2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
56 * Generic information about the driver.
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5/T6 Virtual Function (VF) Network Driver"
67 * Default ethtool "message level" for adapters.
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
74 * The driver uses the best interrupt scheme available on a platform in the
75 * order MSI-X then MSI. This parameter determines which of these schemes the
76 * driver may consider as follows:
78 * msi = 2: choose from among MSI-X and MSI
79 * msi = 1: only consider MSI interrupts
81 * Note that unlike the Physical Function driver, this Virtual Function driver
82 * does _not_ support legacy INTx interrupts (this limitation is mandated by
83 * the PCI-E SR-IOV standard).
87 #define MSI_DEFAULT MSI_MSIX
89 static int msi
= MSI_DEFAULT
;
91 module_param(msi
, int, 0644);
92 MODULE_PARM_DESC(msi
, "whether to use MSI-X or MSI");
95 * Fundamental constants.
96 * ======================
100 MAX_TXQ_ENTRIES
= 16384,
101 MAX_RSPQ_ENTRIES
= 16384,
102 MAX_RX_BUFFERS
= 16384,
104 MIN_TXQ_ENTRIES
= 32,
105 MIN_RSPQ_ENTRIES
= 128,
109 * For purposes of manipulating the Free List size we need to
110 * recognize that Free Lists are actually Egress Queues (the host
111 * produces free buffers which the hardware consumes), Egress Queues
112 * indices are all in units of Egress Context Units bytes, and free
113 * list entries are 64-bit PCI DMA addresses. And since the state of
114 * the Producer Index == the Consumer Index implies an EMPTY list, we
115 * always have at least one Egress Unit's worth of Free List entries
116 * unused. See sge.c for more details ...
118 EQ_UNIT
= SGE_EQ_IDXSIZE
,
119 FL_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
120 MIN_FL_RESID
= FL_PER_EQ_UNIT
,
124 * Global driver state.
125 * ====================
128 static struct dentry
*cxgb4vf_debugfs_root
;
131 * OS "Callback" functions.
132 * ========================
136 * The link status has changed on the indicated "port" (Virtual Interface).
138 void t4vf_os_link_changed(struct adapter
*adapter
, int pidx
, int link_ok
)
140 struct net_device
*dev
= adapter
->port
[pidx
];
143 * If the port is disabled or the current recorded "link up"
144 * status matches the new status, just return.
146 if (!netif_running(dev
) || link_ok
== netif_carrier_ok(dev
))
150 * Tell the OS that the link status has changed and print a short
151 * informative message on the console about the event.
156 const struct port_info
*pi
= netdev_priv(dev
);
158 switch (pi
->link_cfg
.speed
) {
183 switch ((int)pi
->link_cfg
.fc
) {
192 case PAUSE_RX
| PAUSE_TX
:
201 netdev_info(dev
, "link up, %s, full-duplex, %s PAUSE\n", s
, fc
);
203 netdev_info(dev
, "link down\n");
208 * THe port module type has changed on the indicated "port" (Virtual
211 void t4vf_os_portmod_changed(struct adapter
*adapter
, int pidx
)
213 static const char * const mod_str
[] = {
214 NULL
, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
216 const struct net_device
*dev
= adapter
->port
[pidx
];
217 const struct port_info
*pi
= netdev_priv(dev
);
219 if (pi
->mod_type
== FW_PORT_MOD_TYPE_NONE
)
220 dev_info(adapter
->pdev_dev
, "%s: port module unplugged\n",
222 else if (pi
->mod_type
< ARRAY_SIZE(mod_str
))
223 dev_info(adapter
->pdev_dev
, "%s: %s port module inserted\n",
224 dev
->name
, mod_str
[pi
->mod_type
]);
225 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_NOTSUPPORTED
)
226 dev_info(adapter
->pdev_dev
, "%s: unsupported optical port "
227 "module inserted\n", dev
->name
);
228 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_UNKNOWN
)
229 dev_info(adapter
->pdev_dev
, "%s: unknown port module inserted,"
230 "forcing TWINAX\n", dev
->name
);
231 else if (pi
->mod_type
== FW_PORT_MOD_TYPE_ERROR
)
232 dev_info(adapter
->pdev_dev
, "%s: transceiver module error\n",
235 dev_info(adapter
->pdev_dev
, "%s: unknown module type %d "
236 "inserted\n", dev
->name
, pi
->mod_type
);
240 * Net device operations.
241 * ======================
248 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
251 static int link_start(struct net_device
*dev
)
254 struct port_info
*pi
= netdev_priv(dev
);
257 * We do not set address filters and promiscuity here, the stack does
258 * that step explicitly. Enable vlan accel.
260 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, dev
->mtu
, -1, -1, -1, 1,
263 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
,
264 pi
->xact_addr_filt
, dev
->dev_addr
, true);
266 pi
->xact_addr_filt
= ret
;
272 * We don't need to actually "start the link" itself since the
273 * firmware will do that for us when the first Virtual Interface
274 * is enabled on a port.
277 ret
= t4vf_enable_pi(pi
->adapter
, pi
, true, true);
279 /* The Virtual Interfaces are connected to an internal switch on the
280 * chip which allows VIs attached to the same port to talk to each
281 * other even when the port link is down. As a result, we generally
282 * want to always report a VI's link as being "up", provided there are
283 * no errors in enabling vi.
287 netif_carrier_on(dev
);
293 * Name the MSI-X interrupts.
295 static void name_msix_vecs(struct adapter
*adapter
)
297 int namelen
= sizeof(adapter
->msix_info
[0].desc
) - 1;
303 snprintf(adapter
->msix_info
[MSIX_FW
].desc
, namelen
,
304 "%s-FWeventq", adapter
->name
);
305 adapter
->msix_info
[MSIX_FW
].desc
[namelen
] = 0;
310 for_each_port(adapter
, pidx
) {
311 struct net_device
*dev
= adapter
->port
[pidx
];
312 const struct port_info
*pi
= netdev_priv(dev
);
315 for (qs
= 0, msi
= MSIX_IQFLINT
; qs
< pi
->nqsets
; qs
++, msi
++) {
316 snprintf(adapter
->msix_info
[msi
].desc
, namelen
,
317 "%s-%d", dev
->name
, qs
);
318 adapter
->msix_info
[msi
].desc
[namelen
] = 0;
324 * Request all of our MSI-X resources.
326 static int request_msix_queue_irqs(struct adapter
*adapter
)
328 struct sge
*s
= &adapter
->sge
;
334 err
= request_irq(adapter
->msix_info
[MSIX_FW
].vec
, t4vf_sge_intr_msix
,
335 0, adapter
->msix_info
[MSIX_FW
].desc
, &s
->fw_evtq
);
343 for_each_ethrxq(s
, rxq
) {
344 err
= request_irq(adapter
->msix_info
[msi
].vec
,
345 t4vf_sge_intr_msix
, 0,
346 adapter
->msix_info
[msi
].desc
,
347 &s
->ethrxq
[rxq
].rspq
);
356 free_irq(adapter
->msix_info
[--msi
].vec
, &s
->ethrxq
[rxq
].rspq
);
357 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
362 * Free our MSI-X resources.
364 static void free_msix_queue_irqs(struct adapter
*adapter
)
366 struct sge
*s
= &adapter
->sge
;
369 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
371 for_each_ethrxq(s
, rxq
)
372 free_irq(adapter
->msix_info
[msi
++].vec
,
373 &s
->ethrxq
[rxq
].rspq
);
377 * Turn on NAPI and start up interrupts on a response queue.
379 static void qenable(struct sge_rspq
*rspq
)
381 napi_enable(&rspq
->napi
);
384 * 0-increment the Going To Sleep register to start the timer and
387 t4_write_reg(rspq
->adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
389 SEINTARM_V(rspq
->intr_params
) |
390 INGRESSQID_V(rspq
->cntxt_id
));
394 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
396 static void enable_rx(struct adapter
*adapter
)
399 struct sge
*s
= &adapter
->sge
;
401 for_each_ethrxq(s
, rxq
)
402 qenable(&s
->ethrxq
[rxq
].rspq
);
403 qenable(&s
->fw_evtq
);
406 * The interrupt queue doesn't use NAPI so we do the 0-increment of
407 * its Going To Sleep register here to get it started.
409 if (adapter
->flags
& USING_MSI
)
410 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
412 SEINTARM_V(s
->intrq
.intr_params
) |
413 INGRESSQID_V(s
->intrq
.cntxt_id
));
418 * Wait until all NAPI handlers are descheduled.
420 static void quiesce_rx(struct adapter
*adapter
)
422 struct sge
*s
= &adapter
->sge
;
425 for_each_ethrxq(s
, rxq
)
426 napi_disable(&s
->ethrxq
[rxq
].rspq
.napi
);
427 napi_disable(&s
->fw_evtq
.napi
);
431 * Response queue handler for the firmware event queue.
433 static int fwevtq_handler(struct sge_rspq
*rspq
, const __be64
*rsp
,
434 const struct pkt_gl
*gl
)
437 * Extract response opcode and get pointer to CPL message body.
439 struct adapter
*adapter
= rspq
->adapter
;
440 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
441 void *cpl
= (void *)(rsp
+ 1);
446 * We've received an asynchronous message from the firmware.
448 const struct cpl_fw6_msg
*fw_msg
= cpl
;
449 if (fw_msg
->type
== FW6_TYPE_CMD_RPL
)
450 t4vf_handle_fw_rpl(adapter
, fw_msg
->data
);
455 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
457 const struct cpl_sge_egr_update
*p
= (void *)(rsp
+ 3);
458 opcode
= CPL_OPCODE_G(ntohl(p
->opcode_qid
));
459 if (opcode
!= CPL_SGE_EGR_UPDATE
) {
460 dev_err(adapter
->pdev_dev
, "unexpected FW4/CPL %#x on FW event queue\n"
468 case CPL_SGE_EGR_UPDATE
: {
470 * We've received an Egress Queue Status Update message. We
471 * get these, if the SGE is configured to send these when the
472 * firmware passes certain points in processing our TX
473 * Ethernet Queue or if we make an explicit request for one.
474 * We use these updates to determine when we may need to
475 * restart a TX Ethernet Queue which was stopped for lack of
476 * free TX Queue Descriptors ...
478 const struct cpl_sge_egr_update
*p
= cpl
;
479 unsigned int qid
= EGR_QID_G(be32_to_cpu(p
->opcode_qid
));
480 struct sge
*s
= &adapter
->sge
;
482 struct sge_eth_txq
*txq
;
486 * Perform sanity checking on the Queue ID to make sure it
487 * really refers to one of our TX Ethernet Egress Queues which
488 * is active and matches the queue's ID. None of these error
489 * conditions should ever happen so we may want to either make
490 * them fatal and/or conditionalized under DEBUG.
492 eq_idx
= EQ_IDX(s
, qid
);
493 if (unlikely(eq_idx
>= MAX_EGRQ
)) {
494 dev_err(adapter
->pdev_dev
,
495 "Egress Update QID %d out of range\n", qid
);
498 tq
= s
->egr_map
[eq_idx
];
499 if (unlikely(tq
== NULL
)) {
500 dev_err(adapter
->pdev_dev
,
501 "Egress Update QID %d TXQ=NULL\n", qid
);
504 txq
= container_of(tq
, struct sge_eth_txq
, q
);
505 if (unlikely(tq
->abs_id
!= qid
)) {
506 dev_err(adapter
->pdev_dev
,
507 "Egress Update QID %d refers to TXQ %d\n",
513 * Restart a stopped TX Queue which has less than half of its
517 netif_tx_wake_queue(txq
->txq
);
522 dev_err(adapter
->pdev_dev
,
523 "unexpected CPL %#x on FW event queue\n", opcode
);
530 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
531 * to use and initializes them. We support multiple "Queue Sets" per port if
532 * we have MSI-X, otherwise just one queue set per port.
534 static int setup_sge_queues(struct adapter
*adapter
)
536 struct sge
*s
= &adapter
->sge
;
540 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
543 bitmap_zero(s
->starving_fl
, MAX_EGRQ
);
546 * If we're using MSI interrupt mode we need to set up a "forwarded
547 * interrupt" queue which we'll set up with our MSI vector. The rest
548 * of the ingress queues will be set up to forward their interrupts to
549 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
550 * the intrq's queue ID as the interrupt forwarding queue for the
551 * subsequent calls ...
553 if (adapter
->flags
& USING_MSI
) {
554 err
= t4vf_sge_alloc_rxq(adapter
, &s
->intrq
, false,
555 adapter
->port
[0], 0, NULL
, NULL
);
557 goto err_free_queues
;
561 * Allocate our ingress queue for asynchronous firmware messages.
