return the number of "entries" in our "file". We group the multi-Queue
2096 * sections with QPL Queue Sets per "entry". The sections of the output are:
2098 * Ethernet RX/TX Queue Sets
2099 * Firmware Event Queue
2100 * Forwarded Interrupt Queue (if in MSI mode)
2102 static int sge_queue_entries(const struct adapter *adapter)
2104 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2105 ((adapter->flags & USING_MSI) != 0);
2108 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2110 int entries = sge_queue_entries(seq->private);
2112 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2115 static void sge_queue_stop(struct seq_file *seq, void *v)
2119 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2121 int entries = sge_queue_entries(seq->private);
2123 ++*pos;
2124 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2127 static const struct seq_operations sge_qinfo_seq_ops = {
2128 .start = sge_queue_start,
2129 .next = sge_queue_next,
2130 .stop = sge_queue_stop,
2131 .show = sge_qinfo_show
2134 static int sge_qinfo_open(struct inode *inode, struct file *file)
2136 int res = seq_open(file, &sge_qinfo_seq_ops);
2138 if (!res) {
2139 struct seq_file *seq = file->private_data;
2140 seq->private = inode->i_private;
2142 return res;
2145 static const struct file_operations sge_qinfo_debugfs_fops = {
2146 .owner = THIS_MODULE,
2147 .open = sge_qinfo_open,
2148 .read = seq_read,
2149 .llseek = seq_lseek,
2150 .release = seq_release,
2154 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
2156 #define QPL 4
2158 static int sge_qstats_show(struct seq_file *seq, void *v)
2160 struct adapter *adapter = seq->private;
2161 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
2162 int qs, r = (uintptr_t)v - 1;
2164 if (r)
2165 seq_putc(seq, '\n');
2167 #define S3(fmt, s, v) \
2168 do { \
2169 seq_printf(seq, "%-16s", s); \
2170 for (qs = 0; qs < n; ++qs) \
2171 seq_printf(seq, " %8" fmt, v); \
2172 seq_putc(seq, '\n'); \
2173 } while (0)
2174 #define S(s, v) S3("s", s, v)
2176 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
2177 #define T(s, v) T3("lu", s, v)
2179 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
2180 #define R(s, v) R3("lu", s, v)
2182 if (r < eth_entries) {
2183 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
2184 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
2185 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
2187 S("QType:", "Ethernet");
2188 S("Interface:",
2189 (rxq[qs].rspq.netdev
2190 ? rxq[qs].rspq.netdev->name
2191 : "N/A"));
2192 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
2193 R("RxPackets:", stats.pkts);
2194 R("RxCSO:", stats.rx_cso);
2195 R("VLANxtract:", stats.vlan_ex);
2196 R("LROmerged:", stats.lro_merged);
2197 R("LROpackets:", stats.lro_pkts);
2198 R("RxDrops:", stats.rx_drops);
2199 T("TSO:", tso);
2200 T("TxCSO:", tx_cso);
2201 T("VLANins:", vlan_ins);
2202 T("TxQFull:", q.stops);
2203 T("TxQRestarts:", q.restarts);
2204 T("TxMapErr:", mapping_err);
2205 R("FLAllocErr:", fl.alloc_failed);
2206 R("FLLrgAlcErr:", fl.large_alloc_failed);
2207 R("FLStarving:", fl.starving);
2208 return 0;
2211 r -= eth_entries;
2212 if (r == 0) {
2213 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
2215 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
2216 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2217 evtq->unhandled_irqs);
2218 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
2219 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
2220 } else if (r == 1) {
2221 const struct sge_rspq *intrq = &adapter->sge.intrq;
2223 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
2224 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
2225 intrq->unhandled_irqs);
2226 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
2227 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
2230 #undef R
2231 #undef T
2232 #undef S
2233 #undef R3
2234 #undef T3
2235 #undef S3
2237 return 0;
2241 * Return the number of "entries" in our "file". We group the multi-Queue
2242 * sections with QPL Queue Sets per "entry". The sections of the output are:
2244 * Ethernet RX/TX Queue Sets
2245 * Firmware Event Queue
2246 * Forwarded Interrupt Queue (if in MSI mode)
2248 static int sge_qstats_entries(const struct adapter *adapter)
2250 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
2251 ((adapter->flags & USING_MSI) != 0);
2254 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
2256 int entries = sge_qstats_entries(seq->private);
2258 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2261 static void sge_qstats_stop(struct seq_file *seq, void *v)
2265 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
2267 int entries = sge_qstats_entries(seq->private);
2269 (*pos)++;
2270 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2273 static const struct seq_operations sge_qstats_seq_ops = {
2274 .start = sge_qstats_start,
2275 .next = sge_qstats_next,
2276 .stop = sge_qstats_stop,
2277 .show = sge_qstats_show
2280 static int sge_qstats_open(struct inode *inode, struct file *file)
2282 int res = seq_open(file, &sge_qstats_seq_ops);
2284 if (res == 0) {
2285 struct seq_file *seq = file->private_data;
2286 seq->private = inode->i_private;
2288 return res;
2291 static const struct file_operations sge_qstats_proc_fops = {
2292 .owner = THIS_MODULE,
2293 .open = sge_qstats_open,
2294 .read = seq_read,
2295 .llseek = seq_lseek,
2296 .release = seq_release,
2300 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2302 static int resources_show(struct seq_file *seq, void *v)
2304 struct adapter *adapter = seq->private;
2305 struct vf_resources *vfres = &adapter->params.vfres;
2307 #define S(desc, fmt, var) \
2308 seq_printf(seq, "%-60s " fmt "\n", \
2309 desc " (" #var "):", vfres->var)
2311 S("Virtual Interfaces", "%d", nvi);
2312 S("Egress Queues", "%d", neq);
2313 S("Ethernet Control", "%d", nethctrl);
2314 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2315 S("Ingress Queues", "%d", niq);
2316 S("Traffic Class", "%d", tc);
2317 S("Port Access Rights Mask", "%#x", pmask);
2318 S("MAC Address Filters", "%d", nexactf);
2319 S("Firmware Command Read Capabilities", "%#x", r_caps);
2320 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2322 #undef S
2324 return 0;
2327 static int resources_open(struct inode *inode, struct file *file)
2329 return single_open(file, resources_show, inode->i_private);
2332 static const struct file_operations resources_proc_fops = {
2333 .owner = THIS_MODULE,
2334 .open = resources_open,
2335 .read = seq_read,
2336 .llseek = seq_lseek,
2337 .release = single_release,
2341 * Show Virtual Interfaces.
