2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
35 #include "mvneta_bm.h"
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
128 /* Exception Interrupt Port/Queue Cause register
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
194 #define MVNETA_GMAC_CTRL_2 0x2c08
195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
197 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
198 #define MVNETA_GMAC2_PORT_RESET BIT(6)
199 #define MVNETA_GMAC_STATUS 0x2c10
200 #define MVNETA_GMAC_LINK_UP BIT(0)
201 #define MVNETA_GMAC_SPEED_1000 BIT(1)
202 #define MVNETA_GMAC_SPEED_100 BIT(2)
203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
208 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
209 #define MVNETA_GMAC_SYNC_OK BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE 0x3000
225 #define MVNETA_MIB_LATE_COLLISION 0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
239 #define MVNETA_PORT_TX_RESET 0x3cf0
240 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
241 #define MVNETA_TX_MTU 0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE 0x3e14
243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
247 #define MVNETA_LPI_CTRL_0 0x2cc0
248 #define MVNETA_LPI_CTRL_1 0x2cc4
249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
250 #define MVNETA_LPI_CTRL_2 0x2cc8
251 #define MVNETA_LPI_STATUS 0x2ccc
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
257 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
259 /* Various constants */
262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS 32
264 #define MVNETA_RX_COAL_USEC 100
266 /* The two bytes Marvell header. Either contains a special value used
267 * by Marvell switches when a specific hardware mode is enabled (not
268 * supported by this driver) or is filled automatically by zeroes on
269 * the RX side. Those two bytes being at the front of the Ethernet
270 * header, they allow to have the IP header aligned on a 4 bytes
271 * boundary automatically: the hardware skips those two bytes on its
274 #define MVNETA_MH_SIZE 2
276 #define MVNETA_VLAN_TAG_LEN 4
278 #define MVNETA_TX_CSUM_DEF_SIZE 1600
279 #define MVNETA_TX_CSUM_MAX_SIZE 9800
280 #define MVNETA_ACC_MODE_EXT1 1
281 #define MVNETA_ACC_MODE_EXT2 2
283 #define MVNETA_MAX_DECODE_WIN 6
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
290 #define MVNETA_TX_MTU_MAX 0x3ffff
292 /* The RSS lookup table actually has 256 entries but we do not use
295 #define MVNETA_RSS_LU_TABLE_SIZE 1
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 512
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 1024
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE 32
311 /* Number of bytes to be taken into account by HW when putting incoming data
312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 ETH_HLEN + ETH_FCS_LEN, \
322 #define IS_TSO_HEADER(txq, addr) \
323 ((addr >= txq->tso_hdrs_phys) && \
324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
330 ETHTOOL_STAT_EEE_WAKEUP
,
331 ETHTOOL_STAT_SKB_ALLOC_ERR
,
332 ETHTOOL_STAT_REFILL_ERR
,
336 struct mvneta_statistic
{
337 unsigned short offset
;
339 const char name
[ETH_GSTRING_LEN
];
346 static const struct mvneta_statistic mvneta_statistics
[] = {
347 { 0x3000, T_REG_64
, "good_octets_received", },
348 { 0x3010, T_REG_32
, "good_frames_received", },
349 { 0x3008, T_REG_32
, "bad_octets_received", },
350 { 0x3014, T_REG_32
, "bad_frames_received", },
351 { 0x3018, T_REG_32
, "broadcast_frames_received", },
352 { 0x301c, T_REG_32
, "multicast_frames_received", },
353 { 0x3050, T_REG_32
, "unrec_mac_control_received", },
354 { 0x3058, T_REG_32
, "good_fc_received", },
355 { 0x305c, T_REG_32
, "bad_fc_received", },
356 { 0x3060, T_REG_32
, "undersize_received", },
357 { 0x3064, T_REG_32
, "fragments_received", },
358 { 0x3068, T_REG_32
, "oversize_received", },
359 { 0x306c, T_REG_32
, "jabber_received", },
360 { 0x3070, T_REG_32
, "mac_receive_error", },
361 { 0x3074, T_REG_32
, "bad_crc_event", },
362 { 0x3078, T_REG_32
, "collision", },
363 { 0x307c, T_REG_32
, "late_collision", },
364 { 0x2484, T_REG_32
, "rx_discard", },
365 { 0x2488, T_REG_32
, "rx_overrun", },
366 { 0x3020, T_REG_32
, "frames_64_octets", },
367 { 0x3024, T_REG_32
, "frames_65_to_127_octets", },
368 { 0x3028, T_REG_32
, "frames_128_to_255_octets", },
369 { 0x302c, T_REG_32
, "frames_256_to_511_octets", },
370 { 0x3030, T_REG_32
, "frames_512_to_1023_octets", },
371 { 0x3034, T_REG_32
, "frames_1024_to_max_octets", },
372 { 0x3038, T_REG_64
, "good_octets_sent", },
373 { 0x3040, T_REG_32
, "good_frames_sent", },
374 { 0x3044, T_REG_32
, "excessive_collision", },
375 { 0x3048, T_REG_32
, "multicast_frames_sent", },
376 { 0x304c, T_REG_32
, "broadcast_frames_sent", },
377 { 0x3054, T_REG_32
, "fc_sent", },
378 { 0x300c, T_REG_32
, "internal_mac_transmit_err", },
379 { ETHTOOL_STAT_EEE_WAKEUP
, T_SW
, "eee_wakeup_errors", },
380 { ETHTOOL_STAT_SKB_ALLOC_ERR
, T_SW
, "skb_alloc_errors", },
381 { ETHTOOL_STAT_REFILL_ERR
, T_SW
, "refill_errors", },
384 struct mvneta_pcpu_stats
{
385 struct u64_stats_sync syncp
;
394 struct mvneta_pcpu_port
{
395 /* Pointer to the shared port */
396 struct mvneta_port
*pp
;
398 /* Pointer to the CPU-local NAPI struct */
399 struct napi_struct napi
;
401 /* Cause of the previous interrupt */
407 struct mvneta_pcpu_port __percpu
*ports
;
408 struct mvneta_pcpu_stats __percpu
*stats
;
412 struct mvneta_rx_queue
*rxqs
;
413 struct mvneta_tx_queue
*txqs
;
414 struct net_device
*dev
;
415 struct hlist_node node_online
;
416 struct hlist_node node_dead
;
418 /* Protect the access to the percpu interrupt registers,
419 * ensuring that the configuration remains coherent.
425 struct napi_struct napi
;
435 phy_interface_t phy_interface
;
436 struct device_node
*dn
;
437 unsigned int tx_csum_limit
;
438 struct phylink
*phylink
;
440 struct mvneta_bm
*bm_priv
;
441 struct mvneta_bm_pool
*pool_long
;
442 struct mvneta_bm_pool
*pool_short
;
449 u64 ethtool_stats
[ARRAY_SIZE(mvneta_statistics
)];
451 u32 indir
[MVNETA_RSS_LU_TABLE_SIZE
];
453 /* Flags for special SoC configurations */
454 bool neta_armada3700
;
455 u16 rx_offset_correction
;
456 const struct mbus_dram_target_info
*dram_target_info
;
459 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
460 * layout of the transmit and reception DMA descriptors, and their
461 * layout is therefore defined by the hardware design
464 #define MVNETA_TX_L3_OFF_SHIFT 0
465 #define MVNETA_TX_IP_HLEN_SHIFT 8
466 #define MVNETA_TX_L4_UDP BIT(16)
467 #define MVNETA_TX_L3_IP6 BIT(17)
468 #define MVNETA_TXD_IP_CSUM BIT(18)
469 #define MVNETA_TXD_Z_PAD BIT(19)
470 #define MVNETA_TXD_L_DESC BIT(20)
471 #define MVNETA_TXD_F_DESC BIT(21)
472 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
473 MVNETA_TXD_L_DESC | \
475 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
476 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
478 #define MVNETA_RXD_ERR_CRC 0x0
479 #define MVNETA_RXD_BM_POOL_SHIFT 13
480 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
481 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
482 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
483 #define MVNETA_RXD_ERR_LEN BIT(18)
484 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
485 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
486 #define MVNETA_RXD_L3_IP4 BIT(25)
487 #define MVNETA_RXD_LAST_DESC BIT(26)
488 #define MVNETA_RXD_FIRST_DESC BIT(27)
489 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
490 MVNETA_RXD_LAST_DESC)
491 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
493 #if defined(__LITTLE_ENDIAN)
494 struct mvneta_tx_desc
{
495 u32 command
; /* Options used by HW for packet transmitting.*/
496 u16 reserverd1
; /* csum_l4 (for future use) */
497 u16 data_size
; /* Data size of transmitted packet in bytes */
498 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
499 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
500 u32 reserved3
[4]; /* Reserved - (for future use) */
503 struct mvneta_rx_desc
{
504 u32 status
; /* Info about received packet */
505 u16 reserved1
; /* pnc_info - (for future use, PnC) */
506 u16 data_size
; /* Size of received packet in bytes */
508 u32 buf_phys_addr
; /* Physical address of the buffer */
509 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
511 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
512 u16 reserved3
; /* prefetch_cmd, for future use */
513 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
515 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
516 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
519 struct mvneta_tx_desc
{
520 u16 data_size
; /* Data size of transmitted packet in bytes */
521 u16 reserverd1
; /* csum_l4 (for future use) */
522 u32 command
; /* Options used by HW for packet transmitting.*/
523 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
524 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
525 u32 reserved3
[4]; /* Reserved - (for future use) */
528 struct mvneta_rx_desc
{
529 u16 data_size
; /* Size of received packet in bytes */
530 u16 reserved1
; /* pnc_info - (for future use, PnC) */
531 u32 status
; /* Info about received packet */
533 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
534 u32 buf_phys_addr
; /* Physical address of the buffer */
536 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
537 u16 reserved3
; /* prefetch_cmd, for future use */
538 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
540 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
541 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
545 struct mvneta_tx_queue
{
546 /* Number of this TX queue, in the range 0-7 */
549 /* Number of TX DMA descriptors in the descriptor ring */
552 /* Number of currently used TX DMA descriptor in the
557 int tx_stop_threshold
;
558 int tx_wake_threshold
;
560 /* Array of transmitted skb */
561 struct sk_buff
**tx_skb
;
563 /* Index of last TX DMA descriptor that was inserted */
566 /* Index of the TX DMA descriptor to be cleaned up */
571 /* Virtual address of the TX DMA descriptors array */
572 struct mvneta_tx_desc
*descs
;
574 /* DMA address of the TX DMA descriptors array */
575 dma_addr_t descs_phys
;
577 /* Index of the last TX DMA descriptor */
580 /* Index of the next TX DMA descriptor to process */
581 int next_desc_to_proc
;
583 /* DMA buffers for TSO headers */
586 /* DMA address of TSO headers */
587 dma_addr_t tso_hdrs_phys
;
589 /* Affinity mask for CPUs*/
590 cpumask_t affinity_mask
;
593 struct mvneta_rx_queue
{
594 /* rx queue number, in the range 0-7 */
597 /* num of rx descriptors in the rx descriptor ring */
603 /* Virtual address of the RX buffer */
604 void **buf_virt_addr
;
606 /* Virtual address of the RX DMA descriptors array */
607 struct mvneta_rx_desc
*descs
;
609 /* DMA address of the RX DMA descriptors array */
610 dma_addr_t descs_phys
;
612 /* Index of the last RX DMA descriptor */
615 /* Index of the next RX DMA descriptor to process */
616 int next_desc_to_proc
;
618 /* Index of first RX DMA descriptor to refill */
622 /* pointer to uncomplete skb buffer */
631 static enum cpuhp_state online_hpstate
;
632 /* The hardware supports eight (8) rx queues, but we are only allowing
633 * the first one to be used. Therefore, let's just allocate one queue.
635 static int rxq_number
= 8;
636 static int txq_number
= 8;
640 static int rx_copybreak __read_mostly
= 256;
641 static int rx_header_size __read_mostly
= 128;
643 /* HW BM need that each port be identify by a unique ID */
644 static int global_port_id
;
646 #define MVNETA_DRIVER_NAME "mvneta"
647 #define MVNETA_DRIVER_VERSION "1.0"
649 /* Utility/helper methods */
651 /* Write helper method */
652 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
654 writel(data
, pp
->base
+ offset
);
657 /* Read helper method */
658 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
660 return readl(pp
->base
+ offset
);
663 /* Increment txq get counter */
664 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
666 txq
->txq_get_index
++;
667 if (txq
->txq_get_index
== txq
->size
)
668 txq
->txq_get_index
= 0;
671 /* Increment txq put counter */
672 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
674 txq
->txq_put_index
++;
675 if (txq
->txq_put_index
== txq
->size
)
676 txq
->txq_put_index
= 0;
680 /* Clear all MIB counters */
681 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
686 /* Perform dummy reads from MIB counters */
687 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
688 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
689 dummy
= mvreg_read(pp
, MVNETA_RX_DISCARD_FRAME_COUNT
);
690 dummy
= mvreg_read(pp
, MVNETA_OVERRUN_FRAME_COUNT
);
693 /* Get System Network Statistics */
695 mvneta_get_stats64(struct net_device
*dev
,
696 struct rtnl_link_stats64
*stats
)
698 struct mvneta_port
*pp
= netdev_priv(dev
);
702 for_each_possible_cpu(cpu
) {
703 struct mvneta_pcpu_stats
*cpu_stats
;
711 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
713 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
714 rx_packets
= cpu_stats
->rx_packets
;
715 rx_bytes
= cpu_stats
->rx_bytes
;
716 rx_dropped
= cpu_stats
->rx_dropped
;
717 rx_errors
= cpu_stats
->rx_errors
;
718 tx_packets
= cpu_stats
->tx_packets
;
719 tx_bytes
= cpu_stats
->tx_bytes
;
720 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
722 stats
->rx_packets
+= rx_packets
;
723 stats
->rx_bytes
+= rx_bytes
;
724 stats
->rx_dropped
+= rx_dropped
;
725 stats
->rx_errors
+= rx_errors
;
726 stats
->tx_packets
+= tx_packets
;
727 stats
->tx_bytes
+= tx_bytes
;
730 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
733 /* Rx descriptors helper methods */
735 /* Checks whether the RX descriptor having this status is both the first
736 * and the last descriptor for the RX packet. Each RX packet is currently
737 * received through a single RX descriptor, so not having each RX
738 * descriptor with its first and last bits set is an error
740 static int mvneta_rxq_desc_is_first_last(u32 status
)
742 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
743 MVNETA_RXD_FIRST_LAST_DESC
;
746 /* Add number of descriptors ready to receive new packets */
747 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
748 struct mvneta_rx_queue
*rxq
,
751 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
754 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
755 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
756 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
757 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
758 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
761 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
762 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
765 /* Get number of RX descriptors occupied by received packets */
766 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
767 struct mvneta_rx_queue
*rxq
)
771 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
772 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
775 /* Update num of rx desc called upon return from rx path or
776 * from mvneta_rxq_drop_pkts().