563 err
= t4vf_sge_alloc_rxq(adapter
, &s
->fw_evtq
, true, adapter
->port
[0],
564 MSIX_FW
, NULL
, fwevtq_handler
);
566 goto err_free_queues
;
569 * Allocate each "port"'s initial Queue Sets. These can be changed
570 * later on ... up to the point where any interface on the adapter is
571 * brought up at which point lots of things get nailed down
575 for_each_port(adapter
, pidx
) {
576 struct net_device
*dev
= adapter
->port
[pidx
];
577 struct port_info
*pi
= netdev_priv(dev
);
578 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
579 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
582 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
583 err
= t4vf_sge_alloc_rxq(adapter
, &rxq
->rspq
, false,
585 &rxq
->fl
, t4vf_ethrx_handler
);
587 goto err_free_queues
;
589 err
= t4vf_sge_alloc_eth_txq(adapter
, txq
, dev
,
590 netdev_get_tx_queue(dev
, qs
),
591 s
->fw_evtq
.cntxt_id
);
593 goto err_free_queues
;
596 memset(&rxq
->stats
, 0, sizeof(rxq
->stats
));
601 * Create the reverse mappings for the queues.
603 s
->egr_base
= s
->ethtxq
[0].q
.abs_id
- s
->ethtxq
[0].q
.cntxt_id
;
604 s
->ingr_base
= s
->ethrxq
[0].rspq
.abs_id
- s
->ethrxq
[0].rspq
.cntxt_id
;
605 IQ_MAP(s
, s
->fw_evtq
.abs_id
) = &s
->fw_evtq
;
606 for_each_port(adapter
, pidx
) {
607 struct net_device
*dev
= adapter
->port
[pidx
];
608 struct port_info
*pi
= netdev_priv(dev
);
609 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
610 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
613 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
614 IQ_MAP(s
, rxq
->rspq
.abs_id
) = &rxq
->rspq
;
615 EQ_MAP(s
, txq
->q
.abs_id
) = &txq
->q
;
618 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
619 * for Free Lists but since all of the Egress Queues
620 * (including Free Lists) have Relative Queue IDs
621 * which are computed as Absolute - Base Queue ID, we
622 * can synthesize the Absolute Queue IDs for the Free
623 * Lists. This is useful for debugging purposes when
624 * we want to dump Queue Contexts via the PF Driver.
626 rxq
->fl
.abs_id
= rxq
->fl
.cntxt_id
+ s
->egr_base
;
627 EQ_MAP(s
, rxq
->fl
.abs_id
) = &rxq
->fl
;
633 t4vf_free_sge_resources(adapter
);
638 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
639 * queues. We configure the RSS CPU lookup table to distribute to the number
640 * of HW receive queues, and the response queue lookup table to narrow that
641 * down to the response queues actually configured for each "port" (Virtual
642 * Interface). We always configure the RSS mapping for all ports since the
643 * mapping table has plenty of entries.
645 static int setup_rss(struct adapter
*adapter
)
649 for_each_port(adapter
, pidx
) {
650 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
651 struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
652 u16 rss
[MAX_PORT_QSETS
];
655 for (qs
= 0; qs
< pi
->nqsets
; qs
++)
656 rss
[qs
] = rxq
[qs
].rspq
.abs_id
;
658 err
= t4vf_config_rss_range(adapter
, pi
->viid
,
659 0, pi
->rss_size
, rss
, pi
->nqsets
);
664 * Perform Global RSS Mode-specific initialization.
666 switch (adapter
->params
.rss
.mode
) {
667 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
:
669 * If Tunnel All Lookup isn't specified in the global
670 * RSS Configuration, then we need to specify a
671 * default Ingress Queue for any ingress packets which
672 * aren't hashed. We'll use our first ingress queue
675 if (!adapter
->params
.rss
.u
.basicvirtual
.tnlalllookup
) {
676 union rss_vi_config config
;
677 err
= t4vf_read_rss_vi_config(adapter
,
682 config
.basicvirtual
.defaultq
=
684 err
= t4vf_write_rss_vi_config(adapter
,
698 * Bring the adapter up. Called whenever we go from no "ports" open to having
699 * one open. This function performs the actions necessary to make an adapter
700 * operational, such as completing the initialization of HW modules, and
701 * enabling interrupts. Must be called with the rtnl lock held. (Note that
702 * this is called "cxgb_up" in the PF Driver.)
704 static int adapter_up(struct adapter
*adapter
)
709 * If this is the first time we've been called, perform basic
710 * adapter setup. Once we've done this, many of our adapter
711 * parameters can no longer be changed ...
713 if ((adapter
->flags
& FULL_INIT_DONE
) == 0) {
714 err
= setup_sge_queues(adapter
);
717 err
= setup_rss(adapter
);
719 t4vf_free_sge_resources(adapter
);
723 if (adapter
->flags
& USING_MSIX
)
724 name_msix_vecs(adapter
);
726 adapter
->flags
|= FULL_INIT_DONE
;
730 * Acquire our interrupt resources. We only support MSI-X and MSI.
732 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
733 if (adapter
->flags
& USING_MSIX
)
734 err
= request_msix_queue_irqs(adapter
);
736 err
= request_irq(adapter
->pdev
->irq
,
737 t4vf_intr_handler(adapter
), 0,
738 adapter
->name
, adapter
);
740 dev_err(adapter
->pdev_dev
, "request_irq failed, err %d\n",
746 * Enable NAPI ingress processing and return success.
749 t4vf_sge_start(adapter
);
755 * Bring the adapter down. Called whenever the last "port" (Virtual
756 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
759 static void adapter_down(struct adapter
*adapter
)
762 * Free interrupt resources.
764 if (adapter
->flags
& USING_MSIX
)
765 free_msix_queue_irqs(adapter
);
767 free_irq(adapter
->pdev
->irq
, adapter
);
770 * Wait for NAPI handlers to finish.
776 * Start up a net device.
778 static int cxgb4vf_open(struct net_device
*dev
)
781 struct port_info
*pi
= netdev_priv(dev
);
782 struct adapter
*adapter
= pi
->adapter
;
785 * If this is the first interface that we're opening on the "adapter",
786 * bring the "adapter" up now.
788 if (adapter
->open_device_map
== 0) {
789 err
= adapter_up(adapter
);
795 * Note that this interface is up and start everything up ...
797 err
= link_start(dev
);
801 pi
->vlan_id
= t4vf_get_vf_vlan_acl(adapter
);
803 netif_tx_start_all_queues(dev
);
804 set_bit(pi
->port_id
, &adapter
->open_device_map
);
808 if (adapter
->open_device_map
== 0)
809 adapter_down(adapter
);
814 * Shut down a net device. This routine is called "cxgb_close" in the PF
817 static int cxgb4vf_stop(struct net_device
*dev
)
819 struct port_info
*pi
= netdev_priv(dev
);
820 struct adapter
*adapter
= pi
->adapter
;
822 netif_tx_stop_all_queues(dev
);
823 netif_carrier_off(dev
);
824 t4vf_enable_pi(adapter
, pi
, false, false);
826 clear_bit(pi
->port_id
, &adapter
->open_device_map
);
827 if (adapter
->open_device_map
== 0)
828 adapter_down(adapter
);
833 * Translate our basic statistics into the standard "ifconfig" statistics.
835 static struct net_device_stats
*cxgb4vf_get_stats(struct net_device
*dev
)
837 struct t4vf_port_stats stats
;
838 struct port_info
*pi
= netdev2pinfo(dev
);
839 struct adapter
*adapter
= pi
->adapter
;
840 struct net_device_stats
*ns
= &dev
->stats
;
843 spin_lock(&adapter
->stats_lock
);
844 err
= t4vf_get_port_stats(adapter
, pi
->pidx
, &stats
);
845 spin_unlock(&adapter
->stats_lock
);
847 memset(ns
, 0, sizeof(*ns
));
851 ns
->tx_bytes
= (stats
.tx_bcast_bytes
+ stats
.tx_mcast_bytes
+
852 stats
.tx_ucast_bytes
+ stats
.tx_offload_bytes
);
853 ns
->tx_packets
= (stats
.tx_bcast_frames
+ stats
.tx_mcast_frames
+
854 stats
.tx_ucast_frames
+ stats
.tx_offload_frames
);
855 ns
->rx_bytes
= (stats
.rx_bcast_bytes
+ stats
.rx_mcast_bytes
+
856 stats
.rx_ucast_bytes
);
857 ns
->rx_packets
= (stats
.rx_bcast_frames
+ stats
.rx_mcast_frames
+
858 stats
.rx_ucast_frames
);
859 ns
->multicast
= stats
.rx_mcast_frames
;
860 ns
->tx_errors
= stats
.tx_drop_frames
;
861 ns
->rx_errors
= stats
.rx_err_frames
;
866 static inline int cxgb4vf_set_addr_hash(struct port_info
*pi
)
868 struct adapter
*adapter
= pi
->adapter
;
871 struct hash_mac_addr
*entry
;
873 /* Calculate the hash vector for the updated list and program it */
874 list_for_each_entry(entry
, &adapter
->mac_hlist
, list
) {
875 ucast
|= is_unicast_ether_addr(entry
->addr
);
876 vec
|= (1ULL << hash_mac_addr(entry
->addr
));
878 return t4vf_set_addr_hash(adapter
, pi
->viid
, ucast
, vec
, false);
881 static int cxgb4vf_mac_sync(struct net_device
*netdev
, const u8
*mac_addr
)
883 struct port_info
*pi
= netdev_priv(netdev
);
884 struct adapter
*adapter
= pi
->adapter
;
889 bool ucast
= is_unicast_ether_addr(mac_addr
);
890 const u8
*maclist
[1] = {mac_addr
};
891 struct hash_mac_addr
*new_entry
;
893 ret
= t4vf_alloc_mac_filt(adapter
, pi
->viid
, free
, 1, maclist
,
894 NULL
, ucast
? &uhash
: &mhash
, false);
897 /* if hash != 0, then add the addr to hash addr list
898 * so on the end we will calculate the hash for the
899 * list and program it
901 if (uhash
|| mhash
) {
902 new_entry
= kzalloc(sizeof(*new_entry
), GFP_ATOMIC
);
905 ether_addr_copy(new_entry
->addr
, mac_addr
);
906 list_add_tail(&new_entry
->list
, &adapter
->mac_hlist
);
907 ret
= cxgb4vf_set_addr_hash(pi
);
910 return ret
< 0 ? ret
: 0;
913 static int cxgb4vf_mac_unsync(struct net_device
*netdev
, const u8
*mac_addr
)
915 struct port_info
*pi
= netdev_priv(netdev
);
916 struct adapter
*adapter
= pi
->adapter
;
918 const u8
*maclist
[1] = {mac_addr
};
919 struct hash_mac_addr
*entry
, *tmp
;
921 /* If the MAC address to be removed is in the hash addr
922 * list, delete it from the list and update hash vector
924 list_for_each_entry_safe(entry
, tmp
, &adapter
->mac_hlist
, list
) {
925 if (ether_addr_equal(entry
->addr
, mac_addr
)) {
926 list_del(&entry
->list
);
928 return cxgb4vf_set_addr_hash(pi
);
932 ret
= t4vf_free_mac_filt(adapter
, pi
->viid
, 1, maclist
, false);
933 return ret
< 0 ? -EINVAL
: 0;
937 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
938 * If @mtu is -1 it is left unchanged.
940 static int set_rxmode(struct net_device
*dev
, int mtu
, bool sleep_ok
)
942 struct port_info
*pi
= netdev_priv(dev
);
944 __dev_uc_sync(dev
, cxgb4vf_mac_sync
, cxgb4vf_mac_unsync
);
945 __dev_mc_sync(dev
, cxgb4vf_mac_sync
, cxgb4vf_mac_unsync
);
946 return t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1,
947 (dev
->flags
& IFF_PROMISC
) != 0,
948 (dev
->flags
& IFF_ALLMULTI
) != 0,
953 * Set the current receive modes on the device.
955 static void cxgb4vf_set_rxmode(struct net_device
*dev
)
957 /* unfortunately we can't return errors to the stack */
958 set_rxmode(dev
, -1, false);
962 * Find the entry in the interrupt holdoff timer value array which comes
963 * closest to the specified interrupt holdoff value.
965 static int closest_timer(const struct sge
*s
, int us
)
967 int i
, timer_idx
= 0, min_delta
= INT_MAX
;
969 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
970 int delta
= us
- s
->timer_val
[i
];
973 if (delta
< min_delta
) {
981 static int closest_thres(const struct sge
*s
, int thres
)
983 int i
, delta
, pktcnt_idx
= 0, min_delta
= INT_MAX
;
985 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
986 delta
= thres
- s
->counter_val
[i
];
989 if (delta
< min_delta
) {
998 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1000 static unsigned int qtimer_val(const struct adapter
*adapter
,
1001 const struct sge_rspq
*rspq
)
1003 unsigned int timer_idx
= QINTR_TIMER_IDX_G(rspq
->intr_params
);
1005 return timer_idx
< SGE_NTIMERS
1006 ? adapter
->sge
.timer_val
[timer_idx
]
1011 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1012 * @adapter: the adapter
1013 * @rspq: the RX response queue
1014 * @us: the hold-off time in us, or 0 to disable timer
1015 * @cnt: the hold-off packet count, or 0 to disable counter
1017 * Sets an RX response queue's interrupt hold-off time and packet count.