2343 static int interfaces_show(struct seq_file *seq, void *v)
2345 if (v == SEQ_START_TOKEN) {
2346 seq_puts(seq, "Interface Port VIID\n");
2347 } else {
2348 struct adapter *adapter = seq->private;
2349 int pidx = (uintptr_t)v - 2;
2350 struct net_device *dev = adapter->port[pidx];
2351 struct port_info *pi = netdev_priv(dev);
2353 seq_printf(seq, "%9s %4d %#5x\n",
2354 dev->name, pi->port_id, pi->viid);
2356 return 0;
2359 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2361 return pos <= adapter->params.nports
2362 ? (void *)(uintptr_t)(pos + 1)
2363 : NULL;
2366 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2368 return *pos
2369 ? interfaces_get_idx(seq->private, *pos)
2370 : SEQ_START_TOKEN;
2373 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2375 (*pos)++;
2376 return interfaces_get_idx(seq->private, *pos);
2379 static void interfaces_stop(struct seq_file *seq, void *v)
2383 static const struct seq_operations interfaces_seq_ops = {
2384 .start = interfaces_start,
2385 .next = interfaces_next,
2386 .stop = interfaces_stop,
2387 .show = interfaces_show
2390 static int interfaces_open(struct inode *inode, struct file *file)
2392 int res = seq_open(file, &interfaces_seq_ops);
2394 if (res == 0) {
2395 struct seq_file *seq = file->private_data;
2396 seq->private = inode->i_private;
2398 return res;
2401 static const struct file_operations interfaces_proc_fops = {
2402 .owner = THIS_MODULE,
2403 .open = interfaces_open,
2404 .read = seq_read,
2405 .llseek = seq_lseek,
2406 .release = seq_release,
2410 * /sys/kernel/debugfs/cxgb4vf/ files list.
2412 struct cxgb4vf_debugfs_entry {
2413 const char *name; /* name of debugfs node */
2414 umode_t mode; /* file system mode */
2415 const struct file_operations *fops;
2418 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2419 { "mboxlog", 0444, &mboxlog_fops },
2420 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops },
2421 { "sge_qstats", 0444, &sge_qstats_proc_fops },
2422 { "resources", 0444, &resources_proc_fops },
2423 { "interfaces", 0444, &interfaces_proc_fops },
2427 * Module and device initialization and cleanup code.
2428 * ==================================================
2432 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2433 * directory (debugfs_root) has already been set up.
2435 static int setup_debugfs(struct adapter *adapter)
2437 int i;
2439 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2442 * Debugfs support is best effort.
2444 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2445 (void)debugfs_create_file(debugfs_files[i].name,
2446 debugfs_files[i].mode,
2447 adapter->debugfs_root,
2448 (void *)adapter,
2449 debugfs_files[i].fops);
2451 return 0;
2455 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2456 * it to our caller to tear down the directory (debugfs_root).
2458 static void cleanup_debugfs(struct adapter *adapter)
2460 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2463 * Unlike our sister routine cleanup_proc(), we don't need to remove
2464 * individual entries because a call will be made to
2465 * debugfs_remove_recursive(). We just need to clean up any ancillary
2466 * persistent state.
2468 /* nothing to do */
2471 /* Figure out how many Ports and Queue Sets we can support. This depends on
2472 * knowing our Virtual Function Resources and may be called a second time if
2473 * we fall back from MSI-X to MSI Interrupt Mode.
2475 static void size_nports_qsets(struct adapter *adapter)
2477 struct vf_resources *vfres = &adapter->params.vfres;
2478 unsigned int ethqsets, pmask_nports;
2480 /* The number of "ports" which we support is equal to the number of
2481 * Virtual Interfaces with which we've been provisioned.
