1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
16 #include <linux/tcp.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
24 #include <net/ip6_checksum.h>
26 #include "emac-sgmii.h"
29 #define SINGLE_PAUSE_MODE 0x10000000
30 #define DEBUG_MODE 0x08000000
31 #define BROAD_EN 0x04000000
32 #define MULTI_ALL 0x02000000
33 #define RX_CHKSUM_EN 0x01000000
34 #define HUGE 0x00800000
35 #define SPEED(x) (((x) & 0x3) << 20)
36 #define SPEED_MASK SPEED(0x3)
37 #define SIMR 0x00080000
38 #define TPAUSE 0x00010000
39 #define PROM_MODE 0x00008000
40 #define VLAN_STRIP 0x00004000
41 #define PRLEN_BMSK 0x00003c00
43 #define HUGEN 0x00000200
44 #define FLCHK 0x00000100
45 #define PCRCE 0x00000080
46 #define CRCE 0x00000040
47 #define FULLD 0x00000020
48 #define MAC_LP_EN 0x00000010
49 #define RXFC 0x00000008
50 #define TXFC 0x00000004
51 #define RXEN 0x00000002
52 #define TXEN 0x00000001
54 /* EMAC_DESC_CTRL_3 */
55 #define RFD_RING_SIZE_BMSK 0xfff
57 /* EMAC_DESC_CTRL_4 */
58 #define RX_BUFFER_SIZE_BMSK 0xffff
60 /* EMAC_DESC_CTRL_6 */
61 #define RRD_RING_SIZE_BMSK 0xfff
63 /* EMAC_DESC_CTRL_9 */
64 #define TPD_RING_SIZE_BMSK 0xffff
67 #define NUM_TXF_BURST_PREF_BMSK 0xffff0000
68 #define NUM_TXF_BURST_PREF_SHFT 16
69 #define LS_8023_SP 0x80
73 #define NUM_TPD_BURST_PREF_BMSK 0xf
74 #define NUM_TPD_BURST_PREF_SHFT 0
77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
80 #define TXF_HWM_BMSK 0xfff0000
81 #define TXF_LWM_BMSK 0xfff
84 #define RXQ_EN BIT(31)
85 #define CUT_THRU_EN BIT(30)
86 #define RSS_HASH_EN BIT(29)
87 #define NUM_RFD_BURST_PREF_BMSK 0x3f00000
88 #define NUM_RFD_BURST_PREF_SHFT 20
89 #define IDT_TABLE_SIZE_BMSK 0x1ff00
90 #define IDT_TABLE_SIZE_SHFT 8
94 #define JUMBO_1KAH_BMSK 0xf000
95 #define JUMBO_1KAH_SHFT 12
96 #define RFD_PREF_LOW_TH 0x10
97 #define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
98 #define RFD_PREF_LOW_THRESHOLD_SHFT 6
99 #define RFD_PREF_UP_TH 0x10
100 #define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
101 #define RFD_PREF_UP_THRESHOLD_SHFT 0
103 /* EMAC_RXQ_CTRL_2 */
104 #define RXF_DOF_THRESFHOLD 0x1a0
105 #define RXF_DOF_THRESHOLD_BMSK 0xfff0000
106 #define RXF_DOF_THRESHOLD_SHFT 16
107 #define RXF_UOF_THRESFHOLD 0xbe
108 #define RXF_UOF_THRESHOLD_BMSK 0xfff
109 #define RXF_UOF_THRESHOLD_SHFT 0
111 /* EMAC_RXQ_CTRL_3 */
112 #define RXD_TIMER_BMSK 0xffff0000
113 #define RXD_THRESHOLD_BMSK 0xfff
114 #define RXD_THRESHOLD_SHFT 0
117 #define DMAW_DLY_CNT_BMSK 0xf0000
118 #define DMAW_DLY_CNT_SHFT 16
119 #define DMAR_DLY_CNT_BMSK 0xf800
120 #define DMAR_DLY_CNT_SHFT 11
121 #define DMAR_REQ_PRI 0x400
122 #define REGWRBLEN_BMSK 0x380
123 #define REGWRBLEN_SHFT 7
124 #define REGRDBLEN_BMSK 0x70
125 #define REGRDBLEN_SHFT 4
126 #define OUT_ORDER_MODE 0x4
127 #define ENH_ORDER_MODE 0x2
128 #define IN_ORDER_MODE 0x1
130 /* EMAC_MAILBOX_13 */
131 #define RFD3_PROC_IDX_BMSK 0xfff0000
132 #define RFD3_PROC_IDX_SHFT 16
133 #define RFD3_PROD_IDX_BMSK 0xfff
134 #define RFD3_PROD_IDX_SHFT 0
137 #define NTPD_CONS_IDX_BMSK 0xffff0000
138 #define NTPD_CONS_IDX_SHFT 16
141 #define RFD0_CONS_IDX_BMSK 0xfff
142 #define RFD0_CONS_IDX_SHFT 0
144 /* EMAC_MAILBOX_11 */
145 #define H3TPD_PROD_IDX_BMSK 0xffff0000