778 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
779 struct mvneta_rx_queue
*rxq
,
780 int rx_done
, int rx_filled
)
784 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
786 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
787 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
791 /* Only 255 descriptors can be added at once */
792 while ((rx_done
> 0) || (rx_filled
> 0)) {
793 if (rx_done
<= 0xff) {
800 if (rx_filled
<= 0xff) {
801 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
804 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
807 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
811 /* Get pointer to next RX descriptor to be processed by SW */
812 static struct mvneta_rx_desc
*
813 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
815 int rx_desc
= rxq
->next_desc_to_proc
;
817 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
818 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
819 return rxq
->descs
+ rx_desc
;
822 /* Change maximum receive size of the port. */
823 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
827 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
828 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
829 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
830 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
831 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
835 /* Set rx queue offset */
836 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
837 struct mvneta_rx_queue
*rxq
,
842 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
843 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
846 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
847 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
851 /* Tx descriptors helper methods */
853 /* Update HW with number of TX descriptors to be sent */
854 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
855 struct mvneta_tx_queue
*txq
,
860 pend_desc
+= txq
->pending
;
862 /* Only 255 Tx descriptors can be added at once */
864 val
= min(pend_desc
, 255);
865 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
867 } while (pend_desc
> 0);
871 /* Get pointer to next TX descriptor to be processed (send) by HW */
872 static struct mvneta_tx_desc
*
873 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
875 int tx_desc
= txq
->next_desc_to_proc
;
877 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
878 return txq
->descs
+ tx_desc
;
881 /* Release the last allocated TX descriptor. Useful to handle DMA
882 * mapping failures in the TX path.
884 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
886 if (txq
->next_desc_to_proc
== 0)
887 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
889 txq
->next_desc_to_proc
--;
892 /* Set rxq buf size */
893 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
894 struct mvneta_rx_queue
*rxq
,
899 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
901 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
902 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
904 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
907 /* Disable buffer management (BM) */
908 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
909 struct mvneta_rx_queue
*rxq
)
913 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
914 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
915 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
918 /* Enable buffer management (BM) */
919 static void mvneta_rxq_bm_enable(struct mvneta_port
*pp
,
920 struct mvneta_rx_queue
*rxq
)
924 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
925 val
|= MVNETA_RXQ_HW_BUF_ALLOC
;
926 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
929 /* Notify HW about port's assignment of pool for bigger packets */
930 static void mvneta_rxq_long_pool_set(struct mvneta_port
*pp
,
931 struct mvneta_rx_queue
*rxq
)
935 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
936 val
&= ~MVNETA_RXQ_LONG_POOL_ID_MASK
;
937 val
|= (pp
->pool_long
->id
<< MVNETA_RXQ_LONG_POOL_ID_SHIFT
);
939 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
942 /* Notify HW about port's assignment of pool for smaller packets */
943 static void mvneta_rxq_short_pool_set(struct mvneta_port
*pp
,
944 struct mvneta_rx_queue
*rxq
)
948 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
949 val
&= ~MVNETA_RXQ_SHORT_POOL_ID_MASK
;
950 val
|= (pp
->pool_short
->id
<< MVNETA_RXQ_SHORT_POOL_ID_SHIFT
);
952 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
955 /* Set port's receive buffer size for assigned BM pool */
956 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port
*pp
,
962 if (!IS_ALIGNED(buf_size
, 8)) {
963 dev_warn(pp
->dev
->dev
.parent
,
964 "illegal buf_size value %d, round to %d\n",
965 buf_size
, ALIGN(buf_size
, 8));
966 buf_size
= ALIGN(buf_size
, 8);
969 val
= mvreg_read(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
));
970 val
|= buf_size
& MVNETA_PORT_POOL_BUFFER_SZ_MASK
;
971 mvreg_write(pp
, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id
), val
);
974 /* Configure MBUS window in order to enable access BM internal SRAM */
975 static int mvneta_mbus_io_win_set(struct mvneta_port
*pp
, u32 base
, u32 wsize
,
978 u32 win_enable
, win_protect
;
981 win_enable
= mvreg_read(pp
, MVNETA_BASE_ADDR_ENABLE
);
983 if (pp
->bm_win_id
< 0) {
984 /* Find first not occupied window */
985 for (i
= 0; i
< MVNETA_MAX_DECODE_WIN
; i
++) {
986 if (win_enable
& (1 << i
)) {
991 if (i
== MVNETA_MAX_DECODE_WIN
)
997 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
998 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
1001 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
1003 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (base
& 0xffff0000) |
1004 (attr
<< 8) | target
);
1006 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), (wsize
- 1) & 0xffff0000);
1008 win_protect
= mvreg_read(pp
, MVNETA_ACCESS_PROTECT_ENABLE
);
1009 win_protect
|= 3 << (2 * i
);
1010 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
1012 win_enable
&= ~(1 << i
);
1013 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
1018 static int mvneta_bm_port_mbus_init(struct mvneta_port
*pp
)
1024 /* Get BM window information */
1025 err
= mvebu_mbus_get_io_win_info(pp
->bm_priv
->bppi_phys_addr
, &wsize
,
1032 /* Open NETA -> BM window */
1033 err
= mvneta_mbus_io_win_set(pp
, pp
->bm_priv
->bppi_phys_addr
, wsize
,
1036 netdev_info(pp
->dev
, "fail to configure mbus window to BM\n");
1042 /* Assign and initialize pools for port. In case of fail
1043 * buffer manager will remain disabled for current port.
1045 static int mvneta_bm_port_init(struct platform_device
*pdev
,
1046 struct mvneta_port
*pp
)
1048 struct device_node
*dn
= pdev
->dev
.of_node
;
1049 u32 long_pool_id
, short_pool_id
;
1051 if (!pp
->neta_armada3700
) {
1054 ret
= mvneta_bm_port_mbus_init(pp
);
1059 if (of_property_read_u32(dn
, "bm,pool-long", &long_pool_id
)) {
1060 netdev_info(pp
->dev
, "missing long pool id\n");
1064 /* Create port's long pool depending on mtu */
1065 pp
->pool_long
= mvneta_bm_pool_use(pp
->bm_priv
, long_pool_id
,
1066 MVNETA_BM_LONG
, pp
->id
,
1067 MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
));
1068 if (!pp
->pool_long
) {
1069 netdev_info(pp
->dev
, "fail to obtain long pool for port\n");
1073 pp
->pool_long
->port_map
|= 1 << pp
->id
;
1075 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_long
->buf_size
,
1078 /* If short pool id is not defined, assume using single pool */
1079 if (of_property_read_u32(dn
, "bm,pool-short", &short_pool_id
))
1080 short_pool_id
= long_pool_id
;
1082 /* Create port's short pool */
1083 pp
->pool_short
= mvneta_bm_pool_use(pp
->bm_priv
, short_pool_id
,
1084 MVNETA_BM_SHORT
, pp
->id
,
1085 MVNETA_BM_SHORT_PKT_SIZE
);
1086 if (!pp
->pool_short
) {
1087 netdev_info(pp
->dev
, "fail to obtain short pool for port\n");
1088 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1092 if (short_pool_id
!= long_pool_id
) {
1093 pp
->pool_short
->port_map
|= 1 << pp
->id
;
1094 mvneta_bm_pool_bufsize_set(pp
, pp
->pool_short
->buf_size
,
1095 pp
->pool_short
->id
);
1101 /* Update settings of a pool for bigger packets */
1102 static void mvneta_bm_update_mtu(struct mvneta_port
*pp
, int mtu
)
1104 struct mvneta_bm_pool
*bm_pool
= pp
->pool_long
;
1105 struct hwbm_pool
*hwbm_pool
= &bm_pool
->hwbm_pool
;
1108 /* Release all buffers from long pool */
1109 mvneta_bm_bufs_free(pp
->bm_priv
, bm_pool
, 1 << pp
->id
);
1110 if (hwbm_pool
->buf_num
) {
1111 WARN(1, "cannot free all buffers in pool %d\n",
1116 bm_pool
->pkt_size
= MVNETA_RX_PKT_SIZE(mtu
);
1117 bm_pool
->buf_size
= MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
);
1118 hwbm_pool
->frag_size
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
1119 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool
->pkt_size
));
1121 /* Fill entire long pool */
1122 num
= hwbm_pool_add(hwbm_pool
, hwbm_pool
->size
, GFP_ATOMIC
);
1123 if (num
!= hwbm_pool
->size
) {
1124 WARN(1, "pool %d: %d of %d allocated\n",
1125 bm_pool
->id
, num
, hwbm_pool
->size
);
1128 mvneta_bm_pool_bufsize_set(pp
, bm_pool
->buf_size
, bm_pool
->id
);
1133 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
1134 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
, 1 << pp
->id
);
1137 mvreg_write(pp
, MVNETA_ACC_MODE
, MVNETA_ACC_MODE_EXT1
);
1138 netdev_info(pp
->dev
, "fail to update MTU, fall back to software BM\n");
1141 /* Start the Ethernet port RX and TX activity */
1142 static void mvneta_port_up(struct mvneta_port
*pp
)
1147 /* Enable all initialized TXs. */
1149 for (queue
= 0; queue
< txq_number
; queue
++) {
1150 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
1152 q_map
|= (1 << queue
);
1154 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
1157 /* Enable all initialized RXQs. */
1158 for (queue
= 0; queue
< rxq_number
; queue
++) {
1159 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
1162 q_map
|= (1 << queue
);
1164 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
1167 /* Stop the Ethernet port activity */
1168 static void mvneta_port_down(struct mvneta_port
*pp
)
1173 /* Stop Rx port activity. Check port Rx activity. */
1174 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
1176 /* Issue stop command for active channels only */
1178 mvreg_write(pp
, MVNETA_RXQ_CMD
,
1179 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
1181 /* Wait for all Rx activity to terminate. */
1184 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
1185 netdev_warn(pp
->dev
,
1186 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1192 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
1193 } while (val
& MVNETA_RXQ_ENABLE_MASK
);
1195 /* Stop Tx port activity. Check port Tx activity. Issue stop
1196 * command for active channels only
1198 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
1201 mvreg_write(pp
, MVNETA_TXQ_CMD
,
1202 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
1204 /* Wait for all Tx activity to terminate. */
1207 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
1208 netdev_warn(pp
->dev
,
1209 "TIMEOUT for TX stopped status=0x%08x\n",
1215 /* Check TX Command reg that all Txqs are stopped */
1216 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
1218 } while (val
& MVNETA_TXQ_ENABLE_MASK
);
1220 /* Double check to verify that TX FIFO is empty */
1223 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
1224 netdev_warn(pp
->dev
,
1225 "TX FIFO empty timeout status=0x%08x\n",
1231 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
1232 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
1233 (val
& MVNETA_TX_IN_PRGRS
));
1238 /* Enable the port by setting the port enable bit of the MAC control register */
1239 static void mvneta_port_enable(struct mvneta_port
*pp
)
1244 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1245 val
|= MVNETA_GMAC0_PORT_ENABLE
;
1246 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1249 /* Disable the port and wait for about 200 usec before retuning */
1250 static void mvneta_port_disable(struct mvneta_port
*pp
)
1254 /* Reset the Enable bit in the Serial Control Register */
1255 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
1256 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
1257 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
1262 /* Multicast tables methods */
1264 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1265 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
1273 val
= 0x1 | (queue
<< 1);
1274 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1277 for (offset
= 0; offset
<= 0xc; offset
+= 4)
1278 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
1281 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1282 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
1290 val
= 0x1 | (queue
<< 1);
1291 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1294 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1295 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
1299 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1300 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
1306 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
1309 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
1310 val
= 0x1 | (queue
<< 1);
1311 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
1314 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
1315 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
1318 static void mvneta_percpu_unmask_interrupt(void *arg
)
1320 struct mvneta_port
*pp
= arg
;
1322 /* All the queue are unmasked, but actually only the ones
1323 * mapped to this CPU will be unmasked
1325 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
1326 MVNETA_RX_INTR_MASK_ALL
|
1327 MVNETA_TX_INTR_MASK_ALL
|
1328 MVNETA_MISCINTR_INTR_MASK
);
1331 static void mvneta_percpu_mask_interrupt(void *arg
)
1333 struct mvneta_port
*pp
= arg
;
1335 /* All the queue are masked, but actually only the ones
1336 * mapped to this CPU will be masked
1338 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
1339 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
1340 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
1343 static void mvneta_percpu_clear_intr_cause(void *arg
)
1345 struct mvneta_port
*pp
= arg
;
1347 /* All the queue are cleared, but actually only the ones
1348 * mapped to this CPU will be cleared
1350 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
1351 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
1352 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
1355 /* This method sets defaults to the NETA port:
1356 * Clears interrupt Cause and Mask registers.
1357 * Clears all MAC tables.
1358 * Sets defaults to all registers.
1359 * Resets RX and TX descriptor rings.
1361 * This method can be called after mvneta_port_down() to return the port
1362 * settings to defaults.
1364 static void mvneta_defaults_set(struct mvneta_port
*pp
)
1369 int max_cpu
= num_present_cpus();
1371 /* Clear all Cause registers */
1372 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
1374 /* Mask all interrupts */
1375 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
1376 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
1378 /* Enable MBUS Retry bit16 */
1379 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
1381 /* Set CPU queue access map. CPUs are assigned to the RX and
1382 * TX queues modulo their number. If there is only one TX
1383 * queue then it is assigned to the CPU associated to the
1386 for_each_present_cpu(cpu
) {
1387 int rxq_map
= 0, txq_map
= 0;
1389 if (!pp
->neta_armada3700
) {
1390 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
1391 if ((rxq
% max_cpu
) == cpu
)
1392 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
1394 for (txq
= 0; txq
< txq_number
; txq
++)
1395 if ((txq
% max_cpu
) == cpu
)
1396 txq_map
|= MVNETA_CPU_TXQ_ACCESS(txq
);
1398 /* With only one TX queue we configure a special case
1399 * which will allow to get all the irq on a single
1402 if (txq_number
== 1)
1403 txq_map
= (cpu
== pp
->rxq_def
) ?
1404 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1407 txq_map
= MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
1408 rxq_map
= MVNETA_CPU_RXQ_ACCESS_ALL_MASK
;
1411 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
1414 /* Reset RX and TX DMAs */
1415 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
1416 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
1418 /* Disable Legacy WRR, Disable EJP, Release from reset */
1419 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
1420 for (queue
= 0; queue
< txq_number
; queue
++) {
1421 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
1422 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
1425 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
1426 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
1428 /* Set Port Acceleration Mode */
1430 /* HW buffer management + legacy parser */
1431 val
= MVNETA_ACC_MODE_EXT2
;
1433 /* SW buffer management + legacy parser */
1434 val
= MVNETA_ACC_MODE_EXT1
;
1435 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
1438 mvreg_write(pp
, MVNETA_BM_ADDRESS
, pp
->bm_priv
->bppi_phys_addr
);
1440 /* Update val of portCfg register accordingly with all RxQueue types */
1441 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
1442 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
1445 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
1446 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
1448 /* Build PORT_SDMA_CONFIG_REG */
1451 /* Default burst size */
1452 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1453 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
1454 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
1456 #if defined(__BIG_ENDIAN)
1457 val
|= MVNETA_DESC_SWAP
;
1460 /* Assign port SDMA configuration */
1461 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
1463 /* Disable PHY polling in hardware, since we're using the
1464 * kernel phylib to do this.
