Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
blob78a43d688cb138e22d5a13b762496781efbf2bf2
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
12 #include "fm10k.h"
14 #define DRV_VERSION "0.23.4-k"
15 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
16 const char fm10k_driver_version[] = DRV_VERSION;
17 char fm10k_driver_name[] = "fm10k";
18 static const char fm10k_driver_string[] = DRV_SUMMARY;
19 static const char fm10k_copyright[] =
20 "Copyright(c) 2013 - 2018 Intel Corporation.";
22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
23 MODULE_DESCRIPTION(DRV_SUMMARY);
24 MODULE_LICENSE("GPL");
25 MODULE_VERSION(DRV_VERSION);
27 /* single workqueue for entire fm10k driver */
28 struct workqueue_struct *fm10k_workqueue;
30 /**
31 * fm10k_init_module - Driver Registration Routine
33 * fm10k_init_module is the first routine called when the driver is
34 * loaded. All it does is register with the PCI subsystem.
35 **/
36 static int __init fm10k_init_module(void)
38 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
39 pr_info("%s\n", fm10k_copyright);
41 /* create driver workqueue */
42 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
43 fm10k_driver_name);
44 if (!fm10k_workqueue)
45 return -ENOMEM;
47 fm10k_dbg_init();
49 return fm10k_register_pci_driver();
51 module_init(fm10k_init_module);
53 /**
54 * fm10k_exit_module - Driver Exit Cleanup Routine
56 * fm10k_exit_module is called just before the driver is removed
57 * from memory.
58 **/
59 static void __exit fm10k_exit_module(void)
61 fm10k_unregister_pci_driver();
63 fm10k_dbg_exit();
65 /* destroy driver workqueue */
66 destroy_workqueue(fm10k_workqueue);
68 module_exit(fm10k_exit_module);
70 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
71 struct fm10k_rx_buffer *bi)
73 struct page *page = bi->page;
74 dma_addr_t dma;
76 /* Only page will be NULL if buffer was consumed */
77 if (likely(page))
78 return true;
80 /* alloc new page for storage */
81 page = dev_alloc_page();
82 if (unlikely(!page)) {
83 rx_ring->rx_stats.alloc_failed++;
84 return false;
87 /* map page for use */
88 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
90 /* if mapping failed free memory back to system since
91 * there isn't much point in holding memory we can't use
93 if (dma_mapping_error(rx_ring->dev, dma)) {
94 __free_page(page);
96 rx_ring->rx_stats.alloc_failed++;
97 return false;
100 bi->dma = dma;
101 bi->page = page;
102 bi->page_offset = 0;
104 return true;
108 * fm10k_alloc_rx_buffers - Replace used receive buffers
109 * @rx_ring: ring to place buffers on
110 * @cleaned_count: number of buffers to replace
112 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
114 union fm10k_rx_desc *rx_desc;
115 struct fm10k_rx_buffer *bi;
116 u16 i = rx_ring->next_to_use;
118 /* nothing to do */
119 if (!cleaned_count)
120 return;
122 rx_desc = FM10K_RX_DESC(rx_ring, i);
123 bi = &rx_ring->rx_buffer[i];
124 i -= rx_ring->count;
126 do {
127 if (!fm10k_alloc_mapped_page(rx_ring, bi))
128 break;
130 /* Refresh the desc even if buffer_addrs didn't change
131 * because each write-back erases this info.
133 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
135 rx_desc++;
136 bi++;
137 i++;
138 if (unlikely(!i)) {
139 rx_desc = FM10K_RX_DESC(rx_ring, 0);
140 bi = rx_ring->rx_buffer;
141 i -= rx_ring->count;
144 /* clear the status bits for the next_to_use descriptor */
145 rx_desc->d.staterr = 0;
147 cleaned_count--;
148 } while (cleaned_count);
150 i += rx_ring->count;
152 if (rx_ring->next_to_use != i) {
153 /* record the next descriptor to use */
154 rx_ring->next_to_use = i;
156 /* update next to alloc since we have filled the ring */
157 rx_ring->next_to_alloc = i;
159 /* Force memory writes to complete before letting h/w
160 * know there are new descriptors to fetch. (Only
161 * applicable for weak-ordered memory model archs,
162 * such as IA-64).
164 wmb();
166 /* notify hardware of new descriptors */
167 writel(i, rx_ring->tail);
172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
173 * @rx_ring: rx descriptor ring to store buffers on
174 * @old_buff: donor buffer to have page reused
176 * Synchronizes page for reuse by the interface
178 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
179 struct fm10k_rx_buffer *old_buff)
181 struct fm10k_rx_buffer *new_buff;
182 u16 nta = rx_ring->next_to_alloc;
184 new_buff = &rx_ring->rx_buffer[nta];
186 /* update, and store next to alloc */
187 nta++;
188 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
190 /* transfer page from old buffer to new buffer */
191 *new_buff = *old_buff;
193 /* sync the buffer for use by the device */
194 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
195 old_buff->page_offset,
196 FM10K_RX_BUFSZ,
197 DMA_FROM_DEVICE);
200 static inline bool fm10k_page_is_reserved(struct page *page)
202 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
206 struct page *page,
207 unsigned int __maybe_unused truesize)
209 /* avoid re-using remote pages */
210 if (unlikely(fm10k_page_is_reserved(page)))
211 return false;
213 #if (PAGE_SIZE < 8192)
214 /* if we are only owner of page we can reuse it */
215 if (unlikely(page_count(page) != 1))
216 return false;
218 /* flip page offset to other buffer */
219 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
220 #else
221 /* move offset up to the next cache line */
222 rx_buffer->page_offset += truesize;
224 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
225 return false;
226 #endif
228 /* Even if we own the page, we are not allowed to use atomic_set()
229 * This would break get_page_unless_zero() users.
231 page_ref_inc(page);
233 return true;
237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
238 * @rx_buffer: buffer containing page to add
239 * @size: packet size from rx_desc
240 * @rx_desc: descriptor containing length of buffer written by hardware
241 * @skb: sk_buff to place the data into
243 * This function will add the data contained in rx_buffer->page to the skb.
244 * This is done either through a direct copy if the data in the buffer is
245 * less than the skb header size, otherwise it will just attach the page as
246 * a frag to the skb.
248 * The function will then update the page offset if necessary and return
249 * true if the buffer can be reused by the interface.