2483 adapter->params.nports = vfres->nvi;
2484 if (adapter->params.nports > MAX_NPORTS) {
2485 dev_warn(adapter->pdev_dev, "only using %d of %d maximum"
2486 " allowed virtual interfaces\n", MAX_NPORTS,
2487 adapter->params.nports);
2488 adapter->params.nports = MAX_NPORTS;
2491 /* We may have been provisioned with more VIs than the number of
2492 * ports we're allowed to access (our Port Access Rights Mask).
2493 * This is obviously a configuration conflict but we don't want to
2494 * crash the kernel or anything silly just because of that.
2496 pmask_nports = hweight32(adapter->params.vfres.pmask);
2497 if (pmask_nports < adapter->params.nports) {
2498 dev_warn(adapter->pdev_dev, "only using %d of %d provisioned"
2499 " virtual interfaces; limited by Port Access Rights"
2500 " mask %#x\n", pmask_nports, adapter->params.nports,
2501 adapter->params.vfres.pmask);
2502 adapter->params.nports = pmask_nports;
2505 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2506 * Event Queue. And if we're using MSI Interrupts, we'll also need to
2507 * reserve an Ingress Queue for a Forwarded Interrupts.
2509 * The rest of the FL/Intr-capable ingress queues will be matched up
2510 * one-for-one with Ethernet/Control egress queues in order to form
2511 * "Queue Sets" which will be aportioned between the "ports". For
2512 * each Queue Set, we'll need the ability to allocate two Egress
2513 * Contexts -- one for the Ingress Queue Free List and one for the TX
2514 * Ethernet Queue.
2516 * Note that even if we're currently configured to use MSI-X
2517 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2518 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that
2519 * happens we'll need to adjust things later.
2521 ethqsets = vfres->niqflint - 1 - (msi == MSI_MSI);
2522 if (vfres->nethctrl != ethqsets)
2523 ethqsets = min(vfres->nethctrl, ethqsets);
2524 if (vfres->neq < ethqsets*2)
2525 ethqsets = vfres->neq/2;
2526 if (ethqsets > MAX_ETH_QSETS)
2527 ethqsets = MAX_ETH_QSETS;
2528 adapter->sge.max_ethqsets = ethqsets;
2530 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2531 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2532 " virtual interfaces (too few Queue Sets)\n",
2533 adapter->sge.max_ethqsets, adapter->params.nports);
2534 adapter->params.nports = adapter->sge.max_ethqsets;
2539 * Perform early "adapter" initialization. This is where we discover what
2540 * adapter parameters we're going to be using and initialize basic adapter
2541 * hardware support.
2543 static int adap_init0(struct adapter *adapter)
2545 struct sge_params *sge_params = &adapter->params.sge;
2546 struct sge *s = &adapter->sge;
2547 int err;
2548 u32 param, val = 0;
2551 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2552 * 2.6.31 and later we can't call pci_reset_function() in order to
2553 * issue an FLR because of a self- deadlock on the device semaphore.
2554 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2555 * cases where they're needed -- for instance, some versions of KVM
2556 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2557 * use the firmware based reset in order to reset any per function
2558 * state.
2560 err = t4vf_fw_reset(adapter);
2561 if (err < 0) {
2562 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2563 return err;
2567 * Grab basic operational parameters. These will predominantly have
2568 * been set up by the Physical Function Driver or will be hard coded
2569 * into the adapter. We just have to live with them ... Note that
2570 * we _must_ get our VPD parameters before our SGE parameters because
2571 * we need to know the adapter's core clock from the VPD in order to
2572 * properly decode the SGE Timer Values.
2574 err = t4vf_get_dev_params(adapter);
2575 if (err) {
2576 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2577 " device parameters: err=%d\n", err);
2578 return err;
2580 err = t4vf_get_vpd_params(adapter);
2581 if (err) {
2582 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2583 " VPD parameters: err=%d\n", err);
2584 return err;
2586 err = t4vf_get_sge_params(adapter);
2587 if (err) {
2588 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2589 " SGE parameters: err=%d\n", err);
2590 return err;
2592 err = t4vf_get_rss_glb_config(adapter);
2593 if (err) {
2594 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2595 " RSS parameters: err=%d\n", err);
2596 return err;
2598 if (adapter->params.rss.mode !=
2599 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2600 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2601 " mode %d\n", adapter->params.rss.mode);
2602 return -EINVAL;
2604 err = t4vf_sge_init(adapter);
2605 if (err) {
2606 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2607 " err=%d\n", err);
2608 return err;
2611 /* If we're running on newer firmware, let it know that we're
2612 * prepared to deal with encapsulated CPL messages. Older
2613 * firmware won't understand this and we'll just get
2614 * unencapsulated messages ...
2616 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2617 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2618 val = 1;
2619 (void) t4vf_set_params(adapter, 1, &param, &val);
2622 * Retrieve our RX interrupt holdoff timer values and counter
2623 * threshold values from the SGE parameters.
