Linux 4.19.133
[linux/fpc-iii.git] / drivers / net / ethernet / qlogic / qed / qed_mcp.c
blob938ace333af10ca38da2c253d7911fbe1a29e764
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
51 #define QED_MCP_RESP_ITER_US 10
53 #define QED_DRV_MB_MAX_RETRIES (500 * 1000) /* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES (50 * 1000) /* Account for 500 msec */
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val) \
57 qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58 _val)
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61 qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val) \
64 DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65 offsetof(struct public_drv_mb, _field), _val)
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field) \
68 DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69 offsetof(struct public_drv_mb, _field))
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72 DRV_ID_PDA_COMP_VER_SHIFT)
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
78 if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79 return false;
80 return true;
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
85 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86 PUBLIC_PORT);
87 u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
89 p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90 MFW_PORT(p_hwfn));
91 DP_VERBOSE(p_hwfn, QED_MSG_SP,
92 "port_addr = 0x%x, port_id 0x%02x\n",
93 p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
98 u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99 u32 tmp, i;
101 if (!p_hwfn->mcp_info->public_base)
102 return;
104 for (i = 0; i < length; i++) {
105 tmp = qed_rd(p_hwfn, p_ptt,
106 p_hwfn->mcp_info->mfw_mb_addr +
107 (i << 2) + sizeof(u32));
109 /* The MB data is actually BE; Need to force it to cpu */
110 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111 be32_to_cpu((__force __be32)tmp);
115 struct qed_mcp_cmd_elem {
116 struct list_head list;
117 struct qed_mcp_mb_params *p_mb_params;
118 u16 expected_seq_num;
119 bool b_is_completed;
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125 struct qed_mcp_mb_params *p_mb_params,
126 u16 expected_seq_num)
128 struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
130 p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131 if (!p_cmd_elem)
132 goto out;
134 p_cmd_elem->p_mb_params = p_mb_params;
135 p_cmd_elem->expected_seq_num = expected_seq_num;
136 list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138 return p_cmd_elem;
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143 struct qed_mcp_cmd_elem *p_cmd_elem)
145 list_del(&p_cmd_elem->list);
146 kfree(p_cmd_elem);
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151 u16 seq_num)
153 struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
155 list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156 if (p_cmd_elem->expected_seq_num == seq_num)
157 return p_cmd_elem;
160 return NULL;
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
165 if (p_hwfn->mcp_info) {
166 struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
168 kfree(p_hwfn->mcp_info->mfw_mb_cur);
169 kfree(p_hwfn->mcp_info->mfw_mb_shadow);
171 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172 list_for_each_entry_safe(p_cmd_elem,
173 p_tmp,
174 &p_hwfn->mcp_info->cmd_list, list) {
175 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
177 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
180 kfree(p_hwfn->mcp_info);
181 p_hwfn->mcp_info = NULL;
183 return 0;
186 /* Maximum of 1 sec to wait for the SHMEM ready indication */
187 #define QED_MCP_SHMEM_RDY_MAX_RETRIES 20
188 #define QED_MCP_SHMEM_RDY_ITER_MS 50
190 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
192 struct qed_mcp_info *p_info = p_hwfn->mcp_info;
193 u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES;
194 u8 msec = QED_MCP_SHMEM_RDY_ITER_MS;
195 u32 drv_mb_offsize, mfw_mb_offsize;
196 u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
198 p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
199 if (!p_info->public_base) {
200 DP_NOTICE(p_hwfn,
201 "The address of the MCP scratch-pad is not configured\n");
202 return -EINVAL;
205 p_info->public_base |= GRCBASE_MCP;
207 /* Get the MFW MB address and number of supported messages */
208 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209 SECTION_OFFSIZE_ADDR(p_info->public_base,
210 PUBLIC_MFW_MB));
211 p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212 p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt,
213 p_info->mfw_mb_addr +
214 offsetof(struct public_mfw_mb,
215 sup_msgs));
217 /* The driver can notify that there was an MCP reset, and might read the
218 * SHMEM values before the MFW has completed initializing them.
219 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a
220 * data ready indication.
222 while (!p_info->mfw_mb_length && --cnt) {
223 msleep(msec);
224 p_info->mfw_mb_length =
225 (u16)qed_rd(p_hwfn, p_ptt,
226 p_info->mfw_mb_addr +
227 offsetof(struct public_mfw_mb, sup_msgs));
230 if (!cnt) {
231 DP_NOTICE(p_hwfn,
232 "Failed to get the SHMEM ready notification after %d msec\n",
233 QED_MCP_SHMEM_RDY_MAX_RETRIES * msec);
234 return -EBUSY;
237 /* Calculate the driver and MFW mailbox address */
238 drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
239 SECTION_OFFSIZE_ADDR(p_info->public_base,
240 PUBLIC_DRV_MB));
241 p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
242 DP_VERBOSE(p_hwfn, QED_MSG_SP,
243 "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
244 drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
246 /* Get the current driver mailbox sequence before sending
247 * the first command
249 p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
250 DRV_MSG_SEQ_NUMBER_MASK;
252 /* Get current FW pulse sequence */
253 p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
254 DRV_PULSE_SEQ_MASK;
256 p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
258 return 0;
261 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
263 struct qed_mcp_info *p_info;
264 u32 size;
266 /* Allocate mcp_info structure */
267 p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
268 if (!p_hwfn->mcp_info)
269 goto err;
270 p_info = p_hwfn->mcp_info;
272 /* Initialize the MFW spinlock */
273 spin_lock_init(&p_info->cmd_lock);
274 spin_lock_init(&p_info->link_lock);
276 INIT_LIST_HEAD(&p_info->cmd_list);
278 if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
279 DP_NOTICE(p_hwfn, "MCP is not initialized\n");
280 /* Do not free mcp_info here, since public_base indicate that
281 * the MCP is not initialized
283 return 0;
286 size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
287 p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
288 p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
289 if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
290 goto err;
292 return 0;
294 err:
295 qed_mcp_free(p_hwfn);
296 return -ENOMEM;
299 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
300 struct qed_ptt *p_ptt)
302 u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
304 /* Use MCP history register to check if MCP reset occurred between init
305 * time and now.
307 if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
308 DP_VERBOSE(p_hwfn,
309 QED_MSG_SP,
310 "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
311 p_hwfn->mcp_info->mcp_hist, generic_por_0);
313 qed_load_mcp_offsets(p_hwfn, p_ptt);
314 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
318 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
320 u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0;
321 int rc = 0;
323 if (p_hwfn->mcp_info->b_block_cmd) {
324 DP_NOTICE(p_hwfn,
325 "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n");
326 return -EBUSY;
329 /* Ensure that only a single thread is accessing the mailbox */
330 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
332 org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
334 /* Set drv command along with the updated sequence */
335 qed_mcp_reread_offsets(p_hwfn, p_ptt);
336 seq = ++p_hwfn->mcp_info->drv_mb_seq;
337 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
339 do {
340 /* Wait for MFW response */
341 udelay(delay);
342 /* Give the FW up to 500 second (50*1000*10usec) */
343 } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
344 MISCS_REG_GENERIC_POR_0)) &&
345 (cnt++ < QED_MCP_RESET_RETRIES));
347 if (org_mcp_reset_seq !=
348 qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
349 DP_VERBOSE(p_hwfn, QED_MSG_SP,
350 "MCP was reset after %d usec\n", cnt * delay);
351 } else {
352 DP_ERR(p_hwfn, "Failed to reset MCP\n");
353 rc = -EAGAIN;
356 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
358 return rc;
361 /* Must be called while cmd_lock is acquired */
362 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
364 struct qed_mcp_cmd_elem *p_cmd_elem;
366 /* There is at most one pending command at a certain time, and if it
367 * exists - it is placed at the HEAD of the list.
369 if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
370 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
371 struct qed_mcp_cmd_elem, list);
372 return !p_cmd_elem->b_is_completed;
375 return false;
378 /* Must be called while cmd_lock is acquired */
379 static int
380 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
382 struct qed_mcp_mb_params *p_mb_params;
383 struct qed_mcp_cmd_elem *p_cmd_elem;
384 u32 mcp_resp;
385 u16 seq_num;
387 mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
388 seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
390 /* Return if no new non-handled response has been received */
391 if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
392 return -EAGAIN;
394 p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
395 if (!p_cmd_elem) {
396 DP_ERR(p_hwfn,
397 "Failed to find a pending mailbox cmd that expects sequence number %d\n",
398 seq_num);
399 return -EINVAL;
402 p_mb_params = p_cmd_elem->p_mb_params;
404 /* Get the MFW response along with the sequence number */
405 p_mb_params->mcp_resp = mcp_resp;
407 /* Get the MFW param */
408 p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
410 /* Get the union data */
411 if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
412 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
413 offsetof(struct public_drv_mb,
414 union_data);
415 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
416 union_data_addr, p_mb_params->data_dst_size);
419 p_cmd_elem->b_is_completed = true;
421 return 0;
424 /* Must be called while cmd_lock is acquired */
425 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
426 struct qed_ptt *p_ptt,
427 struct qed_mcp_mb_params *p_mb_params,
428 u16 seq_num)
430 union drv_union_data union_data;
431 u32 union_data_addr;
433 /* Set the union data */
434 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
435 offsetof(struct public_drv_mb, union_data);
436 memset(&union_data, 0, sizeof(union_data));
437 if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
438 memcpy(&union_data, p_mb_params->p_data_src,
439 p_mb_params->data_src_size);
440 qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
441 sizeof(union_data));
443 /* Set the drv param */
444 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
446 /* Set the drv command along with the sequence number */
447 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
449 DP_VERBOSE(p_hwfn, QED_MSG_SP,
450 "MFW mailbox: command 0x%08x param 0x%08x\n",
451 (p_mb_params->cmd | seq_num), p_mb_params->param);
454 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd)
456 p_hwfn->mcp_info->b_block_cmd = block_cmd;
458 DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n",
459 block_cmd ? "Block" : "Unblock");
462 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn,
463 struct qed_ptt *p_ptt)
465 u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2;
466 u32 delay = QED_MCP_RESP_ITER_US;
468 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
469 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
470 cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
471 udelay(delay);
472 cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
473 udelay(delay);
474 cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
476 DP_NOTICE(p_hwfn,
477 "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n",
478 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2);
481 static int
482 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
483 struct qed_ptt *p_ptt,
484 struct qed_mcp_mb_params *p_mb_params,
485 u32 max_retries, u32 usecs)
487 u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000);
488 struct qed_mcp_cmd_elem *p_cmd_elem;
489 u16 seq_num;
490 int rc = 0;
492 /* Wait until the mailbox is non-occupied */
493 do {
494 /* Exit the loop if there is no pending command, or if the
495 * pending command is completed during this iteration.