1466 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
1467 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
1468 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
1470 mvneta_set_ucast_table(pp
, -1);
1471 mvneta_set_special_mcast_table(pp
, -1);
1472 mvneta_set_other_mcast_table(pp
, -1);
1474 /* Set port interrupt enable register - default enable all */
1475 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1476 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1477 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1479 mvneta_mib_counters_clear(pp
);
1482 /* Set max sizes for tx queues */
1483 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1489 mtu
= max_tx_size
* 8;
1490 if (mtu
> MVNETA_TX_MTU_MAX
)
1491 mtu
= MVNETA_TX_MTU_MAX
;
1494 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1495 val
&= ~MVNETA_TX_MTU_MAX
;
1497 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1499 /* TX token size and all TXQs token size must be larger that MTU */
1500 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1502 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1505 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1507 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1509 for (queue
= 0; queue
< txq_number
; queue
++) {
1510 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1512 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1515 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1517 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1522 /* Set unicast address */
1523 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1526 unsigned int unicast_reg
;
1527 unsigned int tbl_offset
;
1528 unsigned int reg_offset
;
1530 /* Locate the Unicast table entry */
1531 last_nibble
= (0xf & last_nibble
);
1533 /* offset from unicast tbl base */
1534 tbl_offset
= (last_nibble
/ 4) * 4;
1536 /* offset within the above reg */
1537 reg_offset
= last_nibble
% 4;
1539 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1542 /* Clear accepts frame bit at specified unicast DA tbl entry */
1543 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1545 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1546 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1549 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1552 /* Set mac address */
1553 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1560 mac_l
= (addr
[4] << 8) | (addr
[5]);
1561 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1562 (addr
[2] << 8) | (addr
[3] << 0);
1564 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1565 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1568 /* Accept frames of this address */
1569 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1572 /* Set the number of packets that will be received before RX interrupt
1573 * will be generated by HW.
1575 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1576 struct mvneta_rx_queue
*rxq
, u32 value
)
1578 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1579 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1582 /* Set the time delay in usec before RX interrupt will be generated by
1585 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1586 struct mvneta_rx_queue
*rxq
, u32 value
)
1589 unsigned long clk_rate
;
1591 clk_rate
= clk_get_rate(pp
->clk
);
1592 val
= (clk_rate
/ 1000000) * value
;
1594 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1597 /* Set threshold for TX_DONE pkts coalescing */
1598 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1599 struct mvneta_tx_queue
*txq
, u32 value
)
1603 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1605 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1606 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1608 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1611 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1612 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1613 u32 phys_addr
, void *virt_addr
,
1614 struct mvneta_rx_queue
*rxq
)
1618 rx_desc
->buf_phys_addr
= phys_addr
;
1619 i
= rx_desc
- rxq
->descs
;
1620 rxq
->buf_virt_addr
[i
] = virt_addr
;
1623 /* Decrement sent descriptors counter */
1624 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1625 struct mvneta_tx_queue
*txq
,
1630 /* Only 255 TX descriptors can be updated at once */
1631 while (sent_desc
> 0xff) {
1632 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1633 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1634 sent_desc
= sent_desc
- 0xff;
1637 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1638 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1641 /* Get number of TX descriptors already sent by HW */
1642 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1643 struct mvneta_tx_queue
*txq
)
1648 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1649 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1650 MVNETA_TXQ_SENT_DESC_SHIFT
;
1655 /* Get number of sent descriptors and decrement counter.
1656 * The number of sent descriptors is returned.
1658 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1659 struct mvneta_tx_queue
*txq
)
1663 /* Get number of sent descriptors */
1664 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1666 /* Decrement sent descriptors counter */
1668 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1673 /* Set TXQ descriptors fields relevant for CSUM calculation */
1674 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1675 int ip_hdr_len
, int l4_proto
)
1679 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1680 * G_L4_chk, L4_type; required only for checksum
1683 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1684 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1686 if (l3_proto
== htons(ETH_P_IP
))
1687 command
|= MVNETA_TXD_IP_CSUM
;
1689 command
|= MVNETA_TX_L3_IP6
;
1691 if (l4_proto
== IPPROTO_TCP
)
1692 command
|= MVNETA_TX_L4_CSUM_FULL
;
1693 else if (l4_proto
== IPPROTO_UDP
)
1694 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1696 command
|= MVNETA_TX_L4_CSUM_NOT
;
1702 /* Display more error info */
1703 static void mvneta_rx_error(struct mvneta_port
*pp
,
1704 struct mvneta_rx_desc
*rx_desc
)
1706 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1707 u32 status
= rx_desc
->status
;
1709 /* update per-cpu counter */
1710 u64_stats_update_begin(&stats
->syncp
);
1712 u64_stats_update_end(&stats
->syncp
);
1714 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1715 case MVNETA_RXD_ERR_CRC
:
1716 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1717 status
, rx_desc
->data_size
);
1719 case MVNETA_RXD_ERR_OVERRUN
:
1720 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1721 status
, rx_desc
->data_size
);
1723 case MVNETA_RXD_ERR_LEN
:
1724 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1725 status
, rx_desc
->data_size
);
1727 case MVNETA_RXD_ERR_RESOURCE
:
1728 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1729 status
, rx_desc
->data_size
);
1734 /* Handle RX checksum offload based on the descriptor's status */
1735 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1736 struct sk_buff
*skb
)
1738 if ((pp
->dev
->features
& NETIF_F_RXCSUM
) &&
1739 (status
& MVNETA_RXD_L3_IP4
) &&
1740 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1742 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1746 skb
->ip_summed
= CHECKSUM_NONE
;
1749 /* Return tx queue pointer (find last set bit) according to <cause> returned
1750 * form tx_done reg. <cause> must not be null. The return value is always a
1751 * valid queue for matching the first one found in <cause>.
1753 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1756 int queue
= fls(cause
) - 1;
1758 return &pp
->txqs
[queue
];
1761 /* Free tx queue skbuffs */
1762 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1763 struct mvneta_tx_queue
*txq
, int num
,
1764 struct netdev_queue
*nq
)
1766 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1769 for (i
= 0; i
< num
; i
++) {
1770 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1772 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1775 bytes_compl
+= skb
->len
;
1779 mvneta_txq_inc_get(txq
);
1781 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1782 dma_unmap_single(pp
->dev
->dev
.parent
,
1783 tx_desc
->buf_phys_addr
,
1784 tx_desc
->data_size
, DMA_TO_DEVICE
);
1787 dev_kfree_skb_any(skb
);
1790 netdev_tx_completed_queue(nq
, pkts_compl
, bytes_compl
);
1793 /* Handle end of transmission */
1794 static void mvneta_txq_done(struct mvneta_port
*pp
,
1795 struct mvneta_tx_queue
*txq
)
1797 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1800 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1804 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
1806 txq
->count
-= tx_done
;
1808 if (netif_tx_queue_stopped(nq
)) {
1809 if (txq
->count
<= txq
->tx_wake_threshold
)
1810 netif_tx_wake_queue(nq
);
1814 /* Refill processing for SW buffer management */
1815 /* Allocate page per descriptor */
1816 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1817 struct mvneta_rx_desc
*rx_desc
,
1818 struct mvneta_rx_queue
*rxq
,
1821 dma_addr_t phys_addr
;
1824 page
= __dev_alloc_page(gfp_mask
);
1828 /* map page for use */
1829 phys_addr
= dma_map_page(pp
->dev
->dev
.parent
, page
, 0, PAGE_SIZE
,
1831 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1836 phys_addr
+= pp
->rx_offset_correction
;
1837 mvneta_rx_desc_fill(rx_desc
, phys_addr
, page
, rxq
);
1841 /* Handle tx checksum */
1842 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1844 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1846 __be16 l3_proto
= vlan_get_protocol(skb
);
1849 if (l3_proto
== htons(ETH_P_IP
)) {
1850 struct iphdr
*ip4h
= ip_hdr(skb
);
1852 /* Calculate IPv4 checksum and L4 checksum */
1853 ip_hdr_len
= ip4h
->ihl
;
1854 l4_proto
= ip4h
->protocol
;
1855 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1856 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1858 /* Read l4_protocol from one of IPv6 extra headers */
1859 if (skb_network_header_len(skb
) > 0)
1860 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1861 l4_proto
= ip6h
->nexthdr
;
1863 return MVNETA_TX_L4_CSUM_NOT
;
1865 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1866 l3_proto
, ip_hdr_len
, l4_proto
);
1869 return MVNETA_TX_L4_CSUM_NOT
;
1872 /* Drop packets received by the RXQ and free buffers */
1873 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1874 struct mvneta_rx_queue
*rxq
)
1878 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1880 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1883 for (i
= 0; i
< rx_done
; i
++) {
1884 struct mvneta_rx_desc
*rx_desc
=
1885 mvneta_rxq_next_desc_get(rxq
);
1886 u8 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
1887 struct mvneta_bm_pool
*bm_pool
;
1889 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
1890 /* Return dropped buffer to the pool */
1891 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
1892 rx_desc
->buf_phys_addr
);
1897 for (i
= 0; i
< rxq
->size
; i
++) {
1898 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1899 void *data
= rxq
->buf_virt_addr
[i
];
1900 if (!data
|| !(rx_desc
->buf_phys_addr
))
1903 dma_unmap_page(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1904 PAGE_SIZE
, DMA_FROM_DEVICE
);
1910 int mvneta_rx_refill_queue(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
)
1912 struct mvneta_rx_desc
*rx_desc
;
1913 int curr_desc
= rxq
->first_to_refill
;
1916 for (i
= 0; (i
< rxq
->refill_num
) && (i
< 64); i
++) {
1917 rx_desc
= rxq
->descs
+ curr_desc
;
1918 if (!(rx_desc
->buf_phys_addr
)) {
1919 if (mvneta_rx_refill(pp
, rx_desc
, rxq
, GFP_ATOMIC
)) {
1920 pr_err("Can't refill queue %d. Done %d from %d\n",
1921 rxq
->id
, i
, rxq
->refill_num
);
1926 curr_desc
= MVNETA_QUEUE_NEXT_DESC(rxq
, curr_desc
);
1928 rxq
->refill_num
-= i
;
1929 rxq
->first_to_refill
= curr_desc
;
1934 /* Main rx processing when using software buffer management */
1935 static int mvneta_rx_swbm(struct napi_struct
*napi
,
1936 struct mvneta_port
*pp
, int budget
,
1937 struct mvneta_rx_queue
*rxq
)
1939 struct net_device
*dev
= pp
->dev
;
1940 int rx_todo
, rx_proc
;
1945 /* Get number of received packets */
1946 rx_todo
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1949 /* Fairness NAPI loop */
1950 while ((rcvd_pkts
< budget
) && (rx_proc
< rx_todo
)) {
1951 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1952 unsigned char *data
;
1954 dma_addr_t phys_addr
;
1955 u32 rx_status
, index
;
1956 int rx_bytes
, skb_size
, copy_size
;
1957 int frag_num
, frag_size
, frag_offset
;
1959 index
= rx_desc
- rxq
->descs
;
1960 page
= (struct page
*)rxq
->buf_virt_addr
[index
];
1961 data
= page_address(page
);
1962 /* Prefetch header */
1965 phys_addr
= rx_desc
->buf_phys_addr
;
1966 rx_status
= rx_desc
->status
;
1970 if (rx_status
& MVNETA_RXD_FIRST_DESC
) {
1971 /* Check errors only for FIRST descriptor */
1972 if (rx_status
& MVNETA_RXD_ERR_SUMMARY
) {
1973 mvneta_rx_error(pp
, rx_desc
);
1974 /* leave the descriptor untouched */
1977 rx_bytes
= rx_desc
->data_size
-
1978 (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1980 /* Allocate small skb for each new packet */
1981 skb_size
= max(rx_copybreak
, rx_header_size
);
1982 rxq
->skb
= netdev_alloc_skb_ip_align(dev
, skb_size
);
1983 if (unlikely(!rxq
->skb
)) {
1984 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1987 "Can't allocate skb on queue %d\n",
1990 rxq
->skb_alloc_err
++;
1992 u64_stats_update_begin(&stats
->syncp
);
1993 stats
->rx_dropped
++;
1994 u64_stats_update_end(&stats
->syncp
);
1997 copy_size
= min(skb_size
, rx_bytes
);
1999 /* Copy data from buffer to SKB, skip Marvell header */
2000 memcpy(rxq
->skb
->data
, data
+ MVNETA_MH_SIZE
,
2002 skb_put(rxq
->skb
, copy_size
);
2003 rxq
->left_size
= rx_bytes
- copy_size
;
2005 mvneta_rx_csum(pp
, rx_status
, rxq
->skb
);
2006 if (rxq
->left_size
== 0) {
2007 int size
= copy_size
+ MVNETA_MH_SIZE
;
2009 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2014 /* leave the descriptor and buffer untouched */
2016 /* refill descriptor with new buffer later */
2017 rx_desc
->buf_phys_addr
= 0;
2020 frag_offset
= copy_size
+ MVNETA_MH_SIZE
;
2021 frag_size
= min(rxq
->left_size
,
2022 (int)(PAGE_SIZE
- frag_offset
));
2023 skb_add_rx_frag(rxq
->skb
, frag_num
, page
,
2024 frag_offset
, frag_size
,
2026 dma_unmap_page(dev
->dev
.parent
, phys_addr
,
2027 PAGE_SIZE
, DMA_FROM_DEVICE
);
2028 rxq
->left_size
-= frag_size
;
2031 /* Middle or Last descriptor */
2032 if (unlikely(!rxq
->skb
)) {
2033 pr_debug("no skb for rx_status 0x%x\n",
2037 if (!rxq
->left_size
) {
2038 /* last descriptor has only FCS */
2039 /* and can be discarded */
2040 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
2044 /* leave the descriptor and buffer untouched */
2046 /* refill descriptor with new buffer later */
2047 rx_desc
->buf_phys_addr
= 0;
2049 frag_num
= skb_shinfo(rxq
->skb
)->nr_frags
;
2051 frag_size
= min(rxq
->left_size
,
2052 (int)(PAGE_SIZE
- frag_offset
));
2053 skb_add_rx_frag(rxq
->skb
, frag_num
, page
,
2054 frag_offset
, frag_size
,
2057 dma_unmap_page(dev
->dev
.parent
, phys_addr
,
2058 PAGE_SIZE
, DMA_FROM_DEVICE
);
2060 rxq
->left_size
-= frag_size
;
2062 } /* Middle or Last descriptor */
2064 if (!(rx_status
& MVNETA_RXD_LAST_DESC
))
2065 /* no last descriptor this time */
2068 if (rxq
->left_size
) {
2069 pr_err("get last desc, but left_size (%d) != 0\n",
2071 dev_kfree_skb_any(rxq
->skb
);
2077 rcvd_bytes
+= rxq
->skb
->len
;
2079 /* Linux processing */
2080 rxq
->skb
->protocol
= eth_type_trans(rxq
->skb
, dev
);
2082 if (dev
->features
& NETIF_F_GRO
)
2083 napi_gro_receive(napi
, rxq
->skb
);
2085 netif_receive_skb(rxq
->skb
);
2087 /* clean uncomplete skb pointer in queue */
2093 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2095 u64_stats_update_begin(&stats
->syncp
);
2096 stats
->rx_packets
+= rcvd_pkts
;
2097 stats
->rx_bytes
+= rcvd_bytes
;
2098 u64_stats_update_end(&stats
->syncp
);
2101 /* return some buffers to hardware queue, one at a time is too slow */
2102 refill
= mvneta_rx_refill_queue(pp
, rxq
);
2104 /* Update rxq management counters */
2105 mvneta_rxq_desc_num_update(pp
, rxq
, rx_proc
, refill
);
2110 /* Main rx processing when using hardware buffer management */
2111 static int mvneta_rx_hwbm(struct napi_struct
*napi
,
2112 struct mvneta_port
*pp
, int rx_todo
,
2113 struct mvneta_rx_queue
*rxq
)
2115 struct net_device
*dev
= pp
->dev
;
2120 /* Get number of received packets */
2121 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
2123 if (rx_todo
> rx_done
)
2128 /* Fairness NAPI loop */
2129 while (rx_done
< rx_todo
) {
2130 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
2131 struct mvneta_bm_pool
*bm_pool
= NULL
;
2132 struct sk_buff
*skb
;
2133 unsigned char *data
;
2134 dma_addr_t phys_addr
;
2135 u32 rx_status
, frag_size
;
2140 rx_status
= rx_desc
->status
;
2141 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
2142 data
= (u8
*)(uintptr_t)rx_desc
->buf_cookie
;
2143 phys_addr
= rx_desc
->buf_phys_addr
;
2144 pool_id
= MVNETA_RX_GET_BM_POOL_ID(rx_desc
);
2145 bm_pool
= &pp
->bm_priv
->bm_pools
[pool_id
];
2147 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
2148 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
2149 err_drop_frame_ret_pool
:
2150 /* Return the buffer to the pool */
2151 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2152 rx_desc
->buf_phys_addr
);
2154 mvneta_rx_error(pp
, rx_desc
);
2155 /* leave the descriptor untouched */
2159 if (rx_bytes
<= rx_copybreak
) {
2160 /* better copy a small frame and not unmap the DMA region */
2161 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
2163 goto err_drop_frame_ret_pool
;
2165 dma_sync_single_range_for_cpu(&pp
->bm_priv
->pdev
->dev
,
2166 rx_desc
->buf_phys_addr
,
2167 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2170 skb_put_data(skb
, data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
2173 skb
->protocol
= eth_type_trans(skb
, dev
);
2174 mvneta_rx_csum(pp
, rx_status
, skb
);
2175 napi_gro_receive(napi
, skb
);
2178 rcvd_bytes
+= rx_bytes
;
2180 /* Return the buffer to the pool */
2181 mvneta_bm_pool_put_bp(pp
->bm_priv
, bm_pool
,
2182 rx_desc
->buf_phys_addr
);
2184 /* leave the descriptor and buffer untouched */
2188 /* Refill processing */
2189 err
= hwbm_pool_refill(&bm_pool
->hwbm_pool
, GFP_ATOMIC
);
2191 netdev_err(dev
, "Linux processing - Can't refill\n");
2193 goto err_drop_frame_ret_pool
;
2196 frag_size
= bm_pool
->hwbm_pool
.frag_size
;
2198 skb
= build_skb(data
, frag_size
> PAGE_SIZE
? 0 : frag_size
);
2200 /* After refill old buffer has to be unmapped regardless
2201 * the skb is successfully built or not.