2625 s->timer_val[0] = core_ticks_to_us(adapter,
2626 TIMERVALUE0_G(sge_params->sge_timer_value_0_and_1));
2627 s->timer_val[1] = core_ticks_to_us(adapter,
2628 TIMERVALUE1_G(sge_params->sge_timer_value_0_and_1));
2629 s->timer_val[2] = core_ticks_to_us(adapter,
2630 TIMERVALUE0_G(sge_params->sge_timer_value_2_and_3));
2631 s->timer_val[3] = core_ticks_to_us(adapter,
2632 TIMERVALUE1_G(sge_params->sge_timer_value_2_and_3));
2633 s->timer_val[4] = core_ticks_to_us(adapter,
2634 TIMERVALUE0_G(sge_params->sge_timer_value_4_and_5));
2635 s->timer_val[5] = core_ticks_to_us(adapter,
2636 TIMERVALUE1_G(sge_params->sge_timer_value_4_and_5));
2638 s->counter_val[0] = THRESHOLD_0_G(sge_params->sge_ingress_rx_threshold);
2639 s->counter_val[1] = THRESHOLD_1_G(sge_params->sge_ingress_rx_threshold);
2640 s->counter_val[2] = THRESHOLD_2_G(sge_params->sge_ingress_rx_threshold);
2641 s->counter_val[3] = THRESHOLD_3_G(sge_params->sge_ingress_rx_threshold);
2644 * Grab our Virtual Interface resource allocation, extract the
2645 * features that we're interested in and do a bit of sanity testing on
2646 * what we discover.
2648 err = t4vf_get_vfres(adapter);
2649 if (err) {
2650 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2651 " resources: err=%d\n", err);
2652 return err;
2655 /* Check for various parameter sanity issues */
2656 if (adapter->params.vfres.pmask == 0) {
2657 dev_err(adapter->pdev_dev, "no port access configured\n"
2658 "usable!\n");
2659 return -EINVAL;
2661 if (adapter->params.vfres.nvi == 0) {
2662 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2663 "usable!\n");
2664 return -EINVAL;
2667 /* Initialize nports and max_ethqsets now that we have our Virtual
2668 * Function Resources.
2670 size_nports_qsets(adapter);
2672 return 0;
2675 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2676 u8 pkt_cnt_idx, unsigned int size,
2677 unsigned int iqe_size)
2679 rspq->intr_params = (QINTR_TIMER_IDX_V(timer_idx) |
2680 (pkt_cnt_idx < SGE_NCOUNTERS ?
2681 QINTR_CNT_EN_F : 0));
2682 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2683 ? pkt_cnt_idx
2684 : 0);
2685 rspq->iqe_len = iqe_size;
2686 rspq->size = size;
2690 * Perform default configuration of DMA queues depending on the number and
2691 * type of ports we found and the number of available CPUs. Most settings can
2692 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2693 * being brought up for the first time.
2695 static void cfg_queues(struct adapter *adapter)
2697 struct sge *s = &adapter->sge;
2698 int q10g, n10g, qidx, pidx, qs;
2699 size_t iqe_size;
2702 * We should not be called till we know how many Queue Sets we can
2703 * support. In particular, this means that we need to know what kind
2704 * of interrupts we'll be using ...
2706 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2709 * Count the number of 10GbE Virtual Interfaces that we have.
2711 n10g = 0;
2712 for_each_port(adapter, pidx)
2713 n10g += is_x_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2716 * We default to 1 queue per non-10G port and up to # of cores queues
2717 * per 10G port.
2719 if (n10g == 0)
2720 q10g = 0;
2721 else {
2722 int n1g = (adapter->params.nports - n10g);
2723 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2724 if (q10g > num_online_cpus())
2725 q10g = num_online_cpus();
2729 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2730 * The layout will be established in setup_sge_queues() when the
2731 * adapter is brough up for the first time.
2733 qidx = 0;
2734 for_each_port(adapter, pidx) {
2735 struct port_info *pi = adap2pinfo(adapter, pidx);
2737 pi->first_qset = qidx;
2738 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2739 qidx += pi->nqsets;
2741 s->ethqsets = qidx;
2744 * The Ingress Queue Entry Size for our various Response Queues needs
2745 * to be big enough to accommodate the largest message we can receive
2746 * from the chip/firmware; which is 64 bytes ...
2748 iqe_size = 64;
2751 * Set up default Queue Set parameters ... Start off with the
2752 * shortest interrupt holdoff timer.
2754 for (qs = 0; qs < s->max_ethqsets; qs++) {
2755 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2756 struct sge_eth_txq *txq = &s->ethtxq[qs];
2758 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2759 rxq->fl.size = 72;
2760 txq->q.size = 1024;
2764 * The firmware event queue is used for link state changes and
2765 * notifications of TX DMA completions.
2767 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2770 * The forwarded interrupt queue is used when we're in MSI interrupt
2771 * mode. In this mode all interrupts associated with RX queues will
2772 * be forwarded to a single queue which we'll associate with our MSI
2773 * interrupt vector. The messages dropped in the forwarded interrupt
2774 * queue will indicate which ingress queue needs servicing ... This
2775 * queue needs to be large enough to accommodate all of the ingress
2776 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2777 * from equalling the CIDX if every ingress queue has an outstanding
2778 * interrupt). The queue doesn't need to be any larger because no
2779 * ingress queue will ever have more than one outstanding interrupt at
2780 * any time ...