146 #define H3TPD_PROD_IDX_SHFT 16
148 /* EMAC_AXI_MAST_CTRL */
149 #define DATA_BYTE_SWAP 0x8
150 #define MAX_BOUND 0x2
151 #define MAX_BTYPE 0x1
153 /* EMAC_MAILBOX_12 */
154 #define H3TPD_CONS_IDX_BMSK 0xffff0000
155 #define H3TPD_CONS_IDX_SHFT 16
158 #define H2TPD_PROD_IDX_BMSK 0xffff
159 #define H2TPD_PROD_IDX_SHFT 0
161 /* EMAC_MAILBOX_10 */
162 #define H1TPD_CONS_IDX_BMSK 0xffff0000
163 #define H1TPD_CONS_IDX_SHFT 16
164 #define H2TPD_CONS_IDX_BMSK 0xffff
165 #define H2TPD_CONS_IDX_SHFT 0
167 /* EMAC_ATHR_HEADER_CTRL */
168 #define HEADER_CNT_EN 0x2
169 #define HEADER_ENABLE 0x1
172 #define RFD0_PROC_IDX_BMSK 0xfff0000
173 #define RFD0_PROC_IDX_SHFT 16
174 #define RFD0_PROD_IDX_BMSK 0xfff
175 #define RFD0_PROD_IDX_SHFT 0
178 #define RFD1_PROC_IDX_BMSK 0xfff0000
179 #define RFD1_PROC_IDX_SHFT 16
180 #define RFD1_PROD_IDX_BMSK 0xfff
181 #define RFD1_PROD_IDX_SHFT 0
184 #define RX_UNCPL_INT_EN 0x1
187 #define RFD2_CONS_IDX_BMSK 0xfff0000
188 #define RFD2_CONS_IDX_SHFT 16
189 #define RFD1_CONS_IDX_BMSK 0xfff
190 #define RFD1_CONS_IDX_SHFT 0
193 #define RFD3_CONS_IDX_BMSK 0xfff
194 #define RFD3_CONS_IDX_SHFT 0
196 /* EMAC_MAILBOX_15 */
197 #define NTPD_PROD_IDX_BMSK 0xffff
198 #define NTPD_PROD_IDX_SHFT 0
200 /* EMAC_MAILBOX_16 */
201 #define H1TPD_PROD_IDX_BMSK 0xffff
202 #define H1TPD_PROD_IDX_SHFT 0
204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
205 #define RXQ0_RSS_HSTYP_IPV6_EN 0x10
206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
207 #define RXQ0_RSS_HSTYP_IPV4_EN 0x4
209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
210 #define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
211 #define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
215 unsigned long jiffies
;
218 #define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
219 #define EMAC_RSS_IDT_SIZE 256
220 #define JUMBO_1KAH 0x4
222 #define EMAC_TPD_LAST_FRAGMENT 0x80000000
223 #define EMAC_TPD_TSTAMP_SAVE 0x80000000
225 /* EMAC Errors in emac_rrd.word[3] */
226 #define EMAC_RRD_L4F BIT(14)
227 #define EMAC_RRD_IPF BIT(15)
228 #define EMAC_RRD_CRC BIT(21)
229 #define EMAC_RRD_FAE BIT(22)
230 #define EMAC_RRD_TRN BIT(23)
231 #define EMAC_RRD_RNT BIT(24)
232 #define EMAC_RRD_INC BIT(25)
233 #define EMAC_RRD_FOV BIT(29)
234 #define EMAC_RRD_LEN BIT(30)
236 /* Error bits that will result in a received frame being discarded */
237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239 EMAC_RRD_FOV | EMAC_RRD_LEN)
240 #define EMAC_RRD_STATS_DW_IDX 3
242 #define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243 #define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244 #define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
246 #define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
247 #define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
251 #define ISR_RX_PKT (\
257 void emac_mac_multicast_addr_set(struct emac_adapter
*adpt
, u8
*addr
)
259 u32 crc32
, bit
, reg
, mta
;
261 /* Calculate the CRC of the MAC address */
262 crc32
= ether_crc(ETH_ALEN
, addr
);
264 /* The HASH Table is an array of 2 32-bit registers. It is
265 * treated like an array of 64 bits (BitArray[hash_value]).
266 * Use the upper 6 bits of the above CRC as the hash value.