2203 dma_unmap_single(&pp
->bm_priv
->pdev
->dev
, phys_addr
,
2204 bm_pool
->buf_size
, DMA_FROM_DEVICE
);
2206 goto err_drop_frame
;
2209 rcvd_bytes
+= rx_bytes
;
2211 /* Linux processing */
2212 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
2213 skb_put(skb
, rx_bytes
);
2215 skb
->protocol
= eth_type_trans(skb
, dev
);
2217 mvneta_rx_csum(pp
, rx_status
, skb
);
2219 napi_gro_receive(napi
, skb
);
2223 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2225 u64_stats_update_begin(&stats
->syncp
);
2226 stats
->rx_packets
+= rcvd_pkts
;
2227 stats
->rx_bytes
+= rcvd_bytes
;
2228 u64_stats_update_end(&stats
->syncp
);
2231 /* Update rxq management counters */
2232 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
2238 mvneta_tso_put_hdr(struct sk_buff
*skb
,
2239 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
2241 struct mvneta_tx_desc
*tx_desc
;
2242 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2244 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2245 tx_desc
= mvneta_txq_next_desc_get(txq
);
2246 tx_desc
->data_size
= hdr_len
;
2247 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
2248 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
2249 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
2250 txq
->txq_put_index
* TSO_HEADER_SIZE
;
2251 mvneta_txq_inc_put(txq
);
2255 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
2256 struct sk_buff
*skb
, char *data
, int size
,
2257 bool last_tcp
, bool is_last
)
2259 struct mvneta_tx_desc
*tx_desc
;
2261 tx_desc
= mvneta_txq_next_desc_get(txq
);
2262 tx_desc
->data_size
= size
;
2263 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
2264 size
, DMA_TO_DEVICE
);
2265 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2266 tx_desc
->buf_phys_addr
))) {
2267 mvneta_txq_desc_put(txq
);
2271 tx_desc
->command
= 0;
2272 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2275 /* last descriptor in the TCP packet */
2276 tx_desc
->command
= MVNETA_TXD_L_DESC
;
2278 /* last descriptor in SKB */
2280 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2282 mvneta_txq_inc_put(txq
);
2286 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
2287 struct mvneta_tx_queue
*txq
)
2289 int total_len
, data_left
;
2291 struct mvneta_port
*pp
= netdev_priv(dev
);
2293 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2296 /* Count needed descriptors */
2297 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
2300 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
2301 pr_info("*** Is this even possible???!?!?\n");
2305 /* Initialize the TSO handler, and prepare the first payload */
2306 tso_start(skb
, &tso
);
2308 total_len
= skb
->len
- hdr_len
;
2309 while (total_len
> 0) {
2312 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
2313 total_len
-= data_left
;
2316 /* prepare packet headers: MAC + IP + TCP */
2317 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
2318 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
2320 mvneta_tso_put_hdr(skb
, pp
, txq
);
2322 while (data_left
> 0) {
2326 size
= min_t(int, tso
.size
, data_left
);
2328 if (mvneta_tso_put_data(dev
, txq
, skb
,
2335 tso_build_data(skb
, &tso
, size
);
2342 /* Release all used data descriptors; header descriptors must not
2345 for (i
= desc_count
- 1; i
>= 0; i
--) {
2346 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
2347 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
2348 dma_unmap_single(pp
->dev
->dev
.parent
,
2349 tx_desc
->buf_phys_addr
,
2352 mvneta_txq_desc_put(txq
);
2357 /* Handle tx fragmentation processing */
2358 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
2359 struct mvneta_tx_queue
*txq
)
2361 struct mvneta_tx_desc
*tx_desc
;
2362 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
2364 for (i
= 0; i
< nr_frags
; i
++) {
2365 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2366 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
2368 tx_desc
= mvneta_txq_next_desc_get(txq
);
2369 tx_desc
->data_size
= frag
->size
;
2371 tx_desc
->buf_phys_addr
=
2372 dma_map_single(pp
->dev
->dev
.parent
, addr
,
2373 tx_desc
->data_size
, DMA_TO_DEVICE
);
2375 if (dma_mapping_error(pp
->dev
->dev
.parent
,
2376 tx_desc
->buf_phys_addr
)) {
2377 mvneta_txq_desc_put(txq
);
2381 if (i
== nr_frags
- 1) {
2382 /* Last descriptor */
2383 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
2384 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2386 /* Descriptor in the middle: Not First, Not Last */
2387 tx_desc
->command
= 0;
2388 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2390 mvneta_txq_inc_put(txq
);
2396 /* Release all descriptors that were used to map fragments of
2397 * this packet, as well as the corresponding DMA mappings
2399 for (i
= i
- 1; i
>= 0; i
--) {
2400 tx_desc
= txq
->descs
+ i
;
2401 dma_unmap_single(pp
->dev
->dev
.parent
,
2402 tx_desc
->buf_phys_addr
,
2405 mvneta_txq_desc_put(txq
);
2411 /* Main tx processing */
2412 static netdev_tx_t
mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2414 struct mvneta_port
*pp
= netdev_priv(dev
);
2415 u16 txq_id
= skb_get_queue_mapping(skb
);
2416 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
2417 struct mvneta_tx_desc
*tx_desc
;
2422 if (!netif_running(dev
))
2425 if (skb_is_gso(skb
)) {
2426 frags
= mvneta_tx_tso(skb
, dev
, txq
);
2430 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2432 /* Get a descriptor for the first part of the packet */
2433 tx_desc
= mvneta_txq_next_desc_get(txq
);
2435 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
2437 tx_desc
->data_size
= skb_headlen(skb
);
2439 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
2442 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
2443 tx_desc
->buf_phys_addr
))) {
2444 mvneta_txq_desc_put(txq
);
2450 /* First and Last descriptor */
2451 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
2452 tx_desc
->command
= tx_cmd
;
2453 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
2454 mvneta_txq_inc_put(txq
);
2456 /* First but not Last */
2457 tx_cmd
|= MVNETA_TXD_F_DESC
;
2458 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
2459 mvneta_txq_inc_put(txq
);
2460 tx_desc
->command
= tx_cmd
;
2461 /* Continue with other skb fragments */
2462 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
2463 dma_unmap_single(dev
->dev
.parent
,
2464 tx_desc
->buf_phys_addr
,
2467 mvneta_txq_desc_put(txq
);
2475 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
2476 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
2478 netdev_tx_sent_queue(nq
, len
);
2480 txq
->count
+= frags
;
2481 if (txq
->count
>= txq
->tx_stop_threshold
)
2482 netif_tx_stop_queue(nq
);
2484 if (!skb
->xmit_more
|| netif_xmit_stopped(nq
) ||
2485 txq
->pending
+ frags
> MVNETA_TXQ_DEC_SENT_MASK
)
2486 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
2488 txq
->pending
+= frags
;
2490 u64_stats_update_begin(&stats
->syncp
);
2491 stats
->tx_packets
++;
2492 stats
->tx_bytes
+= len
;
2493 u64_stats_update_end(&stats
->syncp
);
2495 dev
->stats
.tx_dropped
++;
2496 dev_kfree_skb_any(skb
);
2499 return NETDEV_TX_OK
;
2503 /* Free tx resources, when resetting a port */
2504 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
2505 struct mvneta_tx_queue
*txq
)
2508 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2509 int tx_done
= txq
->count
;
2511 mvneta_txq_bufs_free(pp
, txq
, tx_done
, nq
);
2515 txq
->txq_put_index
= 0;
2516 txq
->txq_get_index
= 0;
2519 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2520 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2522 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
2524 struct mvneta_tx_queue
*txq
;
2525 struct netdev_queue
*nq
;
2527 while (cause_tx_done
) {
2528 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
2530 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
2531 __netif_tx_lock(nq
, smp_processor_id());
2534 mvneta_txq_done(pp
, txq
);
2536 __netif_tx_unlock(nq
);
2537 cause_tx_done
&= ~((1 << txq
->id
));
2541 /* Compute crc8 of the specified address, using a unique algorithm ,
2542 * according to hw spec, different than generic crc8 algorithm
2544 static int mvneta_addr_crc(unsigned char *addr
)
2549 for (i
= 0; i
< ETH_ALEN
; i
++) {
2552 crc
= (crc
^ addr
[i
]) << 8;
2553 for (j
= 7; j
>= 0; j
--) {
2554 if (crc
& (0x100 << j
))
2562 /* This method controls the net device special MAC multicast support.
2563 * The Special Multicast Table for MAC addresses supports MAC of the form
2564 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2565 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2566 * Table entries in the DA-Filter table. This method set the Special
2567 * Multicast Table appropriate entry.
2569 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
2570 unsigned char last_byte
,
2573 unsigned int smc_table_reg
;
2574 unsigned int tbl_offset
;
2575 unsigned int reg_offset
;
2577 /* Register offset from SMC table base */
2578 tbl_offset
= (last_byte
/ 4);
2579 /* Entry offset within the above reg */
2580 reg_offset
= last_byte
% 4;
2582 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
2586 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2588 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
2589 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2592 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
2596 /* This method controls the network device Other MAC multicast support.
2597 * The Other Multicast Table is used for multicast of another type.
2598 * A CRC-8 is used as an index to the Other Multicast Table entries
2599 * in the DA-Filter table.
2600 * The method gets the CRC-8 value from the calling routine and
2601 * sets the Other Multicast Table appropriate entry according to the
2604 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
2608 unsigned int omc_table_reg
;
2609 unsigned int tbl_offset
;
2610 unsigned int reg_offset
;
2612 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
2613 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
2615 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
2618 /* Clear accepts frame bit at specified Other DA table entry */
2619 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2621 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
2622 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
2625 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
2628 /* The network device supports multicast using two tables:
2629 * 1) Special Multicast Table for MAC addresses of the form
2630 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2631 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2632 * Table entries in the DA-Filter table.