2782 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2783 iqe_size);
2787 * Reduce the number of Ethernet queues across all ports to at most n.
2788 * n provides at least one queue per port.
2790 static void reduce_ethqs(struct adapter *adapter, int n)
2792 int i;
2793 struct port_info *pi;
2796 * While we have too many active Ether Queue Sets, interate across the
2797 * "ports" and reduce their individual Queue Set allocations.
2799 BUG_ON(n < adapter->params.nports);
2800 while (n < adapter->sge.ethqsets)
2801 for_each_port(adapter, i) {
2802 pi = adap2pinfo(adapter, i);
2803 if (pi->nqsets > 1) {
2804 pi->nqsets--;
2805 adapter->sge.ethqsets--;
2806 if (adapter->sge.ethqsets <= n)
2807 break;
2812 * Reassign the starting Queue Sets for each of the "ports" ...
2814 n = 0;
2815 for_each_port(adapter, i) {
2816 pi = adap2pinfo(adapter, i);
2817 pi->first_qset = n;
2818 n += pi->nqsets;
2823 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2824 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2825 * need. Minimally we need one for every Virtual Interface plus those needed
2826 * for our "extras". Note that this process may lower the maximum number of
2827 * allowed Queue Sets ...
2829 static int enable_msix(struct adapter *adapter)
2831 int i, want, need, nqsets;
2832 struct msix_entry entries[MSIX_ENTRIES];
2833 struct sge *s = &adapter->sge;
2835 for (i = 0; i < MSIX_ENTRIES; ++i)
2836 entries[i].entry = i;
2839 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2840 * plus those needed for our "extras" (for example, the firmware
2841 * message queue). We _need_ at least one "Queue Set" per Virtual
2842 * Interface plus those needed for our "extras". So now we get to see
2843 * if the song is right ...
2845 want = s->max_ethqsets + MSIX_EXTRAS;
2846 need = adapter->params.nports + MSIX_EXTRAS;
2848 want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2849 if (want < 0)
2850 return want;
2852 nqsets = want - MSIX_EXTRAS;
2853 if (nqsets < s->max_ethqsets) {
2854 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2855 " for %d Queue Sets\n", nqsets);
2856 s->max_ethqsets = nqsets;
2857 if (nqsets < s->ethqsets)
2858 reduce_ethqs(adapter, nqsets);
2860 for (i = 0; i < want; ++i)
2861 adapter->msix_info[i].vec = entries[i].vector;
2863 return 0;
2866 static const struct net_device_ops cxgb4vf_netdev_ops = {
2867 .ndo_open = cxgb4vf_open,
2868 .ndo_stop = cxgb4vf_stop,
2869 .ndo_start_xmit = t4vf_eth_xmit,
2870 .ndo_get_stats = cxgb4vf_get_stats,
2871 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2872 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2873 .ndo_validate_addr = eth_validate_addr,
2874 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2875 .ndo_change_mtu = cxgb4vf_change_mtu,
2876 .ndo_fix_features = cxgb4vf_fix_features,
2877 .ndo_set_features = cxgb4vf_set_features,
2878 #ifdef CONFIG_NET_POLL_CONTROLLER
2879 .ndo_poll_controller = cxgb4vf_poll_controller,
2880 #endif
2884 * "Probe" a device: initialize a device and construct all kernel and driver
2885 * state needed to manage the device. This routine is called "init_one" in
2886 * the PF Driver ...
2888 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2889 const struct pci_device_id *ent)
2891 int pci_using_dac;
2892 int err, pidx;
2893 unsigned int pmask;
2894 struct adapter *adapter;
2895 struct port_info *pi;
2896 struct net_device *netdev;
2897 unsigned int pf;
2900 * Print our driver banner the first time we're called to initialize a
2901 * device.
2903 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2906 * Initialize generic PCI device state.
2908 err = pci_enable_device(pdev);
2909 if (err) {
2910 dev_err(&pdev->dev, "cannot enable PCI device\n");
2911 return err;
2915 * Reserve PCI resources for the device. If we can't get them some
2916 * other driver may have already claimed the device ...
2918 err = pci_request_regions(pdev, KBUILD_MODNAME);
2919 if (err) {
2920 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2921 goto err_disable_device;
2925 * Set up our DMA mask: try for 64-bit address masking first and
2926 * fall back to 32-bit if we can't get 64 bits ...
2928 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2929 if (err == 0) {
2930 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2931 if (err) {
2932 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2933 " coherent allocations\n");
2934 goto err_release_regions;
2936 pci_using_dac = 1;
2937 } else {
2938 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2939 if (err != 0) {
2940 dev_err(&pdev->dev, "no usable DMA configuration\n");
2941 goto err_release_regions;
2943 pci_using_dac = 0;
2947 * Enable bus mastering for the device ...
2949 pci_set_master(pdev);
2952 * Allocate our adapter data structure and attach it to the device.