251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
252 unsigned int size,
253 union fm10k_rx_desc *rx_desc,
254 struct sk_buff *skb)
256 struct page *page = rx_buffer->page;
257 unsigned char *va = page_address(page) + rx_buffer->page_offset;
258 #if (PAGE_SIZE < 8192)
259 unsigned int truesize = FM10K_RX_BUFSZ;
260 #else
261 unsigned int truesize = ALIGN(size, 512);
262 #endif
263 unsigned int pull_len;
265 if (unlikely(skb_is_nonlinear(skb)))
266 goto add_tail_frag;
268 if (likely(size <= FM10K_RX_HDR_LEN)) {
269 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
271 /* page is not reserved, we can reuse buffer as-is */
272 if (likely(!fm10k_page_is_reserved(page)))
273 return true;
275 /* this page cannot be reused so discard it */
276 __free_page(page);
277 return false;
280 /* we need the header to contain the greater of either ETH_HLEN or
281 * 60 bytes if the skb->len is less than 60 for skb_pad.
283 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
285 /* align pull length to size of long to optimize memcpy performance */
286 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
288 /* update all of the pointers */
289 va += pull_len;
290 size -= pull_len;
292 add_tail_frag:
293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 (unsigned long)va & ~PAGE_MASK, size, truesize);
296 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 union fm10k_rx_desc *rx_desc,
301 struct sk_buff *skb)
303 unsigned int size = le16_to_cpu(rx_desc->w.length);
304 struct fm10k_rx_buffer *rx_buffer;
305 struct page *page;
307 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
308 page = rx_buffer->page;
309 prefetchw(page);
311 if (likely(!skb)) {
312 void *page_addr = page_address(page) +
313 rx_buffer->page_offset;
315 /* prefetch first cache line of first page */
316 prefetch(page_addr);
317 #if L1_CACHE_BYTES < 128
318 prefetch(page_addr + L1_CACHE_BYTES);
319 #endif
321 /* allocate a skb to store the frags */
322 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
323 FM10K_RX_HDR_LEN);
324 if (unlikely(!skb)) {
325 rx_ring->rx_stats.alloc_failed++;
326 return NULL;
329 /* we will be copying header into skb->data in
330 * pskb_may_pull so it is in our interest to prefetch
331 * it now to avoid a possible cache miss
333 prefetchw(skb->data);
336 /* we are reusing so sync this buffer for CPU use */
337 dma_sync_single_range_for_cpu(rx_ring->dev,
338 rx_buffer->dma,
339 rx_buffer->page_offset,
340 size,
341 DMA_FROM_DEVICE);
343 /* pull page into skb */
344 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
345 /* hand second half of page back to the ring */
346 fm10k_reuse_rx_page(rx_ring, rx_buffer);
347 } else {
348 /* we are not reusing the buffer so unmap it */
349 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
350 PAGE_SIZE, DMA_FROM_DEVICE);
353 /* clear contents of rx_buffer */
354 rx_buffer->page = NULL;
356 return skb;
359 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
360 union fm10k_rx_desc *rx_desc,
361 struct sk_buff *skb)
363 skb_checksum_none_assert(skb);
365 /* Rx checksum disabled via ethtool */
366 if (!(ring->netdev->features & NETIF_F_RXCSUM))
367 return;
369 /* TCP/UDP checksum error bit is set */
370 if (fm10k_test_staterr(rx_desc,
371 FM10K_RXD_STATUS_L4E |
372 FM10K_RXD_STATUS_L4E2 |
373 FM10K_RXD_STATUS_IPE |
374 FM10K_RXD_STATUS_IPE2)) {
375 ring->rx_stats.csum_err++;
376 return;
379 /* It must be a TCP or UDP packet with a valid checksum */
380 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
381 skb->encapsulation = true;
382 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
383 return;
385 skb->ip_summed = CHECKSUM_UNNECESSARY;
387 ring->rx_stats.csum_good++;
390 #define FM10K_RSS_L4_TYPES_MASK \
391 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
392 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
393 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
394 BIT(FM10K_RSSTYPE_IPV6_UDP))
396 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
397 union fm10k_rx_desc *rx_desc,
398 struct sk_buff *skb)
400 u16 rss_type;
402 if (!(ring->netdev->features & NETIF_F_RXHASH))
403 return;
405 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
406 if (!rss_type)
407 return;
409 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
410 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
411 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 union fm10k_rx_desc __maybe_unused *rx_desc,
416 struct sk_buff *skb)
418 struct net_device *dev = rx_ring->netdev;
419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
421 /* check to see if DGLORT belongs to a MACVLAN */
422 if (l2_accel) {
423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
425 idx -= l2_accel->dglort;
426 if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 dev = l2_accel->macvlan[idx];
428 else
429 l2_accel = NULL;
432 /* Record Rx queue, or update macvlan statistics */
433 if (!l2_accel)
434 skb_record_rx_queue(skb, rx_ring->queue_index);
435 else
436 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
437 false);
439 skb->protocol = eth_type_trans(skb, dev);
443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
444 * @rx_ring: rx descriptor ring packet is being transacted on
445 * @rx_desc: pointer to the EOP Rx descriptor
446 * @skb: pointer to current skb being populated
448 * This function checks the ring, descriptor, and packet information in
449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
450 * other fields within the skb.
452 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
453 union fm10k_rx_desc *rx_desc,
454 struct sk_buff *skb)
456 unsigned int len = skb->len;
458 fm10k_rx_hash(rx_ring, rx_desc, skb);
460 fm10k_rx_checksum(rx_ring, rx_desc, skb);
462 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
464 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
466 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
468 if (rx_desc->w.vlan) {
469 u16 vid = le16_to_cpu(rx_desc->w.vlan);
471 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
472 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
473 else if (vid & VLAN_PRIO_MASK)
474 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
475 vid & VLAN_PRIO_MASK);
478 fm10k_type_trans(rx_ring, rx_desc, skb);
480 return len;
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
488 * This function updates next to clean. If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 union fm10k_rx_desc *rx_desc)
496 u32 ntc = rx_ring->next_to_clean + 1;
498 /* fetch, update, and store next to clean */
499 ntc = (ntc < rx_ring->count) ? ntc : 0;
500 rx_ring->next_to_clean = ntc;
502 prefetch(FM10K_RX_DESC(rx_ring, ntc));
504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 return false;
507 return true;
511 * fm10k_cleanup_headers - Correct corrupted or empty headers
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being fixed
516 * Address the case where we are pulling data in on pages only
517 * and as such no data is present in the skb header.
519 * In addition if skb is not at least 60 bytes we need to pad it so that
520 * it is large enough to qualify as a valid Ethernet frame.
522 * Returns true if an error was encountered and skb was freed.