496 * The spinlock stays locked until the command is sent.
499 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
501 if (!qed_mcp_has_pending_cmd(p_hwfn))
502 break;
504 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
505 if (!rc)
506 break;
507 else if (rc != -EAGAIN)
508 goto err;
510 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
512 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
513 msleep(msecs);
514 else
515 udelay(usecs);
516 } while (++cnt < max_retries);
518 if (cnt >= max_retries) {
519 DP_NOTICE(p_hwfn,
520 "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
521 p_mb_params->cmd, p_mb_params->param);
522 return -EAGAIN;
525 /* Send the mailbox command */
526 qed_mcp_reread_offsets(p_hwfn, p_ptt);
527 seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
528 p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
529 if (!p_cmd_elem) {
530 rc = -ENOMEM;
531 goto err;
534 __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
535 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
537 /* Wait for the MFW response */
538 do {
539 /* Exit the loop if the command is already completed, or if the
540 * command is completed during this iteration.
541 * The spinlock stays locked until the list element is removed.
544 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
545 msleep(msecs);
546 else
547 udelay(usecs);
549 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
551 if (p_cmd_elem->b_is_completed)
552 break;
554 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
555 if (!rc)
556 break;
557 else if (rc != -EAGAIN)
558 goto err;
560 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
561 } while (++cnt < max_retries);
563 if (cnt >= max_retries) {
564 DP_NOTICE(p_hwfn,
565 "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
566 p_mb_params->cmd, p_mb_params->param);
567 qed_mcp_print_cpu_info(p_hwfn, p_ptt);
569 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
570 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
571 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
573 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK))
574 qed_mcp_cmd_set_blocking(p_hwfn, true);
576 return -EAGAIN;
579 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
580 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
582 DP_VERBOSE(p_hwfn,
583 QED_MSG_SP,
584 "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
585 p_mb_params->mcp_resp,
586 p_mb_params->mcp_param,
587 (cnt * usecs) / 1000, (cnt * usecs) % 1000);
589 /* Clear the sequence number from the MFW response */
590 p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
592 return 0;
594 err:
595 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
596 return rc;
599 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
600 struct qed_ptt *p_ptt,
601 struct qed_mcp_mb_params *p_mb_params)
603 size_t union_data_size = sizeof(union drv_union_data);
604 u32 max_retries = QED_DRV_MB_MAX_RETRIES;
605 u32 usecs = QED_MCP_RESP_ITER_US;
607 /* MCP not initialized */
608 if (!qed_mcp_is_init(p_hwfn)) {
609 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
610 return -EBUSY;
613 if (p_hwfn->mcp_info->b_block_cmd) {
614 DP_NOTICE(p_hwfn,
615 "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n",
616 p_mb_params->cmd, p_mb_params->param);
617 return -EBUSY;
620 if (p_mb_params->data_src_size > union_data_size ||
621 p_mb_params->data_dst_size > union_data_size) {
622 DP_ERR(p_hwfn,
623 "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
624 p_mb_params->data_src_size,
625 p_mb_params->data_dst_size, union_data_size);
626 return -EINVAL;
629 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) {
630 max_retries = DIV_ROUND_UP(max_retries, 1000);
631 usecs *= 1000;
634 return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
635 usecs);
638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
639 struct qed_ptt *p_ptt,
640 u32 cmd,
641 u32 param,
642 u32 *o_mcp_resp,
643 u32 *o_mcp_param)
645 struct qed_mcp_mb_params mb_params;
646 int rc;
648 memset(&mb_params, 0, sizeof(mb_params));
649 mb_params.cmd = cmd;
650 mb_params.param = param;
652 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
653 if (rc)
654 return rc;
656 *o_mcp_resp = mb_params.mcp_resp;
657 *o_mcp_param = mb_params.mcp_param;
659 return 0;
662 static int
663 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
664 struct qed_ptt *p_ptt,
665 u32 cmd,
666 u32 param,
667 u32 *o_mcp_resp,
668 u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
670 struct qed_mcp_mb_params mb_params;
671 int rc;
673 memset(&mb_params, 0, sizeof(mb_params));
674 mb_params.cmd = cmd;
675 mb_params.param = param;
676 mb_params.p_data_src = i_buf;
677 mb_params.data_src_size = (u8)i_txn_size;
678 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
679 if (rc)
680 return rc;
682 *o_mcp_resp = mb_params.mcp_resp;
683 *o_mcp_param = mb_params.mcp_param;
685 /* nvm_info needs to be updated */
686 p_hwfn->nvm_info.valid = false;
688 return 0;
691 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
692 struct qed_ptt *p_ptt,
693 u32 cmd,
694 u32 param,
695 u32 *o_mcp_resp,
696 u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
698 struct qed_mcp_mb_params mb_params;
699 u8 raw_data[MCP_DRV_NVM_BUF_LEN];
700 int rc;
702 memset(&mb_params, 0, sizeof(mb_params));
703 mb_params.cmd = cmd;
704 mb_params.param = param;
705 mb_params.p_data_dst = raw_data;
707 /* Use the maximal value since the actual one is part of the response */
708 mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
710 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
711 if (rc)
712 return rc;
714 *o_mcp_resp = mb_params.mcp_resp;
715 *o_mcp_param = mb_params.mcp_param;
717 *o_txn_size = *o_mcp_param;
718 memcpy(o_buf, raw_data, *o_txn_size);
720 return 0;
723 static bool
724 qed_mcp_can_force_load(u8 drv_role,
725 u8 exist_drv_role,
726 enum qed_override_force_load override_force_load)
728 bool can_force_load = false;
730 switch (override_force_load) {
731 case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
732 can_force_load = true;
733 break;
734 case QED_OVERRIDE_FORCE_LOAD_NEVER:
735 can_force_load = false;
736 break;
737 default:
738 can_force_load = (drv_role == DRV_ROLE_OS &&
739 exist_drv_role == DRV_ROLE_PREBOOT) ||
740 (drv_role == DRV_ROLE_KDUMP &&
741 exist_drv_role == DRV_ROLE_OS);
742 break;
745 return can_force_load;
748 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
749 struct qed_ptt *p_ptt)
751 u32 resp = 0, param = 0;
752 int rc;
754 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
755 &resp, &param);
756 if (rc)
757 DP_NOTICE(p_hwfn,
758 "Failed to send cancel load request, rc = %d\n", rc);
760 return rc;
763 #define CONFIG_QEDE_BITMAP_IDX BIT(0)
764 #define CONFIG_QED_SRIOV_BITMAP_IDX BIT(1)
765 #define CONFIG_QEDR_BITMAP_IDX BIT(2)
766 #define CONFIG_QEDF_BITMAP_IDX BIT(4)
767 #define CONFIG_QEDI_BITMAP_IDX BIT(5)
768 #define CONFIG_QED_LL2_BITMAP_IDX BIT(6)
770 static u32 qed_get_config_bitmap(void)
772 u32 config_bitmap = 0x0;
774 if (IS_ENABLED(CONFIG_QEDE))
775 config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
777 if (IS_ENABLED(CONFIG_QED_SRIOV))
778 config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
780 if (IS_ENABLED(CONFIG_QED_RDMA))
781 config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
783 if (IS_ENABLED(CONFIG_QED_FCOE))
784 config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
786 if (IS_ENABLED(CONFIG_QED_ISCSI))
787 config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
789 if (IS_ENABLED(CONFIG_QED_LL2))
790 config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
792 return config_bitmap;
795 struct qed_load_req_in_params {
796 u8 hsi_ver;
797 #define QED_LOAD_REQ_HSI_VER_DEFAULT 0
798 #define QED_LOAD_REQ_HSI_VER_1 1
799 u32 drv_ver_0;
800 u32 drv_ver_1;
801 u32 fw_ver;
802 u8 drv_role;
803 u8 timeout_val;
804 u8 force_cmd;
805 bool avoid_eng_reset;
808 struct qed_load_req_out_params {
809 u32 load_code;
810 u32 exist_drv_ver_0;
811 u32 exist_drv_ver_1;
812 u32 exist_fw_ver;
813 u8 exist_drv_role;
814 u8 mfw_hsi_ver;
815 bool drv_exists;
818 static int
819 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
820 struct qed_ptt *p_ptt,
821 struct qed_load_req_in_params *p_in_params,
822 struct qed_load_req_out_params *p_out_params)
824 struct qed_mcp_mb_params mb_params;
825 struct load_req_stc load_req;
826 struct load_rsp_stc load_rsp;
827 u32 hsi_ver;
828 int rc;
830 memset(&load_req, 0, sizeof(load_req));
831 load_req.drv_ver_0 = p_in_params->drv_ver_0;
832 load_req.drv_ver_1 = p_in_params->drv_ver_1;
833 load_req.fw_ver = p_in_params->fw_ver;
834 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
835 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
836 p_in_params->timeout_val);
837 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
838 p_in_params->force_cmd);
839 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
840 p_in_params->avoid_eng_reset);
842 hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
843 DRV_ID_MCP_HSI_VER_CURRENT :
844 (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
846 memset(&mb_params, 0, sizeof(mb_params));
847 mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
848 mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
849 mb_params.p_data_src = &load_req;
850 mb_params.data_src_size = sizeof(load_req);
851 mb_params.p_data_dst = &load_rsp;
852 mb_params.data_dst_size = sizeof(load_rsp);
853 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
855 DP_VERBOSE(p_hwfn, QED_MSG_SP,
856 "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
857 mb_params.param,
858 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
859 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
860 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
861 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
863 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
864 DP_VERBOSE(p_hwfn, QED_MSG_SP,
865 "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
866 load_req.drv_ver_0,
867 load_req.drv_ver_1,
868 load_req.fw_ver,
869 load_req.misc0,
870 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
871 QED_MFW_GET_FIELD(load_req.misc0,
872 LOAD_REQ_LOCK_TO),
873 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
874 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
877 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
878 if (rc) {
879 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
880 return rc;
883 DP_VERBOSE(p_hwfn, QED_MSG_SP,
884 "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
885 p_out_params->load_code = mb_params.mcp_resp;
887 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
888 p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
889 DP_VERBOSE(p_hwfn,
890 QED_MSG_SP,
891 "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
892 load_rsp.drv_ver_0,
893 load_rsp.drv_ver_1,
894 load_rsp.fw_ver,
895 load_rsp.misc0,
896 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
897 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
898 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
900 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
901 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
902 p_out_params->exist_fw_ver = load_rsp.fw_ver;
903 p_out_params->exist_drv_role =
904 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
905 p_out_params->mfw_hsi_ver =
906 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
907 p_out_params->drv_exists =
908 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
909 LOAD_RSP_FLAGS0_DRV_EXISTS;
912 return 0;
915 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
916 enum qed_drv_role drv_role,
917 u8 *p_mfw_drv_role)
919 switch (drv_role) {
920 case QED_DRV_ROLE_OS:
921 *p_mfw_drv_role = DRV_ROLE_OS;
922 break;
923 case QED_DRV_ROLE_KDUMP:
924 *p_mfw_drv_role = DRV_ROLE_KDUMP;
925 break;
926 default:
927 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