2633 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2634 * is used as an index to the Other Multicast Table entries in the
2637 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
2640 unsigned char crc_result
= 0;
2642 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
2643 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
2647 crc_result
= mvneta_addr_crc(p_addr
);
2649 if (pp
->mcast_count
[crc_result
] == 0) {
2650 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
2655 pp
->mcast_count
[crc_result
]--;
2656 if (pp
->mcast_count
[crc_result
] != 0) {
2657 netdev_info(pp
->dev
,
2658 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2659 pp
->mcast_count
[crc_result
], crc_result
);
2663 pp
->mcast_count
[crc_result
]++;
2665 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
2670 /* Configure Fitering mode of Ethernet port */
2671 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
2674 u32 port_cfg_reg
, val
;
2676 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
2678 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
2680 /* Set / Clear UPM bit in port configuration register */
2682 /* Accept all Unicast addresses */
2683 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
2684 val
|= MVNETA_FORCE_UNI
;
2685 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
2686 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
2688 /* Reject all Unicast addresses */
2689 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
2690 val
&= ~MVNETA_FORCE_UNI
;
2693 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
2694 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
2697 /* register unicast and multicast addresses */
2698 static void mvneta_set_rx_mode(struct net_device
*dev
)
2700 struct mvneta_port
*pp
= netdev_priv(dev
);
2701 struct netdev_hw_addr
*ha
;
2703 if (dev
->flags
& IFF_PROMISC
) {
2704 /* Accept all: Multicast + Unicast */
2705 mvneta_rx_unicast_promisc_set(pp
, 1);
2706 mvneta_set_ucast_table(pp
, pp
->rxq_def
);
2707 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2708 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2710 /* Accept single Unicast */
2711 mvneta_rx_unicast_promisc_set(pp
, 0);
2712 mvneta_set_ucast_table(pp
, -1);
2713 mvneta_mac_addr_set(pp
, dev
->dev_addr
, pp
->rxq_def
);
2715 if (dev
->flags
& IFF_ALLMULTI
) {
2716 /* Accept all multicast */
2717 mvneta_set_special_mcast_table(pp
, pp
->rxq_def
);
2718 mvneta_set_other_mcast_table(pp
, pp
->rxq_def
);
2720 /* Accept only initialized multicast */
2721 mvneta_set_special_mcast_table(pp
, -1);
2722 mvneta_set_other_mcast_table(pp
, -1);
2724 if (!netdev_mc_empty(dev
)) {
2725 netdev_for_each_mc_addr(ha
, dev
) {
2726 mvneta_mcast_addr_set(pp
, ha
->addr
,
2734 /* Interrupt handling - the callback for request_irq() */
2735 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2737 struct mvneta_port
*pp
= (struct mvneta_port
*)dev_id
;
2739 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2740 napi_schedule(&pp
->napi
);
2745 /* Interrupt handling - the callback for request_percpu_irq() */
2746 static irqreturn_t
mvneta_percpu_isr(int irq
, void *dev_id
)
2748 struct mvneta_pcpu_port
*port
= (struct mvneta_pcpu_port
*)dev_id
;
2750 disable_percpu_irq(port
->pp
->dev
->irq
);
2751 napi_schedule(&port
->napi
);
2756 static void mvneta_link_change(struct mvneta_port
*pp
)
2758 u32 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
2760 phylink_mac_change(pp
->phylink
, !!(gmac_stat
& MVNETA_GMAC_LINK_UP
));
2764 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2765 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2766 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2767 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2768 * Each CPU has its own causeRxTx register
2770 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2775 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2776 struct mvneta_pcpu_port
*port
= this_cpu_ptr(pp
->ports
);
2778 if (!netif_running(pp
->dev
)) {
2779 napi_complete(napi
);
2783 /* Read cause register */
2784 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
);
2785 if (cause_rx_tx
& MVNETA_MISCINTR_INTR_MASK
) {
2786 u32 cause_misc
= mvreg_read(pp
, MVNETA_INTR_MISC_CAUSE
);
2788 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2790 if (cause_misc
& (MVNETA_CAUSE_PHY_STATUS_CHANGE
|
2791 MVNETA_CAUSE_LINK_CHANGE
))
2792 mvneta_link_change(pp
);
2795 /* Release Tx descriptors */
2796 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2797 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2798 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2801 /* For the case where the last mvneta_poll did not process all
2804 cause_rx_tx
|= pp
->neta_armada3700
? pp
->cause_rx_tx
:
2807 rx_queue
= fls(((cause_rx_tx
>> 8) & 0xff));
2809 rx_queue
= rx_queue
- 1;
2811 rx_done
= mvneta_rx_hwbm(napi
, pp
, budget
,
2812 &pp
->rxqs
[rx_queue
]);
2814 rx_done
= mvneta_rx_swbm(napi
, pp
, budget
,
2815 &pp
->rxqs
[rx_queue
]);
2818 if (rx_done
< budget
) {
2820 napi_complete_done(napi
, rx_done
);
2822 if (pp
->neta_armada3700
) {
2823 unsigned long flags
;
2825 local_irq_save(flags
);
2826 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2827 MVNETA_RX_INTR_MASK(rxq_number
) |
2828 MVNETA_TX_INTR_MASK(txq_number
) |
2829 MVNETA_MISCINTR_INTR_MASK
);
2830 local_irq_restore(flags
);
2832 enable_percpu_irq(pp
->dev
->irq
, 0);
2836 if (pp
->neta_armada3700
)
2837 pp
->cause_rx_tx
= cause_rx_tx
;
2839 port
->cause_rx_tx
= cause_rx_tx
;
2844 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2845 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2850 for (i
= 0; i
< num
; i
++) {
2851 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2852 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
, rxq
,
2855 "%s:rxq %d, %d of %d buffs filled\n",
2856 __func__
, rxq
->id
, i
, num
);
2861 /* Add this number of RX descriptors as non occupied (ready to
2864 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2869 /* Free all packets pending transmit from all TXQs and reset TX port */
2870 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2874 /* free the skb's in the tx ring */
2875 for (queue
= 0; queue
< txq_number
; queue
++)
2876 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2878 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2879 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2882 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2884 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2885 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2888 /* Rx/Tx queue initialization/cleanup methods */
2890 static int mvneta_rxq_sw_init(struct mvneta_port
*pp
,
2891 struct mvneta_rx_queue
*rxq
)
2893 rxq
->size
= pp
->rx_ring_size
;
2895 /* Allocate memory for RX descriptors */
2896 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2897 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2898 &rxq
->descs_phys
, GFP_KERNEL
);
2902 rxq
->last_desc
= rxq
->size
- 1;
2907 static void mvneta_rxq_hw_init(struct mvneta_port
*pp
,
2908 struct mvneta_rx_queue
*rxq
)
2910 /* Set Rx descriptors queue starting address */
2911 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2912 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2914 /* Set coalescing pkts and time */
2915 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2916 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2920 mvneta_rxq_offset_set(pp
, rxq
, 0);
2921 mvneta_rxq_buf_size_set(pp
, rxq
, PAGE_SIZE
< SZ_64K
?
2923 MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2924 mvneta_rxq_bm_disable(pp
, rxq
);
2925 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2928 mvneta_rxq_offset_set(pp
, rxq
,
2929 NET_SKB_PAD
- pp
->rx_offset_correction
);
2931 mvneta_rxq_bm_enable(pp
, rxq
);
2932 /* Fill RXQ with buffers from RX pool */
2933 mvneta_rxq_long_pool_set(pp
, rxq
);
2934 mvneta_rxq_short_pool_set(pp
, rxq
);
2935 mvneta_rxq_non_occup_desc_add(pp
, rxq
, rxq
->size
);
2939 /* Create a specified RX queue */
2940 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2941 struct mvneta_rx_queue
*rxq
)
2946 ret
= mvneta_rxq_sw_init(pp
, rxq
);
2950 mvneta_rxq_hw_init(pp
, rxq
);
2955 /* Cleanup Rx queue */
2956 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2957 struct mvneta_rx_queue
*rxq
)
2959 mvneta_rxq_drop_pkts(pp
, rxq
);
2962 dev_kfree_skb_any(rxq
->skb
);
2965 dma_free_coherent(pp
->dev
->dev
.parent
,
2966 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2972 rxq
->next_desc_to_proc
= 0;
2973 rxq
->descs_phys
= 0;
2974 rxq
->first_to_refill
= 0;
2975 rxq
->refill_num
= 0;
2980 static int mvneta_txq_sw_init(struct mvneta_port
*pp
,
2981 struct mvneta_tx_queue
*txq
)
2985 txq
->size
= pp
->tx_ring_size
;
2987 /* A queue must always have room for at least one skb.
2988 * Therefore, stop the queue when the free entries reaches
2989 * the maximum number of descriptors per skb.
2991 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2992 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2994 /* Allocate memory for TX descriptors */
2995 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2996 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2997 &txq
->descs_phys
, GFP_KERNEL
);
3001 txq
->last_desc
= txq
->size
- 1;
3003 txq
->tx_skb
= kmalloc_array(txq
->size
, sizeof(*txq
->tx_skb
),
3006 dma_free_coherent(pp
->dev
->dev
.parent
,
3007 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
3008 txq
->descs
, txq
->descs_phys
);
3012 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3013 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
3014 txq
->size
* TSO_HEADER_SIZE
,
3015 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
3016 if (!txq
->tso_hdrs
) {
3018 dma_free_coherent(pp
->dev
->dev
.parent
,
3019 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
3020 txq
->descs
, txq
->descs_phys
);
3024 /* Setup XPS mapping */
3026 cpu
= txq
->id
% num_present_cpus();
3028 cpu
= pp
->rxq_def
% num_present_cpus();
3029 cpumask_set_cpu(cpu
, &txq
->affinity_mask
);
3030 netif_set_xps_queue(pp
->dev
, &txq
->affinity_mask
, txq
->id
);
3035 static void mvneta_txq_hw_init(struct mvneta_port
*pp
,
3036 struct mvneta_tx_queue
*txq
)
3038 /* Set maximum bandwidth for enabled TXQs */
3039 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
3040 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
3042 /* Set Tx descriptors queue starting address */
3043 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
3044 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
3046 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3049 /* Create and initialize a tx queue */
3050 static int mvneta_txq_init(struct mvneta_port
*pp
,
3051 struct mvneta_tx_queue
*txq
)
3055 ret
= mvneta_txq_sw_init(pp
, txq
);
3059 mvneta_txq_hw_init(pp
, txq
);
3064 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3065 static void mvneta_txq_sw_deinit(struct mvneta_port
*pp
,
3066 struct mvneta_tx_queue
*txq
)
3068 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
3073 dma_free_coherent(pp
->dev
->dev
.parent
,
3074 txq
->size
* TSO_HEADER_SIZE
,
3075 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
3077 dma_free_coherent(pp
->dev
->dev
.parent
,
3078 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
3079 txq
->descs
, txq
->descs_phys
);
3081 netdev_tx_reset_queue(nq
);
3085 txq
->next_desc_to_proc
= 0;
3086 txq
->descs_phys
= 0;
3089 static void mvneta_txq_hw_deinit(struct mvneta_port
*pp
,
3090 struct mvneta_tx_queue
*txq
)
3092 /* Set minimum bandwidth for disabled TXQs */
3093 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
3094 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
3096 /* Set Tx descriptors queue starting address and size */
3097 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
3098 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
3101 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
3102 struct mvneta_tx_queue
*txq
)
3104 mvneta_txq_sw_deinit(pp
, txq
);
3105 mvneta_txq_hw_deinit(pp
, txq
);
3108 /* Cleanup all Tx queues */
3109 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
3113 for (queue
= 0; queue
< txq_number
; queue
++)
3114 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
3117 /* Cleanup all Rx queues */
3118 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
3122 for (queue
= 0; queue
< rxq_number
; queue
++)
3123 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
3127 /* Init all Rx queues */
3128 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
3132 for (queue
= 0; queue
< rxq_number
; queue
++) {
3133 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
3136 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
3138 mvneta_cleanup_rxqs(pp
);
3146 /* Init all tx queues */
3147 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
3151 for (queue
= 0; queue
< txq_number
; queue
++) {
3152 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
3154 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
3156 mvneta_cleanup_txqs(pp
);
3164 static void mvneta_start_dev(struct mvneta_port
*pp
)
3168 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
3169 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
3171 /* start the Rx/Tx activity */
3172 mvneta_port_enable(pp
);
3174 if (!pp
->neta_armada3700
) {
3175 /* Enable polling on the port */
3176 for_each_online_cpu(cpu
) {
3177 struct mvneta_pcpu_port
*port
=
3178 per_cpu_ptr(pp
->ports
, cpu
);
3180 napi_enable(&port
->napi
);
3183 napi_enable(&pp
->napi
);
3186 /* Unmask interrupts. It has to be done from each CPU */
3187 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3189 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3190 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3191 MVNETA_CAUSE_LINK_CHANGE
);
3193 phylink_start(pp
->phylink
);
3194 netif_tx_start_all_queues(pp
->dev
);
3197 static void mvneta_stop_dev(struct mvneta_port
*pp
)
3201 phylink_stop(pp
->phylink
);
3203 if (!pp
->neta_armada3700
) {
3204 for_each_online_cpu(cpu
) {
3205 struct mvneta_pcpu_port
*port
=
3206 per_cpu_ptr(pp
->ports
, cpu
);
3208 napi_disable(&port
->napi
);
3211 napi_disable(&pp
->napi
);
3214 netif_carrier_off(pp
->dev
);
3216 mvneta_port_down(pp
);
3217 netif_tx_stop_all_queues(pp
->dev
);
3219 /* Stop the port activity */
3220 mvneta_port_disable(pp
);
3222 /* Clear all ethernet port interrupts */
3223 on_each_cpu(mvneta_percpu_clear_intr_cause
, pp
, true);
3225 /* Mask all ethernet port interrupts */
3226 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3228 mvneta_tx_reset(pp
);
3229 mvneta_rx_reset(pp
);
3232 static void mvneta_percpu_enable(void *arg
)
3234 struct mvneta_port
*pp
= arg
;
3236 enable_percpu_irq(pp
->dev
->irq
, IRQ_TYPE_NONE
);
3239 static void mvneta_percpu_disable(void *arg
)
3241 struct mvneta_port
*pp
= arg
;
3243 disable_percpu_irq(pp
->dev
->irq
);
3246 /* Change the device mtu */
3247 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
3249 struct mvneta_port
*pp
= netdev_priv(dev
);
3252 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
3253 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
3254 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
3255 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
3260 if (!netif_running(dev
)) {
3262 mvneta_bm_update_mtu(pp
, mtu
);
3264 netdev_update_features(dev
);
3268 /* The interface is running, so we have to force a
3269 * reallocation of the queues
3271 mvneta_stop_dev(pp
);
3272 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3274 mvneta_cleanup_txqs(pp
);
3275 mvneta_cleanup_rxqs(pp
);
