Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / micrel / ks8851.c
blobb83b070a9eec842e7af24933224a54cbf234f0da
1 /* drivers/net/ethernet/micrel/ks8851.c
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #define DEBUG
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_net.h>
33 #include "ks8851.h"
35 /**
36 * struct ks8851_rxctrl - KS8851 driver rx control
37 * @mchash: Multicast hash-table data.
38 * @rxcr1: KS_RXCR1 register setting
39 * @rxcr2: KS_RXCR2 register setting
41 * Representation of the settings needs to control the receive filtering
42 * such as the multicast hash-filter and the receive register settings. This
43 * is used to make the job of working out if the receive settings change and
44 * then issuing the new settings to the worker that will send the necessary
45 * commands.
47 struct ks8851_rxctrl {
48 u16 mchash[4];
49 u16 rxcr1;
50 u16 rxcr2;
53 /**
54 * union ks8851_tx_hdr - tx header data
55 * @txb: The header as bytes
56 * @txw: The header as 16bit, little-endian words
58 * A dual representation of the tx header data to allow
59 * access to individual bytes, and to allow 16bit accesses
60 * with 16bit alignment.
62 union ks8851_tx_hdr {
63 u8 txb[6];
64 __le16 txw[3];
67 /**
68 * struct ks8851_net - KS8851 driver private data
69 * @netdev: The network device we're bound to
70 * @spidev: The spi device we're bound to.
71 * @lock: Lock to ensure that the device is not accessed when busy.
72 * @statelock: Lock on this structure for tx list.
73 * @mii: The MII state information for the mii calls.
74 * @rxctrl: RX settings for @rxctrl_work.
75 * @tx_work: Work queue for tx packets
76 * @rxctrl_work: Work queue for updating RX mode and multicast lists
77 * @txq: Queue of packets for transmission.
78 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
79 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
80 * @txh: Space for generating packet TX header in DMA-able data
81 * @rxd: Space for receiving SPI data, in DMA-able space.
82 * @txd: Space for transmitting SPI data, in DMA-able space.
83 * @msg_enable: The message flags controlling driver output (see ethtool).
84 * @fid: Incrementing frame id tag.
85 * @rc_ier: Cached copy of KS_IER.
86 * @rc_ccr: Cached copy of KS_CCR.
87 * @rc_rxqcr: Cached copy of KS_RXQCR.
88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89 * @vdd_reg: Optional regulator supplying the chip
90 * @vdd_io: Optional digital power supply for IO
91 * @gpio: Optional reset_n gpio
93 * The @lock ensures that the chip is protected when certain operations are
94 * in progress. When the read or write packet transfer is in progress, most
95 * of the chip registers are not ccessible until the transfer is finished and
96 * the DMA has been de-asserted.
98 * The @statelock is used to protect information in the structure which may
99 * need to be accessed via several sources, such as the network driver layer
100 * or one of the work queues.
102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103 * wants to DMA map them, it will not have any problems with data the driver
104 * modifies.
106 struct ks8851_net {
107 struct net_device *netdev;
108 struct spi_device *spidev;
109 struct mutex lock;
110 spinlock_t statelock;
112 union ks8851_tx_hdr txh ____cacheline_aligned;
113 u8 rxd[8];
114 u8 txd[8];
116 u32 msg_enable ____cacheline_aligned;
117 u16 tx_space;
118 u8 fid;
120 u16 rc_ier;
121 u16 rc_rxqcr;
122 u16 rc_ccr;
124 struct mii_if_info mii;
125 struct ks8851_rxctrl rxctrl;
127 struct work_struct tx_work;
128 struct work_struct rxctrl_work;
130 struct sk_buff_head txq;
132 struct spi_message spi_msg1;
133 struct spi_message spi_msg2;
134 struct spi_transfer spi_xfer1;
135 struct spi_transfer spi_xfer2[2];
137 struct eeprom_93cx6 eeprom;
138 struct regulator *vdd_reg;
139 struct regulator *vdd_io;
140 int gpio;
143 static int msg_enable;
145 /* shift for byte-enable data */
146 #define BYTE_EN(_x) ((_x) << 2)
148 /* turn register number and byte-enable mask into data for start of packet */
149 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
151 /* SPI register read/write calls.
153 * All these calls issue SPI transactions to access the chip's registers. They
154 * all require that the necessary lock is held to prevent accesses when the
155 * chip is busy transferring packet data (RX/TX FIFO accesses).
159 * ks8851_wrreg16 - write 16bit register value to chip
160 * @ks: The chip state
161 * @reg: The register address
162 * @val: The value to write
164 * Issue a write to put the value @val into the register specified in @reg.
166 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
168 struct spi_transfer *xfer = &ks->spi_xfer1;
169 struct spi_message *msg = &ks->spi_msg1;
170 __le16 txb[2];
171 int ret;
173 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
174 txb[1] = cpu_to_le16(val);
176 xfer->tx_buf = txb;
177 xfer->rx_buf = NULL;
178 xfer->len = 4;
180 ret = spi_sync(ks->spidev, msg);
181 if (ret < 0)
182 netdev_err(ks->netdev, "spi_sync() failed\n");
186 * ks8851_wrreg8 - write 8bit register value to chip
187 * @ks: The chip state
188 * @reg: The register address
189 * @val: The value to write
191 * Issue a write to put the value @val into the register specified in @reg.