268 reg
= (crc32
>> 31) & 0x1;
269 bit
= (crc32
>> 26) & 0x1F;
271 mta
= readl(adpt
->base
+ EMAC_HASH_TAB_REG0
+ (reg
<< 2));
273 writel(mta
, adpt
->base
+ EMAC_HASH_TAB_REG0
+ (reg
<< 2));
276 void emac_mac_multicast_addr_clear(struct emac_adapter
*adpt
)
278 writel(0, adpt
->base
+ EMAC_HASH_TAB_REG0
);
279 writel(0, adpt
->base
+ EMAC_HASH_TAB_REG1
);
282 /* definitions for RSS */
283 #define EMAC_RSS_KEY(_i, _type) \
284 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285 #define EMAC_RSS_TBL(_i, _type) \
286 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
288 /* Config MAC modes */
289 void emac_mac_mode_config(struct emac_adapter
*adpt
)
291 struct net_device
*netdev
= adpt
->netdev
;
294 mac
= readl(adpt
->base
+ EMAC_MAC_CTRL
);
295 mac
&= ~(VLAN_STRIP
| PROM_MODE
| MULTI_ALL
| MAC_LP_EN
);
297 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
300 if (netdev
->flags
& IFF_PROMISC
)
303 if (netdev
->flags
& IFF_ALLMULTI
)
306 writel(mac
, adpt
->base
+ EMAC_MAC_CTRL
);
309 /* Config descriptor rings */
310 static void emac_mac_dma_rings_config(struct emac_adapter
*adpt
)
312 /* TPD (Transmit Packet Descriptor) */
313 writel(upper_32_bits(adpt
->tx_q
.tpd
.dma_addr
),
314 adpt
->base
+ EMAC_DESC_CTRL_1
);
316 writel(lower_32_bits(adpt
->tx_q
.tpd
.dma_addr
),
317 adpt
->base
+ EMAC_DESC_CTRL_8
);
319 writel(adpt
->tx_q
.tpd
.count
& TPD_RING_SIZE_BMSK
,
320 adpt
->base
+ EMAC_DESC_CTRL_9
);
322 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
323 writel(upper_32_bits(adpt
->rx_q
.rfd
.dma_addr
),
324 adpt
->base
+ EMAC_DESC_CTRL_0
);
326 writel(lower_32_bits(adpt
->rx_q
.rfd
.dma_addr
),
327 adpt
->base
+ EMAC_DESC_CTRL_2
);
328 writel(lower_32_bits(adpt
->rx_q
.rrd
.dma_addr
),
329 adpt
->base
+ EMAC_DESC_CTRL_5
);
331 writel(adpt
->rx_q
.rfd
.count
& RFD_RING_SIZE_BMSK
,
332 adpt
->base
+ EMAC_DESC_CTRL_3
);
333 writel(adpt
->rx_q
.rrd
.count
& RRD_RING_SIZE_BMSK
,
334 adpt
->base
+ EMAC_DESC_CTRL_6
);
336 writel(adpt
->rxbuf_size
& RX_BUFFER_SIZE_BMSK
,
337 adpt
->base
+ EMAC_DESC_CTRL_4
);
339 writel(0, adpt
->base
+ EMAC_DESC_CTRL_11
);
341 /* Load all of the base addresses above and ensure that triggering HW to
342 * read ring pointers is flushed
344 writel(1, adpt
->base
+ EMAC_INTER_SRAM_PART9
);
347 /* Config transmit parameters */
348 static void emac_mac_tx_config(struct emac_adapter
*adpt
)
352 writel((EMAC_MAX_TX_OFFLOAD_THRESH
>> 3) &
353 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK
, adpt
->base
+ EMAC_TXQ_CTRL_1
);
355 val
= (adpt
->tpd_burst
<< NUM_TPD_BURST_PREF_SHFT
) &
356 NUM_TPD_BURST_PREF_BMSK
;
358 val
|= TXQ_MODE
| LS_8023_SP
;
359 val
|= (0x0100 << NUM_TXF_BURST_PREF_SHFT
) &
360 NUM_TXF_BURST_PREF_BMSK
;
362 writel(val
, adpt
->base
+ EMAC_TXQ_CTRL_0
);
363 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_2
,
364 (TXF_HWM_BMSK
| TXF_LWM_BMSK
), 0);
367 /* Config receive parameters */
368 static void emac_mac_rx_config(struct emac_adapter
*adpt
)
372 val
= (adpt
->rfd_burst
<< NUM_RFD_BURST_PREF_SHFT
) &
373 NUM_RFD_BURST_PREF_BMSK
;
374 val
|= (SP_IPV6
| CUT_THRU_EN
);
376 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_0
);
378 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_1
);
379 val
&= ~(JUMBO_1KAH_BMSK
| RFD_PREF_LOW_THRESHOLD_BMSK
|
380 RFD_PREF_UP_THRESHOLD_BMSK
);
381 val
|= (JUMBO_1KAH
<< JUMBO_1KAH_SHFT
) |
382 (RFD_PREF_LOW_TH
<< RFD_PREF_LOW_THRESHOLD_SHFT
) |
383 (RFD_PREF_UP_TH
<< RFD_PREF_UP_THRESHOLD_SHFT
);
384 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_1
);
386 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_2
);
387 val
&= ~(RXF_DOF_THRESHOLD_BMSK
| RXF_UOF_THRESHOLD_BMSK
);
388 val
|= (RXF_DOF_THRESFHOLD
<< RXF_DOF_THRESHOLD_SHFT
) |
389 (RXF_UOF_THRESFHOLD
<< RXF_UOF_THRESHOLD_SHFT
);
390 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_2
);
392 val
= readl(adpt
->base
+ EMAC_RXQ_CTRL_3
);
393 val
&= ~(RXD_TIMER_BMSK
| RXD_THRESHOLD_BMSK
);
394 val
|= RXD_TH
<< RXD_THRESHOLD_SHFT
;
395 writel(val
, adpt
->base
+ EMAC_RXQ_CTRL_3
);
399 static void emac_mac_dma_config(struct emac_adapter
*adpt
)
401 u32 dma_ctrl
= DMAR_REQ_PRI
;
403 switch (adpt
->dma_order
) {
404 case emac_dma_ord_in
:
405 dma_ctrl
|= IN_ORDER_MODE
;
407 case emac_dma_ord_enh
:
408 dma_ctrl
|= ENH_ORDER_MODE
;
410 case emac_dma_ord_out
:
411 dma_ctrl
|= OUT_ORDER_MODE
;
417 dma_ctrl
|= (((u32
)adpt
->dmar_block
) << REGRDBLEN_SHFT
) &
419 dma_ctrl
|= (((u32
)adpt
->dmaw_block
) << REGWRBLEN_SHFT
) &
421 dma_ctrl
|= (((u32
)adpt
->dmar_dly_cnt
) << DMAR_DLY_CNT_SHFT
) &
423 dma_ctrl
|= (((u32
)adpt
->dmaw_dly_cnt
) << DMAW_DLY_CNT_SHFT
) &
426 /* config DMA and ensure that configuration is flushed to HW */
427 writel(dma_ctrl
, adpt
->base
+ EMAC_DMA_CTRL
);
430 /* set MAC address */
431 static void emac_set_mac_address(struct emac_adapter
*adpt
, u8
*addr
)
435 /* for example: 00-A0-C6-11-22-33
436 * 0<-->C6112233, 1<-->00A0.