524 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
525 union fm10k_rx_desc *rx_desc,
526 struct sk_buff *skb)
528 if (unlikely((fm10k_test_staterr(rx_desc,
529 FM10K_RXD_STATUS_RXE)))) {
530 #define FM10K_TEST_RXD_BIT(rxd, bit) \
531 ((rxd)->w.csum_err & cpu_to_le16(bit))
532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
533 rx_ring->rx_stats.switch_errors++;
534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
535 rx_ring->rx_stats.drops++;
536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
537 rx_ring->rx_stats.pp_errors++;
538 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
539 rx_ring->rx_stats.link_errors++;
540 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
541 rx_ring->rx_stats.length_errors++;
542 dev_kfree_skb_any(skb);
543 rx_ring->rx_stats.errors++;
544 return true;
547 /* if eth_skb_pad returns an error the skb was freed */
548 if (eth_skb_pad(skb))
549 return true;
551 return false;
555 * fm10k_receive_skb - helper function to handle rx indications
556 * @q_vector: structure containing interrupt and ring information
557 * @skb: packet to send up
559 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
560 struct sk_buff *skb)
562 napi_gro_receive(&q_vector->napi, skb);
565 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
566 struct fm10k_ring *rx_ring,
567 int budget)
569 struct sk_buff *skb = rx_ring->skb;
570 unsigned int total_bytes = 0, total_packets = 0;
571 u16 cleaned_count = fm10k_desc_unused(rx_ring);
573 while (likely(total_packets < budget)) {
574 union fm10k_rx_desc *rx_desc;
576 /* return some buffers to hardware, one at a time is too slow */
577 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
578 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
579 cleaned_count = 0;
582 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
584 if (!rx_desc->d.staterr)
585 break;
587 /* This memory barrier is needed to keep us from reading
588 * any other fields out of the rx_desc until we know the
589 * descriptor has been written back
591 dma_rmb();
593 /* retrieve a buffer from the ring */
594 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
596 /* exit if we failed to retrieve a buffer */
597 if (!skb)
598 break;
600 cleaned_count++;
602 /* fetch next buffer in frame if non-eop */
603 if (fm10k_is_non_eop(rx_ring, rx_desc))
604 continue;
606 /* verify the packet layout is correct */
607 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
608 skb = NULL;
609 continue;
612 /* populate checksum, timestamp, VLAN, and protocol */
613 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
615 fm10k_receive_skb(q_vector, skb);
617 /* reset skb pointer */
618 skb = NULL;
620 /* update budget accounting */
621 total_packets++;
624 /* place incomplete frames back on ring for completion */
625 rx_ring->skb = skb;
627 u64_stats_update_begin(&rx_ring->syncp);
628 rx_ring->stats.packets += total_packets;
629 rx_ring->stats.bytes += total_bytes;
630 u64_stats_update_end(&rx_ring->syncp);
631 q_vector->rx.total_packets += total_packets;
632 q_vector->rx.total_bytes += total_bytes;
634 return total_packets;
637 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
638 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
640 struct fm10k_intfc *interface = netdev_priv(skb->dev);
641 struct fm10k_udp_port *vxlan_port;
643 /* we can only offload a vxlan if we recognize it as such */
644 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
645 struct fm10k_udp_port, list);
647 if (!vxlan_port)
648 return NULL;
649 if (vxlan_port->port != udp_hdr(skb)->dest)
650 return NULL;
652 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
653 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
656 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
657 #define NVGRE_TNI htons(0x2000)
658 struct fm10k_nvgre_hdr {
659 __be16 flags;
660 __be16 proto;
661 __be32 tni;
664 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
666 struct fm10k_nvgre_hdr *nvgre_hdr;
667 int hlen = ip_hdrlen(skb);
669 /* currently only IPv4 is supported due to hlen above */
670 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
671 return NULL;
673 /* our transport header should be NVGRE */
674 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
676 /* verify all reserved flags are 0 */
677 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
678 return NULL;
680 /* report start of ethernet header */
681 if (nvgre_hdr->flags & NVGRE_TNI)
682 return (struct ethhdr *)(nvgre_hdr + 1);
684 return (struct ethhdr *)(&nvgre_hdr->tni);
687 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
689 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
690 struct ethhdr *eth_hdr;
692 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
693 skb->inner_protocol != htons(ETH_P_TEB))
694 return 0;
696 switch (vlan_get_protocol(skb)) {
697 case htons(ETH_P_IP):
698 l4_hdr = ip_hdr(skb)->protocol;
699 break;
700 case htons(ETH_P_IPV6):
701 l4_hdr = ipv6_hdr(skb)->nexthdr;
702 break;
703 default:
704 return 0;
707 switch (l4_hdr) {
708 case IPPROTO_UDP:
709 eth_hdr = fm10k_port_is_vxlan(skb);
710 break;
711 case IPPROTO_GRE:
712 eth_hdr = fm10k_gre_is_nvgre(skb);
713 break;
714 default:
715 return 0;
718 if (!eth_hdr)
719 return 0;
721 switch (eth_hdr->h_proto) {
722 case htons(ETH_P_IP):
723 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
724 break;
725 case htons(ETH_P_IPV6):
726 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
727 break;
728 default:
729 return 0;
732 switch (inner_l4_hdr) {
733 case IPPROTO_TCP:
734 inner_l4_hlen = inner_tcp_hdrlen(skb);
735 break;
736 case IPPROTO_UDP:
737 inner_l4_hlen = 8;
738 break;
739 default:
740 return 0;
743 /* The hardware allows tunnel offloads only if the combined inner and
744 * outer header is 184 bytes or less
746 if (skb_inner_transport_header(skb) + inner_l4_hlen -
747 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
748 return 0;
750 return eth_hdr->h_proto;
753 static int fm10k_tso(struct fm10k_ring *tx_ring,
754 struct fm10k_tx_buffer *first)
756 struct sk_buff *skb = first->skb;
757 struct fm10k_tx_desc *tx_desc;
758 unsigned char *th;
759 u8 hdrlen;
761 if (skb->ip_summed != CHECKSUM_PARTIAL)
762 return 0;
764 if (!skb_is_gso(skb))
765 return 0;
767 /* compute header lengths */
768 if (skb->encapsulation) {
769 if (!fm10k_tx_encap_offload(skb))
770 goto err_vxlan;
771 th = skb_inner_transport_header(skb);
772 } else {
773 th = skb_transport_header(skb);
776 /* compute offset from SOF to transport header and add header len */
777 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
779 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
781 /* update gso size and bytecount with header size */
