Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.h
blob3b5a63b3236ebdbfeb4bd82b3dfd5e90f2596858
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #ifndef _I40E_TXRX_H_
5 #define _I40E_TXRX_H_
7 /* Interrupt Throttling and Rate Limiting Goodies */
8 #define I40E_DEFAULT_IRQ_WORK 256
10 /* The datasheet for the X710 and XL710 indicate that the maximum value for
11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
13 * the register value which is divided by 2 lets use the actual values and
14 * avoid an excessive amount of translation.
16 #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
17 #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
18 #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
19 #define I40E_ITR_100K 10 /* all values below must be even */
20 #define I40E_ITR_50K 20
21 #define I40E_ITR_20K 50
22 #define I40E_ITR_18K 60
23 #define I40E_ITR_8K 122
24 #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
25 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
29 #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
30 #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
33 * the value of the rate limit is non-zero
35 #define INTRL_ENA BIT(6)
36 #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
38 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
39 #define I40E_INTRL_8K 125 /* 8000 ints/sec */
40 #define I40E_INTRL_62K 16 /* 62500 ints/sec */
41 #define I40E_INTRL_83K 12 /* 83333 ints/sec */
43 #define I40E_QUEUE_END_OF_LIST 0x7FF
45 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
46 * registers and QINT registers or more generally anywhere in the manual
47 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
48 * register but instead is a special value meaning "don't update" ITR0/1/2.
50 enum i40e_dyn_idx_t {
51 I40E_IDX_ITR0 = 0,
52 I40E_IDX_ITR1 = 1,
53 I40E_IDX_ITR2 = 2,
54 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
57 /* these are indexes into ITRN registers */
58 #define I40E_RX_ITR I40E_IDX_ITR0
59 #define I40E_TX_ITR I40E_IDX_ITR1
60 #define I40E_PE_ITR I40E_IDX_ITR2
62 /* Supported RSS offloads */
63 #define I40E_DEFAULT_RSS_HENA ( \
64 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
65 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
66 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
67 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
68 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
69 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
70 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
71 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
72 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
73 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
74 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
76 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
77 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
78 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
79 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
84 /* Supported Rx Buffer Sizes (a multiple of 128) */
85 #define I40E_RXBUFFER_256 256
86 #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
87 #define I40E_RXBUFFER_2048 2048
88 #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
89 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
91 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
92 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
93 * this adds up to 512 bytes of extra data meaning the smallest allocation
94 * we could have is 1K.
95 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
96 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
98 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
99 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
100 #define i40e_rx_desc i40e_32byte_rx_desc
102 #define I40E_RX_DMA_ATTR \
103 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
105 /* Attempt to maximize the headroom available for incoming frames. We
106 * use a 2K buffer for receives and need 1536/1534 to store the data for
107 * the frame. This leaves us with 512 bytes of room. From that we need
108 * to deduct the space needed for the shared info and the padding needed
109 * to IP align the frame.
111 * Note: For cache line sizes 256 or larger this value is going to end
112 * up negative. In these cases we should fall back to the legacy
113 * receive path.
115 #if (PAGE_SIZE < 8192)
116 #define I40E_2K_TOO_SMALL_WITH_PADDING \
117 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
119 static inline int i40e_compute_pad(int rx_buf_len)
121 int page_size, pad_size;
123 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
124 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
126 return pad_size;
129 static inline int i40e_skb_pad(void)
131 int rx_buf_len;
133 /* If a 2K buffer cannot handle a standard Ethernet frame then
134 * optimize padding for a 3K buffer instead of a 1.5K buffer.
136 * For a 3K buffer we need to add enough padding to allow for
137 * tailroom due to NET_IP_ALIGN possibly shifting us out of
138 * cache-line alignment.
140 if (I40E_2K_TOO_SMALL_WITH_PADDING)
141 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
142 else
143 rx_buf_len = I40E_RXBUFFER_1536;
145 /* if needed make room for NET_IP_ALIGN */
146 rx_buf_len -= NET_IP_ALIGN;
148 return i40e_compute_pad(rx_buf_len);
151 #define I40E_SKB_PAD i40e_skb_pad()
152 #else
153 #define I40E_2K_TOO_SMALL_WITH_PADDING false
154 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
155 #endif
158 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
159 * @rx_desc: pointer to receive descriptor (in le64 format)
160 * @stat_err_bits: value to mask
162 * This function does some fast chicanery in order to return the
163 * value of the mask which is really only used for boolean tests.
164 * The status_error_len doesn't need to be shifted because it begins
165 * at offset zero.