440 sta
= (((u32
)addr
[2]) << 24) | (((u32
)addr
[3]) << 16) |
441 (((u32
)addr
[4]) << 8) | (((u32
)addr
[5]));
442 writel(sta
, adpt
->base
+ EMAC_MAC_STA_ADDR0
);
444 /* hight 32bit word */
445 sta
= (((u32
)addr
[0]) << 8) | (u32
)addr
[1];
446 writel(sta
, adpt
->base
+ EMAC_MAC_STA_ADDR1
);
449 static void emac_mac_config(struct emac_adapter
*adpt
)
451 struct net_device
*netdev
= adpt
->netdev
;
452 unsigned int max_frame
;
455 emac_set_mac_address(adpt
, netdev
->dev_addr
);
457 max_frame
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
;
458 adpt
->rxbuf_size
= netdev
->mtu
> EMAC_DEF_RX_BUF_SIZE
?
459 ALIGN(max_frame
, 8) : EMAC_DEF_RX_BUF_SIZE
;
461 emac_mac_dma_rings_config(adpt
);
463 writel(netdev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
+ ETH_FCS_LEN
,
464 adpt
->base
+ EMAC_MAX_FRAM_LEN_CTRL
);
466 emac_mac_tx_config(adpt
);
467 emac_mac_rx_config(adpt
);
468 emac_mac_dma_config(adpt
);
470 val
= readl(adpt
->base
+ EMAC_AXI_MAST_CTRL
);
471 val
&= ~(DATA_BYTE_SWAP
| MAX_BOUND
);
473 writel(val
, adpt
->base
+ EMAC_AXI_MAST_CTRL
);
474 writel(0, adpt
->base
+ EMAC_CLK_GATE_CTRL
);
475 writel(RX_UNCPL_INT_EN
, adpt
->base
+ EMAC_MISC_CTRL
);
478 void emac_mac_reset(struct emac_adapter
*adpt
)
482 emac_reg_update32(adpt
->base
+ EMAC_DMA_MAS_CTRL
, 0, SOFT_RST
);
483 usleep_range(100, 150); /* reset may take up to 100usec */
485 /* interrupt clear-on-read */
486 emac_reg_update32(adpt
->base
+ EMAC_DMA_MAS_CTRL
, 0, INT_RD_CLR_EN
);
489 static void emac_mac_start(struct emac_adapter
*adpt
)
491 struct phy_device
*phydev
= adpt
->phydev
;
494 /* enable tx queue */
495 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_0
, 0, TXQ_EN
);
497 /* enable rx queue */
498 emac_reg_update32(adpt
->base
+ EMAC_RXQ_CTRL_0
, 0, RXQ_EN
);
500 /* enable mac control */
501 mac
= readl(adpt
->base
+ EMAC_MAC_CTRL
);
502 csr1
= readl(adpt
->csr
+ EMAC_EMAC_WRAPPER_CSR1
);
504 mac
|= TXEN
| RXEN
; /* enable RX/TX */
506 /* Configure MAC flow control. If set to automatic, then match
507 * whatever the PHY does. Otherwise, enable or disable it, depending
508 * on what the user configured via ethtool.
510 mac
&= ~(RXFC
| TXFC
);
512 if (adpt
->automatic
) {
513 /* If it's set to automatic, then update our local values */
514 adpt
->rx_flow_control
= phydev
->pause
;
515 adpt
->tx_flow_control
= phydev
->pause
!= phydev
->asym_pause
;
517 mac
|= adpt
->rx_flow_control
? RXFC
: 0;
518 mac
|= adpt
->tx_flow_control
? TXFC
: 0;
520 /* setup link speed */
522 if (phydev
->speed
== SPEED_1000
) {
530 if (phydev
->duplex
== DUPLEX_FULL
)
535 /* other parameters */
536 mac
|= (CRCE
| PCRCE
);
537 mac
|= ((adpt
->preamble
<< PRLEN_SHFT
) & PRLEN_BMSK
);
540 mac
&= ~RX_CHKSUM_EN
;
541 mac
&= ~(HUGEN
| VLAN_STRIP
| TPAUSE
| SIMR
| HUGE
| MULTI_ALL
|
542 DEBUG_MODE
| SINGLE_PAUSE_MODE
);
544 /* Enable single-pause-frame mode if requested.
546 * If enabled, the EMAC will send a single pause frame when the RX
547 * queue is full. This normally leads to packet loss because
548 * the pause frame disables the remote MAC only for 33ms (the quanta),
549 * and then the remote MAC continues sending packets even though
550 * the RX queue is still full.