782 first->gso_segs = skb_shinfo(skb)->gso_segs;
783 first->bytecount += (first->gso_segs - 1) * hdrlen;
785 /* populate Tx descriptor header size and mss */
786 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
787 tx_desc->hdrlen = hdrlen;
788 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
790 return 1;
792 err_vxlan:
793 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
794 if (net_ratelimit())
795 netdev_err(tx_ring->netdev,
796 "TSO requested for unsupported tunnel, disabling offload\n");
797 return -1;
800 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
801 struct fm10k_tx_buffer *first)
803 struct sk_buff *skb = first->skb;
804 struct fm10k_tx_desc *tx_desc;
805 union {
806 struct iphdr *ipv4;
807 struct ipv6hdr *ipv6;
808 u8 *raw;
809 } network_hdr;
810 u8 *transport_hdr;
811 __be16 frag_off;
812 __be16 protocol;
813 u8 l4_hdr = 0;
815 if (skb->ip_summed != CHECKSUM_PARTIAL)
816 goto no_csum;
818 if (skb->encapsulation) {
819 protocol = fm10k_tx_encap_offload(skb);
820 if (!protocol) {
821 if (skb_checksum_help(skb)) {
822 dev_warn(tx_ring->dev,
823 "failed to offload encap csum!\n");
824 tx_ring->tx_stats.csum_err++;
826 goto no_csum;
828 network_hdr.raw = skb_inner_network_header(skb);
829 transport_hdr = skb_inner_transport_header(skb);
830 } else {
831 protocol = vlan_get_protocol(skb);
832 network_hdr.raw = skb_network_header(skb);
833 transport_hdr = skb_transport_header(skb);
836 switch (protocol) {
837 case htons(ETH_P_IP):
838 l4_hdr = network_hdr.ipv4->protocol;
839 break;
840 case htons(ETH_P_IPV6):
841 l4_hdr = network_hdr.ipv6->nexthdr;
842 if (likely((transport_hdr - network_hdr.raw) ==
843 sizeof(struct ipv6hdr)))
844 break;
845 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
846 sizeof(struct ipv6hdr),
847 &l4_hdr, &frag_off);
848 if (unlikely(frag_off))
849 l4_hdr = NEXTHDR_FRAGMENT;
850 break;
851 default:
852 break;
855 switch (l4_hdr) {
856 case IPPROTO_TCP:
857 case IPPROTO_UDP:
858 break;
859 case IPPROTO_GRE:
860 if (skb->encapsulation)
861 break;
862 /* fall through */
863 default:
864 if (unlikely(net_ratelimit())) {
865 dev_warn(tx_ring->dev,
866 "partial checksum, version=%d l4 proto=%x\n",
867 protocol, l4_hdr);
869 skb_checksum_help(skb);
870 tx_ring->tx_stats.csum_err++;
871 goto no_csum;
874 /* update TX checksum flag */
875 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
876 tx_ring->tx_stats.csum_good++;
878 no_csum:
879 /* populate Tx descriptor header size and mss */
880 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
881 tx_desc->hdrlen = 0;
882 tx_desc->mss = 0;
885 #define FM10K_SET_FLAG(_input, _flag, _result) \
886 ((_flag <= _result) ? \
887 ((u32)(_input & _flag) * (_result / _flag)) : \
888 ((u32)(_input & _flag) / (_flag / _result)))
890 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
892 /* set type for advanced descriptor with frame checksum insertion */
893 u32 desc_flags = 0;
895 /* set checksum offload bits */
896 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
897 FM10K_TXD_FLAG_CSUM);
899 return desc_flags;
902 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
903 struct fm10k_tx_desc *tx_desc, u16 i,
904 dma_addr_t dma, unsigned int size, u8 desc_flags)
906 /* set RS and INT for last frame in a cache line */
907 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
908 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
910 /* record values to descriptor */
911 tx_desc->buffer_addr = cpu_to_le64(dma);
912 tx_desc->flags = desc_flags;
913 tx_desc->buflen = cpu_to_le16(size);
915 /* return true if we just wrapped the ring */
916 return i == tx_ring->count;
919 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
921 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
923 /* Memory barrier before checking head and tail */
924 smp_mb();
926 /* Check again in a case another CPU has just made room available */
927 if (likely(fm10k_desc_unused(tx_ring) < size))
928 return -EBUSY;
930 /* A reprieve! - use start_queue because it doesn't call schedule */
931 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
932 ++tx_ring->tx_stats.restart_queue;
933 return 0;
936 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
938 if (likely(fm10k_desc_unused(tx_ring) >= size))
939 return 0;
940 return __fm10k_maybe_stop_tx(tx_ring, size);
943 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
944 struct fm10k_tx_buffer *first)
946 struct sk_buff *skb = first->skb;
947 struct fm10k_tx_buffer *tx_buffer;
948 struct fm10k_tx_desc *tx_desc;
949 struct skb_frag_struct *frag;
950 unsigned char *data;
951 dma_addr_t dma;
952 unsigned int data_len, size;
953 u32 tx_flags = first->tx_flags;
954 u16 i = tx_ring->next_to_use;
955 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
957 tx_desc = FM10K_TX_DESC(tx_ring, i);
959 /* add HW VLAN tag */
960 if (skb_vlan_tag_present(skb))
961 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
962 else
963 tx_desc->vlan = 0;
965 size = skb_headlen(skb);
966 data = skb->data;
968 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
970 data_len = skb->data_len;
971 tx_buffer = first;
973 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
974 if (dma_mapping_error(tx_ring->dev, dma))
975 goto dma_error;
977 /* record length, and DMA address */
978 dma_unmap_len_set(tx_buffer, len, size);
979 dma_unmap_addr_set(tx_buffer, dma, dma);
981 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
982 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
983 FM10K_MAX_DATA_PER_TXD, flags)) {
984 tx_desc = FM10K_TX_DESC(tx_ring, 0);
985 i = 0;
988 dma += FM10K_MAX_DATA_PER_TXD;
989 size -= FM10K_MAX_DATA_PER_TXD;
992 if (likely(!data_len))
993 break;
995 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
996 dma, size, flags)) {
997 tx_desc = FM10K_TX_DESC(tx_ring, 0);
998 i = 0;
1001 size = skb_frag_size(frag);
1002 data_len -= size;
1004 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005 DMA_TO_DEVICE);
1007 tx_buffer = &tx_ring->tx_buffer[i];
1010 /* write last descriptor with LAST bit set */
1011 flags |= FM10K_TXD_FLAG_LAST;
1013 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014 i = 0;
1016 /* record bytecount for BQL */
1017 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1019 /* record SW timestamp if HW timestamp is not available */
1020 skb_tx_timestamp(first->skb);
1022 /* Force memory writes to complete before letting h/w know there
1023 * are new descriptors to fetch. (Only applicable for weak-ordered
1024 * memory model archs, such as IA-64).
1026 * We also need this memory barrier to make certain all of the
1027 * status bits have been updated before next_to_watch is written.