3278 mvneta_bm_update_mtu(pp
, mtu
);
3280 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
3282 ret
= mvneta_setup_rxqs(pp
);
3284 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
3288 ret
= mvneta_setup_txqs(pp
);
3290 netdev_err(dev
, "unable to setup txqs after MTU change\n");
3294 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3295 mvneta_start_dev(pp
);
3297 netdev_update_features(dev
);
3302 static netdev_features_t
mvneta_fix_features(struct net_device
*dev
,
3303 netdev_features_t features
)
3305 struct mvneta_port
*pp
= netdev_priv(dev
);
3307 if (pp
->tx_csum_limit
&& dev
->mtu
> pp
->tx_csum_limit
) {
3308 features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_TSO
);
3310 "Disable IP checksum for MTU greater than %dB\n",
3317 /* Get mac address */
3318 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
3320 u32 mac_addr_l
, mac_addr_h
;
3322 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
3323 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
3324 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
3325 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
3326 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
3327 addr
[3] = mac_addr_h
& 0xFF;
3328 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
3329 addr
[5] = mac_addr_l
& 0xFF;
3332 /* Handle setting mac address */
3333 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
3335 struct mvneta_port
*pp
= netdev_priv(dev
);
3336 struct sockaddr
*sockaddr
= addr
;
3339 ret
= eth_prepare_mac_addr_change(dev
, addr
);
3342 /* Remove previous address table entry */
3343 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
3345 /* Set new addr in hw */
3346 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, pp
->rxq_def
);
3348 eth_commit_mac_addr_change(dev
, addr
);
3352 static void mvneta_validate(struct net_device
*ndev
, unsigned long *supported
,
3353 struct phylink_link_state
*state
)
3355 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask
) = { 0, };
3357 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3358 if (state
->interface
!= PHY_INTERFACE_MODE_NA
&&
3359 state
->interface
!= PHY_INTERFACE_MODE_QSGMII
&&
3360 state
->interface
!= PHY_INTERFACE_MODE_SGMII
&&
3361 !phy_interface_mode_is_8023z(state
->interface
) &&
3362 !phy_interface_mode_is_rgmii(state
->interface
)) {
3363 bitmap_zero(supported
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
3367 /* Allow all the expected bits */
3368 phylink_set(mask
, Autoneg
);
3369 phylink_set_port_modes(mask
);
3371 /* Asymmetric pause is unsupported */
3372 phylink_set(mask
, Pause
);
3373 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3374 phylink_set(mask
, 1000baseT_Full
);
3375 phylink_set(mask
, 1000baseX_Full
);
3377 if (!phy_interface_mode_is_8023z(state
->interface
)) {
3378 /* 10M and 100M are only supported in non-802.3z mode */
3379 phylink_set(mask
, 10baseT_Half
);
3380 phylink_set(mask
, 10baseT_Full
);
3381 phylink_set(mask
, 100baseT_Half
);
3382 phylink_set(mask
, 100baseT_Full
);
3385 bitmap_and(supported
, supported
, mask
,
3386 __ETHTOOL_LINK_MODE_MASK_NBITS
);
3387 bitmap_and(state
->advertising
, state
->advertising
, mask
,
3388 __ETHTOOL_LINK_MODE_MASK_NBITS
);
3391 static int mvneta_mac_link_state(struct net_device
*ndev
,
3392 struct phylink_link_state
*state
)
3394 struct mvneta_port
*pp
= netdev_priv(ndev
);
3397 gmac_stat
= mvreg_read(pp
, MVNETA_GMAC_STATUS
);
3399 if (gmac_stat
& MVNETA_GMAC_SPEED_1000
)
3400 state
->speed
= SPEED_1000
;
3401 else if (gmac_stat
& MVNETA_GMAC_SPEED_100
)
3402 state
->speed
= SPEED_100
;
3404 state
->speed
= SPEED_10
;
3406 state
->an_complete
= !!(gmac_stat
& MVNETA_GMAC_AN_COMPLETE
);
3407 state
->link
= !!(gmac_stat
& MVNETA_GMAC_LINK_UP
);
3408 state
->duplex
= !!(gmac_stat
& MVNETA_GMAC_FULL_DUPLEX
);
3411 if (gmac_stat
& MVNETA_GMAC_RX_FLOW_CTRL_ENABLE
)
3412 state
->pause
|= MLO_PAUSE_RX
;
3413 if (gmac_stat
& MVNETA_GMAC_TX_FLOW_CTRL_ENABLE
)
3414 state
->pause
|= MLO_PAUSE_TX
;
3419 static void mvneta_mac_an_restart(struct net_device
*ndev
)
3421 struct mvneta_port
*pp
= netdev_priv(ndev
);
3422 u32 gmac_an
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3424 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3425 gmac_an
| MVNETA_GMAC_INBAND_RESTART_AN
);
3426 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3427 gmac_an
& ~MVNETA_GMAC_INBAND_RESTART_AN
);
3430 static void mvneta_mac_config(struct net_device
*ndev
, unsigned int mode
,
3431 const struct phylink_link_state
*state
)
3433 struct mvneta_port
*pp
= netdev_priv(ndev
);
3434 u32 new_ctrl0
, gmac_ctrl0
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
3435 u32 new_ctrl2
, gmac_ctrl2
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
3436 u32 new_clk
, gmac_clk
= mvreg_read(pp
, MVNETA_GMAC_CLOCK_DIVIDER
);
3437 u32 new_an
, gmac_an
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3439 new_ctrl0
= gmac_ctrl0
& ~MVNETA_GMAC0_PORT_1000BASE_X
;
3440 new_ctrl2
= gmac_ctrl2
& ~(MVNETA_GMAC2_INBAND_AN_ENABLE
|
3441 MVNETA_GMAC2_PORT_RESET
);
3442 new_clk
= gmac_clk
& ~MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3443 new_an
= gmac_an
& ~(MVNETA_GMAC_INBAND_AN_ENABLE
|
3444 MVNETA_GMAC_INBAND_RESTART_AN
|
3445 MVNETA_GMAC_CONFIG_MII_SPEED
|
3446 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3447 MVNETA_GMAC_AN_SPEED_EN
|
3448 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL
|
3449 MVNETA_GMAC_CONFIG_FLOW_CTRL
|
3450 MVNETA_GMAC_AN_FLOW_CTRL_EN
|
3451 MVNETA_GMAC_CONFIG_FULL_DUPLEX
|
3452 MVNETA_GMAC_AN_DUPLEX_EN
);
3454 /* Even though it might look weird, when we're configured in
3455 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3457 new_ctrl2
|= MVNETA_GMAC2_PORT_RGMII
;
3459 if (state
->interface
== PHY_INTERFACE_MODE_QSGMII
||
3460 state
->interface
== PHY_INTERFACE_MODE_SGMII
||
3461 phy_interface_mode_is_8023z(state
->interface
))
3462 new_ctrl2
|= MVNETA_GMAC2_PCS_ENABLE
;
3464 if (phylink_test(state
->advertising
, Pause
))
3465 new_an
|= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL
;
3466 if (state
->pause
& MLO_PAUSE_TXRX_MASK
)
3467 new_an
|= MVNETA_GMAC_CONFIG_FLOW_CTRL
;
3469 if (!phylink_autoneg_inband(mode
)) {
3470 /* Phy or fixed speed */
3472 new_an
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3474 if (state
->speed
== SPEED_1000
)
3475 new_an
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
3476 else if (state
->speed
== SPEED_100
)
3477 new_an
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
3478 } else if (state
->interface
== PHY_INTERFACE_MODE_SGMII
) {
3479 /* SGMII mode receives the state from the PHY */
3480 new_ctrl2
|= MVNETA_GMAC2_INBAND_AN_ENABLE
;
3481 new_clk
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3482 new_an
= (new_an
& ~(MVNETA_GMAC_FORCE_LINK_DOWN
|
3483 MVNETA_GMAC_FORCE_LINK_PASS
)) |
3484 MVNETA_GMAC_INBAND_AN_ENABLE
|
3485 MVNETA_GMAC_AN_SPEED_EN
|
3486 MVNETA_GMAC_AN_DUPLEX_EN
;
3488 /* 802.3z negotiation - only 1000base-X */
3489 new_ctrl0
|= MVNETA_GMAC0_PORT_1000BASE_X
;
3490 new_clk
|= MVNETA_GMAC_1MS_CLOCK_ENABLE
;
3491 new_an
= (new_an
& ~(MVNETA_GMAC_FORCE_LINK_DOWN
|
3492 MVNETA_GMAC_FORCE_LINK_PASS
)) |
3493 MVNETA_GMAC_INBAND_AN_ENABLE
|
3494 MVNETA_GMAC_CONFIG_GMII_SPEED
|
3495 /* The MAC only supports FD mode */
3496 MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
3498 if (state
->pause
& MLO_PAUSE_AN
&& state
->an_enabled
)
3499 new_an
|= MVNETA_GMAC_AN_FLOW_CTRL_EN
;
3502 /* Armada 370 documentation says we can only change the port mode
3503 * and in-band enable when the link is down, so force it down
3504 * while making these changes. We also do this for GMAC_CTRL2 */
3505 if ((new_ctrl0
^ gmac_ctrl0
) & MVNETA_GMAC0_PORT_1000BASE_X
||
3506 (new_ctrl2
^ gmac_ctrl2
) & MVNETA_GMAC2_INBAND_AN_ENABLE
||
3507 (new_an
^ gmac_an
) & MVNETA_GMAC_INBAND_AN_ENABLE
) {
3508 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
,
3509 (gmac_an
& ~MVNETA_GMAC_FORCE_LINK_PASS
) |
3510 MVNETA_GMAC_FORCE_LINK_DOWN
);
3513 if (new_ctrl0
!= gmac_ctrl0
)
3514 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, new_ctrl0
);
3515 if (new_ctrl2
!= gmac_ctrl2
)
3516 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, new_ctrl2
);
3517 if (new_clk
!= gmac_clk
)
3518 mvreg_write(pp
, MVNETA_GMAC_CLOCK_DIVIDER
, new_clk
);
3519 if (new_an
!= gmac_an
)
3520 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, new_an
);
3522 if (gmac_ctrl2
& MVNETA_GMAC2_PORT_RESET
) {
3523 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
3524 MVNETA_GMAC2_PORT_RESET
) != 0)
3529 static void mvneta_set_eee(struct mvneta_port
*pp
, bool enable
)
3533 lpi_ctl1
= mvreg_read(pp
, MVNETA_LPI_CTRL_1
);
3535 lpi_ctl1
|= MVNETA_LPI_REQUEST_ENABLE
;
3537 lpi_ctl1
&= ~MVNETA_LPI_REQUEST_ENABLE
;
3538 mvreg_write(pp
, MVNETA_LPI_CTRL_1
, lpi_ctl1
);
3541 static void mvneta_mac_link_down(struct net_device
*ndev
, unsigned int mode
,
3542 phy_interface_t interface
)
3544 struct mvneta_port
*pp
= netdev_priv(ndev
);
3547 mvneta_port_down(pp
);
3549 if (!phylink_autoneg_inband(mode
)) {
3550 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3551 val
&= ~MVNETA_GMAC_FORCE_LINK_PASS
;
3552 val
|= MVNETA_GMAC_FORCE_LINK_DOWN
;
3553 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3556 pp
->eee_active
= false;
3557 mvneta_set_eee(pp
, false);
3560 static void mvneta_mac_link_up(struct net_device
*ndev
, unsigned int mode
,
3561 phy_interface_t interface
,
3562 struct phy_device
*phy
)
3564 struct mvneta_port
*pp
= netdev_priv(ndev
);
3567 if (!phylink_autoneg_inband(mode
)) {
3568 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
3569 val
&= ~MVNETA_GMAC_FORCE_LINK_DOWN
;
3570 val
|= MVNETA_GMAC_FORCE_LINK_PASS
;
3571 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
3576 if (phy
&& pp
->eee_enabled
) {
3577 pp
->eee_active
= phy_init_eee(phy
, 0) >= 0;
3578 mvneta_set_eee(pp
, pp
->eee_active
&& pp
->tx_lpi_enabled
);
3582 static const struct phylink_mac_ops mvneta_phylink_ops
= {
3583 .validate
= mvneta_validate
,
3584 .mac_link_state
= mvneta_mac_link_state
,
3585 .mac_an_restart
= mvneta_mac_an_restart
,
3586 .mac_config
= mvneta_mac_config
,
3587 .mac_link_down
= mvneta_mac_link_down
,
3588 .mac_link_up
= mvneta_mac_link_up
,
3591 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
3593 struct ethtool_wolinfo wol
= { .cmd
= ETHTOOL_GWOL
};
3594 int err
= phylink_of_phy_connect(pp
->phylink
, pp
->dn
, 0);
3597 netdev_err(pp
->dev
, "could not attach PHY: %d\n", err
);
3599 phylink_ethtool_get_wol(pp
->phylink
, &wol
);
3600 device_set_wakeup_capable(&pp
->dev
->dev
, !!wol
.supported
);
3605 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
3607 phylink_disconnect_phy(pp
->phylink
);
3610 /* Electing a CPU must be done in an atomic way: it should be done
3611 * after or before the removal/insertion of a CPU and this function is
3614 static void mvneta_percpu_elect(struct mvneta_port
*pp
)
3616 int elected_cpu
= 0, max_cpu
, cpu
, i
= 0;
3618 /* Use the cpu associated to the rxq when it is online, in all
3619 * the other cases, use the cpu 0 which can't be offline.
3621 if (cpu_online(pp
->rxq_def
))
3622 elected_cpu
= pp
->rxq_def
;
3624 max_cpu
= num_present_cpus();
3626 for_each_online_cpu(cpu
) {
3627 int rxq_map
= 0, txq_map
= 0;
3630 for (rxq
= 0; rxq
< rxq_number
; rxq
++)
3631 if ((rxq
% max_cpu
) == cpu
)
3632 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(rxq
);
3634 if (cpu
== elected_cpu
)
3635 /* Map the default receive queue queue to the
3638 rxq_map
|= MVNETA_CPU_RXQ_ACCESS(pp
->rxq_def
);
3640 /* We update the TX queue map only if we have one
3641 * queue. In this case we associate the TX queue to
3642 * the CPU bound to the default RX queue
3644 if (txq_number
== 1)
3645 txq_map
= (cpu
== elected_cpu
) ?
3646 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3648 txq_map
= mvreg_read(pp
, MVNETA_CPU_MAP(cpu
)) &
3649 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
;
3651 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
), rxq_map
| txq_map
);
3653 /* Update the interrupt mask on each CPU according the
3656 smp_call_function_single(cpu
, mvneta_percpu_unmask_interrupt
,
3663 static int mvneta_cpu_online(unsigned int cpu
, struct hlist_node
*node
)
3666 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3668 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3671 spin_lock(&pp
->lock
);
3673 * Configuring the driver for a new CPU while the driver is
3674 * stopping is racy, so just avoid it.
3676 if (pp
->is_stopped
) {
3677 spin_unlock(&pp
->lock
);
3680 netif_tx_stop_all_queues(pp
->dev
);
3683 * We have to synchronise on tha napi of each CPU except the one
3684 * just being woken up
3686 for_each_online_cpu(other_cpu
) {
3687 if (other_cpu
!= cpu
) {
3688 struct mvneta_pcpu_port
*other_port
=
3689 per_cpu_ptr(pp
->ports
, other_cpu
);
3691 napi_synchronize(&other_port
->napi
);
3695 /* Mask all ethernet port interrupts */
3696 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3697 napi_enable(&port
->napi
);
3700 * Enable per-CPU interrupts on the CPU that is
3703 mvneta_percpu_enable(pp
);
3706 * Enable per-CPU interrupt on the one CPU we care
3709 mvneta_percpu_elect(pp
);
3711 /* Unmask all ethernet port interrupts */
3712 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3713 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3714 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3715 MVNETA_CAUSE_LINK_CHANGE
);
3716 netif_tx_start_all_queues(pp
->dev
);
3717 spin_unlock(&pp
->lock
);
3721 static int mvneta_cpu_down_prepare(unsigned int cpu
, struct hlist_node
*node
)
3723 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3725 struct mvneta_pcpu_port
*port
= per_cpu_ptr(pp
->ports
, cpu
);
3728 * Thanks to this lock we are sure that any pending cpu election is
3731 spin_lock(&pp
->lock
);
3732 /* Mask all ethernet port interrupts */
3733 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
3734 spin_unlock(&pp
->lock
);
3736 napi_synchronize(&port
->napi
);
3737 napi_disable(&port
->napi
);
3738 /* Disable per-CPU interrupts on the CPU that is brought down. */
3739 mvneta_percpu_disable(pp
);
3743 static int mvneta_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
3745 struct mvneta_port
*pp
= hlist_entry_safe(node
, struct mvneta_port
,
3748 /* Check if a new CPU must be elected now this on is down */
3749 spin_lock(&pp
->lock
);
3750 mvneta_percpu_elect(pp
);
3751 spin_unlock(&pp
->lock
);
3752 /* Unmask all ethernet port interrupts */
3753 on_each_cpu(mvneta_percpu_unmask_interrupt
, pp
, true);
3754 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
,
3755 MVNETA_CAUSE_PHY_STATUS_CHANGE
|
3756 MVNETA_CAUSE_LINK_CHANGE
);
3757 netif_tx_start_all_queues(pp
->dev
);
3761 static int mvneta_open(struct net_device
*dev
)
3763 struct mvneta_port
*pp
= netdev_priv(dev
);
3766 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
3768 ret
= mvneta_setup_rxqs(pp
);
3772 ret
= mvneta_setup_txqs(pp
);
3774 goto err_cleanup_rxqs
;
3776 /* Connect to port interrupt line */
3777 if (pp
->neta_armada3700
)
3778 ret
= request_irq(pp
->dev
->irq
, mvneta_isr
, 0,
3781 ret
= request_percpu_irq(pp
->dev
->irq
, mvneta_percpu_isr
,
3782 dev
->name
, pp
->ports
);
3784 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
3785 goto err_cleanup_txqs
;
3788 if (!pp
->neta_armada3700
) {
3789 /* Enable per-CPU interrupt on all the CPU to handle our RX
3792 on_each_cpu(mvneta_percpu_enable
, pp
, true);
3794 pp
->is_stopped
= false;
3795 /* Register a CPU notifier to handle the case where our CPU
3796 * might be taken offline.