552 * If disabled, the EMAC sends a pause frame every 31ms until the RX
553 * queue is no longer full. Normally, this is the preferred
554 * method of operation. However, when the system is hung (e.g.
555 * cores are halted), the EMAC interrupt handler is never called
556 * and so the RX queue fills up quickly and stays full. The resuling
557 * non-stop "flood" of pause frames sometimes has the effect of
558 * disabling nearby switches. In some cases, other nearby switches
559 * are also affected, shutting down the entire network.
561 * The user can enable or disable single-pause-frame mode
564 mac
|= adpt
->single_pause_mode
? SINGLE_PAUSE_MODE
: 0;
566 writel_relaxed(csr1
, adpt
->csr
+ EMAC_EMAC_WRAPPER_CSR1
);
568 writel_relaxed(mac
, adpt
->base
+ EMAC_MAC_CTRL
);
570 /* enable interrupt read clear, low power sleep mode and
574 writel_relaxed(adpt
->irq_mod
, adpt
->base
+ EMAC_IRQ_MOD_TIM_INIT
);
575 writel_relaxed(INT_RD_CLR_EN
| LPW_MODE
| IRQ_MODERATOR_EN
|
576 IRQ_MODERATOR2_EN
, adpt
->base
+ EMAC_DMA_MAS_CTRL
);
578 emac_mac_mode_config(adpt
);
580 emac_reg_update32(adpt
->base
+ EMAC_ATHR_HEADER_CTRL
,
581 (HEADER_ENABLE
| HEADER_CNT_EN
), 0);
584 void emac_mac_stop(struct emac_adapter
*adpt
)
586 emac_reg_update32(adpt
->base
+ EMAC_RXQ_CTRL_0
, RXQ_EN
, 0);
587 emac_reg_update32(adpt
->base
+ EMAC_TXQ_CTRL_0
, TXQ_EN
, 0);
588 emac_reg_update32(adpt
->base
+ EMAC_MAC_CTRL
, TXEN
| RXEN
, 0);
589 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
592 /* Free all descriptors of given transmit queue */
593 static void emac_tx_q_descs_free(struct emac_adapter
*adpt
)
595 struct emac_tx_queue
*tx_q
= &adpt
->tx_q
;
599 /* ring already cleared, nothing to do */
600 if (!tx_q
->tpd
.tpbuff
)
603 for (i
= 0; i
< tx_q
->tpd
.count
; i
++) {
604 struct emac_buffer
*tpbuf
= GET_TPD_BUFFER(tx_q
, i
);
606 if (tpbuf
->dma_addr
) {
607 dma_unmap_single(adpt
->netdev
->dev
.parent
,
608 tpbuf
->dma_addr
, tpbuf
->length
,
613 dev_kfree_skb_any(tpbuf
->skb
);
618 size
= sizeof(struct emac_buffer
) * tx_q
->tpd
.count
;
619 memset(tx_q
->tpd
.tpbuff
, 0, size
);
621 /* clear the descriptor ring */
622 memset(tx_q
->tpd
.v_addr
, 0, tx_q
->tpd
.size
);
624 tx_q
->tpd
.consume_idx
= 0;
625 tx_q
->tpd
.produce_idx
= 0;
628 /* Free all descriptors of given receive queue */
629 static void emac_rx_q_free_descs(struct emac_adapter
*adpt
)
631 struct device
*dev
= adpt
->netdev
->dev
.parent
;
632 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
636 /* ring already cleared, nothing to do */
637 if (!rx_q
->rfd
.rfbuff
)
640 for (i
= 0; i
< rx_q
->rfd
.count
; i
++) {
641 struct emac_buffer
*rfbuf
= GET_RFD_BUFFER(rx_q
, i
);
643 if (rfbuf
->dma_addr
) {
644 dma_unmap_single(dev
, rfbuf
->dma_addr
, rfbuf
->length
,
649 dev_kfree_skb(rfbuf
->skb
);
654 size
= sizeof(struct emac_buffer
) * rx_q
->rfd
.count
;
655 memset(rx_q
->rfd
.rfbuff
, 0, size
);
657 /* clear the descriptor rings */
658 memset(rx_q
->rrd
.v_addr
, 0, rx_q
->rrd
.size
);
659 rx_q
->rrd
.produce_idx
= 0;
660 rx_q
->rrd
.consume_idx
= 0;
662 memset(rx_q
->rfd
.v_addr
, 0, rx_q
->rfd
.size
);
663 rx_q
->rfd
.produce_idx
= 0;
664 rx_q
->rfd
.consume_idx
= 0;
667 /* Free all buffers associated with given transmit queue */
668 static void emac_tx_q_bufs_free(struct emac_adapter
*adpt
)
670 struct emac_tx_queue
*tx_q
= &adpt
->tx_q
;
672 emac_tx_q_descs_free(adpt
);
674 kfree(tx_q
->tpd
.tpbuff
);
675 tx_q
->tpd
.tpbuff
= NULL
;
676 tx_q
->tpd
.v_addr
= NULL
;
677 tx_q
->tpd
.dma_addr
= 0;
681 /* Allocate TX descriptor ring for the given transmit queue */
682 static int emac_tx_q_desc_alloc(struct emac_adapter
*adpt
,
683 struct emac_tx_queue