1029 wmb();
1031 /* set next_to_watch value indicating a packet is present */
1032 first->next_to_watch = tx_desc;
1034 tx_ring->next_to_use = i;
1036 /* Make sure there is space in the ring for the next send. */
1037 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1039 /* notify HW of packet */
1040 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1041 writel(i, tx_ring->tail);
1043 /* we need this if more than one processor can write to our tail
1044 * at a time, it synchronizes IO on IA64/Altix systems
1046 mmiowb();
1049 return;
1050 dma_error:
1051 dev_err(tx_ring->dev, "TX DMA map failed\n");
1053 /* clear dma mappings for failed tx_buffer map */
1054 for (;;) {
1055 tx_buffer = &tx_ring->tx_buffer[i];
1056 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1057 if (tx_buffer == first)
1058 break;
1059 if (i == 0)
1060 i = tx_ring->count;
1061 i--;
1064 tx_ring->next_to_use = i;
1067 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1068 struct fm10k_ring *tx_ring)
1070 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1071 struct fm10k_tx_buffer *first;
1072 unsigned short f;
1073 u32 tx_flags = 0;
1074 int tso;
1076 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1077 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1078 * + 2 desc gap to keep tail from touching head
1079 * otherwise try next time
1081 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1082 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1084 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1085 tx_ring->tx_stats.tx_busy++;
1086 return NETDEV_TX_BUSY;
1089 /* record the location of the first descriptor for this packet */
1090 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1091 first->skb = skb;
1092 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1093 first->gso_segs = 1;
1095 /* record initial flags and protocol */
1096 first->tx_flags = tx_flags;
1098 tso = fm10k_tso(tx_ring, first);
1099 if (tso < 0)
1100 goto out_drop;
1101 else if (!tso)
1102 fm10k_tx_csum(tx_ring, first);
1104 fm10k_tx_map(tx_ring, first);
1106 return NETDEV_TX_OK;
1108 out_drop:
1109 dev_kfree_skb_any(first->skb);
1110 first->skb = NULL;
1112 return NETDEV_TX_OK;
1115 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1117 return ring->stats.packets;
1121 * fm10k_get_tx_pending - how many Tx descriptors not processed
1122 * @ring: the ring structure
1123 * @in_sw: is tx_pending being checked in SW or in HW?
1125 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1127 struct fm10k_intfc *interface = ring->q_vector->interface;
1128 struct fm10k_hw *hw = &interface->hw;
1129 u32 head, tail;
1131 if (likely(in_sw)) {
1132 head = ring->next_to_clean;
1133 tail = ring->next_to_use;
1134 } else {
1135 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1136 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1139 return ((head <= tail) ? tail : tail + ring->count) - head;
1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1144 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1148 clear_check_for_tx_hang(tx_ring);
1150 /* Check for a hung queue, but be thorough. This verifies
1151 * that a transmit has been completed since the previous
1152 * check AND there is at least one packet pending. By
1153 * requiring this to fail twice we avoid races with
1154 * clearing the ARMED bit and conditions where we
1155 * run the check_tx_hang logic with a transmit completion
1156 * pending but without time to complete it yet.
1158 if (!tx_pending || (tx_done_old != tx_done)) {
1159 /* update completed stats and continue */
1160 tx_ring->tx_stats.tx_done_old = tx_done;
1161 /* reset the countdown */
1162 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1164 return false;
1167 /* make sure it is true for two checks in a row */
1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1173 * @interface: driver private struct
1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1177 /* Do the reset outside of interrupt context */
1178 if (!test_bit(__FM10K_DOWN, interface->state)) {
1179 interface->tx_timeout_count++;
1180 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1181 fm10k_service_event_schedule(interface);
1186 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1187 * @q_vector: structure containing interrupt and ring information
1188 * @tx_ring: tx ring to clean
1189 * @napi_budget: Used to determine if we are in netpoll
1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 struct fm10k_ring *tx_ring, int napi_budget)
1194 struct fm10k_intfc *interface = q_vector->interface;
1195 struct fm10k_tx_buffer *tx_buffer;
1196 struct fm10k_tx_desc *tx_desc;
1197 unsigned int total_bytes = 0, total_packets = 0;
1198 unsigned int budget = q_vector->tx.work_limit;
1199 unsigned int i = tx_ring->next_to_clean;
1201 if (test_bit(__FM10K_DOWN, interface->state))
1202 return true;
1204 tx_buffer = &tx_ring->tx_buffer[i];
1205 tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 i -= tx_ring->count;
1208 do {
1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1211 /* if next_to_watch is not set then there is no work pending */
1212 if (!eop_desc)
1213 break;
1215 /* prevent any other reads prior to eop_desc */
1216 smp_rmb();
1218 /* if DD is not set pending work has not been completed */
1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 break;
1222 /* clear next_to_watch to prevent false hangs */
1223 tx_buffer->next_to_watch = NULL;
1225 /* update the statistics for this packet */
1226 total_bytes += tx_buffer->bytecount;
1227 total_packets += tx_buffer->gso_segs;
1229 /* free the skb */
1230 napi_consume_skb(tx_buffer->skb, napi_budget);
1232 /* unmap skb header data */
1233 dma_unmap_single(tx_ring->dev,
1234 dma_unmap_addr(tx_buffer, dma),
1235 dma_unmap_len(tx_buffer, len),
1236 DMA_TO_DEVICE);
1238 /* clear tx_buffer data */
1239 tx_buffer->skb = NULL;
1240 dma_unmap_len_set(tx_buffer, len, 0);
1242 /* unmap remaining buffers */
1243 while (tx_desc != eop_desc) {
1244 tx_buffer++;
1245 tx_desc++;
1246 i++;
1247 if (unlikely(!i)) {
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1253 /* unmap any remaining paged data */
1254 if (dma_unmap_len(tx_buffer, len)) {
1255 dma_unmap_page(tx_ring->dev,
1256 dma_unmap_addr(tx_buffer, dma),
1257 dma_unmap_len(tx_buffer, len),
1258 DMA_TO_DEVICE);
1259 dma_unmap_len_set(tx_buffer, len, 0);
1263 /* move us one more past the eop_desc for start of next pkt */
1264 tx_buffer++;
1265 tx_desc++;
1266 i++;
1267 if (unlikely(!i)) {
1268 i -= tx_ring->count;
1269 tx_buffer = tx_ring->tx_buffer;
1270 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1273 /* issue prefetch for next Tx descriptor */
1274 prefetch(tx_desc);
1276 /* update budget accounting */
1277 budget--;
1278 } while (likely(budget));
1280 i += tx_ring->count;
1281 tx_ring->next_to_clean = i;
1282 u64_stats_update_begin(&tx_ring->syncp);
1283 tx_ring->stats.bytes += total_bytes;
1284 tx_ring->stats.packets += total_packets;
1285 u64_stats_update_end(&tx_ring->syncp);
1286 q_vector->tx.total_bytes += total_bytes;
1287 q_vector->tx.total_packets += total_packets;
1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 /* schedule immediate reset if we believe we hung */
1291 struct fm10k_hw *hw = &interface->hw;
1293 netif_err(interface, drv, tx_ring->netdev,
1294 "Detected Tx Unit Hang\n"
1295 " Tx Queue <%d>\n"
1296 " TDH, TDT <%x>, <%x>\n"
1297 " next_to_use <%x>\n"
1298 " next_to_clean <%x>\n",
1299 tx_ring->queue_index,
1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 tx_ring->next_to_use, i);
1304 netif_stop_subqueue(tx_ring->netdev,
1305 tx_ring->queue_index);
1307 netif_info(interface, probe, tx_ring->netdev,
1308 "tx hang %d detected on queue %d, resetting interface\n",
1309 interface->tx_timeout_count + 1,
1310 tx_ring->queue_index);
1312 fm10k_tx_timeout_reset(interface);
1314 /* the netdev is about to reset, no point in enabling stuff */
1315 return true;
1318 /* notify netdev of completed buffers */
1319 netdev_tx_completed_queue(txring_txq(tx_ring),
1320 total_packets, total_bytes);
1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 /* Make sure that anybody stopping the queue after this
1326 * sees the new next_to_clean.