2954 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2955 if (!adapter) {
2956 err = -ENOMEM;
2957 goto err_release_regions;
2959 pci_set_drvdata(pdev, adapter);
2960 adapter->pdev = pdev;
2961 adapter->pdev_dev = &pdev->dev;
2963 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
2964 (sizeof(struct mbox_cmd) *
2965 T4VF_OS_LOG_MBOX_CMDS),
2966 GFP_KERNEL);
2967 if (!adapter->mbox_log) {
2968 err = -ENOMEM;
2969 goto err_free_adapter;
2971 adapter->mbox_log->size = T4VF_OS_LOG_MBOX_CMDS;
2974 * Initialize SMP data synchronization resources.
2976 spin_lock_init(&adapter->stats_lock);
2977 spin_lock_init(&adapter->mbox_lock);
2978 INIT_LIST_HEAD(&adapter->mlist.list);
2981 * Map our I/O registers in BAR0.
2983 adapter->regs = pci_ioremap_bar(pdev, 0);
2984 if (!adapter->regs) {
2985 dev_err(&pdev->dev, "cannot map device registers\n");
2986 err = -ENOMEM;
2987 goto err_free_adapter;
2990 /* Wait for the device to become ready before proceeding ...
2992 err = t4vf_prep_adapter(adapter);
2993 if (err) {
2994 dev_err(adapter->pdev_dev, "device didn't become ready:"
2995 " err=%d\n", err);
2996 goto err_unmap_bar0;
2999 /* For T5 and later we want to use the new BAR-based User Doorbells,
3000 * so we need to map BAR2 here ...
3002 if (!is_t4(adapter->params.chip)) {
3003 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
3004 pci_resource_len(pdev, 2));
3005 if (!adapter->bar2) {
3006 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
3007 err = -ENOMEM;
3008 goto err_unmap_bar0;
3012 * Initialize adapter level features.
3014 adapter->name = pci_name(pdev);
3015 adapter->msg_enable = DFLT_MSG_ENABLE;
3017 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3018 * Ingress Packet Data to Free List Buffers in order to allow for
3019 * chipset performance optimizations between the Root Complex and
3020 * Memory Controllers. (Messages to the associated Ingress Queue
3021 * notifying new Packet Placement in the Free Lists Buffers will be
3022 * send without the Relaxed Ordering Attribute thus guaranteeing that
3023 * all preceding PCIe Transaction Layer Packets will be processed
3024 * first.) But some Root Complexes have various issues with Upstream
3025 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3026 * The PCIe devices which under the Root Complexes will be cleared the
3027 * Relaxed Ordering bit in the configuration space, So we check our
3028 * PCIe configuration space to see if it's flagged with advice against
3029 * using Relaxed Ordering.
3031 if (!pcie_relaxed_ordering_enabled(pdev))
3032 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
3034 err = adap_init0(adapter);
3035 if (err)
3036 goto err_unmap_bar;
3038 /* Initialize hash mac addr list */
3039 INIT_LIST_HEAD(&adapter->mac_hlist);
3042 * Allocate our "adapter ports" and stitch everything together.
3044 pmask = adapter->params.vfres.pmask;
3045 pf = t4vf_get_pf_from_vf(adapter);
3046 for_each_port(adapter, pidx) {
3047 int port_id, viid;
3048 u8 mac[ETH_ALEN];
3049 unsigned int naddr = 1;
3052 * We simplistically allocate our virtual interfaces
3053 * sequentially across the port numbers to which we have
3054 * access rights. This should be configurable in some manner
3055 * ...
3057 if (pmask == 0)
3058 break;
3059 port_id = ffs(pmask) - 1;
3060 pmask &= ~(1 << port_id);
3061 viid = t4vf_alloc_vi(adapter, port_id);
3062 if (viid < 0) {
3063 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
3064 " err=%d\n", port_id, viid);
3065 err = viid;
3066 goto err_free_dev;
3070 * Allocate our network device and stitch things together.
3072 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3073 MAX_PORT_QSETS);
3074 if (netdev == NULL) {
3075 t4vf_free_vi(adapter, viid);
3076 err = -ENOMEM;
3077 goto err_free_dev;
3079 adapter->port[pidx] = netdev;
3080 SET_NETDEV_DEV(netdev, &pdev->dev);
3081 pi = netdev_priv(netdev);
3082 pi->adapter = adapter;
3083 pi->pidx = pidx;
3084 pi->port_id = port_id;
3085 pi->viid = viid;
3088 * Initialize the starting state of our "port" and register
3089 * it.
3091 pi->xact_addr_filt = -1;
3092 netif_carrier_off(netdev);
3093 netdev->irq = pdev->irq;
3095 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3096 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3097 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
3098 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
3099 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3100 NETIF_F_HIGHDMA;
3101 netdev->features = netdev->hw_features |
3102 NETIF_F_HW_VLAN_CTAG_TX;
3103 if (pci_using_dac)
3104 netdev->features |= NETIF_F_HIGHDMA;
3106 netdev->priv_flags |= IFF_UNICAST_FLT;
3107 netdev->min_mtu = 81;
3108 netdev->max_mtu = ETH_MAX_MTU;
3110 netdev->netdev_ops = &cxgb4vf_netdev_ops;
3111 netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
3112 netdev->dev_port = pi->port_id;
3115 * Initialize the hardware/software state for the port.