*tx_q
)
685 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
686 int node
= dev_to_node(adpt
->netdev
->dev
.parent
);
689 size
= sizeof(struct emac_buffer
) * tx_q
->tpd
.count
;
690 tx_q
->tpd
.tpbuff
= kzalloc_node(size
, GFP_KERNEL
, node
);
691 if (!tx_q
->tpd
.tpbuff
)
694 tx_q
->tpd
.size
= tx_q
->tpd
.count
* (adpt
->tpd_size
* 4);
695 tx_q
->tpd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
696 tx_q
->tpd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
697 ring_header
->used
+= ALIGN(tx_q
->tpd
.size
, 8);
698 tx_q
->tpd
.produce_idx
= 0;
699 tx_q
->tpd
.consume_idx
= 0;
704 /* Free all buffers associated with given transmit queue */
705 static void emac_rx_q_bufs_free(struct emac_adapter
*adpt
)
707 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
709 emac_rx_q_free_descs(adpt
);
711 kfree(rx_q
->rfd
.rfbuff
);
712 rx_q
->rfd
.rfbuff
= NULL
;
714 rx_q
->rfd
.v_addr
= NULL
;
715 rx_q
->rfd
.dma_addr
= 0;
718 rx_q
->rrd
.v_addr
= NULL
;
719 rx_q
->rrd
.dma_addr
= 0;
723 /* Allocate RX descriptor rings for the given receive queue */
724 static int emac_rx_descs_alloc(struct emac_adapter
*adpt
)
726 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
727 int node
= dev_to_node(adpt
->netdev
->dev
.parent
);
728 struct emac_rx_queue
*rx_q
= &adpt
->rx_q
;
731 size
= sizeof(struct emac_buffer
) * rx_q
->rfd
.count
;
732 rx_q
->rfd
.rfbuff
= kzalloc_node(size
, GFP_KERNEL
, node
);
733 if (!rx_q
->rfd
.rfbuff
)
736 rx_q
->rrd
.size
= rx_q
->rrd
.count
* (adpt
->rrd_size
* 4);
737 rx_q
->rfd
.size
= rx_q
->rfd
.count
* (adpt
->rfd_size
* 4);
739 rx_q
->rrd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
740 rx_q
->rrd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
741 ring_header
->used
+= ALIGN(rx_q
->rrd
.size
, 8);
743 rx_q
->rfd
.dma_addr
= ring_header
->dma_addr
+ ring_header
->used
;
744 rx_q
->rfd
.v_addr
= ring_header
->v_addr
+ ring_header
->used
;
745 ring_header
->used
+= ALIGN(rx_q
->rfd
.size
, 8);
747 rx_q
->rrd
.produce_idx
= 0;
748 rx_q
->rrd
.consume_idx
= 0;
750 rx_q
->rfd
.produce_idx
= 0;
751 rx_q
->rfd
.consume_idx
= 0;
756 /* Allocate all TX and RX descriptor rings */
757 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter
*adpt
)
759 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
760 struct device
*dev
= adpt
->netdev
->dev
.parent
;
761 unsigned int num_tx_descs
= adpt
->tx_desc_cnt
;
762 unsigned int num_rx_descs
= adpt
->rx_desc_cnt
;
765 adpt
->tx_q
.tpd
.count
= adpt
->tx_desc_cnt
;
767 adpt
->rx_q
.rrd
.count
= adpt
->rx_desc_cnt
;
768 adpt
->rx_q
.rfd
.count
= adpt
->rx_desc_cnt
;
770 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
771 * hence the additional padding bytes are allocated.
773 ring_header
->size
= num_tx_descs
* (adpt
->tpd_size
* 4) +
774 num_rx_descs
* (adpt
->rfd_size
* 4) +
775 num_rx_descs
* (adpt
->rrd_size
* 4) +
776 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
778 ring_header
->used
= 0;
779 ring_header
->v_addr
= dma_zalloc_coherent(dev
, ring_header
->size
,
780 &ring_header
->dma_addr
,
782 if (!ring_header
->v_addr
)
785 ring_header
->used
= ALIGN(ring_header
->dma_addr
, 8) -
786 ring_header
->dma_addr
;
788 ret
= emac_tx_q_desc_alloc(adpt
, &adpt
->tx_q
);
790 netdev_err(adpt
->netdev
, "error: Tx Queue alloc failed\n");
794 ret
= emac_rx_descs_alloc(adpt
);
796 netdev_err(adpt
->netdev
, "error: Rx Queue alloc failed\n");
803 emac_tx_q_bufs_free(adpt
);
805 dma_free_coherent(dev
, ring_header
->size
,
806 ring_header
->v_addr
, ring_header
->dma_addr
);
808 ring_header
->v_addr
= NULL
;
809 ring_header
->dma_addr
= 0;
810 ring_header
->size
= 0;
811 ring_header
->used
= 0;