1328 smp_mb();
1329 if (__netif_subqueue_stopped(tx_ring->netdev,
1330 tx_ring->queue_index) &&
1331 !test_bit(__FM10K_DOWN, interface->state)) {
1332 netif_wake_subqueue(tx_ring->netdev,
1333 tx_ring->queue_index);
1334 ++tx_ring->tx_stats.restart_queue;
1338 return !!budget;
1342 * fm10k_update_itr - update the dynamic ITR value based on packet size
1344 * Stores a new ITR value based on strictly on packet size. The
1345 * divisors and thresholds used by this function were determined based
1346 * on theoretical maximum wire speed and testing data, in order to
1347 * minimize response time while increasing bulk throughput.
1349 * @ring_container: Container for rings to have ITR updated
1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1353 unsigned int avg_wire_size, packets, itr_round;
1355 /* Only update ITR if we are using adaptive setting */
1356 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1357 goto clear_counts;
1359 packets = ring_container->total_packets;
1360 if (!packets)
1361 goto clear_counts;
1363 avg_wire_size = ring_container->total_bytes / packets;
1365 /* The following is a crude approximation of:
1366 * wmem_default / (size + overhead) = desired_pkts_per_int
1367 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1368 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1370 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1371 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1372 * formula down to
1374 * (34 * (size + 24)) / (size + 640) = ITR
1376 * We first do some math on the packet size and then finally bitshift
1377 * by 8 after rounding up. We also have to account for PCIe link speed
1378 * difference as ITR scales based on this.
1380 if (avg_wire_size <= 360) {
1381 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1382 avg_wire_size *= 8;
1383 avg_wire_size += 376;
1384 } else if (avg_wire_size <= 1152) {
1385 /* 77K ints/sec to 45K ints/sec */
1386 avg_wire_size *= 3;
1387 avg_wire_size += 2176;
1388 } else if (avg_wire_size <= 1920) {
1389 /* 45K ints/sec to 38K ints/sec */
1390 avg_wire_size += 4480;
1391 } else {
1392 /* plateau at a limit of 38K ints/sec */
1393 avg_wire_size = 6656;
1396 /* Perform final bitshift for division after rounding up to ensure
1397 * that the calculation will never get below a 1. The bit shift
1398 * accounts for changes in the ITR due to PCIe link speed.
1400 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1401 avg_wire_size += BIT(itr_round) - 1;
1402 avg_wire_size >>= itr_round;
1404 /* write back value and retain adaptive flag */
1405 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1407 clear_counts:
1408 ring_container->total_bytes = 0;
1409 ring_container->total_packets = 0;
1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1414 /* Enable auto-mask and clear the current mask */
1415 u32 itr = FM10K_ITR_ENABLE;
1417 /* Update Tx ITR */
1418 fm10k_update_itr(&q_vector->tx);
1420 /* Update Rx ITR */
1421 fm10k_update_itr(&q_vector->rx);
1423 /* Store Tx itr in timer slot 0 */
1424 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1426 /* Shift Rx itr to timer slot 1 */
1427 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1429 /* Write the final value to the ITR register */
1430 writel(itr, q_vector->itr);
1433 static int fm10k_poll(struct napi_struct *napi, int budget)
1435 struct fm10k_q_vector *q_vector =
1436 container_of(napi, struct fm10k_q_vector, napi);
1437 struct fm10k_ring *ring;
1438 int per_ring_budget, work_done = 0;
1439 bool clean_complete = true;
1441 fm10k_for_each_ring(ring, q_vector->tx) {
1442 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1443 clean_complete = false;
1446 /* Handle case where we are called by netpoll with a budget of 0 */
1447 if (budget <= 0)
1448 return budget;
1450 /* attempt to distribute budget to each queue fairly, but don't
1451 * allow the budget to go below 1 because we'll exit polling
1453 if (q_vector->rx.count > 1)
1454 per_ring_budget = max(budget / q_vector->rx.count, 1);
1455 else
1456 per_ring_budget = budget;
1458 fm10k_for_each_ring(ring, q_vector->rx) {
1459 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1461 work_done += work;
1462 if (work >= per_ring_budget)
1463 clean_complete = false;
1466 /* If all work not completed, return budget and keep polling */
1467 if (!clean_complete)
1468 return budget;
1470 /* all work done, exit the polling mode */
1471 napi_complete_done(napi, work_done);
1473 /* re-enable the q_vector */
1474 fm10k_qv_enable(q_vector);
1476 return min(work_done, budget - 1);
1480 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1481 * @interface: board private structure to initialize
1483 * When QoS (Quality of Service) is enabled, allocate queues for
1484 * each traffic class. If multiqueue isn't available,then abort QoS
1485 * initialization.
1487 * This function handles all combinations of Qos and RSS.
1490 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1492 struct net_device *dev = interface->netdev;
1493 struct fm10k_ring_feature *f;
1494 int rss_i, i;
1495 int pcs;
1497 /* Map queue offset and counts onto allocated tx queues */
1498 pcs = netdev_get_num_tc(dev);
1500 if (pcs <= 1)
1501 return false;
1503 /* set QoS mask and indices */
1504 f = &interface->ring_feature[RING_F_QOS];
1505 f->indices = pcs;
1506 f->mask = BIT(fls(pcs - 1)) - 1;
1508 /* determine the upper limit for our current DCB mode */
1509 rss_i = interface->hw.mac.max_queues / pcs;
1510 rss_i = BIT(fls(rss_i) - 1);
1512 /* set RSS mask and indices */
1513 f = &interface->ring_feature[RING_F_RSS];
1514 rss_i = min_t(u16, rss_i, f->limit);
1515 f->indices = rss_i;
1516 f->mask = BIT(fls(rss_i - 1)) - 1;
1518 /* configure pause class to queue mapping */
1519 for (i = 0; i < pcs; i++)
1520 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1522 interface->num_rx_queues = rss_i * pcs;
1523 interface->num_tx_queues = rss_i * pcs;
1525 return true;
1529 * fm10k_set_rss_queues: Allocate queues for RSS
1530 * @interface: board private structure to initialize
1532 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1533 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1536 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1538 struct fm10k_ring_feature *f;
1539 u16 rss_i;
1541 f = &interface->ring_feature[RING_F_RSS];
1542 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1544 /* record indices and power of 2 mask for RSS */
1545 f->indices = rss_i;
1546 f->mask = BIT(fls(rss_i - 1)) - 1;
1548 interface->num_rx_queues = rss_i;
1549 interface->num_tx_queues = rss_i;
1551 return true;
1555 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1556 * @interface: board private structure to initialize
1558 * This is the top level queue allocation routine. The order here is very
1559 * important, starting with the "most" number of features turned on at once,
1560 * and ending with the smallest set of features. This way large combinations
1561 * can be allocated if they're turned on, and smaller combinations are the
1562 * fallthrough conditions.