928 return -EINVAL;
931 return 0;
934 enum qed_load_req_force {
935 QED_LOAD_REQ_FORCE_NONE,
936 QED_LOAD_REQ_FORCE_PF,
937 QED_LOAD_REQ_FORCE_ALL,
940 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
942 enum qed_load_req_force force_cmd,
943 u8 *p_mfw_force_cmd)
945 switch (force_cmd) {
946 case QED_LOAD_REQ_FORCE_NONE:
947 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
948 break;
949 case QED_LOAD_REQ_FORCE_PF:
950 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
951 break;
952 case QED_LOAD_REQ_FORCE_ALL:
953 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
954 break;
958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
959 struct qed_ptt *p_ptt,
960 struct qed_load_req_params *p_params)
962 struct qed_load_req_out_params out_params;
963 struct qed_load_req_in_params in_params;
964 u8 mfw_drv_role, mfw_force_cmd;
965 int rc;
967 memset(&in_params, 0, sizeof(in_params));
968 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
969 in_params.drv_ver_0 = QED_VERSION;
970 in_params.drv_ver_1 = qed_get_config_bitmap();
971 in_params.fw_ver = STORM_FW_VERSION;
972 rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
973 if (rc)
974 return rc;
976 in_params.drv_role = mfw_drv_role;
977 in_params.timeout_val = p_params->timeout_val;
978 qed_get_mfw_force_cmd(p_hwfn,
979 QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
981 in_params.force_cmd = mfw_force_cmd;
982 in_params.avoid_eng_reset = p_params->avoid_eng_reset;
984 memset(&out_params, 0, sizeof(out_params));
985 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
986 if (rc)
987 return rc;
989 /* First handle cases where another load request should/might be sent:
990 * - MFW expects the old interface [HSI version = 1]
991 * - MFW responds that a force load request is required
993 if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
994 DP_INFO(p_hwfn,
995 "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
997 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
998 memset(&out_params, 0, sizeof(out_params));
999 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
1000 if (rc)
1001 return rc;
1002 } else if (out_params.load_code ==
1003 FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
1004 if (qed_mcp_can_force_load(in_params.drv_role,
1005 out_params.exist_drv_role,
1006 p_params->override_force_load)) {
1007 DP_INFO(p_hwfn,
1008 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
1009 in_params.drv_role, in_params.fw_ver,
1010 in_params.drv_ver_0, in_params.drv_ver_1,
1011 out_params.exist_drv_role,
1012 out_params.exist_fw_ver,
1013 out_params.exist_drv_ver_0,
1014 out_params.exist_drv_ver_1);
1016 qed_get_mfw_force_cmd(p_hwfn,
1017 QED_LOAD_REQ_FORCE_ALL,
1018 &mfw_force_cmd);
1020 in_params.force_cmd = mfw_force_cmd;
1021 memset(&out_params, 0, sizeof(out_params));
1022 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
1023 &out_params);
1024 if (rc)
1025 return rc;
1026 } else {
1027 DP_NOTICE(p_hwfn,
1028 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
1029 in_params.drv_role, in_params.fw_ver,
1030 in_params.drv_ver_0, in_params.drv_ver_1,
1031 out_params.exist_drv_role,
1032 out_params.exist_fw_ver,
1033 out_params.exist_drv_ver_0,
1034 out_params.exist_drv_ver_1);
1035 DP_NOTICE(p_hwfn,
1036 "Avoid sending a force load request to prevent disruption of active PFs\n");
1038 qed_mcp_cancel_load_req(p_hwfn, p_ptt);
1039 return -EBUSY;
1043 /* Now handle the other types of responses.
1044 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
1045 * expected here after the additional revised load requests were sent.
1047 switch (out_params.load_code) {
1048 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1049 case FW_MSG_CODE_DRV_LOAD_PORT:
1050 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1051 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
1052 out_params.drv_exists) {
1053 /* The role and fw/driver version match, but the PF is
1054 * already loaded and has not been unloaded gracefully.
1056 DP_NOTICE(p_hwfn,
1057 "PF is already loaded\n");
1058 return -EINVAL;
1060 break;
1061 default:
1062 DP_NOTICE(p_hwfn,
1063 "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
1064 out_params.load_code);
1065 return -EBUSY;
1068 p_params->load_code = out_params.load_code;
1070 return 0;
1073 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1075 struct qed_mcp_mb_params mb_params;
1076 u32 wol_param;
1078 switch (p_hwfn->cdev->wol_config) {
1079 case QED_OV_WOL_DISABLED:
1080 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
1081 break;
1082 case QED_OV_WOL_ENABLED:
1083 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
1084 break;
1085 default:
1086 DP_NOTICE(p_hwfn,
1087 "Unknown WoL configuration %02x\n",
1088 p_hwfn->cdev->wol_config);
1089 /* Fallthrough */
1090 case QED_OV_WOL_DEFAULT:
1091 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1094 memset(&mb_params, 0, sizeof(mb_params));
1095 mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ;
1096 mb_params.param = wol_param;
1097 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
1099 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1102 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1104 struct qed_mcp_mb_params mb_params;
1105 struct mcp_mac wol_mac;
1107 memset(&mb_params, 0, sizeof(mb_params));
1108 mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1110 /* Set the primary MAC if WoL is enabled */
1111 if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1112 u8 *p_mac = p_hwfn->cdev->wol_mac;
1114 memset(&wol_mac, 0, sizeof(wol_mac));
1115 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1116 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1117 p_mac[4] << 8 | p_mac[5];
1119 DP_VERBOSE(p_hwfn,
1120 (QED_MSG_SP | NETIF_MSG_IFDOWN),
1121 "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1122 p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1124 mb_params.p_data_src = &wol_mac;
1125 mb_params.data_src_size = sizeof(wol_mac);
1128 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1131 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1132 struct qed_ptt *p_ptt)
1134 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1135 PUBLIC_PATH);
1136 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1137 u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1138 QED_PATH_ID(p_hwfn));
1139 u32 disabled_vfs[VF_MAX_STATIC / 32];
1140 int i;
1142 DP_VERBOSE(p_hwfn,
1143 QED_MSG_SP,
1144 "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1145 mfw_path_offsize, path_addr);
1147 for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1148 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1149 path_addr +
1150 offsetof(struct public_path,
1151 mcp_vf_disabled) +
1152 sizeof(u32) * i);
1153 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1154 "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1155 i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1158 if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1159 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1162 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1163 struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1165 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1166 PUBLIC_FUNC);
1167 u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1168 u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1169 MCP_PF_ID(p_hwfn));
1170 struct qed_mcp_mb_params mb_params;
1171 int rc;
1172 int i;
1174 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1175 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1176 "Acking VFs [%08x,...,%08x] - %08x\n",
1177 i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1179 memset(&mb_params, 0, sizeof(mb_params));
1180 mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1181 mb_params.p_data_src = vfs_to_ack;
1182 mb_params.data_src_size = VF_MAX_STATIC / 8;
1183 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1184 if (rc) {
1185 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1186 return -EBUSY;
1189 /* Clear the ACK bits */
1190 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1191 qed_wr(p_hwfn, p_ptt,
1192 func_addr +
1193 offsetof(struct public_func, drv_ack_vf_disabled) +
1194 i * sizeof(u32), 0);
1196 return rc;
1199 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1200 struct qed_ptt *p_ptt)
1202 u32 transceiver_state;
1204 transceiver_state = qed_rd(p_hwfn, p_ptt,
1205 p_hwfn->mcp_info->port_addr +
1206 offsetof(struct public_port,
1207 transceiver_data));
1209 DP_VERBOSE(p_hwfn,
1210 (NETIF_MSG_HW | QED_MSG_SP),
1211 "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1212 transceiver_state,
1213 (u32)(p_hwfn->mcp_info->port_addr +
1214 offsetof(struct public_port, transceiver_data)));
1216 transceiver_state = GET_FIELD(transceiver_state,
1217 ETH_TRANSCEIVER_STATE);
1219 if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1220 DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1221 else
1222 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1225 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1226 struct qed_ptt *p_ptt,
1227 struct qed_mcp_link_state *p_link)
1229 u32 eee_status, val;
1231 p_link->eee_adv_caps = 0;
1232 p_link->eee_lp_adv_caps = 0;
1233 eee_status = qed_rd(p_hwfn,
1234 p_ptt,
1235 p_hwfn->mcp_info->port_addr +
1236 offsetof(struct public_port, eee_status));
1237 p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1238 val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1239 if (val & EEE_1G_ADV)
1240 p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1241 if (val & EEE_10G_ADV)
1242 p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1243 val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1244 if (val & EEE_1G_ADV)
1245 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1246 if (val & EEE_10G_ADV)
1247 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1250 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1251 struct qed_ptt *p_ptt, bool b_reset)
1253 struct qed_mcp_link_state *p_link;
1254 u8 max_bw, min_bw;
1255 u32 status = 0;
1257 /* Prevent SW/attentions from doing this at the same time */
1258 spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1260 p_link = &p_hwfn->mcp_info->link_output;
1261 memset(p_link, 0, sizeof(*p_link));
1262 if (!b_reset) {
1263 status = qed_rd(p_hwfn, p_ptt,
1264 p_hwfn->mcp_info->port_addr +
1265 offsetof(struct public_port, link_status));
1266 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1267 "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1268 status,
1269 (u32)(p_hwfn->mcp_info->port_addr +
1270 offsetof(struct public_port, link_status)));
1271 } else {
1272 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1273 "Resetting link indications\n");
1274 goto out;
1277 if (p_hwfn->b_drv_link_init)
1278 p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1279 else
1280 p_link->link_up = false;
1282 p_link->full_duplex = true;
1283 switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1284 case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1285 p_link->speed = 100000;
1286 break;
1287 case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1288 p_link->speed = 50000;
1289 break;
1290 case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1291 p_link->speed = 40000;
1292 break;
1293 case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1294 p_link->speed = 25000;
1295 break;
1296 case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1297 p_link->speed = 20000;
1298 break;
1299 case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1300 p_link->speed = 10000;
1301 break;
1302 case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1303 p_link->full_duplex = false;
1304 /* Fall-through */
1305 case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1306 p_link->speed = 1000;
1307 break;
1308 default:
1309 p_link->speed = 0;
1310 p_link->link_up = 0;
1313 if (p_link->link_up && p_link->speed)