1018 * At least one of the two needs to be enabled for the queue to generate
1021 static int set_rxq_intr_params(struct adapter
*adapter
, struct sge_rspq
*rspq
,
1022 unsigned int us
, unsigned int cnt
)
1024 unsigned int timer_idx
;
1027 * If both the interrupt holdoff timer and count are specified as
1028 * zero, default to a holdoff count of 1 ...
1030 if ((us
| cnt
) == 0)
1034 * If an interrupt holdoff count has been specified, then find the
1035 * closest configured holdoff count and use that. If the response
1036 * queue has already been created, then update its queue context
1043 pktcnt_idx
= closest_thres(&adapter
->sge
, cnt
);
1044 if (rspq
->desc
&& rspq
->pktcnt_idx
!= pktcnt_idx
) {
1045 v
= FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
1046 FW_PARAMS_PARAM_X_V(
1047 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH
) |
1048 FW_PARAMS_PARAM_YZ_V(rspq
->cntxt_id
);
1049 err
= t4vf_set_params(adapter
, 1, &v
, &pktcnt_idx
);
1053 rspq
->pktcnt_idx
= pktcnt_idx
;
1057 * Compute the closest holdoff timer index from the supplied holdoff
1060 timer_idx
= (us
== 0
1061 ? SGE_TIMER_RSTRT_CNTR
1062 : closest_timer(&adapter
->sge
, us
));
1065 * Update the response queue's interrupt coalescing parameters and
1068 rspq
->intr_params
= (QINTR_TIMER_IDX_V(timer_idx
) |
1069 QINTR_CNT_EN_V(cnt
> 0));
1074 * Return a version number to identify the type of adapter. The scheme is:
1075 * - bits 0..9: chip version
1076 * - bits 10..15: chip revision
1078 static inline unsigned int mk_adap_vers(const struct adapter
*adapter
)
1081 * Chip version 4, revision 0x3f (cxgb4vf).
1083 return CHELSIO_CHIP_VERSION(adapter
->params
.chip
) | (0x3f << 10);
1087 * Execute the specified ioctl command.
1089 static int cxgb4vf_do_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1095 * The VF Driver doesn't have access to any of the other
1096 * common Ethernet device ioctl()'s (like reading/writing
1097 * PHY registers, etc.
1108 * Change the device's MTU.
1110 static int cxgb4vf_change_mtu(struct net_device
*dev
, int new_mtu
)
1113 struct port_info
*pi
= netdev_priv(dev
);
1115 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, new_mtu
,
1116 -1, -1, -1, -1, true);
1122 static netdev_features_t
cxgb4vf_fix_features(struct net_device
*dev
,
1123 netdev_features_t features
)
1126 * Since there is no support for separate rx/tx vlan accel
1127 * enable/disable make sure tx flag is always in same state as rx.
1129 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
1130 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
1132 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
1137 static int cxgb4vf_set_features(struct net_device
*dev
,
1138 netdev_features_t features
)
1140 struct port_info
*pi
= netdev_priv(dev
);
1141 netdev_features_t changed
= dev
->features
^ features
;
1143 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
)
1144 t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1, -1, -1, -1,
1145 features
& NETIF_F_HW_VLAN_CTAG_TX
, 0);
1151 * Change the devices MAC address.
1153 static int cxgb4vf_set_mac_addr(struct net_device
*dev
, void *_addr
)
1156 struct sockaddr
*addr
= _addr
;
1157 struct port_info
*pi
= netdev_priv(dev
);
1159 if (!is_valid_ether_addr(addr
->sa_data
))
1160 return -EADDRNOTAVAIL
;
1162 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
, pi
->xact_addr_filt
,
1163 addr
->sa_data
, true);
1167 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1168 pi
->xact_addr_filt
= ret
;
1172 #ifdef CONFIG_NET_POLL_CONTROLLER
1174 * Poll all of our receive queues. This is called outside of normal interrupt
1177 static void cxgb4vf_poll_controller(struct net_device
*dev
)
1179 struct port_info
*pi
= netdev_priv(dev
);
1180 struct adapter
*adapter
= pi
->adapter
;
1182 if (adapter
->flags
& USING_MSIX
) {
1183 struct sge_eth_rxq
*rxq
;
1186 rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1187 for (nqsets
= pi
->nqsets
; nqsets
; nqsets
--) {
1188 t4vf_sge_intr_msix(0, &rxq
->rspq
);
1192 t4vf_intr_handler(adapter
)(0, adapter
);
1197 * Ethtool operations.
1198 * ===================
1200 * Note that we don't support any ethtool operations which change the physical
1201 * state of the port to which we're linked.
1205 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
1206 * @port_type: Firmware Port Type
1207 * @mod_type: Firmware Module Type
1209 * Translate Firmware Port/Module type to Ethtool Port Type.
1211 static int from_fw_port_mod_type(enum fw_port_type port_type
,
1212 enum fw_port_module_type mod_type
)
1214 if (port_type
== FW_PORT_TYPE_BT_SGMII
||
1215 port_type
== FW_PORT_TYPE_BT_XFI
||
1216 port_type
== FW_PORT_TYPE_BT_XAUI
) {
1218 } else if (port_type
== FW_PORT_TYPE_FIBER_XFI
||
1219 port_type
== FW_PORT_TYPE_FIBER_XAUI
) {
1221 } else if (port_type
== FW_PORT_TYPE_SFP
||
1222 port_type
== FW_PORT_TYPE_QSFP_10G
||
1223 port_type
== FW_PORT_TYPE_QSA
||
1224 port_type
== FW_PORT_TYPE_QSFP
||
1225 port_type
== FW_PORT_TYPE_CR4_QSFP
||
1226 port_type
== FW_PORT_TYPE_CR_QSFP
||
1227 port_type
== FW_PORT_TYPE_CR2_QSFP
||
1228 port_type
== FW_PORT_TYPE_SFP28
) {
1229 if (mod_type
== FW_PORT_MOD_TYPE_LR
||
1230 mod_type
== FW_PORT_MOD_TYPE_SR
||
1231 mod_type
== FW_PORT_MOD_TYPE_ER
||
1232 mod_type
== FW_PORT_MOD_TYPE_LRM
)
1234 else if (mod_type
== FW_PORT_MOD_TYPE_TWINAX_PASSIVE
||
1235 mod_type
== FW_PORT_MOD_TYPE_TWINAX_ACTIVE
)
1239 } else if (port_type
== FW_PORT_TYPE_KR4_100G
||
1240 port_type
== FW_PORT_TYPE_KR_SFP28
||
1241 port_type
== FW_PORT_TYPE_KR_XLAUI
) {
1249 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
1250 * @port_type: Firmware Port Type
1251 * @fw_caps: Firmware Port Capabilities
1252 * @link_mode_mask: ethtool Link Mode Mask
1254 * Translate a Firmware Port Capabilities specification to an ethtool
1257 static void fw_caps_to_lmm(enum fw_port_type port_type
,
1258 unsigned int fw_caps
,
1259 unsigned long *link_mode_mask
)
1261 #define SET_LMM(__lmm_name) \
1262 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
1265 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
1267 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1268 SET_LMM(__lmm_name); \
1271 switch (port_type
) {
1272 case FW_PORT_TYPE_BT_SGMII
:
1273 case FW_PORT_TYPE_BT_XFI
:
1274 case FW_PORT_TYPE_BT_XAUI
:
1276 FW_CAPS_TO_LMM(SPEED_100M
, 100baseT_Full
);
1277 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1278 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1281 case FW_PORT_TYPE_KX4
:
1282 case FW_PORT_TYPE_KX
:
1284 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseKX_Full
);
1285 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKX4_Full
);
1288 case FW_PORT_TYPE_KR
:
1290 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKR_Full
);
1293 case FW_PORT_TYPE_BP_AP
:
1295 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseKX_Full
);
1296 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseR_FEC
);
1297 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKR_Full
);
1300 case FW_PORT_TYPE_BP4_AP
:
1302 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseKX_Full
);
1303 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseR_FEC
);
1304 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKR_Full
);
1305 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKX4_Full
);
1308 case FW_PORT_TYPE_FIBER_XFI
:
1309 case FW_PORT_TYPE_FIBER_XAUI
:
1310 case FW_PORT_TYPE_SFP
:
1311 case FW_PORT_TYPE_QSFP_10G
:
1312 case FW_PORT_TYPE_QSA
:
1314 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1315 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1318 case FW_PORT_TYPE_BP40_BA
:
1319 case FW_PORT_TYPE_QSFP
:
1321 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1322 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1323 FW_CAPS_TO_LMM(SPEED_40G
, 40000baseSR4_Full
);
1326 case FW_PORT_TYPE_CR_QSFP
:
1327 case FW_PORT_TYPE_SFP28
:
1329 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1330 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseT_Full
);
1331 FW_CAPS_TO_LMM(SPEED_25G
, 25000baseCR_Full
);
1334 case FW_PORT_TYPE_KR_SFP28
:
1336 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1337 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKR_Full
);
1338 FW_CAPS_TO_LMM(SPEED_25G
, 25000baseKR_Full
);
1341 case FW_PORT_TYPE_KR_XLAUI
:
1343 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseKX_Full
);
1344 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseKR_Full
);
1345 FW_CAPS_TO_LMM(SPEED_40G
, 40000baseKR4_Full
);
1348 case FW_PORT_TYPE_CR2_QSFP
:
1350 FW_CAPS_TO_LMM(SPEED_50G
, 50000baseSR2_Full
);
1353 case FW_PORT_TYPE_KR4_100G
:
1354 case FW_PORT_TYPE_CR4_QSFP
:
1356 FW_CAPS_TO_LMM(SPEED_1G
, 1000baseT_Full
);
1357 FW_CAPS_TO_LMM(SPEED_10G
, 10000baseSR_Full
);
1358 FW_CAPS_TO_LMM(SPEED_40G
, 40000baseSR4_Full
);
1359 FW_CAPS_TO_LMM(SPEED_25G
, 25000baseCR_Full
);
1360 FW_CAPS_TO_LMM(SPEED_50G
, 50000baseCR2_Full
);
1361 FW_CAPS_TO_LMM(SPEED_100G
, 100000baseCR4_Full
);
1368 FW_CAPS_TO_LMM(ANEG
, Autoneg
);
1369 FW_CAPS_TO_LMM(802_3_PAUSE
, Pause
);
1370 FW_CAPS_TO_LMM(802_3_ASM_DIR
, Asym_Pause
);
1372 #undef FW_CAPS_TO_LMM
1376 static int cxgb4vf_get_link_ksettings(struct net_device
*dev
,
1377 struct ethtool_link_ksettings
*link_ksettings
)
1379 struct port_info
*pi
= netdev_priv(dev
);
1380 struct ethtool_link_settings
*base
= &link_ksettings
->base
;
1382 /* For the nonce, the Firmware doesn't send up Port State changes
1383 * when the Virtual Interface attached to the Port is down. So
1384 * if it's down, let's grab any changes.