1565 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1567 /* Attempt to setup QoS and RSS first */
1568 if (fm10k_set_qos_queues(interface))
1569 return;
1571 /* If we don't have QoS, just fallback to only RSS. */
1572 fm10k_set_rss_queues(interface);
1576 * fm10k_reset_num_queues - Reset the number of queues to zero
1577 * @interface: board private structure
1579 * This function should be called whenever we need to reset the number of
1580 * queues after an error condition.
1582 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1584 interface->num_tx_queues = 0;
1585 interface->num_rx_queues = 0;
1586 interface->num_q_vectors = 0;
1590 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1591 * @interface: board private structure to initialize
1592 * @v_count: q_vectors allocated on interface, used for ring interleaving
1593 * @v_idx: index of vector in interface struct
1594 * @txr_count: total number of Tx rings to allocate
1595 * @txr_idx: index of first Tx ring to allocate
1596 * @rxr_count: total number of Rx rings to allocate
1597 * @rxr_idx: index of first Rx ring to allocate
1599 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1601 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1602 unsigned int v_count, unsigned int v_idx,
1603 unsigned int txr_count, unsigned int txr_idx,
1604 unsigned int rxr_count, unsigned int rxr_idx)
1606 struct fm10k_q_vector *q_vector;
1607 struct fm10k_ring *ring;
1608 int ring_count, size;
1610 ring_count = txr_count + rxr_count;
1611 size = sizeof(struct fm10k_q_vector) +
1612 (sizeof(struct fm10k_ring) * ring_count);
1614 /* allocate q_vector and rings */
1615 q_vector = kzalloc(size, GFP_KERNEL);
1616 if (!q_vector)
1617 return -ENOMEM;
1619 /* initialize NAPI */
1620 netif_napi_add(interface->netdev, &q_vector->napi,
1621 fm10k_poll, NAPI_POLL_WEIGHT);
1623 /* tie q_vector and interface together */
1624 interface->q_vector[v_idx] = q_vector;
1625 q_vector->interface = interface;
1626 q_vector->v_idx = v_idx;
1628 /* initialize pointer to rings */
1629 ring = q_vector->ring;
1631 /* save Tx ring container info */
1632 q_vector->tx.ring = ring;
1633 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1634 q_vector->tx.itr = interface->tx_itr;
1635 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1636 q_vector->tx.count = txr_count;
1638 while (txr_count) {
1639 /* assign generic ring traits */
1640 ring->dev = &interface->pdev->dev;
1641 ring->netdev = interface->netdev;
1643 /* configure backlink on ring */
1644 ring->q_vector = q_vector;
1646 /* apply Tx specific ring traits */
1647 ring->count = interface->tx_ring_count;
1648 ring->queue_index = txr_idx;
1650 /* assign ring to interface */
1651 interface->tx_ring[txr_idx] = ring;
1653 /* update count and index */
1654 txr_count--;
1655 txr_idx += v_count;
1657 /* push pointer to next ring */
1658 ring++;
1661 /* save Rx ring container info */
1662 q_vector->rx.ring = ring;
1663 q_vector->rx.itr = interface->rx_itr;
1664 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1665 q_vector->rx.count = rxr_count;
1667 while (rxr_count) {
1668 /* assign generic ring traits */
1669 ring->dev = &interface->pdev->dev;
1670 ring->netdev = interface->netdev;
1671 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1673 /* configure backlink on ring */
1674 ring->q_vector = q_vector;
1676 /* apply Rx specific ring traits */
1677 ring->count = interface->rx_ring_count;
1678 ring->queue_index = rxr_idx;
1680 /* assign ring to interface */
1681 interface->rx_ring[rxr_idx] = ring;
1683 /* update count and index */
1684 rxr_count--;
1685 rxr_idx += v_count;
1687 /* push pointer to next ring */
1688 ring++;
1691 fm10k_dbg_q_vector_init(q_vector);
1693 return 0;
1697 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1698 * @interface: board private structure to initialize
1699 * @v_idx: Index of vector to be freed
1701 * This function frees the memory allocated to the q_vector. In addition if
1702 * NAPI is enabled it will delete any references to the NAPI struct prior
1703 * to freeing the q_vector.
1705 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1707 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1708 struct fm10k_ring *ring;
1710 fm10k_dbg_q_vector_exit(q_vector);
1712 fm10k_for_each_ring(ring, q_vector->tx)
1713 interface->tx_ring[ring->queue_index] = NULL;
1715 fm10k_for_each_ring(ring, q_vector->rx)
1716 interface->rx_ring[ring->queue_index] = NULL;
1718 interface->q_vector[v_idx] = NULL;
1719 netif_napi_del(&q_vector->napi);
1720 kfree_rcu(q_vector, rcu);
1724 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1725 * @interface: board private structure to initialize
1727 * We allocate one q_vector per queue interrupt. If allocation fails we
1728 * return -ENOMEM.
1730 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1732 unsigned int q_vectors = interface->num_q_vectors;
1733 unsigned int rxr_remaining = interface->num_rx_queues;
1734 unsigned int txr_remaining = interface->num_tx_queues;
1735 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1736 int err;
1738 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1739 for (; rxr_remaining; v_idx++) {
1740 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1741 0, 0, 1, rxr_idx);
1742 if (err)
1743 goto err_out;
1745 /* update counts and index */
1746 rxr_remaining--;
1747 rxr_idx++;
1751 for (; v_idx < q_vectors; v_idx++) {
1752 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1753 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1755 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1756 tqpv, txr_idx,
1757 rqpv, rxr_idx);
1759 if (err)
1760 goto err_out;
1762 /* update counts and index */
1763 rxr_remaining -= rqpv;
1764 txr_remaining -= tqpv;
1765 rxr_idx++;
1766 txr_idx++;
1769 return 0;
1771 err_out:
1772 fm10k_reset_num_queues(interface);
1774 while (v_idx--)
1775 fm10k_free_q_vector(interface, v_idx);
1777 return -ENOMEM;
1781 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1782 * @interface: board private structure to initialize
1784 * This function frees the memory allocated to the q_vectors. In addition if
1785 * NAPI is enabled it will delete any references to the NAPI struct prior
1786 * to freeing the q_vector.