1314 p_link->line_speed = p_link->speed;
1315 else
1316 p_link->line_speed = 0;
1318 max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1319 min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1321 /* Max bandwidth configuration */
1322 __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1324 /* Min bandwidth configuration */
1325 __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1326 qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1327 p_link->min_pf_rate);
1329 p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1330 p_link->an_complete = !!(status &
1331 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1332 p_link->parallel_detection = !!(status &
1333 LINK_STATUS_PARALLEL_DETECTION_USED);
1334 p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1336 p_link->partner_adv_speed |=
1337 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1338 QED_LINK_PARTNER_SPEED_1G_FD : 0;
1339 p_link->partner_adv_speed |=
1340 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1341 QED_LINK_PARTNER_SPEED_1G_HD : 0;
1342 p_link->partner_adv_speed |=
1343 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1344 QED_LINK_PARTNER_SPEED_10G : 0;
1345 p_link->partner_adv_speed |=
1346 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1347 QED_LINK_PARTNER_SPEED_20G : 0;
1348 p_link->partner_adv_speed |=
1349 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1350 QED_LINK_PARTNER_SPEED_25G : 0;
1351 p_link->partner_adv_speed |=
1352 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1353 QED_LINK_PARTNER_SPEED_40G : 0;
1354 p_link->partner_adv_speed |=
1355 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1356 QED_LINK_PARTNER_SPEED_50G : 0;
1357 p_link->partner_adv_speed |=
1358 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1359 QED_LINK_PARTNER_SPEED_100G : 0;
1361 p_link->partner_tx_flow_ctrl_en =
1362 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1363 p_link->partner_rx_flow_ctrl_en =
1364 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1366 switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1367 case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1368 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1369 break;
1370 case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1371 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1372 break;
1373 case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1374 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1375 break;
1376 default:
1377 p_link->partner_adv_pause = 0;
1380 p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1382 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1383 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1385 qed_link_update(p_hwfn, p_ptt);
1386 out:
1387 spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1390 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1392 struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1393 struct qed_mcp_mb_params mb_params;
1394 struct eth_phy_cfg phy_cfg;
1395 int rc = 0;
1396 u32 cmd;
1398 /* Set the shmem configuration according to params */
1399 memset(&phy_cfg, 0, sizeof(phy_cfg));
1400 cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1401 if (!params->speed.autoneg)
1402 phy_cfg.speed = params->speed.forced_speed;
1403 phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1404 phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1405 phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1406 phy_cfg.adv_speed = params->speed.advertised_speeds;
1407 phy_cfg.loopback_mode = params->loopback_mode;
1409 /* There are MFWs that share this capability regardless of whether
1410 * this is feasible or not. And given that at the very least adv_caps
1411 * would be set internally by qed, we want to make sure LFA would
1412 * still work.
1414 if ((p_hwfn->mcp_info->capabilities &
1415 FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) {
1416 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1417 if (params->eee.tx_lpi_enable)
1418 phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1419 if (params->eee.adv_caps & QED_EEE_1G_ADV)
1420 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1421 if (params->eee.adv_caps & QED_EEE_10G_ADV)
1422 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1423 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1424 EEE_TX_TIMER_USEC_OFFSET) &
1425 EEE_TX_TIMER_USEC_MASK;
1428 p_hwfn->b_drv_link_init = b_up;
1430 if (b_up) {
1431 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1432 "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1433 phy_cfg.speed,
1434 phy_cfg.pause,
1435 phy_cfg.adv_speed,
1436 phy_cfg.loopback_mode,
1437 phy_cfg.feature_config_flags);
1438 } else {
1439 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1440 "Resetting link\n");
1443 memset(&mb_params, 0, sizeof(mb_params));
1444 mb_params.cmd = cmd;
1445 mb_params.p_data_src = &phy_cfg;
1446 mb_params.data_src_size = sizeof(phy_cfg);
1447 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1449 /* if mcp fails to respond we must abort */
1450 if (rc) {
1451 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1452 return rc;
1455 /* Mimic link-change attention, done for several reasons:
1456 * - On reset, there's no guarantee MFW would trigger
1457 * an attention.
1458 * - On initialization, older MFWs might not indicate link change
1459 * during LFA, so we'll never get an UP indication.
1461 qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1463 return 0;
1466 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1467 struct qed_ptt *p_ptt,
1468 enum MFW_DRV_MSG_TYPE type)
1470 enum qed_mcp_protocol_type stats_type;
1471 union qed_mcp_protocol_stats stats;
1472 struct qed_mcp_mb_params mb_params;
1473 u32 hsi_param;
1475 switch (type) {
1476 case MFW_DRV_MSG_GET_LAN_STATS:
1477 stats_type = QED_MCP_LAN_STATS;
1478 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1479 break;
1480 case MFW_DRV_MSG_GET_FCOE_STATS:
1481 stats_type = QED_MCP_FCOE_STATS;
1482 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1483 break;
1484 case MFW_DRV_MSG_GET_ISCSI_STATS:
1485 stats_type = QED_MCP_ISCSI_STATS;
1486 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1487 break;
1488 case MFW_DRV_MSG_GET_RDMA_STATS:
1489 stats_type = QED_MCP_RDMA_STATS;
1490 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1491 break;
1492 default:
1493 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1494 return;
1497 qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1499 memset(&mb_params, 0, sizeof(mb_params));
1500 mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1501 mb_params.param = hsi_param;
1502 mb_params.p_data_src = &stats;
1503 mb_params.data_src_size = sizeof(stats);
1504 qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1507 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1508 struct public_func *p_shmem_info)
1510 struct qed_mcp_function_info *p_info;
1512 p_info = &p_hwfn->mcp_info->func_info;
1514 p_info->bandwidth_min = (p_shmem_info->config &
1515 FUNC_MF_CFG_MIN_BW_MASK) >>
1516 FUNC_MF_CFG_MIN_BW_SHIFT;
1517 if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1518 DP_INFO(p_hwfn,
1519 "bandwidth minimum out of bounds [%02x]. Set to 1\n",
1520 p_info->bandwidth_min);
1521 p_info->bandwidth_min = 1;
1524 p_info->bandwidth_max = (p_shmem_info->config &
1525 FUNC_MF_CFG_MAX_BW_MASK) >>
1526 FUNC_MF_CFG_MAX_BW_SHIFT;
1527 if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1528 DP_INFO(p_hwfn,
1529 "bandwidth maximum out of bounds [%02x]. Set to 100\n",
1530 p_info->bandwidth_max);
1531 p_info->bandwidth_max = 100;
1535 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1536 struct qed_ptt *p_ptt,
1537 struct public_func *p_data, int pfid)
1539 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1540 PUBLIC_FUNC);
1541 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1542 u32 func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1543 u32 i, size;
1545 memset(p_data, 0, sizeof(*p_data));
1547 size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1548 for (i = 0; i < size / sizeof(u32); i++)
1549 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1550 func_addr + (i << 2));
1551 return size;
1554 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1556 struct qed_mcp_function_info *p_info;
1557 struct public_func shmem_info;
1558 u32 resp = 0, param = 0;
1560 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1562 qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1564 p_info = &p_hwfn->mcp_info->func_info;
1566 qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1567 qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1569 /* Acknowledge the MFW */
1570 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1571 &param);
1574 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1576 struct public_func shmem_info;
1577 u32 resp = 0, param = 0;
1579 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1581 p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1582 FUNC_MF_CFG_OV_STAG_MASK;
1583 p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1584 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) {
1585 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) {
1586 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE,
1587 p_hwfn->hw_info.ovlan);
1588 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1);
1590 /* Configure DB to add external vlan to EDPM packets */
1591 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1);
1592 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2,
1593 p_hwfn->hw_info.ovlan);
1594 } else {
1595 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0);
1596 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0);
1597 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0);
1598 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0);
1601 qed_sp_pf_update_stag(p_hwfn);
1604 DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n",
1605 p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode);
1607 /* Acknowledge the MFW */
1608 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1609 &resp, &param);
1612 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1614 struct public_func shmem_info;
1615 u32 port_cfg, val;
1617 if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1618 return;
1620 memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1621 port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1622 offsetof(struct public_port, oem_cfg_port));
1623 val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1624 OEM_CFG_CHANNEL_TYPE_OFFSET;
1625 if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1626 DP_NOTICE(p_hwfn, "Incorrect UFP Channel type %d\n", val);
1628 val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1629 if (val == OEM_CFG_SCHED_TYPE_ETS) {
1630 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1631 } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1632 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1633 } else {
1634 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1635 DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val);
1638 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1639 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1640 OEM_CFG_FUNC_TC_OFFSET;
1641 p_hwfn->ufp_info.tc = (u8)val;
1642 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1643 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1644 if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1645 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1646 } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1647 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1648 } else {
1649 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1650 DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val);
1653 DP_NOTICE(p_hwfn,
1654 "UFP shmem config: mode = %d tc = %d pri_type = %d\n",
1655 p_hwfn->ufp_info.mode,
1656 p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type);