3117 err = t4vf_port_init(adapter, pidx);
3118 if (err) {
3119 dev_err(&pdev->dev, "cannot initialize port %d\n",
3120 pidx);
3121 goto err_free_dev;
3124 err = t4vf_get_vf_mac_acl(adapter, pf, &naddr, mac);
3125 if (err) {
3126 dev_err(&pdev->dev,
3127 "unable to determine MAC ACL address, "
3128 "continuing anyway.. (status %d)\n", err);
3129 } else if (naddr && adapter->params.vfres.nvi == 1) {
3130 struct sockaddr addr;
3132 ether_addr_copy(addr.sa_data, mac);
3133 err = cxgb4vf_set_mac_addr(netdev, &addr);
3134 if (err) {
3135 dev_err(&pdev->dev,
3136 "unable to set MAC address %pM\n",
3137 mac);
3138 goto err_free_dev;
3140 dev_info(&pdev->dev,
3141 "Using assigned MAC ACL: %pM\n", mac);
3145 /* See what interrupts we'll be using. If we've been configured to
3146 * use MSI-X interrupts, try to enable them but fall back to using
3147 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
3148 * get MSI interrupts we bail with the error.
3150 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
3151 adapter->flags |= USING_MSIX;
3152 else {
3153 if (msi == MSI_MSIX) {
3154 dev_info(adapter->pdev_dev,
3155 "Unable to use MSI-X Interrupts; falling "
3156 "back to MSI Interrupts\n");
3158 /* We're going to need a Forwarded Interrupt Queue so
3159 * that may cut into how many Queue Sets we can
3160 * support.
3162 msi = MSI_MSI;
3163 size_nports_qsets(adapter);
3165 err = pci_enable_msi(pdev);
3166 if (err) {
3167 dev_err(&pdev->dev, "Unable to allocate MSI Interrupts;"
3168 " err=%d\n", err);
3169 goto err_free_dev;
3171 adapter->flags |= USING_MSI;
3174 /* Now that we know how many "ports" we have and what interrupt
3175 * mechanism we're going to use, we can configure our queue resources.
3177 cfg_queues(adapter);
3180 * The "card" is now ready to go. If any errors occur during device
3181 * registration we do not fail the whole "card" but rather proceed
3182 * only with the ports we manage to register successfully. However we
3183 * must register at least one net device.
3185 for_each_port(adapter, pidx) {
3186 struct port_info *pi = netdev_priv(adapter->port[pidx]);
3187 netdev = adapter->port[pidx];
3188 if (netdev == NULL)
3189 continue;
3191 netif_set_real_num_tx_queues(netdev, pi->nqsets);
3192 netif_set_real_num_rx_queues(netdev, pi->nqsets);
3194 err = register_netdev(netdev);
3195 if (err) {
3196 dev_warn(&pdev->dev, "cannot register net device %s,"
3197 " skipping\n", netdev->name);
3198 continue;
3201 set_bit(pidx, &adapter->registered_device_map);
3203 if (adapter->registered_device_map == 0) {
3204 dev_err(&pdev->dev, "could not register any net devices\n");
3205 goto err_disable_interrupts;
3209 * Set up our debugfs entries.
3211 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
3212 adapter->debugfs_root =
3213 debugfs_create_dir(pci_name(pdev),
3214 cxgb4vf_debugfs_root);
3215 if (IS_ERR_OR_NULL(adapter->debugfs_root))
3216 dev_warn(&pdev->dev, "could not create debugfs"
3217 " directory");
3218 else
3219 setup_debugfs(adapter);
3223 * Print a short notice on the existence and configuration of the new
3224 * VF network device ...
3226 for_each_port(adapter, pidx) {
3227 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
3228 adapter->port[pidx]->name,
3229 (adapter->flags & USING_MSIX) ? "MSI-X" :
3230 (adapter->flags & USING_MSI) ? "MSI" : "");
3234 * Return success!
3236 return 0;
3239 * Error recovery and exit code. Unwind state that's been created
3240 * so far and return the error.
3242 err_disable_interrupts:
3243 if (adapter->flags & USING_MSIX) {
3244 pci_disable_msix(adapter->pdev);
3245 adapter->flags &= ~USING_MSIX;
3246 } else if (adapter->flags & USING_MSI) {
3247 pci_disable_msi(adapter->pdev);
3248 adapter->flags &= ~USING_MSI;
3251 err_free_dev:
3252 for_each_port(adapter, pidx) {
3253 netdev = adapter->port[pidx];
3254 if (netdev == NULL)
3255 continue;
3256 pi = netdev_priv(netdev);
3257 t4vf_free_vi(adapter, pi->viid);
3258 if (test_bit(pidx, &adapter->registered_device_map))
3259 unregister_netdev(netdev);
3260 free_netdev(netdev);
3263 err_unmap_bar:
3264 if (!is_t4(adapter->params.chip))
3265 iounmap(adapter->bar2);
3267 err_unmap_bar0:
3268 iounmap(adapter->regs);
3270 err_free_adapter:
3271 kfree(adapter->mbox_log);
3272 kfree(adapter);
3274 err_release_regions:
3275 pci_release_regions(pdev);
3276 pci_clear_master(pdev);
3278 err_disable_device:
3279 pci_disable_device(pdev);
3281 return err;
3285 * "Remove" a device: tear down all kernel and driver state created in the
3286 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
3287 * that this is called "remove_one" in the PF Driver.)