3798 ret
= cpuhp_state_add_instance_nocalls(online_hpstate
,
3803 ret
= cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3806 goto err_free_online_hp
;
3809 /* In default link is down */
3810 netif_carrier_off(pp
->dev
);
3812 ret
= mvneta_mdio_probe(pp
);
3814 netdev_err(dev
, "cannot probe MDIO bus\n");
3815 goto err_free_dead_hp
;
3818 mvneta_start_dev(pp
);
3823 if (!pp
->neta_armada3700
)
3824 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3827 if (!pp
->neta_armada3700
)
3828 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3831 if (pp
->neta_armada3700
) {
3832 free_irq(pp
->dev
->irq
, pp
);
3834 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3835 free_percpu_irq(pp
->dev
->irq
, pp
->ports
);
3838 mvneta_cleanup_txqs(pp
);
3840 mvneta_cleanup_rxqs(pp
);
3844 /* Stop the port, free port interrupt line */
3845 static int mvneta_stop(struct net_device
*dev
)
3847 struct mvneta_port
*pp
= netdev_priv(dev
);
3849 if (!pp
->neta_armada3700
) {
3850 /* Inform that we are stopping so we don't want to setup the
3851 * driver for new CPUs in the notifiers. The code of the
3852 * notifier for CPU online is protected by the same spinlock,
3853 * so when we get the lock, the notifer work is done.
3855 spin_lock(&pp
->lock
);
3856 pp
->is_stopped
= true;
3857 spin_unlock(&pp
->lock
);
3859 mvneta_stop_dev(pp
);
3860 mvneta_mdio_remove(pp
);
3862 cpuhp_state_remove_instance_nocalls(online_hpstate
,
3864 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
3866 on_each_cpu(mvneta_percpu_disable
, pp
, true);
3867 free_percpu_irq(dev
->irq
, pp
->ports
);
3869 mvneta_stop_dev(pp
);
3870 mvneta_mdio_remove(pp
);
3871 free_irq(dev
->irq
, pp
);
3874 mvneta_cleanup_rxqs(pp
);
3875 mvneta_cleanup_txqs(pp
);
3880 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
3882 struct mvneta_port
*pp
= netdev_priv(dev
);
3884 return phylink_mii_ioctl(pp
->phylink
, ifr
, cmd
);
3887 /* Ethtool methods */
3889 /* Set link ksettings (phy address, speed) for ethtools */
3891 mvneta_ethtool_set_link_ksettings(struct net_device
*ndev
,
3892 const struct ethtool_link_ksettings
*cmd
)
3894 struct mvneta_port
*pp
= netdev_priv(ndev
);
3896 return phylink_ethtool_ksettings_set(pp
->phylink
, cmd
);
3899 /* Get link ksettings for ethtools */
3901 mvneta_ethtool_get_link_ksettings(struct net_device
*ndev
,
3902 struct ethtool_link_ksettings
*cmd
)
3904 struct mvneta_port
*pp
= netdev_priv(ndev
);
3906 return phylink_ethtool_ksettings_get(pp
->phylink
, cmd
);
3909 static int mvneta_ethtool_nway_reset(struct net_device
*dev
)
3911 struct mvneta_port
*pp
= netdev_priv(dev
);
3913 return phylink_ethtool_nway_reset(pp
->phylink
);
3916 /* Set interrupt coalescing for ethtools */
3917 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
3918 struct ethtool_coalesce
*c
)
3920 struct mvneta_port
*pp
= netdev_priv(dev
);
3923 for (queue
= 0; queue
< rxq_number
; queue
++) {
3924 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
3925 rxq
->time_coal
= c
->rx_coalesce_usecs
;
3926 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
3927 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
3928 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
3931 for (queue
= 0; queue
< txq_number
; queue
++) {
3932 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
3933 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
3934 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
3940 /* get coalescing for ethtools */
3941 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
3942 struct ethtool_coalesce
*c
)
3944 struct mvneta_port
*pp
= netdev_priv(dev
);
3946 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
3947 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
3949 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
3954 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
3955 struct ethtool_drvinfo
*drvinfo
)
3957 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
3958 sizeof(drvinfo
->driver
));
3959 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
3960 sizeof(drvinfo
->version
));
3961 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
3962 sizeof(drvinfo
->bus_info
));
3966 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
3967 struct ethtool_ringparam
*ring
)
3969 struct mvneta_port
*pp
= netdev_priv(netdev
);
3971 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
3972 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
3973 ring
->rx_pending
= pp
->rx_ring_size
;
3974 ring
->tx_pending
= pp
->tx_ring_size
;
3977 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
3978 struct ethtool_ringparam
*ring
)
3980 struct mvneta_port
*pp
= netdev_priv(dev
);
3982 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
3984 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
3985 ring
->rx_pending
: MVNETA_MAX_RXD
;
3987 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
3988 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
3989 if (pp
->tx_ring_size
!= ring
->tx_pending
)
3990 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
3991 pp
->tx_ring_size
, ring
->tx_pending
);
3993 if (netif_running(dev
)) {
3995 if (mvneta_open(dev
)) {
3997 "error on opening device after ring param change\n");
4005 static void mvneta_ethtool_get_pauseparam(struct net_device
*dev
,
4006 struct ethtool_pauseparam
*pause
)
4008 struct mvneta_port
*pp
= netdev_priv(dev
);
4010 phylink_ethtool_get_pauseparam(pp
->phylink
, pause
);
4013 static int mvneta_ethtool_set_pauseparam(struct net_device
*dev
,
4014 struct ethtool_pauseparam
*pause
)
4016 struct mvneta_port
*pp
= netdev_priv(dev
);
4018 return phylink_ethtool_set_pauseparam(pp
->phylink
, pause
);
4021 static void mvneta_ethtool_get_strings(struct net_device
*netdev
, u32 sset
,
4024 if (sset
== ETH_SS_STATS
) {
4027 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
4028 memcpy(data
+ i
* ETH_GSTRING_LEN
,
4029 mvneta_statistics
[i
].name
, ETH_GSTRING_LEN
);
4033 static void mvneta_ethtool_update_stats(struct mvneta_port
*pp
)
4035 const struct mvneta_statistic
*s
;
4036 void __iomem
*base
= pp
->base
;
4041 for (i
= 0, s
= mvneta_statistics
;
4042 s
< mvneta_statistics
+ ARRAY_SIZE(mvneta_statistics
);
4048 val
= readl_relaxed(base
+ s
->offset
);
4051 /* Docs say to read low 32-bit then high */
4052 low
= readl_relaxed(base
+ s
->offset
);
4053 high
= readl_relaxed(base
+ s
->offset
+ 4);
4054 val
= (u64
)high
<< 32 | low
;
4057 switch (s
->offset
) {
4058 case ETHTOOL_STAT_EEE_WAKEUP
:
4059 val
= phylink_get_eee_err(pp
->phylink
);
4061 case ETHTOOL_STAT_SKB_ALLOC_ERR
:
4062 val
= pp
->rxqs
[0].skb_alloc_err
;
4064 case ETHTOOL_STAT_REFILL_ERR
:
4065 val
= pp
->rxqs
[0].refill_err
;
4071 pp
->ethtool_stats
[i
] += val
;
4075 static void mvneta_ethtool_get_stats(struct net_device
*dev
,
4076 struct ethtool_stats
*stats
, u64
*data
)
4078 struct mvneta_port
*pp
= netdev_priv(dev
);
4081 mvneta_ethtool_update_stats(pp
);
4083 for (i
= 0; i
< ARRAY_SIZE(mvneta_statistics
); i
++)
4084 *data
++ = pp
->ethtool_stats
[i
];
4087 static int mvneta_ethtool_get_sset_count(struct net_device
*dev
, int sset
)
4089 if (sset
== ETH_SS_STATS
)
4090 return ARRAY_SIZE(mvneta_statistics
);
4094 static u32
mvneta_ethtool_get_rxfh_indir_size(struct net_device
*dev
)
4096 return MVNETA_RSS_LU_TABLE_SIZE
;
4099 static int mvneta_ethtool_get_rxnfc(struct net_device
*dev
,
4100 struct ethtool_rxnfc
*info
,
4101 u32
*rules __always_unused
)
4103 switch (info
->cmd
) {
4104 case ETHTOOL_GRXRINGS
:
4105 info
->data
= rxq_number
;
4114 static int mvneta_config_rss(struct mvneta_port
*pp
)
4119 netif_tx_stop_all_queues(pp
->dev
);
4121 on_each_cpu(mvneta_percpu_mask_interrupt
, pp
, true);
4123 if (!pp
->neta_armada3700
) {
4124 /* We have to synchronise on the napi of each CPU */
4125 for_each_online_cpu(cpu
) {
4126 struct mvneta_pcpu_port
*pcpu_port
=
4127 per_cpu_ptr(pp
->ports
, cpu
);
4129 napi_synchronize(&pcpu_port
->napi
);
4130 napi_disable(&pcpu_port
->napi
);
4133 napi_synchronize(&pp
->napi
);
4134 napi_disable(&pp
->napi
);
4137 pp
->rxq_def
= pp
->indir
[0];
4139 /* Update unicast mapping */
4140 mvneta_set_rx_mode(pp
->dev
);
4142 /* Update val of portCfg register accordingly with all RxQueue types */
4143 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(pp
->rxq_def
);
4144 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
4146 /* Update the elected CPU matching the new rxq_def */
4147 spin_lock(&pp
->lock
);
4148 mvneta_percpu_elect(pp
);
4149 spin_unlock(&pp
->lock
);
4151 if (!pp
->neta_armada3700
) {
4152 /* We have to synchronise on the napi of each CPU */
4153 for_each_online_cpu(cpu
) {
4154 struct mvneta_pcpu_port
*pcpu_port
=
4155 per_cpu_ptr(pp
->ports
, cpu
);
4157 napi_enable(&pcpu_port
->napi
);
4160 napi_enable(&pp
->napi
);
4163 netif_tx_start_all_queues(pp
->dev
);
4168 static int mvneta_ethtool_set_rxfh(struct net_device
*dev
, const u32
*indir
,
4169 const u8
*key
, const u8 hfunc
)
4171 struct mvneta_port
*pp
= netdev_priv(dev
);
4173 /* Current code for Armada 3700 doesn't support RSS features yet */
4174 if (pp
->neta_armada3700
)
4177 /* We require at least one supported parameter to be changed
4178 * and no change in any of the unsupported parameters
4181 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
4187 memcpy(pp
->indir
, indir
, MVNETA_RSS_LU_TABLE_SIZE
);
4189 return mvneta_config_rss(pp
);
4192 static int mvneta_ethtool_get_rxfh(struct net_device
*dev
, u32
*indir
, u8
*key
,
4195 struct mvneta_port
*pp
= netdev_priv(dev
);
4197 /* Current code for Armada 3700 doesn't support RSS features yet */
4198 if (pp
->neta_armada3700
)
4202 *hfunc
= ETH_RSS_HASH_TOP
;
4207 memcpy(indir
, pp
->indir
, MVNETA_RSS_LU_TABLE_SIZE
);
4212 static void mvneta_ethtool_get_wol(struct net_device
*dev
,
4213 struct ethtool_wolinfo
*wol
)
4215 struct mvneta_port
*pp
= netdev_priv(dev
);
4217 phylink_ethtool_get_wol(pp
->phylink
, wol
);
4220 static int mvneta_ethtool_set_wol(struct net_device
*dev
,
4221 struct ethtool_wolinfo
*wol
)
4223 struct mvneta_port
*pp
= netdev_priv(dev
);
4226 ret
= phylink_ethtool_set_wol(pp
->phylink
, wol
);
4228 device_set_wakeup_enable(&dev
->dev
, !!wol
->wolopts
);
4233 static int mvneta_ethtool_get_eee(struct net_device
*dev
,
4234 struct ethtool_eee
*eee
)
4236 struct mvneta_port
*pp
= netdev_priv(dev
);
4239 lpi_ctl0
= mvreg_read(pp
, MVNETA_LPI_CTRL_0
);
4241 eee
->eee_enabled
= pp
->eee_enabled
;
4242 eee
->eee_active
= pp
->eee_active
;
4243 eee
->tx_lpi_enabled
= pp
->tx_lpi_enabled
;
4244 eee
->tx_lpi_timer
= (lpi_ctl0
) >> 8; // * scale;
4246 return phylink_ethtool_get_eee(pp
->phylink
, eee
);
4249 static int mvneta_ethtool_set_eee(struct net_device
*dev
,
4250 struct ethtool_eee
*eee
)
4252 struct mvneta_port
*pp
= netdev_priv(dev
);
4255 /* The Armada 37x documents do not give limits for this other than
4256 * it being an 8-bit register. */
4257 if (eee
->tx_lpi_enabled
&&
4258 (eee
->tx_lpi_timer
< 0 || eee
->tx_lpi_timer
> 255))
4261 lpi_ctl0
= mvreg_read(pp
, MVNETA_LPI_CTRL_0
);
4262 lpi_ctl0
&= ~(0xff << 8);
4263 lpi_ctl0
|= eee
->tx_lpi_timer
<< 8;
4264 mvreg_write(pp
, MVNETA_LPI_CTRL_0
, lpi_ctl0
);
4266 pp
->eee_enabled
= eee
->eee_enabled
;
4267 pp
->tx_lpi_enabled
= eee
->tx_lpi_enabled
;
4269 mvneta_set_eee(pp
, eee
->tx_lpi_enabled
&& eee
->eee_enabled
);
4271 return phylink_ethtool_set_eee(pp
->phylink
, eee
);
4274 static const struct net_device_ops mvneta_netdev_ops
= {
4275 .ndo_open
= mvneta_open
,
4276 .ndo_stop
= mvneta_stop
,
4277 .ndo_start_xmit
= mvneta_tx
,
4278 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
4279 .ndo_set_mac_address
= mvneta_set_mac_addr
,
4280 .ndo_change_mtu
= mvneta_change_mtu
,
4281 .ndo_fix_features
= mvneta_fix_features
,
4282 .ndo_get_stats64
= mvneta_get_stats64
,
4283 .ndo_do_ioctl
= mvneta_ioctl
,
4286 static const struct ethtool_ops mvneta_eth_tool_ops
= {
4287 .nway_reset
= mvneta_ethtool_nway_reset
,
4288 .get_link
= ethtool_op_get_link
,
4289 .set_coalesce
= mvneta_ethtool_set_coalesce
,
4290 .get_coalesce
= mvneta_ethtool_get_coalesce
,
4291 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
4292 .get_ringparam
= mvneta_ethtool_get_ringparam
,
4293 .set_ringparam
= mvneta_ethtool_set_ringparam
,
4294 .get_pauseparam
= mvneta_ethtool_get_pauseparam
,
4295 .set_pauseparam
= mvneta_ethtool_set_pauseparam
,
4296 .get_strings
= mvneta_ethtool_get_strings
,
4297 .get_ethtool_stats
= mvneta_ethtool_get_stats
,
4298 .get_sset_count
= mvneta_ethtool_get_sset_count
,
4299 .get_rxfh_indir_size
= mvneta_ethtool_get_rxfh_indir_size
,
4300 .get_rxnfc
= mvneta_ethtool_get_rxnfc
,
4301 .get_rxfh
= mvneta_ethtool_get_rxfh
,
4302 .set_rxfh
= mvneta_ethtool_set_rxfh
,
4303 .get_link_ksettings
= mvneta_ethtool_get_link_ksettings
,
4304 .set_link_ksettings
= mvneta_ethtool_set_link_ksettings
,
4305 .get_wol
= mvneta_ethtool_get_wol
,
4306 .set_wol
= mvneta_ethtool_set_wol
,
4307 .get_eee
= mvneta_ethtool_get_eee
,
4308 .set_eee
= mvneta_ethtool_set_eee