193 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
195 struct spi_transfer *xfer = &ks->spi_xfer1;
196 struct spi_message *msg = &ks->spi_msg1;
197 __le16 txb[2];
198 int ret;
199 int bit;
201 bit = 1 << (reg & 3);
203 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
204 txb[1] = val;
206 xfer->tx_buf = txb;
207 xfer->rx_buf = NULL;
208 xfer->len = 3;
210 ret = spi_sync(ks->spidev, msg);
211 if (ret < 0)
212 netdev_err(ks->netdev, "spi_sync() failed\n");
216 * ks8851_rdreg - issue read register command and return the data
217 * @ks: The device state
218 * @op: The register address and byte enables in message format.
219 * @rxb: The RX buffer to return the result into
220 * @rxl: The length of data expected.
222 * This is the low level read call that issues the necessary spi message(s)
223 * to read data from the register specified in @op.
225 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
226 u8 *rxb, unsigned rxl)
228 struct spi_transfer *xfer;
229 struct spi_message *msg;
230 __le16 *txb = (__le16 *)ks->txd;
231 u8 *trx = ks->rxd;
232 int ret;
234 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
236 if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
237 msg = &ks->spi_msg2;
238 xfer = ks->spi_xfer2;
240 xfer->tx_buf = txb;
241 xfer->rx_buf = NULL;
242 xfer->len = 2;
244 xfer++;
245 xfer->tx_buf = NULL;
246 xfer->rx_buf = trx;
247 xfer->len = rxl;
248 } else {
249 msg = &ks->spi_msg1;
250 xfer = &ks->spi_xfer1;
252 xfer->tx_buf = txb;
253 xfer->rx_buf = trx;
254 xfer->len = rxl + 2;
257 ret = spi_sync(ks->spidev, msg);
258 if (ret < 0)
259 netdev_err(ks->netdev, "read: spi_sync() failed\n");
260 else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
261 memcpy(rxb, trx, rxl);
262 else
263 memcpy(rxb, trx + 2, rxl);
267 * ks8851_rdreg8 - read 8 bit register from device
268 * @ks: The chip information
269 * @reg: The register address
271 * Read a 8bit register from the chip, returning the result
273 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
275 u8 rxb[1];
277 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
278 return rxb[0];
282 * ks8851_rdreg16 - read 16 bit register from device
283 * @ks: The chip information
284 * @reg: The register address
286 * Read a 16bit register from the chip, returning the result
288 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
290 __le16 rx = 0;
292 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
293 return le16_to_cpu(rx);
297 * ks8851_rdreg32 - read 32 bit register from device
298 * @ks: The chip information
299 * @reg: The register address
301 * Read a 32bit register from the chip.
303 * Note, this read requires the address be aligned to 4 bytes.
305 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
307 __le32 rx = 0;
309 WARN_ON(reg & 3);
311 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
312 return le32_to_cpu(rx);
316 * ks8851_soft_reset - issue one of the soft reset to the device
317 * @ks: The device state.
318 * @op: The bit(s) to set in the GRR
320 * Issue the relevant soft-reset command to the device's GRR register
321 * specified by @op.
323 * Note, the delays are in there as a caution to ensure that the reset
324 * has time to take effect and then complete. Since the datasheet does
325 * not currently specify the exact sequence, we have chosen something
326 * that seems to work with our device.
328 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
330 ks8851_wrreg16(ks, KS_GRR, op);
331 mdelay(1); /* wait a short time to effect reset */
332 ks8851_wrreg16(ks, KS_GRR, 0);
333 mdelay(1); /* wait for condition to clear */
337 * ks8851_set_powermode - set power mode of the device
338 * @ks: The device state
339 * @pwrmode: The power mode value to write to KS_PMECR.
341 * Change the power mode of the chip.
343 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
345 unsigned pmecr;
347 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
349 pmecr = ks8851_rdreg16(ks, KS_PMECR);
350 pmecr &= ~PMECR_PM_MASK;
351 pmecr |= pwrmode;
353 ks8851_wrreg16(ks, KS_PMECR, pmecr);
357 * ks8851_write_mac_addr - write mac address to device registers
358 * @dev: The network device
360 * Update the KS8851 MAC address registers from the address in @dev.
362 * This call assumes that the chip is not running, so there is no need to
363 * shutdown the RXQ process whilst setting this.
365 static int ks8851_write_mac_addr(struct net_device *dev)
367 struct ks8851_net *ks = netdev_priv(dev);
368 int i;
370 mutex_lock(&ks->lock);
373 * Wake up chip in case it was powered off when stopped; otherwise,
374 * the first write to the MAC address does not take effect.
376 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
377 for (i = 0; i < ETH_ALEN; i++)
378 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
379 if (!netif_running(dev))
380 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
382 mutex_unlock(&ks->lock);
384 return 0;
388 * ks8851_read_mac_addr - read mac address from device registers
389 * @dev: The network device
391 * Update our copy of the KS8851 MAC address from the registers of @dev.
393 static void ks8851_read_mac_addr(struct net_device *dev)
395 struct ks8851_net *ks = netdev_priv(dev);
396 int i;
398 mutex_lock(&ks->lock);
400 for (i = 0; i < ETH_ALEN; i++)
401 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
403 mutex_unlock(&ks->lock);
407 * ks8851_init_mac - initialise the mac address
408 * @ks: The device structure
410 * Get or create the initial mac address for the device and then set that
411 * into the station address register. A mac address supplied in the device
412 * tree takes precedence. Otherwise, if there is an EEPROM present, then
413 * we try that. If no valid mac address is found we use eth_random_addr()
414 * to create a new one.