816 /* Free all TX and RX descriptor rings */
817 void emac_mac_rx_tx_rings_free_all(struct emac_adapter
*adpt
)
819 struct emac_ring_header
*ring_header
= &adpt
->ring_header
;
820 struct device
*dev
= adpt
->netdev
->dev
.parent
;
822 emac_tx_q_bufs_free(adpt
);
823 emac_rx_q_bufs_free(adpt
);
825 dma_free_coherent(dev
, ring_header
->size
,
826 ring_header
->v_addr
, ring_header
->dma_addr
);
828 ring_header
->v_addr
= NULL
;
829 ring_header
->dma_addr
= 0;
830 ring_header
->size
= 0;
831 ring_header
->used
= 0;
834 /* Initialize descriptor rings */
835 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter
*adpt
)
839 adpt
->tx_q
.tpd
.produce_idx
= 0;
840 adpt
->tx_q
.tpd
.consume_idx
= 0;
841 for (i
= 0; i
< adpt
->tx_q
.tpd
.count
; i
++)
842 adpt
->tx_q
.tpd
.tpbuff
[i
].dma_addr
= 0;
844 adpt
->rx_q
.rrd
.produce_idx
= 0;
845 adpt
->rx_q
.rrd
.consume_idx
= 0;
846 adpt
->rx_q
.rfd
.produce_idx
= 0;
847 adpt
->rx_q
.rfd
.consume_idx
= 0;
848 for (i
= 0; i
< adpt
->rx_q
.rfd
.count
; i
++)
849 adpt
->rx_q
.rfd
.rfbuff
[i
].dma_addr
= 0;
852 /* Produce new receive free descriptor */
853 static void emac_mac_rx_rfd_create(struct emac_adapter
*adpt
,
854 struct emac_rx_queue
*rx_q
,
857 u32
*hw_rfd
= EMAC_RFD(rx_q
, adpt
->rfd_size
, rx_q
->rfd
.produce_idx
);
859 *(hw_rfd
++) = lower_32_bits(addr
);
860 *hw_rfd
= upper_32_bits(addr
);
862 if (++rx_q
->rfd
.produce_idx
== rx_q
->rfd
.count
)
863 rx_q
->rfd
.produce_idx
= 0;
866 /* Fill up receive queue's RFD with preallocated receive buffers */
867 static void emac_mac_rx_descs_refill(struct emac_adapter
*adpt
,
868 struct emac_rx_queue
*rx_q
)
870 struct emac_buffer
*curr_rxbuf
;
871 struct emac_buffer
*next_rxbuf
;
872 unsigned int count
= 0;
873 u32 next_produce_idx
;
875 next_produce_idx
= rx_q
->rfd
.produce_idx
+ 1;
876 if (next_produce_idx
== rx_q
->rfd
.count
)
877 next_produce_idx
= 0;
879 curr_rxbuf
= GET_RFD_BUFFER(rx_q
, rx_q
->rfd
.produce_idx
);
880 next_rxbuf
= GET_RFD_BUFFER(rx_q
, next_produce_idx
);
882 /* this always has a blank rx_buffer*/
883 while (!next_rxbuf
->dma_addr
) {
887 skb
= netdev_alloc_skb_ip_align(adpt
->netdev
, adpt
->rxbuf_size
);
891 curr_rxbuf
->dma_addr
=
892 dma_map_single(adpt
->netdev
->dev
.parent
, skb
->data
,
893 adpt
->rxbuf_size
, DMA_FROM_DEVICE
);
895 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
896 curr_rxbuf
->dma_addr
);
901 curr_rxbuf
->skb
= skb
;
902 curr_rxbuf
->length
= adpt
->rxbuf_size
;
904 emac_mac_rx_rfd_create(adpt
, rx_q
, curr_rxbuf
->dma_addr
);
905 next_produce_idx
= rx_q
->rfd
.produce_idx
+ 1;
906 if (next_produce_idx
== rx_q
->rfd
.count
)
907 next_produce_idx
= 0;
909 curr_rxbuf
= GET_RFD_BUFFER(rx_q
, rx_q
->rfd
.produce_idx
);
910 next_rxbuf
= GET_RFD_BUFFER(rx_q
, next_produce_idx
);
915 u32 prod_idx
= (rx_q
->rfd
.produce_idx
<< rx_q
->produce_shift
) &
917 emac_reg_update32(adpt
->base
+ rx_q
->produce_reg
,
918 rx_q
->produce_mask
, prod_idx
);
922 static void emac_adjust_link(struct net_device
*netdev
)
924 struct emac_adapter
*adpt
= netdev_priv(netdev
);
925 struct phy_device
*phydev
= netdev
->phydev
;
928 emac_mac_start(adpt
);
929 emac_sgmii_link_change(adpt
, true);
931 emac_sgmii_link_change(adpt
, false);
935 phy_print_status(phydev
);
938 /* Bringup the interface/HW */
939 int emac_mac_up(struct emac_adapter
*adpt
)
941 struct net_device
*netdev
= adpt
->netdev
;
944 emac_mac_rx_tx_ring_reset_all(adpt
);
945 emac_mac_config(adpt
);
946 emac_mac_rx_descs_refill(adpt
, &adpt
->rx_q
);
948 adpt
->phydev
->irq
= PHY_POLL
;
949 ret
= phy_connect_direct(netdev
, adpt
->phydev
, emac_adjust_link
,
950 PHY_INTERFACE_MODE_SGMII
);
952 netdev_err(adpt