1659 static int
1660 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1662 qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1664 if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1665 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1666 qed_hw_info_set_offload_tc(&p_hwfn->hw_info,
1667 p_hwfn->ufp_info.tc);
1669 qed_qm_reconf(p_hwfn, p_ptt);
1670 } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1671 /* Merge UFP TC with the dcbx TC data */
1672 qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1673 QED_DCBX_OPERATIONAL_MIB);
1674 } else {
1675 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1676 return -EINVAL;
1679 /* update storm FW with negotiation results */
1680 qed_sp_pf_update_ufp(p_hwfn);
1682 /* update stag pcp value */
1683 qed_sp_pf_update_stag(p_hwfn);
1685 return 0;
1688 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1689 struct qed_ptt *p_ptt)
1691 struct qed_mcp_info *info = p_hwfn->mcp_info;
1692 int rc = 0;
1693 bool found = false;
1694 u16 i;
1696 DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1698 /* Read Messages from MFW */
1699 qed_mcp_read_mb(p_hwfn, p_ptt);
1701 /* Compare current messages to old ones */
1702 for (i = 0; i < info->mfw_mb_length; i++) {
1703 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1704 continue;
1706 found = true;
1708 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1709 "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1710 i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1712 switch (i) {
1713 case MFW_DRV_MSG_LINK_CHANGE:
1714 qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1715 break;
1716 case MFW_DRV_MSG_VF_DISABLED:
1717 qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1718 break;
1719 case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1720 qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1721 QED_DCBX_REMOTE_LLDP_MIB);
1722 break;
1723 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1724 qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1725 QED_DCBX_REMOTE_MIB);
1726 break;
1727 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1728 qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1729 QED_DCBX_OPERATIONAL_MIB);
1730 break;
1731 case MFW_DRV_MSG_OEM_CFG_UPDATE:
1732 qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1733 break;
1734 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1735 qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1736 break;
1737 case MFW_DRV_MSG_GET_LAN_STATS:
1738 case MFW_DRV_MSG_GET_FCOE_STATS:
1739 case MFW_DRV_MSG_GET_ISCSI_STATS:
1740 case MFW_DRV_MSG_GET_RDMA_STATS:
1741 qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1742 break;
1743 case MFW_DRV_MSG_BW_UPDATE:
1744 qed_mcp_update_bw(p_hwfn, p_ptt);
1745 break;
1746 case MFW_DRV_MSG_S_TAG_UPDATE:
1747 qed_mcp_update_stag(p_hwfn, p_ptt);
1748 break;
1749 case MFW_DRV_MSG_GET_TLV_REQ:
1750 qed_mfw_tlv_req(p_hwfn);
1751 break;
1752 default:
1753 DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1754 rc = -EINVAL;
1758 /* ACK everything */
1759 for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1760 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1762 /* MFW expect answer in BE, so we force write in that format */
1763 qed_wr(p_hwfn, p_ptt,
1764 info->mfw_mb_addr + sizeof(u32) +
1765 MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1766 sizeof(u32) + i * sizeof(u32),
1767 (__force u32)val);
1770 if (!found) {
1771 DP_NOTICE(p_hwfn,
1772 "Received an MFW message indication but no new message!\n");
1773 rc = -EINVAL;
1776 /* Copy the new mfw messages into the shadow */
1777 memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1779 return rc;
1782 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1783 struct qed_ptt *p_ptt,
1784 u32 *p_mfw_ver, u32 *p_running_bundle_id)
1786 u32 global_offsize;
1788 if (IS_VF(p_hwfn->cdev)) {
1789 if (p_hwfn->vf_iov_info) {
1790 struct pfvf_acquire_resp_tlv *p_resp;
1792 p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1793 *p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1794 return 0;
1795 } else {
1796 DP_VERBOSE(p_hwfn,
1797 QED_MSG_IOV,
1798 "VF requested MFW version prior to ACQUIRE\n");
1799 return -EINVAL;
1803 global_offsize = qed_rd(p_hwfn, p_ptt,
1804 SECTION_OFFSIZE_ADDR(p_hwfn->
1805 mcp_info->public_base,
1806 PUBLIC_GLOBAL));
1807 *p_mfw_ver =
1808 qed_rd(p_hwfn, p_ptt,
1809 SECTION_ADDR(global_offsize,
1810 0) + offsetof(struct public_global, mfw_ver));
1812 if (p_running_bundle_id != NULL) {
1813 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1814 SECTION_ADDR(global_offsize, 0) +
1815 offsetof(struct public_global,
1816 running_bundle_id));
1819 return 0;
1822 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1823 struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1825 u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1827 if (IS_VF(p_hwfn->cdev))
1828 return -EINVAL;
1830 /* Read the address of the nvm_cfg */
1831 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1832 if (!nvm_cfg_addr) {
1833 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1834 return -EINVAL;
1837 /* Read the offset of nvm_cfg1 */
1838 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1840 mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1841 offsetof(struct nvm_cfg1, glob) +
1842 offsetof(struct nvm_cfg1_glob, mbi_version);
1843 *p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1844 mbi_ver_addr) &
1845 (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1846 NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1847 NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1849 return 0;
1852 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn,
1853 struct qed_ptt *p_ptt, u32 *p_media_type)
1855 if (IS_VF(p_hwfn->cdev))
1856 return -EINVAL;
1858 if (!qed_mcp_is_init(p_hwfn)) {
1859 DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1860 return -EBUSY;
1863 if (!p_ptt) {
1864 *p_media_type = MEDIA_UNSPECIFIED;
1865 return -EINVAL;
1868 *p_media_type = qed_rd(p_hwfn, p_ptt,
1869 p_hwfn->mcp_info->port_addr +
1870 offsetof(struct public_port,
1871 media_type));
1873 return 0;
1876 /* Old MFW has a global configuration for all PFs regarding RDMA support */
1877 static void
1878 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
1879 enum qed_pci_personality *p_proto)
1881 /* There wasn't ever a legacy MFW that published iwarp.
1882 * So at this point, this is either plain l2 or RoCE.
1884 if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
1885 *p_proto = QED_PCI_ETH_ROCE;
1886 else
1887 *p_proto = QED_PCI_ETH;
1889 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1890 "According to Legacy capabilities, L2 personality is %08x\n",
1891 (u32) *p_proto);
1894 static int
1895 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
1896 struct qed_ptt *p_ptt,
1897 enum qed_pci_personality *p_proto)
1899 u32 resp = 0, param = 0;
1900 int rc;
1902 rc = qed_mcp_cmd(p_hwfn, p_ptt,
1903 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
1904 if (rc)
1905 return rc;
1906 if (resp != FW_MSG_CODE_OK) {
1907 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1908 "MFW lacks support for command; Returns %08x\n",
1909 resp);
1910 return -EINVAL;
1913 switch (param) {
1914 case FW_MB_PARAM_GET_PF_RDMA_NONE:
1915 *p_proto = QED_PCI_ETH;
1916 break;
1917 case FW_MB_PARAM_GET_PF_RDMA_ROCE:
1918 *p_proto = QED_PCI_ETH_ROCE;
1919 break;
1920 case FW_MB_PARAM_GET_PF_RDMA_IWARP:
1921 *p_proto = QED_PCI_ETH_IWARP;
1922 break;
1923 case FW_MB_PARAM_GET_PF_RDMA_BOTH:
1924 *p_proto = QED_PCI_ETH_RDMA;
1925 break;
1926 default:
1927 DP_NOTICE(p_hwfn,
1928 "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
1929 param);
1930 return -EINVAL;
1933 DP_VERBOSE(p_hwfn,
1934 NETIF_MSG_IFUP,
1935 "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
1936 (u32) *p_proto, resp, param);
1937 return 0;
1940 static int
1941 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
1942 struct public_func *p_info,
1943 struct qed_ptt *p_ptt,
1944 enum qed_pci_personality *p_proto)
1946 int rc = 0;
1948 switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
1949 case FUNC_MF_CFG_PROTOCOL_ETHERNET:
1950 if (!IS_ENABLED(CONFIG_QED_RDMA))
1951 *p_proto = QED_PCI_ETH;
1952 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
1953 qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
1954 break;
1955 case FUNC_MF_CFG_PROTOCOL_ISCSI:
1956 *p_proto = QED_PCI_ISCSI;
1957 break;
1958 case FUNC_MF_CFG_PROTOCOL_FCOE:
1959 *p_proto = QED_PCI_FCOE;
1960 break;
1961 case FUNC_MF_CFG_PROTOCOL_ROCE:
1962 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
1963 /* Fallthrough */
1964 default:
1965 rc = -EINVAL;
1968 return rc;
1971 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
1972 struct qed_ptt *p_ptt)
1974 struct qed_mcp_function_info *info;
1975 struct public_func shmem_info;
1977 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1978 info = &p_hwfn->mcp_info->func_info;
1980 info->pause_on_host = (shmem_info.config &
1981 FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
1983 if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
1984 &info->protocol)) {
1985 DP_ERR(p_hwfn, "Unknown personality %08x\n",
1986 (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
1987 return -EINVAL;
1990 qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1992 if (shmem_info.mac_upper || shmem_info.mac_lower) {
1993 info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
1994 info->mac[1] = (u8)(shmem_info.mac_upper);
1995 info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
1996 info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
1997 info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
1998 info->mac[5] = (u8)(shmem_info.mac_lower);
2000 /* Store primary MAC for later possible WoL */
2001 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
2002 } else {
2003 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
2006 info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
2007 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
2008 info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
2009 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
2011 info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
2013 info->mtu = (u16)shmem_info.mtu_size;
2015 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
2016 p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
2017 if (qed_mcp_is_init(p_hwfn)) {
2018 u32 resp = 0, param = 0;
2019 int rc;
2021 rc = qed_mcp_cmd(p_hwfn, p_ptt,
2022 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
2023 if (rc)
2024 return rc;
2025 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
2026 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
2029 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
2030 "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
2031 info->pause_on_host, info->protocol,
2032 info->bandwidth_min, info->bandwidth_max,
2033 info->mac[0], info->mac[1], info->mac[2],
2034 info->mac[3], info->mac[4], info->mac[5],
2035 info->wwn_port, info->wwn_node,
2036 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
2038 return 0;
2041 struct qed_mcp_link_params
2042 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
2044 if (!p_hwfn || !p_hwfn->mcp_info)
2045 return NULL;
2046 return &p_hwfn->mcp_info->link_input;
2049 struct qed_mcp_link_state
2050 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
2052 if (!p_hwfn || !p_hwfn->mcp_info)
2053 return NULL;
2054 return &p_hwfn->mcp_info->link_output;
2057 struct qed_mcp_link_capabilities
2058 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
2060 if (!p_hwfn || !p_hwfn->mcp_info)
2061 return NULL;
2062 return &p_hwfn->mcp_info->link_capabilities;
2065 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2067 u32 resp = 0, param = 0;
2068 int rc;
2070 rc = qed_mcp_cmd(p_hwfn, p_ptt,
2071 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