1788 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1790 int v_idx = interface->num_q_vectors;
1792 fm10k_reset_num_queues(interface);
1794 while (v_idx--)
1795 fm10k_free_q_vector(interface, v_idx);
1799 * f10k_reset_msix_capability - reset MSI-X capability
1800 * @interface: board private structure to initialize
1802 * Reset the MSI-X capability back to its starting state
1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1806 pci_disable_msix(interface->pdev);
1807 kfree(interface->msix_entries);
1808 interface->msix_entries = NULL;
1812 * f10k_init_msix_capability - configure MSI-X capability
1813 * @interface: board private structure to initialize
1815 * Attempt to configure the interrupts using the best available
1816 * capabilities of the hardware and the kernel.
1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1820 struct fm10k_hw *hw = &interface->hw;
1821 int v_budget, vector;
1823 /* It's easy to be greedy for MSI-X vectors, but it really
1824 * doesn't do us much good if we have a lot more vectors
1825 * than CPU's. So let's be conservative and only ask for
1826 * (roughly) the same number of vectors as there are CPU's.
1827 * the default is to use pairs of vectors
1829 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830 v_budget = min_t(u16, v_budget, num_online_cpus());
1832 /* account for vectors not related to queues */
1833 v_budget += NON_Q_VECTORS(hw);
1835 /* At the same time, hardware can only support a maximum of
1836 * hw.mac->max_msix_vectors vectors. With features
1837 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838 * descriptor queues supported by our device. Thus, we cap it off in
1839 * those rare cases where the cpu count also exceeds our vector limit.
1841 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1843 /* A failure in MSI-X entry allocation is fatal. */
1844 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845 GFP_KERNEL);
1846 if (!interface->msix_entries)
1847 return -ENOMEM;
1849 /* populate entry values */
1850 for (vector = 0; vector < v_budget; vector++)
1851 interface->msix_entries[vector].entry = vector;
1853 /* Attempt to enable MSI-X with requested value */
1854 v_budget = pci_enable_msix_range(interface->pdev,
1855 interface->msix_entries,
1856 MIN_MSIX_COUNT(hw),
1857 v_budget);
1858 if (v_budget < 0) {
1859 kfree(interface->msix_entries);
1860 interface->msix_entries = NULL;
1861 return v_budget;
1864 /* record the number of queues available for q_vectors */
1865 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1867 return 0;
1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872 * @interface: Interface structure continaining rings and devices
1874 * Cache the descriptor ring offsets for Qos
1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1878 struct net_device *dev = interface->netdev;
1879 int pc, offset, rss_i, i, q_idx;
1880 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881 u8 num_pcs = netdev_get_num_tc(dev);
1883 if (num_pcs <= 1)
1884 return false;
1886 rss_i = interface->ring_feature[RING_F_RSS].indices;
1888 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889 q_idx = pc;
1890 for (i = 0; i < rss_i; i++) {
1891 interface->tx_ring[offset + i]->reg_idx = q_idx;
1892 interface->tx_ring[offset + i]->qos_pc = pc;
1893 interface->rx_ring[offset + i]->reg_idx = q_idx;
1894 interface->rx_ring[offset + i]->qos_pc = pc;
1895 q_idx += pc_stride;
1899 return true;
1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904 * @interface: Interface structure continaining rings and devices
1906 * Cache the descriptor ring offsets for RSS
1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1910 int i;
1912 for (i = 0; i < interface->num_rx_queues; i++)
1913 interface->rx_ring[i]->reg_idx = i;
1915 for (i = 0; i < interface->num_tx_queues; i++)
1916 interface->tx_ring[i]->reg_idx = i;
1920 * fm10k_assign_rings - Map rings to network devices
1921 * @interface: Interface structure containing rings and devices
1923 * This function is meant to go though and configure both the network
1924 * devices so that they contain rings, and configure the rings so that
1925 * they function with their network devices.
1927 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1929 if (fm10k_cache_ring_qos(interface))
1930 return;
1932 fm10k_cache_ring_rss(interface);
1935 static void fm10k_init_reta(struct fm10k_intfc *interface)
1937 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938 u32 reta;
1940 /* If the Rx flow indirection table has been configured manually, we
1941 * need to maintain it when possible.
1943 if (netif_is_rxfh_configured(interface->netdev)) {
1944 for (i = FM10K_RETA_SIZE; i--;) {
1945 reta = interface->reta[i];
1946 if ((((reta << 24) >> 24) < rss_i) &&
1947 (((reta << 16) >> 24) < rss_i) &&
1948 (((reta << 8) >> 24) < rss_i) &&
1949 (((reta) >> 24) < rss_i))
1950 continue;
1952 /* this should never happen */
1953 dev_err(&interface->pdev->dev,
1954 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955 goto repopulate_reta;
1958 /* do nothing if all of the elements are in bounds */
1959 return;
1962 repopulate_reta:
1963 fm10k_write_reta(interface, NULL);
1967 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1968 * @interface: board private structure to initialize
1970 * We determine which queueing scheme to use based on...
1971 * - Hardware queue count (num_*_queues)
1972 * - defined by miscellaneous hardware support/features (RSS, etc.)
1974 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1976 int err;
1978 /* Number of supported queues */
1979 fm10k_set_num_queues(interface);
1981 /* Configure MSI-X capability */
1982 err = fm10k_init_msix_capability(interface);
1983 if (err) {
1984 dev_err(&interface->pdev->dev,
1985 "Unable to initialize MSI-X capability\n");
1986 goto err_init_msix;
1989 /* Allocate memory for queues */
1990 err = fm10k_alloc_q_vectors(interface);
1991 if (err) {
1992 dev_err(&interface->pdev->dev,
1993 "Unable to allocate queue vectors\n");
1994 goto err_alloc_q_vectors;
1997 /* Map rings to devices, and map devices to physical queues */
1998 fm10k_assign_rings(interface);
2000 /* Initialize RSS redirection table */
2001 fm10k_init_reta(interface);
2003 return 0;
2005 err_alloc_q_vectors:
2006 fm10k_reset_msix_capability(interface);
2007 err_init_msix:
2008 fm10k_reset_num_queues(interface);
2009 return err;
2013 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2014 * @interface: board private structure to clear queueing scheme on
2016 * We go through and clear queueing specific resources and reset the structure
2017 * to pre-load conditions
2019 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2021 fm10k_free_q_vectors(interface);
2022 fm10k_reset_msix_capability(interface);