167 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
168 const u64 stat_err_bits)
170 return !!(rx_desc->wb.qword1.status_error_len &
171 cpu_to_le64(stat_err_bits));
174 /* How many Rx Buffers do we bundle into one write to the hardware ? */
175 #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
176 #define I40E_RX_INCREMENT(r, i) \
177 do { \
178 (i)++; \
179 if ((i) == (r)->count) \
180 i = 0; \
181 r->next_to_clean = i; \
182 } while (0)
184 #define I40E_RX_NEXT_DESC(r, i, n) \
185 do { \
186 (i)++; \
187 if ((i) == (r)->count) \
188 i = 0; \
189 (n) = I40E_RX_DESC((r), (i)); \
190 } while (0)
192 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
193 do { \
194 I40E_RX_NEXT_DESC((r), (i), (n)); \
195 prefetch((n)); \
196 } while (0)
198 #define I40E_MAX_BUFFER_TXD 8
199 #define I40E_MIN_TX_LEN 17
201 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
202 * In order to align with the read requests we will align the value to
203 * the nearest 4K which represents our maximum read request size.
205 #define I40E_MAX_READ_REQ_SIZE 4096
206 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
207 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
208 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
211 * i40e_txd_use_count - estimate the number of descriptors needed for Tx
212 * @size: transmit request size in bytes
214 * Due to hardware alignment restrictions (4K alignment), we need to
215 * assume that we can have no more than 12K of data per descriptor, even
216 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
217 * Thus, we need to divide by 12K. But division is slow! Instead,
218 * we decompose the operation into shifts and one relatively cheap
219 * multiply operation.
221 * To divide by 12K, we first divide by 4K, then divide by 3:
222 * To divide by 4K, shift right by 12 bits
223 * To divide by 3, multiply by 85, then divide by 256
224 * (Divide by 256 is done by shifting right by 8 bits)
225 * Finally, we add one to round up. Because 256 isn't an exact multiple of
226 * 3, we'll underestimate near each multiple of 12K. This is actually more
227 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
228 * segment. For our purposes this is accurate out to 1M which is orders of
229 * magnitude greater than our largest possible GSO size.
231 * This would then be implemented as:
232 * return (((size >> 12) * 85) >> 8) + 1;
234 * Since multiplication and division are commutative, we can reorder
235 * operations into:
236 * return ((size * 85) >> 20) + 1;
238 static inline unsigned int i40e_txd_use_count(unsigned int size)
240 return ((size * 85) >> 20) + 1;
243 /* Tx Descriptors needed, worst case */
244 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
245 #define I40E_MIN_DESC_PENDING 4
247 #define I40E_TX_FLAGS_HW_VLAN BIT(1)
248 #define I40E_TX_FLAGS_SW_VLAN BIT(2)
249 #define I40E_TX_FLAGS_TSO BIT(3)
250 #define I40E_TX_FLAGS_IPV4 BIT(4)
251 #define I40E_TX_FLAGS_IPV6 BIT(5)
252 #define I40E_TX_FLAGS_FCCRC BIT(6)
253 #define I40E_TX_FLAGS_FSO BIT(7)
254 #define I40E_TX_FLAGS_FD_SB BIT(9)
255 #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
256 #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
257 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
258 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
259 #define I40E_TX_FLAGS_VLAN_SHIFT 16
261 struct i40e_tx_buffer {
262 struct i40e_tx_desc *next_to_watch;
263 union {
264 struct sk_buff *skb;
265 void *raw_buf;
267 unsigned int bytecount;
268 unsigned short gso_segs;
270 DEFINE_DMA_UNMAP_ADDR(dma);
271 DEFINE_DMA_UNMAP_LEN(len);
272 u32 tx_flags;
275 struct i40e_rx_buffer {
276 dma_addr_t dma;
277 struct page *page;
278 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
279 __u32 page_offset;
280 #else
281 __u16 page_offset;
282 #endif
283 __u16 pagecnt_bias;
286 struct i40e_queue_stats {
287 u64 packets;
288 u64 bytes;
291 struct i40e_tx_queue_stats {
292 u64 restart_queue;
293 u64 tx_busy;
294 u64 tx_done_old;
295 u64 tx_linearize;
296 u64 tx_force_wb;
297 int prev_pkt_ctr;
298 u64 tx_lost_interrupt;
301 struct i40e_rx_queue_stats {
302 u64 non_eop_descs;
303 u64 alloc_page_failed;
304 u64 alloc_buff_failed;
305 u64 page_reuse_count;
306 u64 realloc_count;
309 enum i40e_ring_state_t {
310 __I40E_TX_FDIR_INIT_DONE,
311 __I40E_TX_XPS_INIT_DONE,
312 __I40E_RING_STATE_NBITS /* must be last */
315 /* some useful defines for virtchannel interface, which
316 * is the only remaining user of header split
318 #define I40E_RX_DTYPE_NO_SPLIT 0
319 #define I40E_RX_DTYPE_HEADER_SPLIT 1
320 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
321 #define I40E_RX_SPLIT_L2 0x1
322 #define I40E_RX_SPLIT_IP 0x2
323 #define I40E_RX_SPLIT_TCP_UDP 0x4
324 #define I40E_RX_SPLIT_SCTP 0x8
326 /* struct that defines a descriptor ring, associated with a VSI */
327 struct i40e_ring {
328 struct i40e_ring *next; /* pointer to next ring in q_vector */
329 void *desc; /* Descriptor ring memory */
330 struct device *dev; /* Used for DMA mapping */
331 struct net_device *netdev; /* netdev ring maps to */
332 union {
333 struct i40e_tx_buffer *tx_bi;
334 struct i40e_rx_buffer *rx_bi;
336 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
337 u16 queue_index; /* Queue number of ring */
338 u8 dcb_tc; /* Traffic class of ring */
339 u8 __iomem *tail;
341 /* high bit set means dynamic, use accessors routines to read/write.