1386 if (!netif_running(dev
))
1387 (void)t4vf_update_port_info(pi
);
1389 ethtool_link_ksettings_zero_link_mode(link_ksettings
, supported
);
1390 ethtool_link_ksettings_zero_link_mode(link_ksettings
, advertising
);
1391 ethtool_link_ksettings_zero_link_mode(link_ksettings
, lp_advertising
);
1393 base
->port
= from_fw_port_mod_type(pi
->port_type
, pi
->mod_type
);
1395 if (pi
->mdio_addr
>= 0) {
1396 base
->phy_address
= pi
->mdio_addr
;
1397 base
->mdio_support
= (pi
->port_type
== FW_PORT_TYPE_BT_SGMII
1398 ? ETH_MDIO_SUPPORTS_C22
1399 : ETH_MDIO_SUPPORTS_C45
);
1401 base
->phy_address
= 255;
1402 base
->mdio_support
= 0;
1405 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.pcaps
,
1406 link_ksettings
->link_modes
.supported
);
1407 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.acaps
,
1408 link_ksettings
->link_modes
.advertising
);
1409 fw_caps_to_lmm(pi
->port_type
, pi
->link_cfg
.lpacaps
,
1410 link_ksettings
->link_modes
.lp_advertising
);
1412 if (netif_carrier_ok(dev
)) {
1413 base
->speed
= pi
->link_cfg
.speed
;
1414 base
->duplex
= DUPLEX_FULL
;
1416 base
->speed
= SPEED_UNKNOWN
;
1417 base
->duplex
= DUPLEX_UNKNOWN
;
1420 if (pi
->link_cfg
.fc
& PAUSE_RX
) {
1421 if (pi
->link_cfg
.fc
& PAUSE_TX
) {
1422 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1426 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1430 } else if (pi
->link_cfg
.fc
& PAUSE_TX
) {
1431 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1436 base
->autoneg
= pi
->link_cfg
.autoneg
;
1437 if (pi
->link_cfg
.pcaps
& FW_PORT_CAP32_ANEG
)
1438 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1439 supported
, Autoneg
);
1440 if (pi
->link_cfg
.autoneg
)
1441 ethtool_link_ksettings_add_link_mode(link_ksettings
,
1442 advertising
, Autoneg
);
1447 /* Translate the Firmware FEC value into the ethtool value. */
1448 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec
)
1450 unsigned int eth_fec
= 0;
1452 if (fw_fec
& FW_PORT_CAP32_FEC_RS
)
1453 eth_fec
|= ETHTOOL_FEC_RS
;
1454 if (fw_fec
& FW_PORT_CAP32_FEC_BASER_RS
)
1455 eth_fec
|= ETHTOOL_FEC_BASER
;
1457 /* if nothing is set, then FEC is off */
1459 eth_fec
= ETHTOOL_FEC_OFF
;
1464 /* Translate Common Code FEC value into ethtool value. */
1465 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec
)
1467 unsigned int eth_fec
= 0;
1469 if (cc_fec
& FEC_AUTO
)
1470 eth_fec
|= ETHTOOL_FEC_AUTO
;
1471 if (cc_fec
& FEC_RS
)
1472 eth_fec
|= ETHTOOL_FEC_RS
;
1473 if (cc_fec
& FEC_BASER_RS
)
1474 eth_fec
|= ETHTOOL_FEC_BASER
;
1476 /* if nothing is set, then FEC is off */
1478 eth_fec
= ETHTOOL_FEC_OFF
;
1483 static int cxgb4vf_get_fecparam(struct net_device
*dev
,
1484 struct ethtool_fecparam
*fec
)
1486 const struct port_info
*pi
= netdev_priv(dev
);
1487 const struct link_config
*lc
= &pi
->link_cfg
;
1489 /* Translate the Firmware FEC Support into the ethtool value. We
1490 * always support IEEE 802.3 "automatic" selection of Link FEC type if
1491 * any FEC is supported.
1493 fec
->fec
= fwcap_to_eth_fec(lc
->pcaps
);
1494 if (fec
->fec
!= ETHTOOL_FEC_OFF
)
1495 fec
->fec
|= ETHTOOL_FEC_AUTO
;
1497 /* Translate the current internal FEC parameters into the
1500 fec
->active_fec
= cc_to_eth_fec(lc
->fec
);
1505 * Return our driver information.
1507 static void cxgb4vf_get_drvinfo(struct net_device
*dev
,
1508 struct ethtool_drvinfo
*drvinfo
)
1510 struct adapter
*adapter
= netdev2adap(dev
);
1512 strlcpy(drvinfo
->driver
, KBUILD_MODNAME
, sizeof(drvinfo
->driver
));
1513 strlcpy(drvinfo
->version
, DRV_VERSION
, sizeof(drvinfo
->version
));
1514 strlcpy(drvinfo
->bus_info
, pci_name(to_pci_dev(dev
->dev
.parent
)),
1515 sizeof(drvinfo
->bus_info
));
1516 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
1517 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1518 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.dev
.fwrev
),
1519 FW_HDR_FW_VER_MINOR_G(adapter
->params
.dev
.fwrev
),
1520 FW_HDR_FW_VER_MICRO_G(adapter
->params
.dev
.fwrev
),
1521 FW_HDR_FW_VER_BUILD_G(adapter
->params
.dev
.fwrev
),
1522 FW_HDR_FW_VER_MAJOR_G(adapter
->params
.dev
.tprev
),
1523 FW_HDR_FW_VER_MINOR_G(adapter
->params
.dev
.tprev
),
1524 FW_HDR_FW_VER_MICRO_G(adapter
->params
.dev
.tprev
),
1525 FW_HDR_FW_VER_BUILD_G(adapter
->params
.dev
.tprev
));
1529 * Return current adapter message level.
1531 static u32
cxgb4vf_get_msglevel(struct net_device
*dev
)
1533 return netdev2adap(dev
)->msg_enable
;
1537 * Set current adapter message level.
1539 static void cxgb4vf_set_msglevel(struct net_device
*dev
, u32 msglevel
)
1541 netdev2adap(dev
)->msg_enable
= msglevel
;
1545 * Return the device's current Queue Set ring size parameters along with the
1546 * allowed maximum values. Since ethtool doesn't understand the concept of
1547 * multi-queue devices, we just return the current values associated with the
1550 static void cxgb4vf_get_ringparam(struct net_device
*dev
,
1551 struct ethtool_ringparam
*rp
)
1553 const struct port_info
*pi
= netdev_priv(dev
);
1554 const struct sge
*s
= &pi
->adapter
->sge
;
1556 rp
->rx_max_pending
= MAX_RX_BUFFERS
;
1557 rp
->rx_mini_max_pending
= MAX_RSPQ_ENTRIES
;
1558 rp
->rx_jumbo_max_pending
= 0;
1559 rp
->tx_max_pending
= MAX_TXQ_ENTRIES
;
1561 rp
->rx_pending
= s
->ethrxq
[pi
->first_qset
].fl
.size
- MIN_FL_RESID
;
1562 rp
->rx_mini_pending
= s
->ethrxq
[pi
->first_qset
].rspq
.size
;
1563 rp
->rx_jumbo_pending
= 0;
1564 rp
->tx_pending
= s
->ethtxq
[pi
->first_qset
].q
.size
;
1568 * Set the Queue Set ring size parameters for the device. Again, since
1569 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1570 * apply these new values across all of the Queue Sets associated with the
1571 * device -- after vetting them of course!
1573 static int cxgb4vf_set_ringparam(struct net_device
*dev
,
1574 struct ethtool_ringparam
*rp
)
1576 const struct port_info
*pi
= netdev_priv(dev
);
1577 struct adapter
*adapter
= pi
->adapter
;
1578 struct sge
*s
= &adapter
->sge
;
1581 if (rp
->rx_pending
> MAX_RX_BUFFERS
||
1582 rp
->rx_jumbo_pending
||
1583 rp
->tx_pending
> MAX_TXQ_ENTRIES
||
1584 rp
->rx_mini_pending
> MAX_RSPQ_ENTRIES
||
1585 rp
->rx_mini_pending
< MIN_RSPQ_ENTRIES
||
1586 rp
->rx_pending
< MIN_FL_ENTRIES
||
1587 rp
->tx_pending
< MIN_TXQ_ENTRIES
)
1590 if (adapter
->flags
& FULL_INIT_DONE
)
1593 for (qs
= pi
->first_qset
; qs
< pi
->first_qset
+ pi
->nqsets
; qs
++) {
1594 s
->ethrxq
[qs
].fl
.size
= rp
->rx_pending
+ MIN_FL_RESID
;
1595 s
->ethrxq
[qs
].rspq
.size
= rp
->rx_mini_pending
;
1596 s
->ethtxq
[qs
].q
.size
= rp
->tx_pending
;
1602 * Return the interrupt holdoff timer and count for the first Queue Set on the
1603 * device. Our extension ioctl() (the cxgbtool interface) allows the
1604 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1606 static int cxgb4vf_get_coalesce(struct net_device
*dev
,
1607 struct ethtool_coalesce
*coalesce
)
1609 const struct port_info
*pi
= netdev_priv(dev
);
1610 const struct adapter
*adapter
= pi
->adapter
;
1611 const struct sge_rspq
*rspq
= &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
;
1613 coalesce
->rx_coalesce_usecs
= qtimer_val(adapter
, rspq
);
1614 coalesce
->rx_max_coalesced_frames
=
1615 ((rspq
->intr_params
& QINTR_CNT_EN_F
)
1616 ? adapter
->sge
.counter_val
[rspq
->pktcnt_idx
]
1622 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1623 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1624 * the interrupt holdoff timer on any of the device's Queue Sets.
1626 static int cxgb4vf_set_coalesce(struct net_device
*dev
,
1627 struct ethtool_coalesce
*coalesce
)
1629 const struct port_info
*pi
= netdev_priv(dev
);
1630 struct adapter
*adapter
= pi
->adapter
;
1632 return set_rxq_intr_params(adapter
,
1633 &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
,
1634 coalesce
->rx_coalesce_usecs
,
1635 coalesce
->rx_max_coalesced_frames
);
1639 * Report current port link pause parameter settings.
1641 static void cxgb4vf_get_pauseparam(struct net_device
*dev
,
1642 struct ethtool_pauseparam
*pauseparam
)
1644 struct port_info
*pi
= netdev_priv(dev
);
1646 pauseparam
->autoneg
= (pi
->link_cfg
.requested_fc
& PAUSE_AUTONEG
) != 0;
1647 pauseparam
->rx_pause
= (pi
->link_cfg
.fc
& PAUSE_RX
) != 0;
1648 pauseparam
->tx_pause
= (pi
->link_cfg
.fc
& PAUSE_TX
) != 0;
1652 * Identify the port by blinking the port's LED.
1654 static int cxgb4vf_phys_id(struct net_device
*dev
,
1655 enum ethtool_phys_id_state state
)
1658 struct port_info
*pi
= netdev_priv(dev
);
1660 if (state
== ETHTOOL_ID_ACTIVE
)
1662 else if (state
== ETHTOOL_ID_INACTIVE
)
1667 return t4vf_identify_port(pi
->adapter
, pi
->viid
, val
);
1671 * Port stats maintained per queue of the port.
1673 struct queue_port_stats
{
1684 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1685 * these need to match the order of statistics returned by
1686 * t4vf_get_port_stats().
1688 static const char stats_strings
[][ETH_GSTRING_LEN
] = {
1690 * These must match the layout of the t4vf_port_stats structure.
1692 "TxBroadcastBytes ",
1693 "TxBroadcastFrames ",
1694 "TxMulticastBytes ",
1695 "TxMulticastFrames ",
1701 "RxBroadcastBytes ",
1702 "RxBroadcastFrames ",
1703 "RxMulticastBytes ",
1704 "RxMulticastFrames ",
1710 * These are accumulated per-queue statistics and must match the
1711 * order of the fields in the queue_port_stats structure.
1723 * Return the number of statistics in the specified statistics set.
1725 static int cxgb4vf_get_sset_count(struct net_device
*dev
, int sset
)
1729 return ARRAY_SIZE(stats_strings
);
1737 * Return the strings for the specified statistics set.
1739 static void cxgb4vf_get_strings(struct net_device
*dev
,
1745 memcpy(data
, stats_strings
, sizeof(stats_strings
));
1751 * Small utility routine to accumulate queue statistics across the queues of
1754 static void collect_sge_port_stats(const struct adapter
*adapter
,
1755 const struct port_info
*pi
,
1756 struct queue_port_stats
*stats
)
1758 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[pi
->first_qset
];
1759 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1762 memset(stats
, 0, sizeof(*stats
));
1763 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
1764 stats
->tso
+= txq
->tso
;
1765 stats
->tx_csum
+= txq
->tx_cso
;
1766 stats
->rx_csum
+= rxq
->stats
.rx_cso
;
1767 stats
->vlan_ex
+= rxq
->stats
.vlan_ex
;
1768 stats
->vlan_ins
+= txq
->vlan_ins
;
1769 stats
->lro_pkts
+= rxq
->stats
.lro_pkts
;
1770 stats
->lro_merged
+= rxq
->stats
.lro_merged
;
1775 * Return the ETH_SS_STATS statistics set.
1777 static void cxgb4vf_get_ethtool_stats(struct net_device
*dev
,
1778 struct ethtool_stats
*stats
,
1781 struct port_info
*pi
= netdev2pinfo(dev
);
1782 struct adapter
*adapter
= pi
->adapter
;
1783 int err
= t4vf_get_port_stats(adapter
, pi
->pidx
,
1784 (struct t4vf_port_stats
*)data
);
1786 memset(data
, 0, sizeof(struct t4vf_port_stats
));
1788 data
+= sizeof(struct t4vf_port_stats
) / sizeof(u64
);
1789 collect_sge_port_stats(adapter
, pi
, (struct queue_port_stats
*)data
);
1793 * Return the size of our register map.
1795 static int cxgb4vf_get_regs_len(struct net_device
*dev
)
1797 return T4VF_REGMAP_SIZE
;
1801 * Dump a block of registers, start to end inclusive, into a buffer.
1803 static void reg_block_dump(struct adapter
*adapter
, void *regbuf
,
1804 unsigned int start
, unsigned int end
)
1806 u32
*bp
= regbuf
+ start
- T4VF_REGMAP_START
;
1808 for ( ; start
<= end
; start
+= sizeof(u32
)) {
1810 * Avoid reading the Mailbox Control register since that
1811 * can trigger a Mailbox Ownership Arbitration cycle and
1812 * interfere with communication with the firmware.