416 static void ks8851_init_mac(struct ks8851_net *ks)
418 struct net_device *dev = ks->netdev;
419 const u8 *mac_addr;
421 mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
422 if (mac_addr) {
423 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
424 ks8851_write_mac_addr(dev);
425 return;
428 if (ks->rc_ccr & CCR_EEPROM) {
429 ks8851_read_mac_addr(dev);
430 if (is_valid_ether_addr(dev->dev_addr))
431 return;
433 netdev_err(ks->netdev, "invalid mac address read %pM\n",
434 dev->dev_addr);
437 eth_hw_addr_random(dev);
438 ks8851_write_mac_addr(dev);
442 * ks8851_rdfifo - read data from the receive fifo
443 * @ks: The device state.
444 * @buff: The buffer address
445 * @len: The length of the data to read
447 * Issue an RXQ FIFO read command and read the @len amount of data from
448 * the FIFO into the buffer specified by @buff.
450 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
452 struct spi_transfer *xfer = ks->spi_xfer2;
453 struct spi_message *msg = &ks->spi_msg2;
454 u8 txb[1];
455 int ret;
457 netif_dbg(ks, rx_status, ks->netdev,
458 "%s: %d@%p\n", __func__, len, buff);
460 /* set the operation we're issuing */
461 txb[0] = KS_SPIOP_RXFIFO;
463 xfer->tx_buf = txb;
464 xfer->rx_buf = NULL;
465 xfer->len = 1;
467 xfer++;
468 xfer->rx_buf = buff;
469 xfer->tx_buf = NULL;
470 xfer->len = len;
472 ret = spi_sync(ks->spidev, msg);
473 if (ret < 0)
474 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
478 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
479 * @ks: The device state
480 * @rxpkt: The data for the received packet
482 * Dump the initial data from the packet to dev_dbg().
484 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
486 netdev_dbg(ks->netdev,
487 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
488 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
489 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
490 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
494 * ks8851_rx_pkts - receive packets from the host
495 * @ks: The device information.
497 * This is called from the IRQ work queue when the system detects that there
498 * are packets in the receive queue. Find out how many packets there are and
499 * read them from the FIFO.
501 static void ks8851_rx_pkts(struct ks8851_net *ks)
503 struct sk_buff *skb;
504 unsigned rxfc;
505 unsigned rxlen;
506 unsigned rxstat;
507 u32 rxh;
508 u8 *rxpkt;
510 rxfc = ks8851_rdreg8(ks, KS_RXFC);
512 netif_dbg(ks, rx_status, ks->netdev,
513 "%s: %d packets\n", __func__, rxfc);
515 /* Currently we're issuing a read per packet, but we could possibly
516 * improve the code by issuing a single read, getting the receive
517 * header, allocating the packet and then reading the packet data
518 * out in one go.
520 * This form of operation would require us to hold the SPI bus'
521 * chipselect low during the entie transaction to avoid any
522 * reset to the data stream coming from the chip.
525 for (; rxfc != 0; rxfc--) {
526 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
527 rxstat = rxh & 0xffff;
528 rxlen = (rxh >> 16) & 0xfff;
530 netif_dbg(ks, rx_status, ks->netdev,
531 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
533 /* the length of the packet includes the 32bit CRC */
535 /* set dma read address */
536 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
538 /* start DMA access */
539 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
541 if (rxlen > 4) {
542 unsigned int rxalign;
544 rxlen -= 4;
545 rxalign = ALIGN(rxlen, 4);
546 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
547 if (skb) {
549 /* 4 bytes of status header + 4 bytes of
550 * garbage: we put them before ethernet
551 * header, so that they are copied,
552 * but ignored.
555 rxpkt = skb_put(skb, rxlen) - 8;
557 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
559 if (netif_msg_pktdata(ks))
560 ks8851_dbg_dumpkkt(ks, rxpkt);
562 skb->protocol = eth_type_trans(skb, ks->netdev);
563 netif_rx_ni(skb);
565 ks->netdev->stats.rx_packets++;
566 ks->netdev->stats.rx_bytes += rxlen;
570 /* end DMA access and dequeue packet */
571 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
576 * ks8851_irq - IRQ handler for dealing with interrupt requests
577 * @irq: IRQ number
578 * @_ks: cookie
580 * This handler is invoked when the IRQ line asserts to find out what happened.
581 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
582 * in thread context.
584 * Read the interrupt status, work out what needs to be done and then clear
585 * any of the interrupts that are not needed.