2073 /* Wait for the drain to complete before returning */
2074 msleep(1020);
2076 return rc;
2079 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
2080 struct qed_ptt *p_ptt, u32 *p_flash_size)
2082 u32 flash_size;
2084 if (IS_VF(p_hwfn->cdev))
2085 return -EINVAL;
2087 flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
2088 flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
2089 MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
2090 flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
2092 *p_flash_size = flash_size;
2094 return 0;
2097 static int
2098 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
2099 struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2101 u32 resp = 0, param = 0, rc_param = 0;
2102 int rc;
2104 /* Only Leader can configure MSIX, and need to take CMT into account */
2105 if (!IS_LEAD_HWFN(p_hwfn))
2106 return 0;
2107 num *= p_hwfn->cdev->num_hwfns;
2109 param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
2110 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
2111 param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
2112 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
2114 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
2115 &resp, &rc_param);
2117 if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2118 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2119 rc = -EINVAL;
2120 } else {
2121 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2122 "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2123 num, vf_id);
2126 return rc;
2129 static int
2130 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2131 struct qed_ptt *p_ptt, u8 num)
2133 u32 resp = 0, param = num, rc_param = 0;
2134 int rc;
2136 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2137 param, &resp, &rc_param);
2139 if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2140 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2141 rc = -EINVAL;
2142 } else {
2143 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2144 "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2147 return rc;
2150 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2151 struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2153 if (QED_IS_BB(p_hwfn->cdev))
2154 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2155 else
2156 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2160 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2161 struct qed_ptt *p_ptt,
2162 struct qed_mcp_drv_version *p_ver)
2164 struct qed_mcp_mb_params mb_params;
2165 struct drv_version_stc drv_version;
2166 __be32 val;
2167 u32 i;
2168 int rc;
2170 memset(&drv_version, 0, sizeof(drv_version));
2171 drv_version.version = p_ver->version;
2172 for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2173 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2174 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2177 memset(&mb_params, 0, sizeof(mb_params));
2178 mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2179 mb_params.p_data_src = &drv_version;
2180 mb_params.data_src_size = sizeof(drv_version);
2181 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2182 if (rc)
2183 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2185 return rc;
2188 /* A maximal 100 msec waiting time for the MCP to halt */
2189 #define QED_MCP_HALT_SLEEP_MS 10
2190 #define QED_MCP_HALT_MAX_RETRIES 10
2192 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2194 u32 resp = 0, param = 0, cpu_state, cnt = 0;
2195 int rc;
2197 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2198 &param);
2199 if (rc) {
2200 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2201 return rc;
2204 do {
2205 msleep(QED_MCP_HALT_SLEEP_MS);
2206 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2207 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED)
2208 break;
2209 } while (++cnt < QED_MCP_HALT_MAX_RETRIES);
2211 if (cnt == QED_MCP_HALT_MAX_RETRIES) {
2212 DP_NOTICE(p_hwfn,
2213 "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2214 qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state);
2215 return -EBUSY;
2218 qed_mcp_cmd_set_blocking(p_hwfn, true);
2220 return 0;
2223 #define QED_MCP_RESUME_SLEEP_MS 10
2225 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2227 u32 cpu_mode, cpu_state;
2229 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2231 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2232 cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2233 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode);
2234 msleep(QED_MCP_RESUME_SLEEP_MS);
2235 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2237 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) {
2238 DP_NOTICE(p_hwfn,
2239 "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2240 cpu_mode, cpu_state);
2241 return -EBUSY;
2244 qed_mcp_cmd_set_blocking(p_hwfn, false);
2246 return 0;
2249 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2250 struct qed_ptt *p_ptt,
2251 enum qed_ov_client client)
2253 u32 resp = 0, param = 0;
2254 u32 drv_mb_param;
2255 int rc;
2257 switch (client) {
2258 case QED_OV_CLIENT_DRV:
2259 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2260 break;
2261 case QED_OV_CLIENT_USER:
2262 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2263 break;
2264 case QED_OV_CLIENT_VENDOR_SPEC:
2265 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2266 break;
2267 default:
2268 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2269 return -EINVAL;
2272 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2273 drv_mb_param, &resp, &param);
2274 if (rc)
2275 DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2277 return rc;
2280 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2281 struct qed_ptt *p_ptt,
2282 enum qed_ov_driver_state drv_state)
2284 u32 resp = 0, param = 0;
2285 u32 drv_mb_param;
2286 int rc;
2288 switch (drv_state) {
2289 case QED_OV_DRIVER_STATE_NOT_LOADED:
2290 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2291 break;
2292 case QED_OV_DRIVER_STATE_DISABLED:
2293 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2294 break;
2295 case QED_OV_DRIVER_STATE_ACTIVE:
2296 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2297 break;
2298 default:
2299 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2300 return -EINVAL;
2303 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2304 drv_mb_param, &resp, &param);
2305 if (rc)
2306 DP_ERR(p_hwfn, "Failed to send driver state\n");
2308 return rc;
2311 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2312 struct qed_ptt *p_ptt, u16 mtu)
2314 u32 resp = 0, param = 0;
2315 u32 drv_mb_param;
2316 int rc;
2318 drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2319 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2320 drv_mb_param, &resp, &param);
2321 if (rc)
2322 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2324 return rc;
2327 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2328 struct qed_ptt *p_ptt, u8 *mac)
2330 struct qed_mcp_mb_params mb_params;
2331 u32 mfw_mac[2];
2332 int rc;
2334 memset(&mb_params, 0, sizeof(mb_params));
2335 mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2336 mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2337 DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2338 mb_params.param |= MCP_PF_ID(p_hwfn);
2340 /* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2341 * in 32-bit granularity.
2342 * So the MAC has to be set in native order [and not byte order],
2343 * otherwise it would be read incorrectly by MFW after swap.
2345 mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2346 mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2348 mb_params.p_data_src = (u8 *)mfw_mac;
2349 mb_params.data_src_size = 8;
2350 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2351 if (rc)
2352 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2354 /* Store primary MAC for later possible WoL */
2355 memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2357 return rc;
2360 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2361 struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2363 u32 resp = 0, param = 0;
2364 u32 drv_mb_param;
2365 int rc;
2367 if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2368 DP_VERBOSE(p_hwfn, QED_MSG_SP,
2369 "Can't change WoL configuration when WoL isn't supported\n");
2370 return -EINVAL;
2373 switch (wol) {
2374 case QED_OV_WOL_DEFAULT:
2375 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2376 break;
2377 case QED_OV_WOL_DISABLED:
2378 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2379 break;
2380 case QED_OV_WOL_ENABLED:
2381 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2382 break;
2383 default:
2384 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2385 return -EINVAL;
2388 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2389 drv_mb_param, &resp, &param);
2390 if (rc)
2391 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2393 /* Store the WoL update for a future unload */
2394 p_hwfn->cdev->wol_config = (u8)wol;
2396 return rc;
2399 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2400 struct qed_ptt *p_ptt,
2401 enum qed_ov_eswitch eswitch)
2403 u32 resp = 0, param = 0;
2404 u32 drv_mb_param;
2405 int rc;
2407 switch (eswitch) {
2408 case QED_OV_ESWITCH_NONE:
2409 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2410 break;
2411 case QED_OV_ESWITCH_VEB:
2412 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2413 break;
2414 case QED_OV_ESWITCH_VEPA:
2415 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2416 break;
2417 default:
2418 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2419 return -EINVAL;
2422 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2423 drv_mb_param, &resp, &param);
2424 if (rc)
2425 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2427 return rc;
2430 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2431 struct qed_ptt *p_ptt, enum qed_led_mode mode)
2433 u32 resp = 0, param = 0, drv_mb_param;
2434 int rc;
2436 switch (mode) {
2437 case QED_LED_MODE_ON:
2438 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2439 break;
2440 case QED_LED_MODE_OFF:
2441 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2442 break;
2443 case QED_LED_MODE_RESTORE:
2444 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2445 break;
2446 default:
2447 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2448 return -EINVAL;
2451 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2452 drv_mb_param, &resp, &param);
2454 return rc;
2457 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2458 struct qed_ptt *p_ptt, u32 mask_parities)
2460 u32 resp = 0, param = 0;
2461 int rc;
2463 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2464 mask_parities, &resp, &param);
2466 if (rc) {
2467 DP_ERR(p_hwfn,
2468 "MCP response failure for mask parities, aborting\n");
2469 } else if (resp != FW_MSG_CODE_OK) {
2470 DP_ERR(p_hwfn,
2471 "MCP did not acknowledge mask parity request. Old MFW?\n");
2472 rc = -EINVAL;
2475 return rc;
2478 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2480 u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2481 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2482 u32 resp = 0, resp_param = 0;
2483 struct qed_ptt *p_ptt;
2484 int rc = 0;
2486 p_ptt = qed_ptt_acquire(p_hwfn);
2487 if (!p_ptt)
2488 return -EBUSY;
2490 while (bytes_left > 0) {
2491 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2493 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2494 DRV_MSG_CODE_NVM_READ_NVRAM,
2495 addr + offset +
2496 (bytes_to_copy <<
2497 DRV_MB_PARAM_NVM_LEN_OFFSET),
2498 &resp, &resp_param,
2499 &read_len,
2500 (u32 *)(p_buf + offset));
2502 if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2503 DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2504 break;
2507 /* This can be a lengthy process, and it's possible scheduler
2508 * isn't preemptable. Sleep a bit to prevent CPU hogging.