1814 if (start
== T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
)
1817 *bp
++ = t4_read_reg(adapter
, start
);
1822 * Copy our entire register map into the provided buffer.
1824 static void cxgb4vf_get_regs(struct net_device
*dev
,
1825 struct ethtool_regs
*regs
,
1828 struct adapter
*adapter
= netdev2adap(dev
);
1830 regs
->version
= mk_adap_vers(adapter
);
1833 * Fill in register buffer with our register map.
1835 memset(regbuf
, 0, T4VF_REGMAP_SIZE
);
1837 reg_block_dump(adapter
, regbuf
,
1838 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_FIRST
,
1839 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_LAST
);
1840 reg_block_dump(adapter
, regbuf
,
1841 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_FIRST
,
1842 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_LAST
);
1844 /* T5 adds new registers in the PL Register map.
1846 reg_block_dump(adapter
, regbuf
,
1847 T4VF_PL_BASE_ADDR
+ T4VF_MOD_MAP_PL_FIRST
,
1848 T4VF_PL_BASE_ADDR
+ (is_t4(adapter
->params
.chip
)
1849 ? PL_VF_WHOAMI_A
: PL_VF_REVISION_A
));
1850 reg_block_dump(adapter
, regbuf
,
1851 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_FIRST
,
1852 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_LAST
);
1854 reg_block_dump(adapter
, regbuf
,
1855 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_FIRST
,
1856 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_LAST
);
1860 * Report current Wake On LAN settings.
1862 static void cxgb4vf_get_wol(struct net_device
*dev
,
1863 struct ethtool_wolinfo
*wol
)
1867 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1871 * TCP Segmentation Offload flags which we support.
1873 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1875 static const struct ethtool_ops cxgb4vf_ethtool_ops
= {
1876 .get_link_ksettings
= cxgb4vf_get_link_ksettings
,
1877 .get_fecparam
= cxgb4vf_get_fecparam
,
1878 .get_drvinfo
= cxgb4vf_get_drvinfo
,
1879 .get_msglevel
= cxgb4vf_get_msglevel
,
1880 .set_msglevel
= cxgb4vf_set_msglevel
,
1881 .get_ringparam
= cxgb4vf_get_ringparam
,
1882 .set_ringparam
= cxgb4vf_set_ringparam
,
1883 .get_coalesce
= cxgb4vf_get_coalesce
,
1884 .set_coalesce
= cxgb4vf_set_coalesce
,
1885 .get_pauseparam
= cxgb4vf_get_pauseparam
,
1886 .get_link
= ethtool_op_get_link
,
1887 .get_strings
= cxgb4vf_get_strings
,
1888 .set_phys_id
= cxgb4vf_phys_id
,
1889 .get_sset_count
= cxgb4vf_get_sset_count
,
1890 .get_ethtool_stats
= cxgb4vf_get_ethtool_stats
,
1891 .get_regs_len
= cxgb4vf_get_regs_len
,
1892 .get_regs
= cxgb4vf_get_regs
,
1893 .get_wol
= cxgb4vf_get_wol
,
1897 * /sys/kernel/debug/cxgb4vf support code and data.
1898 * ================================================
1902 * Show Firmware Mailbox Command/Reply Log
1904 * Note that we don't do any locking when dumping the Firmware Mailbox Log so
1905 * it's possible that we can catch things during a log update and therefore
1906 * see partially corrupted log entries. But i9t's probably Good Enough(tm).
1907 * If we ever decide that we want to make sure that we're dumping a coherent
1908 * log, we'd need to perform locking in the mailbox logging and in
1909 * mboxlog_open() where we'd need to grab the entire mailbox log in one go
1910 * like we do for the Firmware Device Log. But as stated above, meh ...
1912 static int mboxlog_show(struct seq_file
*seq
, void *v
)
1914 struct adapter
*adapter
= seq
->private;
1915 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
1916 struct mbox_cmd
*entry
;
1919 if (v
== SEQ_START_TOKEN
) {
1921 "%10s %15s %5s %5s %s\n",
1922 "Seq#", "Tstamp", "Atime", "Etime",
1927 entry_idx
= log
->cursor
+ ((uintptr_t)v
- 2);
1928 if (entry_idx
>= log
->size
)
1929 entry_idx
-= log
->size
;
1930 entry
= mbox_cmd_log_entry(log
, entry_idx
);
1932 /* skip over unused entries */
1933 if (entry
->timestamp
== 0)
1936 seq_printf(seq
, "%10u %15llu %5d %5d",
1937 entry
->seqno
, entry
->timestamp
,
1938 entry
->access
, entry
->execute
);
1939 for (i
= 0; i
< MBOX_LEN
/ 8; i
++) {
1940 u64 flit
= entry
->cmd
[i
];
1941 u32 hi
= (u32
)(flit
>> 32);
1944 seq_printf(seq
, " %08x %08x", hi
, lo
);
1946 seq_puts(seq
, "\n");
1950 static inline void *mboxlog_get_idx(struct seq_file
*seq
, loff_t pos
)
1952 struct adapter
*adapter
= seq
->private;
1953 struct mbox_cmd_log
*log
= adapter
->mbox_log
;
1955 return ((pos
<= log
->size
) ? (void *)(uintptr_t)(pos
+ 1) : NULL
);
1958 static void *mboxlog_start(struct seq_file
*seq
, loff_t
*pos
)
1960 return *pos
? mboxlog_get_idx(seq
, *pos
) : SEQ_START_TOKEN
;
1963 static void *mboxlog_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1966 return mboxlog_get_idx(seq
, *pos
);
1969 static void mboxlog_stop(struct seq_file
*seq
, void *v
)
1973 static const struct seq_operations mboxlog_seq_ops
= {
1974 .start
= mboxlog_start
,
1975 .next
= mboxlog_next
,
1976 .stop
= mboxlog_stop
,
1977 .show
= mboxlog_show
1980 static int mboxlog_open(struct inode
*inode
, struct file
*file
)
1982 int res
= seq_open(file
, &mboxlog_seq_ops
);
1985 struct seq_file
*seq
= file
->private_data
;
1987 seq
->private = inode
->i_private
;
1992 static const struct file_operations mboxlog_fops
= {
1993 .owner
= THIS_MODULE
,
1994 .open
= mboxlog_open
,
1996 .llseek
= seq_lseek
,
1997 .release
= seq_release
,
2001 * Show SGE Queue Set information. We display QPL Queues Sets per line.
2005 static int sge_qinfo_show(struct seq_file
*seq
, void *v
)
2007 struct adapter
*adapter
= seq
->private;
2008 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
2009 int qs
, r
= (uintptr_t)v
- 1;
2012 seq_putc(seq
, '\n');
2014 #define S3(fmt_spec, s, v) \
2016 seq_printf(seq, "%-12s", s); \
2017 for (qs = 0; qs < n; ++qs) \
2018 seq_printf(seq, " %16" fmt_spec, v); \
2019 seq_putc(seq, '\n'); \
2021 #define S(s, v) S3("s", s, v)
2022 #define T(s, v) S3("u", s, txq[qs].v)
2023 #define R(s, v) S3("u", s, rxq[qs].v)
2025 if (r
< eth_entries
) {
2026 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
2027 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
2028 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
2030 S("QType:", "Ethernet");
2032 (rxq
[qs
].rspq
.netdev
2033 ? rxq
[qs
].rspq
.netdev
->name
2036 (rxq
[qs
].rspq
.netdev
2037 ? ((struct port_info
*)
2038 netdev_priv(rxq
[qs
].rspq
.netdev
))->port_id
2040 T("TxQ ID:", q
.abs_id
);
2041 T("TxQ size:", q
.size
);
2042 T("TxQ inuse:", q
.in_use
);
2043 T("TxQ PIdx:", q
.pidx
);
2044 T("TxQ CIdx:", q
.cidx
);
2045 R("RspQ ID:", rspq
.abs_id
);
2046 R("RspQ size:", rspq
.size
);
2047 R("RspQE size:", rspq
.iqe_len
);
2048 S3("u", "Intr delay:", qtimer_val(adapter
, &rxq
[qs
].rspq
));
2049 S3("u", "Intr pktcnt:",
2050 adapter
->sge
.counter_val
[rxq
[qs
].rspq
.pktcnt_idx
]);
2051 R("RspQ CIdx:", rspq
.cidx
);
2052 R("RspQ Gen:", rspq
.gen
);
2053 R("FL ID:", fl
.abs_id
);
2054 R("FL size:", fl
.size
- MIN_FL_RESID
);
2055 R("FL avail:", fl
.avail
);
2056 R("FL PIdx:", fl
.pidx
);
2057 R("FL CIdx:", fl
.cidx
);
2063 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
2065 seq_printf(seq
, "%-12s %16s\n", "QType:", "FW event queue");
2066 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", evtq
->abs_id
);
2067 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
2068 qtimer_val(adapter
, evtq
));
2069 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
2070 adapter
->sge
.counter_val
[evtq
->pktcnt_idx
]);
2071 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", evtq
->cidx
);
2072 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", evtq
->gen
);
2073 } else if (r
== 1) {
2074 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
2076 seq_printf(seq
, "%-12s %16s\n", "QType:", "Interrupt Queue");
2077 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", intrq
->abs_id
);
2078 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
2079 qtimer_val(adapter
, intrq
));
2080 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
2081 adapter
->sge
.counter_val
[intrq
->pktcnt_idx
]);
2082 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", intrq
->cidx
);
2083 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", intrq
->gen
);
2095 * Return the number of "entries" in our "file". We group the multi-Queue
2096 * sections with QPL Queue Sets per "entry". The sections of the output are:
2098 * Ethernet RX/TX Queue Sets
2099 * Firmware Event Queue
2100 * Forwarded Interrupt Queue (if in MSI mode)
2102 static int sge_queue_entries(const struct adapter
*adapter
)
2104 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
2105 ((adapter
->flags
& USING_MSI
) != 0);
2108 static void *sge_queue_start(struct seq_file
*seq
, loff_t
*pos
)
2110 int entries
= sge_queue_entries(seq
->private);
2112 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2115 static void sge_queue_stop(struct seq_file
*seq
, void *v
)
2119 static void *sge_queue_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2121 int entries
= sge_queue_entries(seq
->private);
2124 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2127 static const struct seq_operations sge_qinfo_seq_ops
= {
2128 .start
= sge_queue_start
,
2129 .next
= sge_queue_next
,
2130 .stop
= sge_queue_stop
,
2131 .show
= sge_qinfo_show
2134 static int sge_qinfo_open(struct inode
*inode
, struct file
*file
)
2136 int res
= seq_open(file
, &sge_qinfo_seq_ops
);
2139 struct seq_file
*seq
= file
->private_data
;
2140 seq
->private = inode
->i_private
;
2145 static const struct file_operations sge_qinfo_debugfs_fops
= {
2146 .owner
= THIS_MODULE
,
2147 .open
= sge_qinfo_open
,
2149 .llseek
= seq_lseek
,
2150 .release
= seq_release
,
2154 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
2158 static int sge_qstats_show(struct seq_file
*seq
, void *v
)
2160 struct adapter
*adapter
= seq
->private;
2161 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
2162 int qs
, r
= (uintptr_t)v
- 1;
2165 seq_putc(seq
, '\n');
2167 #define S3(fmt, s, v) \
2169 seq_printf(seq, "%-16s", s); \
2170 for (qs = 0; qs < n; ++qs) \
2171 seq_printf(seq, " %8" fmt, v); \
2172 seq_putc(seq, '\n'); \
2174 #define S(s, v) S3("s", s, v)
2176 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
2177 #define T(s, v) T3("lu", s, v)
2179 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
2180 #define R(s, v) R3("lu", s, v)
2182 if (r
< eth_entries
) {
2183 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
2184 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
2185 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
2187 S("QType:", "Ethernet");
2189 (rxq
[qs
].rspq
.netdev
2190 ? rxq
[qs
].rspq
.netdev
->name
2192 R3("u", "RspQNullInts:", rspq
.unhandled_irqs
);
2193 R("RxPackets:", stats
.pkts
);
2194 R("RxCSO:", stats
.rx_cso
);
2195 R("VLANxtract:", stats
.vlan_ex
);
2196 R("LROmerged:", stats
.lro_merged
);
2197 R("LROpackets:", stats
.lro_pkts
);
2198 R("RxDrops:", stats
.rx_drops
);
2200 T("TxCSO:", tx_cso
);
2201 T("VLANins:", vlan_ins
);
2202 T("TxQFull:", q
.stops
);
2203 T("TxQRestarts:", q
.restarts
);
2204 T("TxMapErr:", mapping_err
);
2205 R("FLAllocErr:", fl
.alloc_failed
);
2206 R("FLLrgAlcErr:", fl
.large_alloc_failed
);
2207 R("FLStarving:", fl
.starving
);
2213 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
2215 seq_printf(seq
, "%-8s %16s\n", "QType:", "FW event queue");
2216 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
2217 evtq
->unhandled_irqs
);
2218 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", evtq
->cidx
);
2219 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", evtq
->gen
);
2220 } else if (r
== 1) {
2221 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
2223 seq_printf(seq
, "%-8s %16s\n", "QType:", "Interrupt Queue");
2224 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
2225 intrq
->unhandled_irqs
);
2226 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", intrq
->cidx
);
2227 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", intrq
->gen
);
2241 * Return the number of "entries" in our "file". We group the multi-Queue
2242 * sections with QPL Queue Sets per "entry". The sections of the output are:
2244 * Ethernet RX/TX Queue Sets
2245 * Firmware Event Queue
2246 * Forwarded Interrupt Queue (if in MSI mode)
2248 static int sge_qstats_entries(const struct adapter
*adapter
)
2250 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
2251 ((adapter
->flags
& USING_MSI
) != 0);
2254 static void *sge_qstats_start(struct seq_file
*seq
, loff_t
*pos
)
2256 int entries
= sge_qstats_entries(seq
->private);
2258 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2261 static void sge_qstats_stop(struct seq_file
*seq
, void *v
)
2265 static void *sge_qstats_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2267 int entries
= sge_qstats_entries(seq
->private);
2270 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
2273 static const struct seq_operations sge_qstats_seq_ops
= {
2274 .start
= sge_qstats_start
,
2275 .next
= sge_qstats_next
,
2276 .stop
= sge_qstats_stop
,
2277 .show
= sge_qstats_show
2280 static int sge_qstats_open(struct inode
*inode
, struct file
*file
)
2282 int res
= seq_open(file
, &sge_qstats_seq_ops
);
2285 struct seq_file
*seq
= file
->private_data
;
2286 seq
->private = inode
->i_private
;
2291 static const struct file_operations sge_qstats_proc_fops
= {
2292 .owner
= THIS_MODULE
,
2293 .open
= sge_qstats_open
,
2295 .llseek
= seq_lseek
,
2296 .release
= seq_release
,
2300 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2302 static int resources_show(struct seq_file
*seq
, void *v
)
2304 struct adapter
*adapter
= seq
->private;
2305 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
2307 #define S(desc, fmt, var) \
2308 seq_printf(seq, "%-60s " fmt "\n", \
2309 desc " (" #var "):", vfres->var)
2311 S("Virtual Interfaces", "%d", nvi
);
2312 S("Egress Queues", "%d", neq
);
2313 S("Ethernet Control", "%d", nethctrl
);
2314 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint
);
2315 S("Ingress Queues", "%d", niq
);
2316 S("Traffic Class", "%d", tc
);
2317 S("Port Access Rights Mask", "%#x", pmask
);
2318 S("MAC Address Filters", "%d", nexactf
);
2319 S("Firmware Command Read Capabilities", "%#x", r_caps
);
2320 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps
);
2327 static int resources_open(struct inode
*inode
, struct file
*file
)
2329 return single_open(file
, resources_show
, inode
->i_private
);
2332 static const struct file_operations resources_proc_fops
= {
2333 .owner
= THIS_MODULE
,
2334 .open
= resources_open
,
2336 .llseek
= seq_lseek
,
2337 .release
= single_release
,
2341 * Show Virtual Interfaces.