,
4312 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
4317 mvneta_port_disable(pp
);
4319 /* Set port default values */
4320 mvneta_defaults_set(pp
);
4322 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(*pp
->txqs
), GFP_KERNEL
);
4326 /* Initialize TX descriptor rings */
4327 for (queue
= 0; queue
< txq_number
; queue
++) {
4328 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4330 txq
->size
= pp
->tx_ring_size
;
4331 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
4334 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(*pp
->rxqs
), GFP_KERNEL
);
4338 /* Create Rx descriptor rings */
4339 for (queue
= 0; queue
< rxq_number
; queue
++) {
4340 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4342 rxq
->size
= pp
->rx_ring_size
;
4343 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
4344 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
4346 = devm_kmalloc_array(pp
->dev
->dev
.parent
,
4348 sizeof(*rxq
->buf_virt_addr
),
4350 if (!rxq
->buf_virt_addr
)
4357 /* platform glue : initialize decoding windows */
4358 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
4359 const struct mbus_dram_target_info
*dram
)
4365 for (i
= 0; i
< 6; i
++) {
4366 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
4367 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
4370 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
4377 for (i
= 0; i
< dram
->num_cs
; i
++) {
4378 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
4380 mvreg_write(pp
, MVNETA_WIN_BASE(i
),
4381 (cs
->base
& 0xffff0000) |
4382 (cs
->mbus_attr
<< 8) |
4383 dram
->mbus_dram_target_id
);
4385 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
4386 (cs
->size
- 1) & 0xffff0000);
4388 win_enable
&= ~(1 << i
);
4389 win_protect
|= 3 << (2 * i
);
4392 /* For Armada3700 open default 4GB Mbus window, leaving
4393 * arbitration of target/attribute to a different layer
4396 mvreg_write(pp
, MVNETA_WIN_SIZE(0), 0xffff0000);
4397 win_enable
&= ~BIT(0);
4401 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
4402 mvreg_write(pp
, MVNETA_ACCESS_PROTECT_ENABLE
, win_protect
);
4405 /* Power up the port */
4406 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
4408 /* MAC Cause register should be cleared */
4409 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
4411 if (phy_mode
== PHY_INTERFACE_MODE_QSGMII
)
4412 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
4413 else if (phy_mode
== PHY_INTERFACE_MODE_SGMII
||
4414 phy_mode
== PHY_INTERFACE_MODE_1000BASEX
)
4415 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
4416 else if (!phy_interface_mode_is_rgmii(phy_mode
))
4422 /* Device initialization routine */
4423 static int mvneta_probe(struct platform_device
*pdev
)
4425 struct resource
*res
;
4426 struct device_node
*dn
= pdev
->dev
.of_node
;
4427 struct device_node
*bm_node
;
4428 struct mvneta_port
*pp
;
4429 struct net_device
*dev
;
4430 struct phylink
*phylink
;
4431 const char *dt_mac_addr
;
4432 char hw_mac_addr
[ETH_ALEN
];
4433 const char *mac_from
;
4439 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
4443 dev
->irq
= irq_of_parse_and_map(dn
, 0);
4444 if (dev
->irq
== 0) {
4446 goto err_free_netdev
;
4449 phy_mode
= of_get_phy_mode(dn
);
4451 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
4456 phylink
= phylink_create(dev
, pdev
->dev
.fwnode
, phy_mode
,
4457 &mvneta_phylink_ops
);
4458 if (IS_ERR(phylink
)) {
4459 err
= PTR_ERR(phylink
);
4463 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
4464 dev
->watchdog_timeo
= 5 * HZ
;
4465 dev
->netdev_ops
= &mvneta_netdev_ops
;
4467 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
4469 pp
= netdev_priv(dev
);
4470 spin_lock_init(&pp
->lock
);
4471 pp
->phylink
= phylink
;
4472 pp
->phy_interface
= phy_mode
;
4475 pp
->rxq_def
= rxq_def
;
4476 pp
->indir
[0] = rxq_def
;
4478 /* Get special SoC configurations */
4479 if (of_device_is_compatible(dn
, "marvell,armada-3700-neta"))
4480 pp
->neta_armada3700
= true;
4482 pp
->clk
= devm_clk_get(&pdev
->dev
, "core");
4483 if (IS_ERR(pp
->clk
))
4484 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
4485 if (IS_ERR(pp
->clk
)) {
4486 err
= PTR_ERR(pp
->clk
);
4487 goto err_free_phylink
;
4490 clk_prepare_enable(pp
->clk
);
4492 pp
->clk_bus
= devm_clk_get(&pdev
->dev
, "bus");
4493 if (!IS_ERR(pp
->clk_bus
))
4494 clk_prepare_enable(pp
->clk_bus
);
4496 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4497 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
4498 if (IS_ERR(pp
->base
)) {
4499 err
= PTR_ERR(pp
->base
);
4503 /* Alloc per-cpu port structure */
4504 pp
->ports
= alloc_percpu(struct mvneta_pcpu_port
);
4510 /* Alloc per-cpu stats */
4511 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
4514 goto err_free_ports
;
4517 dt_mac_addr
= of_get_mac_address(dn
);
4519 mac_from
= "device tree";
4520 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
4522 mvneta_get_mac_addr(pp
, hw_mac_addr
);
4523 if (is_valid_ether_addr(hw_mac_addr
)) {
4524 mac_from
= "hardware";
4525 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
4527 mac_from
= "random";
4528 eth_hw_addr_random(dev
);
4532 if (!of_property_read_u32(dn
, "tx-csum-limit", &tx_csum_limit
)) {
4533 if (tx_csum_limit
< 0 ||
4534 tx_csum_limit
> MVNETA_TX_CSUM_MAX_SIZE
) {
4535 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4536 dev_info(&pdev
->dev
,
4537 "Wrong TX csum limit in DT, set to %dB\n",
4538 MVNETA_TX_CSUM_DEF_SIZE
);
4540 } else if (of_device_is_compatible(dn
, "marvell,armada-370-neta")) {
4541 tx_csum_limit
= MVNETA_TX_CSUM_DEF_SIZE
;
4543 tx_csum_limit
= MVNETA_TX_CSUM_MAX_SIZE
;
4546 pp
->tx_csum_limit
= tx_csum_limit
;
4548 pp
->dram_target_info
= mv_mbus_dram_info();
4549 /* Armada3700 requires setting default configuration of Mbus
4550 * windows, however without using filled mbus_dram_target_info
4553 if (pp
->dram_target_info
|| pp
->neta_armada3700
)
4554 mvneta_conf_mbus_windows(pp
, pp
->dram_target_info
);
4556 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
4557 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
4560 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4562 pp
->id
= global_port_id
++;
4563 pp
->rx_offset_correction
= 0; /* not relevant for SW BM */
4565 /* Obtain access to BM resources if enabled and already initialized */
4566 bm_node
= of_parse_phandle(dn
, "buffer-manager", 0);
4568 pp
->bm_priv
= mvneta_bm_get(bm_node
);
4570 err
= mvneta_bm_port_init(pdev
, pp
);
4572 dev_info(&pdev
->dev
,
4573 "use SW buffer management\n");
4574 mvneta_bm_put(pp
->bm_priv
);
4578 /* Set RX packet offset correction for platforms, whose
4579 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4580 * platforms and 0B for 32-bit ones.
4582 pp
->rx_offset_correction
= max(0,
4584 MVNETA_RX_PKT_OFFSET_CORRECTION
);
4586 of_node_put(bm_node
);
4588 err
= mvneta_init(&pdev
->dev
, pp
);
4592 err
= mvneta_port_power_up(pp
, phy_mode
);
4594 dev_err(&pdev
->dev
, "can't power up port\n");
4598 /* Armada3700 network controller does not support per-cpu
4599 * operation, so only single NAPI should be initialized.
4601 if (pp
->neta_armada3700
) {
4602 netif_napi_add(dev
, &pp
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
4604 for_each_present_cpu(cpu
) {
4605 struct mvneta_pcpu_port
*port
=
4606 per_cpu_ptr(pp
->ports
, cpu
);
4608 netif_napi_add(dev
, &port
->napi
, mvneta_poll
,
4614 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
| NETIF_F_TSO
;
4615 dev
->hw_features
|= dev
->features
;
4616 dev
->vlan_features
|= dev
->features
;
4617 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
4618 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
4620 /* MTU range: 68 - 9676 */
4621 dev
->min_mtu
= ETH_MIN_MTU
;
4622 /* 9676 == 9700 - 20 and rounding to 8 */
4623 dev
->max_mtu
= 9676;
4625 err
= register_netdev(dev
);
4627 dev_err(&pdev
->dev
, "failed to register\n");
4631 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
4634 platform_set_drvdata(pdev
, pp
->dev
);
4640 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4641 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4643 mvneta_bm_put(pp
->bm_priv
);
4645 free_percpu(pp
->stats
);
4647 free_percpu(pp
->ports
);
4649 clk_disable_unprepare(pp
->clk_bus
);
4650 clk_disable_unprepare(pp
->clk
);
4653 phylink_destroy(pp
->phylink
);
4655 irq_dispose_mapping(dev
->irq
);
4661 /* Device removal routine */
4662 static int mvneta_remove(struct platform_device
*pdev
)
4664 struct net_device
*dev
= platform_get_drvdata(pdev
);
4665 struct mvneta_port
*pp
= netdev_priv(dev
);
4667 unregister_netdev(dev
);
4668 clk_disable_unprepare(pp
->clk_bus
);
4669 clk_disable_unprepare(pp
->clk
);
4670 free_percpu(pp
->ports
);
4671 free_percpu(pp
->stats
);
4672 irq_dispose_mapping(dev
->irq
);
4673 phylink_destroy(pp
->phylink
);
4677 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_long
, 1 << pp
->id
);
4678 mvneta_bm_pool_destroy(pp
->bm_priv
, pp
->pool_short
,
4680 mvneta_bm_put(pp
->bm_priv
);
4686 #ifdef CONFIG_PM_SLEEP
4687 static int mvneta_suspend(struct device
*device
)
4690 struct net_device
*dev
= dev_get_drvdata(device
);
4691 struct mvneta_port
*pp
= netdev_priv(dev
);
4693 if (!netif_running(dev
))
4696 if (!pp
->neta_armada3700
) {
4697 spin_lock(&pp
->lock
);
4698 pp
->is_stopped
= true;
4699 spin_unlock(&pp
->lock
);
4701 cpuhp_state_remove_instance_nocalls(online_hpstate
,
4703 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
4708 mvneta_stop_dev(pp
);
4711 for (queue
= 0; queue
< rxq_number
; queue
++) {
4712 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4714 mvneta_rxq_drop_pkts(pp
, rxq
);
4717 for (queue
= 0; queue
< txq_number
; queue
++) {
4718 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4720 mvneta_txq_hw_deinit(pp
, txq
);
4724 netif_device_detach(dev
);
4725 clk_disable_unprepare(pp
->clk_bus
);
4726 clk_disable_unprepare(pp
->clk
);
4731 static int mvneta_resume(struct device
*device
)
4733 struct platform_device
*pdev
= to_platform_device(device
);
4734 struct net_device
*dev
= dev_get_drvdata(device
);
4735 struct mvneta_port
*pp
= netdev_priv(dev
);
4738 clk_prepare_enable(pp
->clk
);
4739 if (!IS_ERR(pp
->clk_bus
))
4740 clk_prepare_enable(pp
->clk_bus
);
4741 if (pp
->dram_target_info
|| pp
->neta_armada3700
)
4742 mvneta_conf_mbus_windows(pp
, pp
->dram_target_info
);
4744 err
= mvneta_bm_port_init(pdev
, pp
);
4746 dev_info(&pdev
->dev
, "use SW buffer management\n");
4750 mvneta_defaults_set(pp
);
4751 err
= mvneta_port_power_up(pp
, pp
->phy_interface
);
4753 dev_err(device
, "can't power up port\n");
4757 netif_device_attach(dev
);
4759 if (!netif_running(dev
))
4762 for (queue
= 0; queue
< rxq_number
; queue
++) {
4763 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
4765 rxq
->next_desc_to_proc
= 0;
4766 mvneta_rxq_hw_init(pp
, rxq
);
4769 for (queue
= 0; queue
< txq_number
; queue
++) {
4770 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
4772 txq
->next_desc_to_proc
= 0;
4773 mvneta_txq_hw_init(pp
, txq
);
4776 if (!pp
->neta_armada3700
) {
4777 spin_lock(&pp
->lock
);
4778 pp
->is_stopped
= false;
4779 spin_unlock(&pp
->lock
);
4780 cpuhp_state_add_instance_nocalls(online_hpstate
,
4782 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD
,
4787 mvneta_start_dev(pp
);
4789 mvneta_set_rx_mode(dev
);
4795 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops
, mvneta_suspend
, mvneta_resume
);
4797 static const struct of_device_id mvneta_match
[] = {
4798 { .compatible
= "marvell,armada-370-neta" },
4799 { .compatible
= "marvell,armada-xp-neta" },
4800 { .compatible
= "marvell,armada-3700-neta" },
4803 MODULE_DEVICE_TABLE(of
, mvneta_match
);
4805 static struct platform_driver mvneta_driver
= {
4806 .probe
= mvneta_probe
,
4807 .remove
= mvneta_remove
,
4809 .name
= MVNETA_DRIVER_NAME
,
4810 .of_match_table
= mvneta_match
,
4811 .pm
= &mvneta_pm_ops
,
4815 static int __init
mvneta_driver_init(void)
4819 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, "net/mvmeta:online",
4821 mvneta_cpu_down_prepare
);
4824 online_hpstate
= ret
;
4825 ret
= cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD
, "net/mvneta:dead",
4826 NULL
, mvneta_cpu_dead
);
4830 ret
= platform_driver_register(&mvneta_driver
);
4836 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4838 cpuhp_remove_multi_state(online_hpstate
);
4842 module_init(mvneta_driver_init
);
4844 static void __exit
mvneta_driver_exit(void)
4846 platform_driver_unregister(&mvneta_driver
);
4847 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD
);
4848 cpuhp_remove_multi_state(online_hpstate
);
4850 module_exit(mvneta_driver_exit
);
4852 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4853 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4854 MODULE_LICENSE("GPL");
4856 module_param(rxq_number
, int, 0444);
4857 module_param(txq_number
, int, 0444);
4859 module_param(rxq_def
, int, 0444);
4860 module_param(rx_copybreak
, int, 0644);