2510 if (bytes_left % 0x1000 <
2511 (bytes_left - read_len) % 0x1000)
2512 usleep_range(1000, 2000);
2514 offset += read_len;
2515 bytes_left -= read_len;
2518 cdev->mcp_nvm_resp = resp;
2519 qed_ptt_release(p_hwfn, p_ptt);
2521 return rc;
2524 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2526 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2527 struct qed_ptt *p_ptt;
2529 p_ptt = qed_ptt_acquire(p_hwfn);
2530 if (!p_ptt)
2531 return -EBUSY;
2533 memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2534 qed_ptt_release(p_hwfn, p_ptt);
2536 return 0;
2539 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr)
2541 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2542 struct qed_ptt *p_ptt;
2543 u32 resp, param;
2544 int rc;
2546 p_ptt = qed_ptt_acquire(p_hwfn);
2547 if (!p_ptt)
2548 return -EBUSY;
2549 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr,
2550 &resp, &param);
2551 cdev->mcp_nvm_resp = resp;
2552 qed_ptt_release(p_hwfn, p_ptt);
2554 return rc;
2557 int qed_mcp_nvm_write(struct qed_dev *cdev,
2558 u32 cmd, u32 addr, u8 *p_buf, u32 len)
2560 u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2561 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2562 struct qed_ptt *p_ptt;
2563 int rc = -EINVAL;
2565 p_ptt = qed_ptt_acquire(p_hwfn);
2566 if (!p_ptt)
2567 return -EBUSY;
2569 switch (cmd) {
2570 case QED_PUT_FILE_DATA:
2571 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2572 break;
2573 case QED_NVM_WRITE_NVRAM:
2574 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2575 break;
2576 default:
2577 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2578 rc = -EINVAL;
2579 goto out;
2582 while (buf_idx < len) {
2583 buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2584 nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) |
2585 addr) + buf_idx;
2586 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2587 &resp, &param, buf_size,
2588 (u32 *)&p_buf[buf_idx]);
2589 if (rc) {
2590 DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2591 resp = FW_MSG_CODE_ERROR;
2592 break;
2595 if (resp != FW_MSG_CODE_OK &&
2596 resp != FW_MSG_CODE_NVM_OK &&
2597 resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2598 DP_NOTICE(cdev,
2599 "nvm write failed, resp = 0x%08x\n", resp);
2600 rc = -EINVAL;
2601 break;
2604 /* This can be a lengthy process, and it's possible scheduler
2605 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2607 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2608 usleep_range(1000, 2000);
2610 buf_idx += buf_size;
2613 cdev->mcp_nvm_resp = resp;
2614 out:
2615 qed_ptt_release(p_hwfn, p_ptt);
2617 return rc;
2620 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2621 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf)
2623 u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0;
2624 u32 resp, param;
2625 int rc;
2627 nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) &
2628 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK;
2629 nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) &
2630 DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK;
2632 addr = offset;
2633 offset = 0;
2634 bytes_left = len;
2635 while (bytes_left > 0) {
2636 bytes_to_copy = min_t(u32, bytes_left,
2637 MAX_I2C_TRANSACTION_SIZE);
2638 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK |
2639 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK);
2640 nvm_offset |= ((addr + offset) <<
2641 DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) &
2642 DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK;
2643 nvm_offset |= (bytes_to_copy <<
2644 DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) &
2645 DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK;
2646 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2647 DRV_MSG_CODE_TRANSCEIVER_READ,
2648 nvm_offset, &resp, &param, &buf_size,
2649 (u32 *)(p_buf + offset));
2650 if (rc) {
2651 DP_NOTICE(p_hwfn,
2652 "Failed to send a transceiver read command to the MFW. rc = %d.\n",
2653 rc);
2654 return rc;
2657 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT)
2658 return -ENODEV;
2659 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK)
2660 return -EINVAL;
2662 offset += buf_size;
2663 bytes_left -= buf_size;
2666 return 0;
2669 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2671 u32 drv_mb_param = 0, rsp, param;
2672 int rc = 0;
2674 drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
2675 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2677 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2678 drv_mb_param, &rsp, &param);
2680 if (rc)
2681 return rc;
2683 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2684 (param != DRV_MB_PARAM_BIST_RC_PASSED))
2685 rc = -EAGAIN;
2687 return rc;
2690 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2692 u32 drv_mb_param, rsp, param;
2693 int rc = 0;
2695 drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
2696 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2698 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2699 drv_mb_param, &rsp, &param);
2701 if (rc)
2702 return rc;
2704 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2705 (param != DRV_MB_PARAM_BIST_RC_PASSED))
2706 rc = -EAGAIN;
2708 return rc;
2711 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
2712 struct qed_ptt *p_ptt,
2713 u32 *num_images)
2715 u32 drv_mb_param = 0, rsp;
2716 int rc = 0;
2718 drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
2719 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2721 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2722 drv_mb_param, &rsp, num_images);
2723 if (rc)
2724 return rc;
2726 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
2727 rc = -EINVAL;
2729 return rc;
2732 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
2733 struct qed_ptt *p_ptt,
2734 struct bist_nvm_image_att *p_image_att,
2735 u32 image_index)
2737 u32 buf_size = 0, param, resp = 0, resp_param = 0;
2738 int rc;
2740 param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
2741 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
2742 param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
2744 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2745 DRV_MSG_CODE_BIST_TEST, param,
2746 &resp, &resp_param,
2747 &buf_size,
2748 (u32 *)p_image_att);
2749 if (rc)
2750 return rc;
2752 if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2753 (p_image_att->return_code != 1))
2754 rc = -EINVAL;
2756 return rc;
2759 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
2761 struct qed_nvm_image_info nvm_info;
2762 struct qed_ptt *p_ptt;
2763 int rc;
2764 u32 i;
2766 if (p_hwfn->nvm_info.valid)
2767 return 0;
2769 p_ptt = qed_ptt_acquire(p_hwfn);
2770 if (!p_ptt) {
2771 DP_ERR(p_hwfn, "failed to acquire ptt\n");
2772 return -EBUSY;
2775 /* Acquire from MFW the amount of available images */
2776 nvm_info.num_images = 0;
2777 rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
2778 p_ptt, &nvm_info.num_images);
2779 if (rc == -EOPNOTSUPP) {
2780 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
2781 goto out;
2782 } else if (rc || !nvm_info.num_images) {
2783 DP_ERR(p_hwfn, "Failed getting number of images\n");
2784 goto err0;
2787 nvm_info.image_att = kmalloc_array(nvm_info.num_images,
2788 sizeof(struct bist_nvm_image_att),
2789 GFP_KERNEL);
2790 if (!nvm_info.image_att) {
2791 rc = -ENOMEM;
2792 goto err0;
2795 /* Iterate over images and get their attributes */
2796 for (i = 0; i < nvm_info.num_images; i++) {
2797 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
2798 &nvm_info.image_att[i], i);
2799 if (rc) {
2800 DP_ERR(p_hwfn,
2801 "Failed getting image index %d attributes\n", i);
2802 goto err1;
2805 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
2806 nvm_info.image_att[i].len);
2808 out:
2809 /* Update hwfn's nvm_info */
2810 if (nvm_info.num_images) {
2811 p_hwfn->nvm_info.num_images = nvm_info.num_images;
2812 kfree(p_hwfn->nvm_info.image_att);
2813 p_hwfn->nvm_info.image_att = nvm_info.image_att;
2814 p_hwfn->nvm_info.valid = true;
2817 qed_ptt_release(p_hwfn, p_ptt);
2818 return 0;
2820 err1:
2821 kfree(nvm_info.image_att);
2822 err0:
2823 qed_ptt_release(p_hwfn, p_ptt);
2824 return rc;
2828 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
2829 enum qed_nvm_images image_id,
2830 struct qed_nvm_image_att *p_image_att)
2832 enum nvm_image_type type;
2833 u32 i;
2835 /* Translate image_id into MFW definitions */
2836 switch (image_id) {
2837 case QED_NVM_IMAGE_ISCSI_CFG:
2838 type = NVM_TYPE_ISCSI_CFG;
2839 break;
2840 case QED_NVM_IMAGE_FCOE_CFG:
2841 type = NVM_TYPE_FCOE_CFG;
2842 break;
2843 case QED_NVM_IMAGE_NVM_CFG1:
2844 type = NVM_TYPE_NVM_CFG1;
2845 break;
2846 case QED_NVM_IMAGE_DEFAULT_CFG:
2847 type = NVM_TYPE_DEFAULT_CFG;
2848 break;
2849 case QED_NVM_IMAGE_NVM_META:
2850 type = NVM_TYPE_META;
2851 break;
2852 default:
2853 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
2854 image_id);
2855 return -EINVAL;
2858 qed_mcp_nvm_info_populate(p_hwfn);
2859 for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
2860 if (type == p_hwfn->nvm_info.image_att[i].image_type)
2861 break;
2862 if (i == p_hwfn->nvm_info.num_images) {
2863 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2864 "Failed to find nvram image of type %08x\n",
2865 image_id);
2866 return -ENOENT;
2869 p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
2870 p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
2872 return 0;
2875 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
2876 enum qed_nvm_images image_id,
2877 u8 *p_buffer, u32 buffer_len)
2879 struct qed_nvm_image_att image_att;
2880 int rc;
2882 memset(p_buffer, 0, buffer_len);
2884 rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
2885 if (rc)
2886 return rc;
2888 /* Validate sizes - both the image's and the supplied buffer's */
2889 if (image_att.length <= 4) {
2890 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2891 "Image [%d] is too small - only %d bytes\n",
2892 image_id, image_att.length);
2893 return -EINVAL;
2896 if (image_att.length > buffer_len) {
2897 DP_VERBOSE(p_hwfn,
2898 QED_MSG_STORAGE,
2899 "Image [%d] is too big - %08x bytes where only %08x are available\n",
2900 image_id, image_att.length, buffer_len);
2901 return -ENOMEM;
2904 return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
2905 p_buffer, image_att.length);
2908 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
2910 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2912 switch (res_id) {
2913 case QED_SB:
2914 mfw_res_id = RESOURCE_NUM_SB_E;
2915 break;
2916 case QED_L2_QUEUE:
2917 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2918 break;
2919 case QED_VPORT:
2920 mfw_res_id = RESOURCE_NUM_VPORT_E;
2921 break;
2922 case QED_RSS_ENG:
2923 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2924 break;
2925 case QED_PQ:
2926 mfw_res_id = RESOURCE_NUM_PQ_E;
2927 break;
2928 case QED_RL:
2929 mfw_res_id = RESOURCE_NUM_RL_E;
2930 break;
2931 case QED_MAC:
2932 case QED_VLAN:
2933 /* Each VFC resource can accommodate both a MAC and a VLAN */
2934 mfw_res_id = RESOURCE_VFC_FILTER_E;
2935 break;
2936 case QED_ILT:
2937 mfw_res_id = RESOURCE_ILT_E;
2938 break;
2939 case QED_LL2_QUEUE:
2940 mfw_res_id = RESOURCE_LL2_QUEUE_E;