587 static irqreturn_t ks8851_irq(int irq, void *_ks)
589 struct ks8851_net *ks = _ks;
590 unsigned status;
591 unsigned handled = 0;
593 mutex_lock(&ks->lock);
595 status = ks8851_rdreg16(ks, KS_ISR);
597 netif_dbg(ks, intr, ks->netdev,
598 "%s: status 0x%04x\n", __func__, status);
600 if (status & IRQ_LCI)
601 handled |= IRQ_LCI;
603 if (status & IRQ_LDI) {
604 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
605 pmecr &= ~PMECR_WKEVT_MASK;
606 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
608 handled |= IRQ_LDI;
611 if (status & IRQ_RXPSI)
612 handled |= IRQ_RXPSI;
614 if (status & IRQ_TXI) {
615 handled |= IRQ_TXI;
617 /* no lock here, tx queue should have been stopped */
619 /* update our idea of how much tx space is available to the
620 * system */
621 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
623 netif_dbg(ks, intr, ks->netdev,
624 "%s: txspace %d\n", __func__, ks->tx_space);
627 if (status & IRQ_RXI)
628 handled |= IRQ_RXI;
630 if (status & IRQ_SPIBEI) {
631 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
632 handled |= IRQ_SPIBEI;
635 ks8851_wrreg16(ks, KS_ISR, handled);
637 if (status & IRQ_RXI) {
638 /* the datasheet says to disable the rx interrupt during
639 * packet read-out, however we're masking the interrupt
640 * from the device so do not bother masking just the RX
641 * from the device. */
643 ks8851_rx_pkts(ks);
646 /* if something stopped the rx process, probably due to wanting
647 * to change the rx settings, then do something about restarting
648 * it. */
649 if (status & IRQ_RXPSI) {
650 struct ks8851_rxctrl *rxc = &ks->rxctrl;
652 /* update the multicast hash table */
653 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
654 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
655 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
656 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
658 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
659 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
662 mutex_unlock(&ks->lock);
664 if (status & IRQ_LCI)
665 mii_check_link(&ks->mii);
667 if (status & IRQ_TXI)
668 netif_wake_queue(ks->netdev);
670 return IRQ_HANDLED;
674 * calc_txlen - calculate size of message to send packet
675 * @len: Length of data
677 * Returns the size of the TXFIFO message needed to send
678 * this packet.
680 static inline unsigned calc_txlen(unsigned len)
682 return ALIGN(len + 4, 4);
686 * ks8851_wrpkt - write packet to TX FIFO
687 * @ks: The device state.
688 * @txp: The sk_buff to transmit.
689 * @irq: IRQ on completion of the packet.
691 * Send the @txp to the chip. This means creating the relevant packet header
692 * specifying the length of the packet and the other information the chip
693 * needs, such as IRQ on completion. Send the header and the packet data to
694 * the device.
696 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
698 struct spi_transfer *xfer = ks->spi_xfer2;
699 struct spi_message *msg = &ks->spi_msg2;
700 unsigned fid = 0;
701 int ret;
703 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
704 __func__, txp, txp->len, txp->data, irq);
706 fid = ks->fid++;
707 fid &= TXFR_TXFID_MASK;
709 if (irq)
710 fid |= TXFR_TXIC; /* irq on completion */
712 /* start header at txb[1] to align txw entries */
713 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
714 ks->txh.txw[1] = cpu_to_le16(fid);
715 ks->txh.txw[2] = cpu_to_le16(txp->len);
717 xfer->tx_buf = &ks->txh.txb[1];
718 xfer->rx_buf = NULL;
719 xfer->len = 5;
721 xfer++;
722 xfer->tx_buf = txp->data;
723 xfer->rx_buf = NULL;
724 xfer->len = ALIGN(txp->len, 4);
726 ret = spi_sync(ks->spidev, msg);
727 if (ret < 0)
728 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
732 * ks8851_done_tx - update and then free skbuff after transmitting
733 * @ks: The device state
734 * @txb: The buffer transmitted
736 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
738 struct net_device *dev = ks->netdev;
740 dev->stats.tx_bytes += txb->len;
741 dev->stats.tx_packets++;
743 dev_kfree_skb(txb);
747 * ks8851_tx_work - process tx packet(s)
748 * @work: The work strucutre what was scheduled.
750 * This is called when a number of packets have been scheduled for
751 * transmission and need to be sent to the device.
753 static void ks8851_tx_work(struct work_struct *work)
755 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
756 struct sk_buff *txb;
757 bool last = skb_queue_empty(&ks->txq);
759 mutex_lock(&ks->lock);
761 while (!last) {
762 txb = skb_dequeue(&ks->txq);
763 last = skb_queue_empty(&ks->txq);
765 if (txb != NULL) {
766 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
767 ks8851_wrpkt(ks, txb, last);
768 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
769 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
771 ks8851_done_tx(ks, txb);
775 mutex_unlock(&ks->lock);
779 * ks8851_net_open - open network device
780 * @dev: The network device being opened.
782 * Called when the network device is marked active, such as a user executing
783 * 'ifconfig up' on the device.