3289 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
3291 struct adapter *adapter = pci_get_drvdata(pdev);
3294 * Tear down driver state associated with device.
3296 if (adapter) {
3297 int pidx;
3300 * Stop all of our activity. Unregister network port,
3301 * disable interrupts, etc.
3303 for_each_port(adapter, pidx)
3304 if (test_bit(pidx, &adapter->registered_device_map))
3305 unregister_netdev(adapter->port[pidx]);
3306 t4vf_sge_stop(adapter);
3307 if (adapter->flags & USING_MSIX) {
3308 pci_disable_msix(adapter->pdev);
3309 adapter->flags &= ~USING_MSIX;
3310 } else if (adapter->flags & USING_MSI) {
3311 pci_disable_msi(adapter->pdev);
3312 adapter->flags &= ~USING_MSI;
3316 * Tear down our debugfs entries.
3318 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
3319 cleanup_debugfs(adapter);
3320 debugfs_remove_recursive(adapter->debugfs_root);
3324 * Free all of the various resources which we've acquired ...
3326 t4vf_free_sge_resources(adapter);
3327 for_each_port(adapter, pidx) {
3328 struct net_device *netdev = adapter->port[pidx];
3329 struct port_info *pi;
3331 if (netdev == NULL)
3332 continue;
3334 pi = netdev_priv(netdev);
3335 t4vf_free_vi(adapter, pi->viid);
3336 free_netdev(netdev);
3338 iounmap(adapter->regs);
3339 if (!is_t4(adapter->params.chip))
3340 iounmap(adapter->bar2);
3341 kfree(adapter->mbox_log);
3342 kfree(adapter);
3346 * Disable the device and release its PCI resources.
3348 pci_disable_device(pdev);
3349 pci_clear_master(pdev);
3350 pci_release_regions(pdev);
3354 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3355 * delivery.
3357 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3359 struct adapter *adapter;
3360 int pidx;
3362 adapter = pci_get_drvdata(pdev);
3363 if (!adapter)
3364 return;
3366 /* Disable all Virtual Interfaces. This will shut down the
3367 * delivery of all ingress packets into the chip for these
3368 * Virtual Interfaces.
3370 for_each_port(adapter, pidx)
3371 if (test_bit(pidx, &adapter->registered_device_map))
3372 unregister_netdev(adapter->port[pidx]);
3374 /* Free up all Queues which will prevent further DMA and
3375 * Interrupts allowing various internal pathways to drain.
3377 t4vf_sge_stop(adapter);
3378 if (adapter->flags & USING_MSIX) {
3379 pci_disable_msix(adapter->pdev);
3380 adapter->flags &= ~USING_MSIX;
3381 } else if (adapter->flags & USING_MSI) {
3382 pci_disable_msi(adapter->pdev);
3383 adapter->flags &= ~USING_MSI;
3387 * Free up all Queues which will prevent further DMA and
3388 * Interrupts allowing various internal pathways to drain.
3390 t4vf_free_sge_resources(adapter);
3391 pci_set_drvdata(pdev, NULL);
3394 /* Macros needed to support the PCI Device ID Table ...
3396 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3397 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3398 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
3400 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3401 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3403 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3405 #include "../cxgb4/t4_pci_id_tbl.h"
3407 MODULE_DESCRIPTION(DRV_DESC);
3408 MODULE_AUTHOR("Chelsio Communications");
3409 MODULE_LICENSE("Dual BSD/GPL");
3410 MODULE_VERSION(DRV_VERSION);
3411 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3413 static struct pci_driver cxgb4vf_driver = {
3414 .name = KBUILD_MODNAME,
3415 .id_table = cxgb4vf_pci_tbl,
3416 .probe = cxgb4vf_pci_probe,
3417 .remove = cxgb4vf_pci_remove,
3418 .shutdown = cxgb4vf_pci_shutdown,
3422 * Initialize global driver state.
3424 static int __init cxgb4vf_module_init(void)
3426 int ret;
3429 * Vet our module parameters.
3431 if (msi != MSI_MSIX && msi != MSI_MSI) {
3432 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3433 msi, MSI_MSIX, MSI_MSI);
3434 return -EINVAL;
3437 /* Debugfs support is optional, just warn if this fails */
3438 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3439 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3440 pr_warn("could not create debugfs entry, continuing\n");
3442 ret = pci_register_driver(&cxgb4vf_driver);
3443 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3444 debugfs_remove(cxgb4vf_debugfs_root);
3445 return ret;
3449 * Tear down global driver state.
3451 static void __exit cxgb4vf_module_exit(void)
3453 pci_unregister_driver(&cxgb4vf_driver);
3454 debugfs_remove(cxgb4vf_debugfs_root);
3457 module_init(cxgb4vf_module_init);
3458 module_exit(cxgb4vf_module_exit);