2941 break;
2942 case QED_RDMA_CNQ_RAM:
2943 case QED_CMDQS_CQS:
2944 /* CNQ/CMDQS are the same resource */
2945 mfw_res_id = RESOURCE_CQS_E;
2946 break;
2947 case QED_RDMA_STATS_QUEUE:
2948 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2949 break;
2950 case QED_BDQ:
2951 mfw_res_id = RESOURCE_BDQ_E;
2952 break;
2953 default:
2954 break;
2957 return mfw_res_id;
2960 #define QED_RESC_ALLOC_VERSION_MAJOR 2
2961 #define QED_RESC_ALLOC_VERSION_MINOR 0
2962 #define QED_RESC_ALLOC_VERSION \
2963 ((QED_RESC_ALLOC_VERSION_MAJOR << \
2964 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
2965 (QED_RESC_ALLOC_VERSION_MINOR << \
2966 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
2968 struct qed_resc_alloc_in_params {
2969 u32 cmd;
2970 enum qed_resources res_id;
2971 u32 resc_max_val;
2974 struct qed_resc_alloc_out_params {
2975 u32 mcp_resp;
2976 u32 mcp_param;
2977 u32 resc_num;
2978 u32 resc_start;
2979 u32 vf_resc_num;
2980 u32 vf_resc_start;
2981 u32 flags;
2984 static int
2985 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
2986 struct qed_ptt *p_ptt,
2987 struct qed_resc_alloc_in_params *p_in_params,
2988 struct qed_resc_alloc_out_params *p_out_params)
2990 struct qed_mcp_mb_params mb_params;
2991 struct resource_info mfw_resc_info;
2992 int rc;
2994 memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
2996 mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
2997 if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
2998 DP_ERR(p_hwfn,
2999 "Failed to match resource %d [%s] with the MFW resources\n",
3000 p_in_params->res_id,
3001 qed_hw_get_resc_name(p_in_params->res_id));
3002 return -EINVAL;
3005 switch (p_in_params->cmd) {
3006 case DRV_MSG_SET_RESOURCE_VALUE_MSG:
3007 mfw_resc_info.size = p_in_params->resc_max_val;
3008 /* Fallthrough */
3009 case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
3010 break;
3011 default:
3012 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
3013 p_in_params->cmd);
3014 return -EINVAL;
3017 memset(&mb_params, 0, sizeof(mb_params));
3018 mb_params.cmd = p_in_params->cmd;
3019 mb_params.param = QED_RESC_ALLOC_VERSION;
3020 mb_params.p_data_src = &mfw_resc_info;
3021 mb_params.data_src_size = sizeof(mfw_resc_info);
3022 mb_params.p_data_dst = mb_params.p_data_src;
3023 mb_params.data_dst_size = mb_params.data_src_size;
3025 DP_VERBOSE(p_hwfn,
3026 QED_MSG_SP,
3027 "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
3028 p_in_params->cmd,
3029 p_in_params->res_id,
3030 qed_hw_get_resc_name(p_in_params->res_id),
3031 QED_MFW_GET_FIELD(mb_params.param,
3032 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3033 QED_MFW_GET_FIELD(mb_params.param,
3034 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3035 p_in_params->resc_max_val);
3037 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
3038 if (rc)
3039 return rc;
3041 p_out_params->mcp_resp = mb_params.mcp_resp;
3042 p_out_params->mcp_param = mb_params.mcp_param;
3043 p_out_params->resc_num = mfw_resc_info.size;
3044 p_out_params->resc_start = mfw_resc_info.offset;
3045 p_out_params->vf_resc_num = mfw_resc_info.vf_size;
3046 p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
3047 p_out_params->flags = mfw_resc_info.flags;
3049 DP_VERBOSE(p_hwfn,
3050 QED_MSG_SP,
3051 "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
3052 QED_MFW_GET_FIELD(p_out_params->mcp_param,
3053 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3054 QED_MFW_GET_FIELD(p_out_params->mcp_param,
3055 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3056 p_out_params->resc_num,
3057 p_out_params->resc_start,
3058 p_out_params->vf_resc_num,
3059 p_out_params->vf_resc_start, p_out_params->flags);
3061 return 0;
3065 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
3066 struct qed_ptt *p_ptt,
3067 enum qed_resources res_id,
3068 u32 resc_max_val, u32 *p_mcp_resp)
3070 struct qed_resc_alloc_out_params out_params;
3071 struct qed_resc_alloc_in_params in_params;
3072 int rc;
3074 memset(&in_params, 0, sizeof(in_params));
3075 in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
3076 in_params.res_id = res_id;
3077 in_params.resc_max_val = resc_max_val;
3078 memset(&out_params, 0, sizeof(out_params));
3079 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3080 &out_params);
3081 if (rc)
3082 return rc;
3084 *p_mcp_resp = out_params.mcp_resp;
3086 return 0;
3090 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
3091 struct qed_ptt *p_ptt,
3092 enum qed_resources res_id,
3093 u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
3095 struct qed_resc_alloc_out_params out_params;
3096 struct qed_resc_alloc_in_params in_params;
3097 int rc;
3099 memset(&in_params, 0, sizeof(in_params));
3100 in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
3101 in_params.res_id = res_id;
3102 memset(&out_params, 0, sizeof(out_params));
3103 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3104 &out_params);
3105 if (rc)
3106 return rc;
3108 *p_mcp_resp = out_params.mcp_resp;
3110 if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3111 *p_resc_num = out_params.resc_num;
3112 *p_resc_start = out_params.resc_start;
3115 return 0;
3118 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3120 u32 mcp_resp, mcp_param;
3122 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
3123 &mcp_resp, &mcp_param);
3126 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
3127 struct qed_ptt *p_ptt,
3128 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
3130 int rc;
3132 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
3133 p_mcp_resp, p_mcp_param);
3134 if (rc)
3135 return rc;
3137 if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
3138 DP_INFO(p_hwfn,
3139 "The resource command is unsupported by the MFW\n");
3140 return -EINVAL;
3143 if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
3144 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
3146 DP_NOTICE(p_hwfn,
3147 "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
3148 param, opcode);
3149 return -EINVAL;
3152 return rc;
3155 static int
3156 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3157 struct qed_ptt *p_ptt,
3158 struct qed_resc_lock_params *p_params)
3160 u32 param = 0, mcp_resp, mcp_param;
3161 u8 opcode;
3162 int rc;
3164 switch (p_params->timeout) {
3165 case QED_MCP_RESC_LOCK_TO_DEFAULT:
3166 opcode = RESOURCE_OPCODE_REQ;
3167 p_params->timeout = 0;
3168 break;
3169 case QED_MCP_RESC_LOCK_TO_NONE:
3170 opcode = RESOURCE_OPCODE_REQ_WO_AGING;
3171 p_params->timeout = 0;
3172 break;
3173 default:
3174 opcode = RESOURCE_OPCODE_REQ_W_AGING;
3175 break;
3178 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3179 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3180 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
3182 DP_VERBOSE(p_hwfn,
3183 QED_MSG_SP,
3184 "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
3185 param, p_params->timeout, opcode, p_params->resource);
3187 /* Attempt to acquire the resource */
3188 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3189 if (rc)
3190 return rc;
3192 /* Analyze the response */
3193 p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
3194 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3196 DP_VERBOSE(p_hwfn,
3197 QED_MSG_SP,
3198 "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
3199 mcp_param, opcode, p_params->owner);
3201 switch (opcode) {
3202 case RESOURCE_OPCODE_GNT:
3203 p_params->b_granted = true;
3204 break;
3205 case RESOURCE_OPCODE_BUSY:
3206 p_params->b_granted = false;
3207 break;
3208 default:
3209 DP_NOTICE(p_hwfn,
3210 "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3211 mcp_param, opcode);
3212 return -EINVAL;
3215 return 0;
3219 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3220 struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3222 u32 retry_cnt = 0;
3223 int rc;
3225 do {
3226 /* No need for an interval before the first iteration */
3227 if (retry_cnt) {
3228 if (p_params->sleep_b4_retry) {
3229 u16 retry_interval_in_ms =
3230 DIV_ROUND_UP(p_params->retry_interval,
3231 1000);
3233 msleep(retry_interval_in_ms);
3234 } else {
3235 udelay(p_params->retry_interval);
3239 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3240 if (rc)
3241 return rc;
3243 if (p_params->b_granted)
3244 break;
3245 } while (retry_cnt++ < p_params->retry_num);
3247 return 0;
3251 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3252 struct qed_ptt *p_ptt,
3253 struct qed_resc_unlock_params *p_params)
3255 u32 param = 0, mcp_resp, mcp_param;
3256 u8 opcode;
3257 int rc;
3259 opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3260 : RESOURCE_OPCODE_RELEASE;
3261 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3262 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3264 DP_VERBOSE(p_hwfn, QED_MSG_SP,
3265 "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3266 param, opcode, p_params->resource);
3268 /* Attempt to release the resource */
3269 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3270 if (rc)
3271 return rc;
3273 /* Analyze the response */
3274 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3276 DP_VERBOSE(p_hwfn, QED_MSG_SP,
3277 "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3278 mcp_param, opcode);
3280 switch (opcode) {
3281 case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3282 DP_INFO(p_hwfn,
3283 "Resource unlock request for an already released resource [%d]\n",
3284 p_params->resource);
3285 /* Fallthrough */
3286 case RESOURCE_OPCODE_RELEASED:
3287 p_params->b_released = true;
3288 break;
3289 case RESOURCE_OPCODE_WRONG_OWNER:
3290 p_params->b_released = false;
3291 break;
3292 default:
3293 DP_NOTICE(p_hwfn,
3294 "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3295 mcp_param, opcode);
3296 return -EINVAL;
3299 return 0;
3302 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3303 struct qed_resc_unlock_params *p_unlock,
3304 enum qed_resc_lock
3305 resource, bool b_is_permanent)
3307 if (p_lock) {
3308 memset(p_lock, 0, sizeof(*p_lock));
3310 /* Permanent resources don't require aging, and there's no
3311 * point in trying to acquire them more than once since it's
3312 * unexpected another entity would release them.
3314 if (b_is_permanent) {
3315 p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3316 } else {
3317 p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3318 p_lock->retry_interval =
3319 QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3320 p_lock->sleep_b4_retry = true;
3323 p_lock->resource = resource;
3326 if (p_unlock) {
3327 memset(p_unlock, 0, sizeof(*p_unlock));
3328 p_unlock->resource = resource;
3332 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3334 u32 mcp_resp;
3335 int rc;
3337 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3338 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3339 if (!rc)
3340 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3341 "MFW supported features: %08x\n",
3342 p_hwfn->mcp_info->capabilities);
3344 return rc;
3347 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3349 u32 mcp_resp, mcp_param, features;
3351 features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE;
3353 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3354 features, &mcp_resp, &mcp_param);