785 static int ks8851_net_open(struct net_device *dev)
787 struct ks8851_net *ks = netdev_priv(dev);
788 int ret;
790 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
791 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
792 dev->name, ks);
793 if (ret < 0) {
794 netdev_err(dev, "failed to get irq\n");
795 return ret;
798 /* lock the card, even if we may not actually be doing anything
799 * else at the moment */
800 mutex_lock(&ks->lock);
802 netif_dbg(ks, ifup, ks->netdev, "opening\n");
804 /* bring chip out of any power saving mode it was in */
805 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
807 /* issue a soft reset to the RX/TX QMU to put it into a known
808 * state. */
809 ks8851_soft_reset(ks, GRR_QMU);
811 /* setup transmission parameters */
813 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
814 TXCR_TXPE | /* pad to min length */
815 TXCR_TXCRC | /* add CRC */
816 TXCR_TXFCE)); /* enable flow control */
818 /* auto-increment tx data, reset tx pointer */
819 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
821 /* setup receiver control */
823 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
824 RXCR1_RXFCE | /* enable flow control */
825 RXCR1_RXBE | /* broadcast enable */
826 RXCR1_RXUE | /* unicast enable */
827 RXCR1_RXE)); /* enable rx block */
829 /* transfer entire frames out in one go */
830 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
832 /* set receive counter timeouts */
833 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
834 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
835 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
837 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
838 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
839 RXQCR_RXDTTE); /* IRQ on time exceeded */
841 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
843 /* clear then enable interrupts */
845 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
846 IRQ_TXI | /* TX done */ \
847 IRQ_RXI | /* RX done */ \
848 IRQ_SPIBEI | /* SPI bus error */ \
849 IRQ_TXPSI | /* TX process stop */ \
850 IRQ_RXPSI) /* RX process stop */
852 ks->rc_ier = STD_IRQ;
853 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
854 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
856 netif_start_queue(ks->netdev);
858 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
860 mutex_unlock(&ks->lock);
861 mii_check_link(&ks->mii);
862 return 0;
866 * ks8851_net_stop - close network device
867 * @dev: The device being closed.
869 * Called to close down a network device which has been active. Cancell any
870 * work, shutdown the RX and TX process and then place the chip into a low
871 * power state whilst it is not being used.
873 static int ks8851_net_stop(struct net_device *dev)
875 struct ks8851_net *ks = netdev_priv(dev);
877 netif_info(ks, ifdown, dev, "shutting down\n");
879 netif_stop_queue(dev);
881 mutex_lock(&ks->lock);
882 /* turn off the IRQs and ack any outstanding */
883 ks8851_wrreg16(ks, KS_IER, 0x0000);
884 ks8851_wrreg16(ks, KS_ISR, 0xffff);
885 mutex_unlock(&ks->lock);
887 /* stop any outstanding work */
888 flush_work(&ks->tx_work);
889 flush_work(&ks->rxctrl_work);
891 mutex_lock(&ks->lock);
892 /* shutdown RX process */
893 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
895 /* shutdown TX process */
896 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
898 /* set powermode to soft power down to save power */
899 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
900 mutex_unlock(&ks->lock);
902 /* ensure any queued tx buffers are dumped */
903 while (!skb_queue_empty(&ks->txq)) {
904 struct sk_buff *txb = skb_dequeue(&ks->txq);
906 netif_dbg(ks, ifdown, ks->netdev,
907 "%s: freeing txb %p\n", __func__, txb);
909 dev_kfree_skb(txb);
912 free_irq(dev->irq, ks);
914 return 0;
918 * ks8851_start_xmit - transmit packet
919 * @skb: The buffer to transmit
920 * @dev: The device used to transmit the packet.
922 * Called by the network layer to transmit the @skb. Queue the packet for
923 * the device and schedule the necessary work to transmit the packet when
924 * it is free.
926 * We do this to firstly avoid sleeping with the network device locked,
927 * and secondly so we can round up more than one packet to transmit which
928 * means we can try and avoid generating too many transmit done interrupts.
930 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
931 struct net_device *dev)
933 struct ks8851_net *ks = netdev_priv(dev);
934 unsigned needed = calc_txlen(skb->len);
935 netdev_tx_t ret = NETDEV_TX_OK;
937 netif_dbg(ks, tx_queued, ks->netdev,
938 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
940 spin_lock(&ks->statelock);
942 if (needed > ks->tx_space) {
943 netif_stop_queue(dev);
944 ret = NETDEV_TX_BUSY;
945 } else {
946 ks->tx_space -= needed;
947 skb_queue_tail(&ks->txq, skb);
950 spin_unlock(&ks->statelock);
951 schedule_work(&ks->tx_work);
953 return ret;
957 * ks8851_rxctrl_work - work handler to change rx mode
958 * @work: The work structure this belongs to.
960 * Lock the device and issue the necessary changes to the receive mode from
961 * the network device layer. This is done so that we can do this without
962 * having to sleep whilst holding the network device lock.
964 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
965 * receive parameters are programmed, we issue a write to disable the RXQ and
966 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
967 * complete. The interrupt handler then writes the new values into the chip.