2343 static int interfaces_show(struct seq_file
*seq
, void *v
)
2345 if (v
== SEQ_START_TOKEN
) {
2346 seq_puts(seq
, "Interface Port VIID\n");
2348 struct adapter
*adapter
= seq
->private;
2349 int pidx
= (uintptr_t)v
- 2;
2350 struct net_device
*dev
= adapter
->port
[pidx
];
2351 struct port_info
*pi
= netdev_priv(dev
);
2353 seq_printf(seq
, "%9s %4d %#5x\n",
2354 dev
->name
, pi
->port_id
, pi
->viid
);
2359 static inline void *interfaces_get_idx(struct adapter
*adapter
, loff_t pos
)
2361 return pos
<= adapter
->params
.nports
2362 ? (void *)(uintptr_t)(pos
+ 1)
2366 static void *interfaces_start(struct seq_file
*seq
, loff_t
*pos
)
2369 ? interfaces_get_idx(seq
->private, *pos
)
2373 static void *interfaces_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2376 return interfaces_get_idx(seq
->private, *pos
);
2379 static void interfaces_stop(struct seq_file
*seq
, void *v
)
2383 static const struct seq_operations interfaces_seq_ops
= {
2384 .start
= interfaces_start
,
2385 .next
= interfaces_next
,
2386 .stop
= interfaces_stop
,
2387 .show
= interfaces_show
2390 static int interfaces_open(struct inode
*inode
, struct file
*file
)
2392 int res
= seq_open(file
, &interfaces_seq_ops
);
2395 struct seq_file
*seq
= file
->private_data
;
2396 seq
->private = inode
->i_private
;
2401 static const struct file_operations interfaces_proc_fops
= {
2402 .owner
= THIS_MODULE
,
2403 .open
= interfaces_open
,
2405 .llseek
= seq_lseek
,
2406 .release
= seq_release
,
2410 * /sys/kernel/debugfs/cxgb4vf/ files list.
2412 struct cxgb4vf_debugfs_entry
{
2413 const char *name
; /* name of debugfs node */
2414 umode_t mode
; /* file system mode */
2415 const struct file_operations
*fops
;
2418 static struct cxgb4vf_debugfs_entry debugfs_files
[] = {
2419 { "mboxlog", 0444, &mboxlog_fops
},
2420 { "sge_qinfo", 0444, &sge_qinfo_debugfs_fops
},
2421 { "sge_qstats", 0444, &sge_qstats_proc_fops
},
2422 { "resources", 0444, &resources_proc_fops
},
2423 { "interfaces", 0444, &interfaces_proc_fops
},
2427 * Module and device initialization and cleanup code.
2428 * ==================================================
2432 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2433 * directory (debugfs_root) has already been set up.
2435 static int setup_debugfs(struct adapter
*adapter
)
2439 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2442 * Debugfs support is best effort.
2444 for (i
= 0; i
< ARRAY_SIZE(debugfs_files
); i
++)
2445 (void)debugfs_create_file(debugfs_files
[i
].name
,
2446 debugfs_files
[i
].mode
,
2447 adapter
->debugfs_root
,
2449 debugfs_files
[i
].fops
);
2455 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2456 * it to our caller to tear down the directory (debugfs_root).
2458 static void cleanup_debugfs(struct adapter
*adapter
)
2460 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2463 * Unlike our sister routine cleanup_proc(), we don't need to remove
2464 * individual entries because a call will be made to
2465 * debugfs_remove_recursive(). We just need to clean up any ancillary
2471 /* Figure out how many Ports and Queue Sets we can support. This depends on
2472 * knowing our Virtual Function Resources and may be called a second time if
2473 * we fall back from MSI-X to MSI Interrupt Mode.
2475 static void size_nports_qsets(struct adapter
*adapter
)
2477 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
2478 unsigned int ethqsets
, pmask_nports
;
2480 /* The number of "ports" which we support is equal to the number of
2481 * Virtual Interfaces with which we've been provisioned.
2483 adapter
->params
.nports
= vfres
->nvi
;
2484 if (adapter
->params
.nports
> MAX_NPORTS
) {
2485 dev_warn(adapter
->pdev_dev
, "only using %d of %d maximum"
2486 " allowed virtual interfaces\n", MAX_NPORTS
,
2487 adapter
->params
.nports
);
2488 adapter
->params
.nports
= MAX_NPORTS
;
2491 /* We may have been provisioned with more VIs than the number of
2492 * ports we're allowed to access (our Port Access Rights Mask).
2493 * This is obviously a configuration conflict but we don't want to
2494 * crash the kernel or anything silly just because of that.
2496 pmask_nports
= hweight32(adapter
->params
.vfres
.pmask
);
2497 if (pmask_nports
< adapter
->params
.nports
) {
2498 dev_warn(adapter
->pdev_dev
, "only using %d of %d provisioned"
2499 " virtual interfaces; limited by Port Access Rights"
2500 " mask %#x\n", pmask_nports
, adapter
->params
.nports
,
2501 adapter
->params
.vfres
.pmask
);
2502 adapter
->params
.nports
= pmask_nports
;
2505 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
2506 * Event Queue. And if we're using MSI Interrupts, we'll also need to
2507 * reserve an Ingress Queue for a Forwarded Interrupts.
2509 * The rest of the FL/Intr-capable ingress queues will be matched up
2510 * one-for-one with Ethernet/Control egress queues in order to form
2511 * "Queue Sets" which will be aportioned between the "ports". For
2512 * each Queue Set, we'll need the ability to allocate two Egress
2513 * Contexts -- one for the Ingress Queue Free List and one for the TX
2516 * Note that even if we're currently configured to use MSI-X
2517 * Interrupts (module variable msi == MSI_MSIX) we may get downgraded
2518 * to MSI Interrupts if we can't get enough MSI-X Interrupts. If that
2519 * happens we'll need to adjust things later.
2521 ethqsets
= vfres
->niqflint
- 1 - (msi
== MSI_MSI
);
2522 if (vfres
->nethctrl
!= ethqsets
)
2523 ethqsets
= min(vfres
->nethctrl
, ethqsets
);
2524 if (vfres
->neq
< ethqsets
*2)
2525 ethqsets
= vfres
->neq
/2;
2526 if (ethqsets
> MAX_ETH_QSETS
)
2527 ethqsets
= MAX_ETH_QSETS
;
2528 adapter
->sge
.max_ethqsets
= ethqsets
;
2530 if (adapter
->sge
.max_ethqsets
< adapter
->params
.nports
) {
2531 dev_warn(adapter
->pdev_dev
, "only using %d of %d available"
2532 " virtual interfaces (too few Queue Sets)\n",
2533 adapter
->sge
.max_ethqsets
, adapter
->params
.nports
);
2534 adapter
->params
.nports
= adapter
->sge
.max_ethqsets
;
2539 * Perform early "adapter" initialization. This is where we discover what
2540 * adapter parameters we're going to be using and initialize basic adapter
2543 static int adap_init0(struct adapter
*adapter
)
2545 struct sge_params
*sge_params
= &adapter
->params
.sge
;
2546 struct sge
*s
= &adapter
->sge
;
2551 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2552 * 2.6.31 and later we can't call pci_reset_function() in order to
2553 * issue an FLR because of a self- deadlock on the device semaphore.
2554 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2555 * cases where they're needed -- for instance, some versions of KVM
2556 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2557 * use the firmware based reset in order to reset any per function
2560 err
= t4vf_fw_reset(adapter
);
2562 dev_err(adapter
->pdev_dev
, "FW reset failed: err=%d\n", err
);
2567 * Grab basic operational parameters. These will predominantly have
2568 * been set up by the Physical Function Driver or will be hard coded
2569 * into the adapter. We just have to live with them ... Note that
2570 * we _must_ get our VPD parameters before our SGE parameters because
2571 * we need to know the adapter's core clock from the VPD in order to
2572 * properly decode the SGE Timer Values.
2574 err
= t4vf_get_dev_params(adapter
);
2576 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2577 " device parameters: err=%d\n", err
);
2580 err
= t4vf_get_vpd_params(adapter
);
2582 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2583 " VPD parameters: err=%d\n", err
);
2586 err
= t4vf_get_sge_params(adapter
);
2588 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2589 " SGE parameters: err=%d\n", err
);
2592 err
= t4vf_get_rss_glb_config(adapter
);
2594 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2595 " RSS parameters: err=%d\n", err
);
2598 if (adapter
->params
.rss
.mode
!=
2599 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
) {
2600 dev_err(adapter
->pdev_dev
, "unable to operate with global RSS"
2601 " mode %d\n", adapter
->params
.rss
.mode
);
2604 err
= t4vf_sge_init(adapter
);
2606 dev_err(adapter
->pdev_dev
, "unable to use adapter parameters:"
2611 /* If we're running on newer firmware, let it know that we're
2612 * prepared to deal with encapsulated CPL messages. Older
2613 * firmware won't understand this and we'll just get
2614 * unencapsulated messages ...
2616 param
= FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF
) |
2617 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP
);
2619 (void) t4vf_set_params(adapter
, 1, ¶m
, &val
);
2622 * Retrieve our RX interrupt holdoff timer values and counter
2623 * threshold values from the SGE parameters.