342 * hardware only supports 2us resolution for the ITR registers.
343 * these values always store the USER setting, and must be converted
344 * before programming to a register.
346 u16 itr_setting;
348 u16 count; /* Number of descriptors */
349 u16 reg_idx; /* HW register index of the ring */
350 u16 rx_buf_len;
352 /* used in interrupt processing */
353 u16 next_to_use;
354 u16 next_to_clean;
356 u8 atr_sample_rate;
357 u8 atr_count;
359 bool ring_active; /* is ring online or not */
360 bool arm_wb; /* do something to arm write back */
361 u8 packet_stride;
363 u16 flags;
364 #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
365 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
367 /* stats structs */
368 struct i40e_queue_stats stats;
369 struct u64_stats_sync syncp;
370 union {
371 struct i40e_tx_queue_stats tx_stats;
372 struct i40e_rx_queue_stats rx_stats;
375 unsigned int size; /* length of descriptor ring in bytes */
376 dma_addr_t dma; /* physical address of ring */
378 struct i40e_vsi *vsi; /* Backreference to associated VSI */
379 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
381 struct rcu_head rcu; /* to avoid race on free */
382 u16 next_to_alloc;
383 struct sk_buff *skb; /* When i40evf_clean_rx_ring_irq() must
384 * return before it sees the EOP for
385 * the current packet, we save that skb
386 * here and resume receiving this
387 * packet the next time
388 * i40evf_clean_rx_ring_irq() is called
389 * for this ring.
391 } ____cacheline_internodealigned_in_smp;
393 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
395 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
398 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
400 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
403 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
405 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
408 #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
409 #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
410 #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
411 #define I40E_ITR_ADAPTIVE_LATENCY 0x8000
412 #define I40E_ITR_ADAPTIVE_BULK 0x0000
413 #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
415 struct i40e_ring_container {
416 struct i40e_ring *ring; /* pointer to linked list of ring(s) */
417 unsigned long next_update; /* jiffies value of next update */
418 unsigned int total_bytes; /* total bytes processed this int */
419 unsigned int total_packets; /* total packets processed this int */
420 u16 count;
421 u16 target_itr; /* target ITR setting for ring(s) */
422 u16 current_itr; /* current ITR setting for ring(s) */
425 /* iterator for handling rings in ring container */
426 #define i40e_for_each_ring(pos, head) \
427 for (pos = (head).ring; pos != NULL; pos = pos->next)
429 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
431 #if (PAGE_SIZE < 8192)
432 if (ring->rx_buf_len > (PAGE_SIZE / 2))
433 return 1;
434 #endif
435 return 0;
438 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
440 bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
441 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
442 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
443 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
444 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
445 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
446 void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
447 void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
448 int i40evf_napi_poll(struct napi_struct *napi, int budget);
449 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
450 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
451 void i40evf_detect_recover_hung(struct i40e_vsi *vsi);
452 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
453 bool __i40evf_chk_linearize(struct sk_buff *skb);
456 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
457 * @skb: send buffer
458 * @tx_ring: ring to send buffer on
460 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
461 * there is not enough descriptors available in this ring since we need at least
462 * one descriptor.
464 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
466 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
467 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
468 int count = 0, size = skb_headlen(skb);
470 for (;;) {
471 count += i40e_txd_use_count(size);
473 if (!nr_frags--)
474 break;
476 size = skb_frag_size(frag++);
479 return count;
483 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
484 * @tx_ring: the ring to be checked
485 * @size: the size buffer we want to assure is available
487 * Returns 0 if stop is not needed
489 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
491 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
492 return 0;
493 return __i40evf_maybe_stop_tx(tx_ring, size);
497 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
498 * @skb: send buffer
499 * @count: number of buffers used
501 * Note: Our HW can't scatter-gather more than 8 fragments to build
502 * a packet on the wire and so we need to figure out the cases where we
503 * need to linearize the skb.
505 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
507 /* Both TSO and single send will work if count is less than 8 */
508 if (likely(count < I40E_MAX_BUFFER_TXD))
509 return false;
511 if (skb_is_gso(skb))
512 return __i40evf_chk_linearize(skb);
514 /* we can support up to 8 data buffers for a single send */
515 return count != I40E_MAX_BUFFER_TXD;
518 * @ring: Tx ring to find the netdev equivalent of
520 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
522 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
524 #endif /* _I40E_TXRX_H_ */