969 static void ks8851_rxctrl_work(struct work_struct *work)
971 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
973 mutex_lock(&ks->lock);
975 /* need to shutdown RXQ before modifying filter parameters */
976 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
978 mutex_unlock(&ks->lock);
981 static void ks8851_set_rx_mode(struct net_device *dev)
983 struct ks8851_net *ks = netdev_priv(dev);
984 struct ks8851_rxctrl rxctrl;
986 memset(&rxctrl, 0, sizeof(rxctrl));
988 if (dev->flags & IFF_PROMISC) {
989 /* interface to receive everything */
991 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
992 } else if (dev->flags & IFF_ALLMULTI) {
993 /* accept all multicast packets */
995 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
996 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
997 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
998 struct netdev_hw_addr *ha;
999 u32 crc;
1001 /* accept some multicast */
1003 netdev_for_each_mc_addr(ha, dev) {
1004 crc = ether_crc(ETH_ALEN, ha->addr);
1005 crc >>= (32 - 6); /* get top six bits */
1007 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1010 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1011 } else {
1012 /* just accept broadcast / unicast */
1013 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1016 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1017 RXCR1_RXBE | /* broadcast enable */
1018 RXCR1_RXE | /* RX process enable */
1019 RXCR1_RXFCE); /* enable flow control */
1021 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1023 /* schedule work to do the actual set of the data if needed */
1025 spin_lock(&ks->statelock);
1027 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1028 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1029 schedule_work(&ks->rxctrl_work);
1032 spin_unlock(&ks->statelock);
1035 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1037 struct sockaddr *sa = addr;
1039 if (netif_running(dev))
1040 return -EBUSY;
1042 if (!is_valid_ether_addr(sa->sa_data))
1043 return -EADDRNOTAVAIL;
1045 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1046 return ks8851_write_mac_addr(dev);
1049 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1051 struct ks8851_net *ks = netdev_priv(dev);
1053 if (!netif_running(dev))
1054 return -EINVAL;
1056 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1059 static const struct net_device_ops ks8851_netdev_ops = {
1060 .ndo_open = ks8851_net_open,
1061 .ndo_stop = ks8851_net_stop,
1062 .ndo_do_ioctl = ks8851_net_ioctl,
1063 .ndo_start_xmit = ks8851_start_xmit,
1064 .ndo_set_mac_address = ks8851_set_mac_address,
1065 .ndo_set_rx_mode = ks8851_set_rx_mode,
1066 .ndo_validate_addr = eth_validate_addr,
1069 /* ethtool support */
1071 static void ks8851_get_drvinfo(struct net_device *dev,
1072 struct ethtool_drvinfo *di)
1074 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1075 strlcpy(di->version, "1.00", sizeof(di->version));
1076 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1079 static u32 ks8851_get_msglevel(struct net_device *dev)
1081 struct ks8851_net *ks = netdev_priv(dev);
1082 return ks->msg_enable;
1085 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1087 struct ks8851_net *ks = netdev_priv(dev);
1088 ks->msg_enable = to;
1091 static int ks8851_get_link_ksettings(struct net_device *dev,
1092 struct ethtool_link_ksettings *cmd)
1094 struct ks8851_net *ks = netdev_priv(dev);
1096 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1098 return 0;
1101 static int ks8851_set_link_ksettings(struct net_device *dev,
1102 const struct ethtool_link_ksettings *cmd)
1104 struct ks8851_net *ks = netdev_priv(dev);
1105 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1108 static u32 ks8851_get_link(struct net_device *dev)
1110 struct ks8851_net *ks = netdev_priv(dev);
1111 return mii_link_ok(&ks->mii);
1114 static int ks8851_nway_reset(struct net_device *dev)
1116 struct ks8851_net *ks = netdev_priv(dev);
1117 return mii_nway_restart(&ks->mii);
1120 /* EEPROM support */
1122 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1124 struct ks8851_net *ks = ee->data;
1125 unsigned val;
1127 val = ks8851_rdreg16(ks, KS_EEPCR);
1129 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1130 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1131 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1134 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1136 struct ks8851_net *ks = ee->data;
1137 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1139 if (ee->drive_data)
1140 val |= EEPCR_EESRWA;
1141 if (ee->reg_data_in)
1142 val |= EEPCR_EEDO;
1143 if (ee->reg_data_clock)
1144 val |= EEPCR_EESCK;
1145 if (ee->reg_chip_select)
1146 val |= EEPCR_EECS;
1148 ks8851_wrreg16(ks, KS_EEPCR, val);
1152 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1153 * @ks: The network device state.
1155 * Check for the presence of an EEPROM, and then activate software access
1156 * to the device.
1158 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1160 if (!(ks->rc_ccr & CCR_EEPROM))
1161 return -ENOENT;
1163 mutex_lock(&ks->lock);
1165 /* start with clock low, cs high */
1166 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1167 return 0;
1171 * ks8851_eeprom_release - release the EEPROM interface
1172 * @ks: The device state
1174 * Release the software access to the device EEPROM
1176 static void ks8851_eeprom_release(struct ks8851_net *ks)
1178 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1180 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1181 mutex_unlock(&ks->lock);
1184 #define KS_EEPROM_MAGIC (0x00008851)
1186 static int ks8851_set_eeprom(struct net_device *dev,
1187 struct ethtool_eeprom *ee, u8 *data)
1189 struct ks8851_net *ks = netdev_priv(dev);
1190 int offset = ee->offset;
1191 int len = ee->len;
1192 u16 tmp;
1194 /* currently only support byte writing */
1195 if (len != 1)
1196 return -EINVAL;
1198 if (ee->magic != KS_EEPROM_MAGIC)
1199 return -EINVAL;
1201 if (ks8851_eeprom_claim(ks))
1202 return -ENOENT;
1204 eeprom_93cx6_wren(&ks->eeprom, true);
1206 /* ethtool currently only supports writing bytes, which means
1207 * we have to read/modify/write our 16bit EEPROMs */
1209 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1211 if (offset & 1) {
1212 tmp &= 0xff;
1213 tmp |= *data << 8;
1214 } else {
1215 tmp &= 0xff00;
1216 tmp |= *data;
1219 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1220 eeprom_93cx6_wren(&ks->eeprom, false);
1222 ks8851_eeprom_release(ks);
1224 return 0;
1227 static int ks8851_get_eeprom(struct net_device *dev,
1228 struct ethtool_eeprom *ee, u8 *data)
1230 struct ks8851_net *ks = netdev_priv(dev);
1231 int offset = ee->offset;
1232 int len = ee->len;
1234 /* must be 2 byte aligned */
1235 if (len & 1 || offset & 1)
1236 return -EINVAL;
1238 if (ks8851_eeprom_claim(ks))
1239 return -ENOENT;
1241 ee->magic = KS_EEPROM_MAGIC;
1243 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1244 ks8851_eeprom_release(ks);
1246 return 0;
1249 static int ks8851_get_eeprom_len(struct net_device *dev)
1251 struct ks8851_net *ks = netdev_priv(dev);
1253 /* currently, we assume it is an 93C46 attached, so return 128 */
1254 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1257 static const struct ethtool_ops ks8851_ethtool_ops = {
1258 .get_drvinfo = ks8851_get_drvinfo,
1259 .get_msglevel = ks8851_get_msglevel,
1260 .set_msglevel = ks8851_set_msglevel,
1261 .get_link = ks8851_get_link,
1262 .nway_reset = ks8851_nway_reset,
1263 .get_eeprom_len = ks8851_get_eeprom_len,
1264 .get_eeprom = ks8851_get_eeprom,
1265 .set_eeprom = ks8851_set_eeprom,
1266 .get_link_ksettings = ks8851_get_link_ksettings,
1267 .set_link_ksettings = ks8851_set_link_ksettings,
1270 /* MII interface controls */
1273 * ks8851_phy_reg - convert MII register into a KS8851 register
1274 * @reg: MII register number.