2625 s
->timer_val
[0] = core_ticks_to_us(adapter
,
2626 TIMERVALUE0_G(sge_params
->sge_timer_value_0_and_1
));
2627 s
->timer_val
[1] = core_ticks_to_us(adapter
,
2628 TIMERVALUE1_G(sge_params
->sge_timer_value_0_and_1
));
2629 s
->timer_val
[2] = core_ticks_to_us(adapter
,
2630 TIMERVALUE0_G(sge_params
->sge_timer_value_2_and_3
));
2631 s
->timer_val
[3] = core_ticks_to_us(adapter
,
2632 TIMERVALUE1_G(sge_params
->sge_timer_value_2_and_3
));
2633 s
->timer_val
[4] = core_ticks_to_us(adapter
,
2634 TIMERVALUE0_G(sge_params
->sge_timer_value_4_and_5
));
2635 s
->timer_val
[5] = core_ticks_to_us(adapter
,
2636 TIMERVALUE1_G(sge_params
->sge_timer_value_4_and_5
));
2638 s
->counter_val
[0] = THRESHOLD_0_G(sge_params
->sge_ingress_rx_threshold
);
2639 s
->counter_val
[1] = THRESHOLD_1_G(sge_params
->sge_ingress_rx_threshold
);
2640 s
->counter_val
[2] = THRESHOLD_2_G(sge_params
->sge_ingress_rx_threshold
);
2641 s
->counter_val
[3] = THRESHOLD_3_G(sge_params
->sge_ingress_rx_threshold
);
2644 * Grab our Virtual Interface resource allocation, extract the
2645 * features that we're interested in and do a bit of sanity testing on
2648 err
= t4vf_get_vfres(adapter
);
2650 dev_err(adapter
->pdev_dev
, "unable to get virtual interface"
2651 " resources: err=%d\n", err
);
2655 /* Check for various parameter sanity issues */
2656 if (adapter
->params
.vfres
.pmask
== 0) {
2657 dev_err(adapter
->pdev_dev
, "no port access configured\n"
2661 if (adapter
->params
.vfres
.nvi
== 0) {
2662 dev_err(adapter
->pdev_dev
, "no virtual interfaces configured/"
2667 /* Initialize nports and max_ethqsets now that we have our Virtual
2668 * Function Resources.
2670 size_nports_qsets(adapter
);
2675 static inline void init_rspq(struct sge_rspq
*rspq
, u8 timer_idx
,
2676 u8 pkt_cnt_idx
, unsigned int size
,
2677 unsigned int iqe_size
)
2679 rspq
->intr_params
= (QINTR_TIMER_IDX_V(timer_idx
) |
2680 (pkt_cnt_idx
< SGE_NCOUNTERS
?
2681 QINTR_CNT_EN_F
: 0));
2682 rspq
->pktcnt_idx
= (pkt_cnt_idx
< SGE_NCOUNTERS
2685 rspq
->iqe_len
= iqe_size
;
2690 * Perform default configuration of DMA queues depending on the number and
2691 * type of ports we found and the number of available CPUs. Most settings can
2692 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2693 * being brought up for the first time.
2695 static void cfg_queues(struct adapter
*adapter
)
2697 struct sge
*s
= &adapter
->sge
;
2698 int q10g
, n10g
, qidx
, pidx
, qs
;
2702 * We should not be called till we know how many Queue Sets we can
2703 * support. In particular, this means that we need to know what kind
2704 * of interrupts we'll be using ...
2706 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
2709 * Count the number of 10GbE Virtual Interfaces that we have.
2712 for_each_port(adapter
, pidx
)
2713 n10g
+= is_x_10g_port(&adap2pinfo(adapter
, pidx
)->link_cfg
);
2716 * We default to 1 queue per non-10G port and up to # of cores queues
2722 int n1g
= (adapter
->params
.nports
- n10g
);
2723 q10g
= (adapter
->sge
.max_ethqsets
- n1g
) / n10g
;
2724 if (q10g
> num_online_cpus())
2725 q10g
= num_online_cpus();
2729 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2730 * The layout will be established in setup_sge_queues() when the
2731 * adapter is brough up for the first time.
2734 for_each_port(adapter
, pidx
) {
2735 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
2737 pi
->first_qset
= qidx
;
2738 pi
->nqsets
= is_x_10g_port(&pi
->link_cfg
) ? q10g
: 1;
2744 * The Ingress Queue Entry Size for our various Response Queues needs
2745 * to be big enough to accommodate the largest message we can receive
2746 * from the chip/firmware; which is 64 bytes ...
2751 * Set up default Queue Set parameters ... Start off with the
2752 * shortest interrupt holdoff timer.
2754 for (qs
= 0; qs
< s
->max_ethqsets
; qs
++) {
2755 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[qs
];
2756 struct sge_eth_txq
*txq
= &s
->ethtxq
[qs
];
2758 init_rspq(&rxq
->rspq
, 0, 0, 1024, iqe_size
);
2764 * The firmware event queue is used for link state changes and
2765 * notifications of TX DMA completions.
2767 init_rspq(&s
->fw_evtq
, SGE_TIMER_RSTRT_CNTR
, 0, 512, iqe_size
);
2770 * The forwarded interrupt queue is used when we're in MSI interrupt
2771 * mode. In this mode all interrupts associated with RX queues will
2772 * be forwarded to a single queue which we'll associate with our MSI
2773 * interrupt vector. The messages dropped in the forwarded interrupt
2774 * queue will indicate which ingress queue needs servicing ... This
2775 * queue needs to be large enough to accommodate all of the ingress
2776 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2777 * from equalling the CIDX if every ingress queue has an outstanding
2778 * interrupt). The queue doesn't need to be any larger because no
2779 * ingress queue will ever have more than one outstanding interrupt at
2782 init_rspq(&s
->intrq
, SGE_TIMER_RSTRT_CNTR
, 0, MSIX_ENTRIES
+ 1,
2787 * Reduce the number of Ethernet queues across all ports to at most n.
2788 * n provides at least one queue per port.
2790 static void reduce_ethqs(struct adapter
*adapter
, int n
)
2793 struct port_info
*pi
;
2796 * While we have too many active Ether Queue Sets, interate across the
2797 * "ports" and reduce their individual Queue Set allocations.
2799 BUG_ON(n
< adapter
->params
.nports
);
2800 while (n
< adapter
->sge
.ethqsets
)
2801 for_each_port(adapter
, i
) {
2802 pi
= adap2pinfo(adapter
, i
);
2803 if (pi
->nqsets
> 1) {
2805 adapter
->sge
.ethqsets
--;
2806 if (adapter
->sge
.ethqsets
<= n
)
2812 * Reassign the starting Queue Sets for each of the "ports" ...
2815 for_each_port(adapter
, i
) {
2816 pi
= adap2pinfo(adapter
, i
);
2823 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2824 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2825 * need. Minimally we need one for every Virtual Interface plus those needed
2826 * for our "extras". Note that this process may lower the maximum number of
2827 * allowed Queue Sets ...
2829 static int enable_msix(struct adapter
*adapter
)
2831 int i
, want
, need
, nqsets
;
2832 struct msix_entry entries
[MSIX_ENTRIES
];
2833 struct sge
*s
= &adapter
->sge
;
2835 for (i
= 0; i
< MSIX_ENTRIES
; ++i
)
2836 entries
[i
].entry
= i
;
2839 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2840 * plus those needed for our "extras" (for example, the firmware
2841 * message queue). We _need_ at least one "Queue Set" per Virtual
2842 * Interface plus those needed for our "extras". So now we get to see
2843 * if the song is right ...
2845 want
= s
->max_ethqsets
+ MSIX_EXTRAS
;
2846 need
= adapter
->params
.nports
+ MSIX_EXTRAS
;
2848 want
= pci_enable_msix_range(adapter
->pdev
, entries
, need
, want
);
2852 nqsets
= want
- MSIX_EXTRAS
;
2853 if (nqsets
< s
->max_ethqsets
) {
2854 dev_warn(adapter
->pdev_dev
, "only enough MSI-X vectors"
2855 " for %d Queue Sets\n", nqsets
);
2856 s
->max_ethqsets
= nqsets
;
2857 if (nqsets
< s
->ethqsets
)
2858 reduce_ethqs(adapter
, nqsets
);
2860 for (i
= 0; i
< want
; ++i
)
2861 adapter
->msix_info
[i
].vec
= entries
[i
].vector
;
2866 static const struct net_device_ops cxgb4vf_netdev_ops
= {
2867 .ndo_open
= cxgb4vf_open
,
2868 .ndo_stop
= cxgb4vf_stop
,
2869 .ndo_start_xmit
= t4vf_eth_xmit
,
2870 .ndo_get_stats
= cxgb4vf_get_stats
,
2871 .ndo_set_rx_mode
= cxgb4vf_set_rxmode
,
2872 .ndo_set_mac_address
= cxgb4vf_set_mac_addr
,
2873 .ndo_validate_addr
= eth_validate_addr
,
2874 .ndo_do_ioctl
= cxgb4vf_do_ioctl
,
2875 .ndo_change_mtu
= cxgb4vf_change_mtu
,
2876 .ndo_fix_features
= cxgb4vf_fix_features
,
2877 .ndo_set_features
= cxgb4vf_set_features
,
2878 #ifdef CONFIG_NET_POLL_CONTROLLER
2879 .ndo_poll_controller
= cxgb4vf_poll_controller
,
2884 * "Probe" a device: initialize a device and construct all kernel and driver
2885 * state needed to manage the device. This routine is called "init_one" in
2888 static int cxgb4vf_pci_probe(struct pci_dev
*pdev
,
2889 const struct pci_device_id
*ent
)
2894 struct adapter
*adapter
;
2895 struct port_info
*pi
;
2896 struct net_device
*netdev
;
2900 * Print our driver banner the first time we're called to initialize a
2903 pr_info_once("%s - version %s\n", DRV_DESC
, DRV_VERSION
);
2906 * Initialize generic PCI device state.
2908 err
= pci_enable_device(pdev
);
2910 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
2915 * Reserve PCI resources for the device. If we can't get them some
2916 * other driver may have already claimed the device ...
2918 err
= pci_request_regions(pdev
, KBUILD_MODNAME
);
2920 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
2921 goto err_disable_device
;
2925 * Set up our DMA mask: try for 64-bit address masking first and
2926 * fall back to 32-bit if we can't get 64 bits ...
2928 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2930 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2932 dev_err(&pdev
->dev
, "unable to obtain 64-bit DMA for"
2933 " coherent allocations\n");
2934 goto err_release_regions
;
2938 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2940 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
2941 goto err_release_regions
;
2947 * Enable bus mastering for the device ...
2949 pci_set_master(pdev
);
2952 * Allocate our adapter data structure and attach it to the device.
2954 adapter
= kzalloc(sizeof(*adapter
), GFP_KERNEL
);
2957 goto err_release_regions
;
2959 pci_set_drvdata(pdev
, adapter
);
2960 adapter
->pdev
= pdev
;
2961 adapter
->pdev_dev
= &pdev
->dev
;
2963 adapter
->mbox_log
= kzalloc(sizeof(*adapter
->mbox_log
) +
2964 (sizeof(struct mbox_cmd
) *
2965 T4VF_OS_LOG_MBOX_CMDS
),
2967 if (!adapter
->mbox_log
) {
2969 goto err_free_adapter
;
2971 adapter
->mbox_log
->size
= T4VF_OS_LOG_MBOX_CMDS
;
2974 * Initialize SMP data synchronization resources.
2976 spin_lock_init(&adapter
->stats_lock
);
2977 spin_lock_init(&adapter
->mbox_lock
);
2978 INIT_LIST_HEAD(&adapter
->mlist
.list
);
2981 * Map our I/O registers in BAR0.
2983 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
2984 if (!adapter
->regs
) {
2985 dev_err(&pdev
->dev
, "cannot map device registers\n");
2987 goto err_free_adapter
;
2990 /* Wait for the device to become ready before proceeding ...
2992 err
= t4vf_prep_adapter(adapter
);
2994 dev_err(adapter
->pdev_dev
, "device didn't become ready:"
2996 goto err_unmap_bar0
;
2999 /* For T5 and later we want to use the new BAR-based User Doorbells,
3000 * so we need to map BAR2 here ...
3002 if (!is_t4(adapter
->params
.chip
)) {
3003 adapter
->bar2
= ioremap_wc(pci_resource_start(pdev
, 2),
3004 pci_resource_len(pdev
, 2));
3005 if (!adapter
->bar2
) {
3006 dev_err(adapter
->pdev_dev
, "cannot map BAR2 doorbells\n");
3008 goto err_unmap_bar0
;
3012 * Initialize adapter level features.
3014 adapter
->name
= pci_name(pdev
);
3015 adapter
->msg_enable
= DFLT_MSG_ENABLE
;
3017 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
3018 * Ingress Packet Data to Free List Buffers in order to allow for
3019 * chipset performance optimizations between the Root Complex and
3020 * Memory Controllers. (Messages to the associated Ingress Queue
3021 * notifying new Packet Placement in the Free Lists Buffers will be
3022 * send without the Relaxed Ordering Attribute thus guaranteeing that
3023 * all preceding PCIe Transaction Layer Packets will be processed
3024 * first.) But some Root Complexes have various issues with Upstream
3025 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
3026 * The PCIe devices which under the Root Complexes will be cleared the
3027 * Relaxed Ordering bit in the configuration space, So we check our
3028 * PCIe configuration space to see if it's flagged with advice against
3029 * using Relaxed Ordering.