1276 * Return the KS8851 register number for the corresponding MII PHY register
1277 * if possible. Return zero if the MII register has no direct mapping to the
1278 * KS8851 register set.
1280 static int ks8851_phy_reg(int reg)
1282 switch (reg) {
1283 case MII_BMCR:
1284 return KS_P1MBCR;
1285 case MII_BMSR:
1286 return KS_P1MBSR;
1287 case MII_PHYSID1:
1288 return KS_PHY1ILR;
1289 case MII_PHYSID2:
1290 return KS_PHY1IHR;
1291 case MII_ADVERTISE:
1292 return KS_P1ANAR;
1293 case MII_LPA:
1294 return KS_P1ANLPR;
1297 return 0x0;
1301 * ks8851_phy_read - MII interface PHY register read.
1302 * @dev: The network device the PHY is on.
1303 * @phy_addr: Address of PHY (ignored as we only have one)
1304 * @reg: The register to read.
1306 * This call reads data from the PHY register specified in @reg. Since the
1307 * device does not support all the MII registers, the non-existent values
1308 * are always returned as zero.
1310 * We return zero for unsupported registers as the MII code does not check
1311 * the value returned for any error status, and simply returns it to the
1312 * caller. The mii-tool that the driver was tested with takes any -ve error
1313 * as real PHY capabilities, thus displaying incorrect data to the user.
1315 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1317 struct ks8851_net *ks = netdev_priv(dev);
1318 int ksreg;
1319 int result;
1321 ksreg = ks8851_phy_reg(reg);
1322 if (!ksreg)
1323 return 0x0; /* no error return allowed, so use zero */
1325 mutex_lock(&ks->lock);
1326 result = ks8851_rdreg16(ks, ksreg);
1327 mutex_unlock(&ks->lock);
1329 return result;
1332 static void ks8851_phy_write(struct net_device *dev,
1333 int phy, int reg, int value)
1335 struct ks8851_net *ks = netdev_priv(dev);
1336 int ksreg;
1338 ksreg = ks8851_phy_reg(reg);
1339 if (ksreg) {
1340 mutex_lock(&ks->lock);
1341 ks8851_wrreg16(ks, ksreg, value);
1342 mutex_unlock(&ks->lock);
1347 * ks8851_read_selftest - read the selftest memory info.
1348 * @ks: The device state
1350 * Read and check the TX/RX memory selftest information.
1352 static int ks8851_read_selftest(struct ks8851_net *ks)
1354 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1355 int ret = 0;
1356 unsigned rd;
1358 rd = ks8851_rdreg16(ks, KS_MBIR);
1360 if ((rd & both_done) != both_done) {
1361 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1362 return 0;
1365 if (rd & MBIR_TXMBFA) {
1366 netdev_err(ks->netdev, "TX memory selftest fail\n");
1367 ret |= 1;
1370 if (rd & MBIR_RXMBFA) {
1371 netdev_err(ks->netdev, "RX memory selftest fail\n");
1372 ret |= 2;
1375 return 0;
1378 /* driver bus management functions */
1380 #ifdef CONFIG_PM_SLEEP
1382 static int ks8851_suspend(struct device *dev)
1384 struct ks8851_net *ks = dev_get_drvdata(dev);
1385 struct net_device *netdev = ks->netdev;
1387 if (netif_running(netdev)) {
1388 netif_device_detach(netdev);
1389 ks8851_net_stop(netdev);
1392 return 0;
1395 static int ks8851_resume(struct device *dev)
1397 struct ks8851_net *ks = dev_get_drvdata(dev);
1398 struct net_device *netdev = ks->netdev;
1400 if (netif_running(netdev)) {
1401 ks8851_net_open(netdev);
1402 netif_device_attach(netdev);
1405 return 0;
1407 #endif
1409 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1411 static int ks8851_probe(struct spi_device *spi)
1413 struct net_device *ndev;
1414 struct ks8851_net *ks;
1415 int ret;
1416 unsigned cider;
1417 int gpio;
1419 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1420 if (!ndev)
1421 return -ENOMEM;
1423 spi->bits_per_word = 8;
1425 ks = netdev_priv(ndev);
1427 ks->netdev = ndev;
1428 ks->spidev = spi;
1429 ks->tx_space = 6144;
1431 gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1432 0, NULL);
1433 if (gpio == -EPROBE_DEFER) {
1434 ret = gpio;
1435 goto err_gpio;
1438 ks->gpio = gpio;
1439 if (gpio_is_valid(gpio)) {
1440 ret = devm_gpio_request_one(&spi->dev, gpio,
1441 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1442 if (ret) {
1443 dev_err(&spi->dev, "reset gpio request failed\n");
1444 goto err_gpio;
1448 ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1449 if (IS_ERR(ks->vdd_io)) {
1450 ret = PTR_ERR(ks->vdd_io);
1451 goto err_reg_io;
1454 ret = regulator_enable(ks->vdd_io);
1455 if (ret) {
1456 dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1457 ret);
1458 goto err_reg_io;
1461 ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1462 if (IS_ERR(ks->vdd_reg)) {
1463 ret = PTR_ERR(ks->vdd_reg);
1464 goto err_reg;
1467 ret = regulator_enable(ks->vdd_reg);
1468 if (ret) {
1469 dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1470 ret);
1471 goto err_reg;
1474 if (gpio_is_valid(gpio)) {
1475 usleep_range(10000, 11000);
1476 gpio_set_value(gpio, 1);
1479 mutex_init(&ks->lock);
1480 spin_lock_init(&ks->statelock);
1482 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1483 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1485 /* initialise pre-made spi transfer messages */
1487 spi_message_init(&ks->spi_msg1);
1488 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1490 spi_message_init(&ks->spi_msg2);
1491 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1492 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1494 /* setup EEPROM state */
1496 ks->eeprom.data = ks;
1497 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1498 ks->eeprom.register_read = ks8851_eeprom_regread;
1499 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1501 /* setup mii state */
1502 ks->mii.dev = ndev;
1503 ks->mii.phy_id = 1,
1504 ks->mii.phy_id_mask = 1;
1505 ks->mii.reg_num_mask = 0xf;
1506 ks->mii.mdio_read = ks8851_phy_read;
1507 ks->mii.mdio_write = ks8851_phy_write;
1509 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1511 /* set the default message enable */
1512 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1513 NETIF_MSG_PROBE |
1514 NETIF_MSG_LINK));
1516 skb_queue_head_init(&ks->txq);
1518 ndev->ethtool_ops = &ks8851_ethtool_ops;
1519 SET_NETDEV_DEV(ndev, &spi->dev);
1521 spi_set_drvdata(spi, ks);
1523 netif_carrier_off(ks->netdev);
1524 ndev->if_port = IF_PORT_100BASET;
1525 ndev->netdev_ops = &ks8851_netdev_ops;
1526 ndev->irq = spi->irq;
1528 /* issue a global soft reset to reset the device. */
1529 ks8851_soft_reset(ks, GRR_GSR);
1531 /* simple check for a valid chip being connected to the bus */
1532 cider = ks8851_rdreg16(ks, KS_CIDER);
1533 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1534 dev_err(&spi->dev, "failed to read device ID\n");
1535 ret = -ENODEV;
1536 goto err_id;
1539 /* cache the contents of the CCR register for EEPROM, etc. */
1540 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1542 ks8851_read_selftest(ks);
1543 ks8851_init_mac(ks);
1545 ret = register_netdev(ndev);
1546 if (ret) {
1547 dev_err(&spi->dev, "failed to register network device\n");
1548 goto err_netdev;
1551 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1552 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1553 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1555 return 0;
1557 err_netdev:
1558 err_id:
1559 if (gpio_is_valid(gpio))
1560 gpio_set_value(gpio, 0);
1561 regulator_disable(ks->vdd_reg);
1562 err_reg:
1563 regulator_disable(ks->vdd_io);
1564 err_reg_io:
1565 err_gpio:
1566 free_netdev(ndev);
1567 return ret;
1570 static int ks8851_remove(struct spi_device *spi)
1572 struct ks8851_net *priv = spi_get_drvdata(spi);
1574 if (netif_msg_drv(priv))
1575 dev_info(&spi->dev, "remove\n");
1577 unregister_netdev(priv->netdev);
1578 if (gpio_is_valid(priv->gpio))
1579 gpio_set_value(priv->gpio, 0);
1580 regulator_disable(priv->vdd_reg);
1581 regulator_disable(priv->vdd_io);
1582 free_netdev(priv->netdev);
1584 return 0;
1587 static const struct of_device_id ks8851_match_table[] = {
1588 { .compatible = "micrel,ks8851" },
1591 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1593 static struct spi_driver ks8851_driver = {
1594 .driver = {
1595 .name = "ks8851",
1596 .of_match_table = ks8851_match_table,
1597 .pm = &ks8851_pm_ops,
1599 .probe = ks8851_probe,
1600 .remove = ks8851_remove,
1602 module_spi_driver(ks8851_driver);
1604 MODULE_DESCRIPTION("KS8851 Network driver");
1605 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1606 MODULE_LICENSE("GPL");
1608 module_param_named(message, msg_enable, int, 0);
1609 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1610 MODULE_ALIAS("spi:ks8851");