3031 if (!pcie_relaxed_ordering_enabled(pdev
))
3032 adapter
->flags
|= ROOT_NO_RELAXED_ORDERING
;
3034 err
= adap_init0(adapter
);
3038 /* Initialize hash mac addr list */
3039 INIT_LIST_HEAD(&adapter
->mac_hlist
);
3042 * Allocate our "adapter ports" and stitch everything together.
3044 pmask
= adapter
->params
.vfres
.pmask
;
3045 pf
= t4vf_get_pf_from_vf(adapter
);
3046 for_each_port(adapter
, pidx
) {
3049 unsigned int naddr
= 1;
3052 * We simplistically allocate our virtual interfaces
3053 * sequentially across the port numbers to which we have
3054 * access rights. This should be configurable in some manner
3059 port_id
= ffs(pmask
) - 1;
3060 pmask
&= ~(1 << port_id
);
3061 viid
= t4vf_alloc_vi(adapter
, port_id
);
3063 dev_err(&pdev
->dev
, "cannot allocate VI for port %d:"
3064 " err=%d\n", port_id
, viid
);
3070 * Allocate our network device and stitch things together.
3072 netdev
= alloc_etherdev_mq(sizeof(struct port_info
),
3074 if (netdev
== NULL
) {
3075 t4vf_free_vi(adapter
, viid
);
3079 adapter
->port
[pidx
] = netdev
;
3080 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3081 pi
= netdev_priv(netdev
);
3082 pi
->adapter
= adapter
;
3084 pi
->port_id
= port_id
;
3088 * Initialize the starting state of our "port" and register
3091 pi
->xact_addr_filt
= -1;
3092 netif_carrier_off(netdev
);
3093 netdev
->irq
= pdev
->irq
;
3095 netdev
->hw_features
= NETIF_F_SG
| TSO_FLAGS
|
3096 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3097 NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_RXCSUM
;
3098 netdev
->vlan_features
= NETIF_F_SG
| TSO_FLAGS
|
3099 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3101 netdev
->features
= netdev
->hw_features
|
3102 NETIF_F_HW_VLAN_CTAG_TX
;
3104 netdev
->features
|= NETIF_F_HIGHDMA
;
3106 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
3107 netdev
->min_mtu
= 81;
3108 netdev
->max_mtu
= ETH_MAX_MTU
;
3110 netdev
->netdev_ops
= &cxgb4vf_netdev_ops
;
3111 netdev
->ethtool_ops
= &cxgb4vf_ethtool_ops
;
3112 netdev
->dev_port
= pi
->port_id
;
3115 * Initialize the hardware/software state for the port.
3117 err
= t4vf_port_init(adapter
, pidx
);
3119 dev_err(&pdev
->dev
, "cannot initialize port %d\n",
3124 err
= t4vf_get_vf_mac_acl(adapter
, pf
, &naddr
, mac
);
3127 "unable to determine MAC ACL address, "
3128 "continuing anyway.. (status %d)\n", err
);
3129 } else if (naddr
&& adapter
->params
.vfres
.nvi
== 1) {
3130 struct sockaddr addr
;
3132 ether_addr_copy(addr
.sa_data
, mac
);
3133 err
= cxgb4vf_set_mac_addr(netdev
, &addr
);
3136 "unable to set MAC address %pM\n",
3140 dev_info(&pdev
->dev
,
3141 "Using assigned MAC ACL: %pM\n", mac
);
3145 /* See what interrupts we'll be using. If we've been configured to
3146 * use MSI-X interrupts, try to enable them but fall back to using
3147 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
3148 * get MSI interrupts we bail with the error.
3150 if (msi
== MSI_MSIX
&& enable_msix(adapter
) == 0)
3151 adapter
->flags
|= USING_MSIX
;
3153 if (msi
== MSI_MSIX
) {
3154 dev_info(adapter
->pdev_dev
,
3155 "Unable to use MSI-X Interrupts; falling "
3156 "back to MSI Interrupts\n");
3158 /* We're going to need a Forwarded Interrupt Queue so
3159 * that may cut into how many Queue Sets we can
3163 size_nports_qsets(adapter
);
3165 err
= pci_enable_msi(pdev
);
3167 dev_err(&pdev
->dev
, "Unable to allocate MSI Interrupts;"
3171 adapter
->flags
|= USING_MSI
;
3174 /* Now that we know how many "ports" we have and what interrupt
3175 * mechanism we're going to use, we can configure our queue resources.
3177 cfg_queues(adapter
);
3180 * The "card" is now ready to go. If any errors occur during device
3181 * registration we do not fail the whole "card" but rather proceed
3182 * only with the ports we manage to register successfully. However we
3183 * must register at least one net device.
3185 for_each_port(adapter
, pidx
) {
3186 struct port_info
*pi
= netdev_priv(adapter
->port
[pidx
]);
3187 netdev
= adapter
->port
[pidx
];
3191 netif_set_real_num_tx_queues(netdev
, pi
->nqsets
);
3192 netif_set_real_num_rx_queues(netdev
, pi
->nqsets
);
3194 err
= register_netdev(netdev
);
3196 dev_warn(&pdev
->dev
, "cannot register net device %s,"
3197 " skipping\n", netdev
->name
);
3201 set_bit(pidx
, &adapter
->registered_device_map
);
3203 if (adapter
->registered_device_map
== 0) {
3204 dev_err(&pdev
->dev
, "could not register any net devices\n");
3205 goto err_disable_interrupts
;
3209 * Set up our debugfs entries.
3211 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root
)) {
3212 adapter
->debugfs_root
=
3213 debugfs_create_dir(pci_name(pdev
),
3214 cxgb4vf_debugfs_root
);
3215 if (IS_ERR_OR_NULL(adapter
->debugfs_root
))
3216 dev_warn(&pdev
->dev
, "could not create debugfs"
3219 setup_debugfs(adapter
);
3223 * Print a short notice on the existence and configuration of the new
3224 * VF network device ...
3226 for_each_port(adapter
, pidx
) {
3227 dev_info(adapter
->pdev_dev
, "%s: Chelsio VF NIC PCIe %s\n",
3228 adapter
->port
[pidx
]->name
,
3229 (adapter
->flags
& USING_MSIX
) ? "MSI-X" :
3230 (adapter
->flags
& USING_MSI
) ? "MSI" : "");
3239 * Error recovery and exit code. Unwind state that's been created
3240 * so far and return the error.
3242 err_disable_interrupts
:
3243 if (adapter
->flags
& USING_MSIX
) {
3244 pci_disable_msix(adapter
->pdev
);
3245 adapter
->flags
&= ~USING_MSIX
;
3246 } else if (adapter
->flags
& USING_MSI
) {
3247 pci_disable_msi(adapter
->pdev
);
3248 adapter
->flags
&= ~USING_MSI
;
3252 for_each_port(adapter
, pidx
) {
3253 netdev
= adapter
->port
[pidx
];
3256 pi
= netdev_priv(netdev
);
3257 t4vf_free_vi(adapter
, pi
->viid
);
3258 if (test_bit(pidx
, &adapter
->registered_device_map
))
3259 unregister_netdev(netdev
);
3260 free_netdev(netdev
);
3264 if (!is_t4(adapter
->params
.chip
))
3265 iounmap(adapter
->bar2
);
3268 iounmap(adapter
->regs
);
3271 kfree(adapter
->mbox_log
);
3274 err_release_regions
:
3275 pci_release_regions(pdev
);
3276 pci_clear_master(pdev
);
3279 pci_disable_device(pdev
);
3285 * "Remove" a device: tear down all kernel and driver state created in the
3286 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
3287 * that this is called "remove_one" in the PF Driver.)
3289 static void cxgb4vf_pci_remove(struct pci_dev
*pdev
)
3291 struct adapter
*adapter
= pci_get_drvdata(pdev
);
3294 * Tear down driver state associated with device.
3300 * Stop all of our activity. Unregister network port,
3301 * disable interrupts, etc.
3303 for_each_port(adapter
, pidx
)
3304 if (test_bit(pidx
, &adapter
->registered_device_map
))
3305 unregister_netdev(adapter
->port
[pidx
]);
3306 t4vf_sge_stop(adapter
);
3307 if (adapter
->flags
& USING_MSIX
) {
3308 pci_disable_msix(adapter
->pdev
);
3309 adapter
->flags
&= ~USING_MSIX
;
3310 } else if (adapter
->flags
& USING_MSI
) {
3311 pci_disable_msi(adapter
->pdev
);
3312 adapter
->flags
&= ~USING_MSI
;
3316 * Tear down our debugfs entries.
3318 if (!IS_ERR_OR_NULL(adapter
->debugfs_root
)) {
3319 cleanup_debugfs(adapter
);
3320 debugfs_remove_recursive(adapter
->debugfs_root
);
3324 * Free all of the various resources which we've acquired ...
3326 t4vf_free_sge_resources(adapter
);
3327 for_each_port(adapter
, pidx
) {
3328 struct net_device
*netdev
= adapter
->port
[pidx
];
3329 struct port_info
*pi
;
3334 pi
= netdev_priv(netdev
);
3335 t4vf_free_vi(adapter
, pi
->viid
);
3336 free_netdev(netdev
);
3338 iounmap(adapter
->regs
);
3339 if (!is_t4(adapter
->params
.chip
))
3340 iounmap(adapter
->bar2
);
3341 kfree(adapter
->mbox_log
);
3346 * Disable the device and release its PCI resources.
3348 pci_disable_device(pdev
);
3349 pci_clear_master(pdev
);
3350 pci_release_regions(pdev
);
3354 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
3357 static void cxgb4vf_pci_shutdown(struct pci_dev
*pdev
)
3359 struct adapter
*adapter
;
3362 adapter
= pci_get_drvdata(pdev
);
3366 /* Disable all Virtual Interfaces. This will shut down the
3367 * delivery of all ingress packets into the chip for these
3368 * Virtual Interfaces.
3370 for_each_port(adapter
, pidx
)
3371 if (test_bit(pidx
, &adapter
->registered_device_map
))
3372 unregister_netdev(adapter
->port
[pidx
]);
3374 /* Free up all Queues which will prevent further DMA and
3375 * Interrupts allowing various internal pathways to drain.
3377 t4vf_sge_stop(adapter
);
3378 if (adapter
->flags
& USING_MSIX
) {
3379 pci_disable_msix(adapter
->pdev
);
3380 adapter
->flags
&= ~USING_MSIX
;
3381 } else if (adapter
->flags
& USING_MSI
) {
3382 pci_disable_msi(adapter
->pdev
);
3383 adapter
->flags
&= ~USING_MSI
;
3387 * Free up all Queues which will prevent further DMA and
3388 * Interrupts allowing various internal pathways to drain.
3390 t4vf_free_sge_resources(adapter
);
3391 pci_set_drvdata(pdev
, NULL
);
3394 /* Macros needed to support the PCI Device ID Table ...
3396 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3397 static const struct pci_device_id cxgb4vf_pci_tbl[] = {
3398 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
3400 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3401 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3403 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3405 #include "../cxgb4/t4_pci_id_tbl.h"
3407 MODULE_DESCRIPTION(DRV_DESC
);
3408 MODULE_AUTHOR("Chelsio Communications");
3409 MODULE_LICENSE("Dual BSD/GPL");
3410 MODULE_VERSION(DRV_VERSION
);
3411 MODULE_DEVICE_TABLE(pci
, cxgb4vf_pci_tbl
);
3413 static struct pci_driver cxgb4vf_driver
= {
3414 .name
= KBUILD_MODNAME
,
3415 .id_table
= cxgb4vf_pci_tbl
,
3416 .probe
= cxgb4vf_pci_probe
,
3417 .remove
= cxgb4vf_pci_remove
,
3418 .shutdown
= cxgb4vf_pci_shutdown
,
3422 * Initialize global driver state.
3424 static int __init
cxgb4vf_module_init(void)
3429 * Vet our module parameters.
3431 if (msi
!= MSI_MSIX
&& msi
!= MSI_MSI
) {
3432 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3433 msi
, MSI_MSIX
, MSI_MSI
);
3437 /* Debugfs support is optional, just warn if this fails */
3438 cxgb4vf_debugfs_root
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
3439 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
3440 pr_warn("could not create debugfs entry, continuing\n");
3442 ret
= pci_register_driver(&cxgb4vf_driver
);
3443 if (ret
< 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
3444 debugfs_remove(cxgb4vf_debugfs_root
);
3449 * Tear down global driver state.
3451 static void __exit
cxgb4vf_module_exit(void)
3453 pci_unregister_driver(&cxgb4vf_driver
);
3454 debugfs_remove(cxgb4vf_debugfs_root
);
3457 module_init(cxgb4vf_module_init
);
3458 module_exit(cxgb4vf_module_exit
);