->netdev
, "could not connect phy\n");
956 phy_attached_print(adpt
->phydev
, NULL
);
959 writel((u32
)~DIS_INT
, adpt
->base
+ EMAC_INT_STATUS
);
960 writel(adpt
->irq
.mask
, adpt
->base
+ EMAC_INT_MASK
);
962 phy_start(adpt
->phydev
);
964 napi_enable(&adpt
->rx_q
.napi
);
965 netif_start_queue(netdev
);
970 /* Bring down the interface/HW */
971 void emac_mac_down(struct emac_adapter
*adpt
)
973 struct net_device
*netdev
= adpt
->netdev
;
975 netif_stop_queue(netdev
);
976 napi_disable(&adpt
->rx_q
.napi
);
978 phy_stop(adpt
->phydev
);
980 /* Interrupts must be disabled before the PHY is disconnected, to
981 * avoid a race condition where adjust_link is null when we get
984 writel(DIS_INT
, adpt
->base
+ EMAC_INT_STATUS
);
985 writel(0, adpt
->base
+ EMAC_INT_MASK
);
986 synchronize_irq(adpt
->irq
.irq
);
988 phy_disconnect(adpt
->phydev
);
990 emac_mac_reset(adpt
);
992 emac_tx_q_descs_free(adpt
);
993 netdev_reset_queue(adpt
->netdev
);
994 emac_rx_q_free_descs(adpt
);
997 /* Consume next received packet descriptor */
998 static bool emac_rx_process_rrd(struct emac_adapter
*adpt
,
999 struct emac_rx_queue
*rx_q
,
1000 struct emac_rrd
*rrd
)
1002 u32
*hw_rrd
= EMAC_RRD(rx_q
, adpt
->rrd_size
, rx_q
->rrd
.consume_idx
);
1004 rrd
->word
[3] = *(hw_rrd
+ 3);
1012 rrd
->word
[0] = *(hw_rrd
++);
1013 rrd
->word
[1] = *(hw_rrd
++);
1014 rrd
->word
[2] = *(hw_rrd
++);
1016 if (unlikely(RRD_NOR(rrd
) != 1)) {
1017 netdev_err(adpt
->netdev
,
1018 "error: multi-RFD not support yet! nor:%lu\n",
1022 /* mark rrd as processed */
1023 RRD_UPDT_SET(rrd
, 0);
1024 *hw_rrd
= rrd
->word
[3];
1026 if (++rx_q
->rrd
.consume_idx
== rx_q
->rrd
.count
)
1027 rx_q
->rrd
.consume_idx
= 0;
1032 /* Produce new transmit descriptor */
1033 static void emac_tx_tpd_create(struct emac_adapter
*adpt
,
1034 struct emac_tx_queue
*tx_q
, struct emac_tpd
*tpd
)
1038 tx_q
->tpd
.last_produce_idx
= tx_q
->tpd
.produce_idx
;
1039 hw_tpd
= EMAC_TPD(tx_q
, adpt
->tpd_size
, tx_q
->tpd
.produce_idx
);
1041 if (++tx_q
->tpd
.produce_idx
== tx_q
->tpd
.count
)
1042 tx_q
->tpd
.produce_idx
= 0;
1044 *(hw_tpd
++) = tpd
->word
[0];
1045 *(hw_tpd
++) = tpd
->word
[1];
1046 *(hw_tpd
++) = tpd
->word
[2];
1047 *hw_tpd
= tpd
->word
[3];
1050 /* Mark the last transmit descriptor as such (for the transmit packet) */
1051 static void emac_tx_tpd_mark_last(struct emac_adapter
*adpt
,
1052 struct emac_tx_queue
*tx_q
)
1055 EMAC_TPD(tx_q
, adpt
->tpd_size
, tx_q
->tpd
.last_produce_idx
);
1058 tmp_tpd
= *(hw_tpd
+ 1);
1059 tmp_tpd
|= EMAC_TPD_LAST_FRAGMENT
;
1060 *(hw_tpd
+ 1) = tmp_tpd
;
1063 static void emac_rx_rfd_clean(struct emac_rx_queue
*rx_q
, struct emac_rrd
*rrd
)
1065 struct emac_buffer
*rfbuf
= rx_q
->rfd
.rfbuff
;
1066 u32 consume_idx
= RRD_SI(rrd
);
1069 for (i
= 0; i
< RRD_NOR(rrd
); i
++) {
1070 rfbuf
[consume_idx
].skb
= NULL
;
1071 if (++consume_idx
== rx_q
->rfd
.count
)
1075 rx_q
->rfd
.consume_idx
= consume_idx
;
1076 rx_q
->rfd
.process_idx
= consume_idx
;
1079 /* Push the received skb to upper layers */
1080 static void emac_receive_skb(struct emac_rx_queue
*rx_q
,
1081 struct sk_buff
*skb
,
1082 u16 vlan_tag
, bool vlan_flag
)
1087 EMAC_TAG_TO_VLAN(vlan_tag
, vlan
);
1088 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan
);
1091 napi_gro_receive(&rx_q
->napi
, skb
);
1094 /* Process receive event */
1095 void emac_mac_rx_process(struct emac_adapter
*adpt
, struct emac_rx_queue
*rx_q
,
1096 int *num_pkts
, int max_pkts
)
1098 u32 proc_idx
, hw_consume_idx
, num_consume_pkts
;
1099 struct net_device
*netdev
= adpt
->netdev
;
1100 struct emac_buffer
*rfbuf
;
1101 unsigned int count
= 0;
1102 struct emac_rrd rrd
;
1103 struct sk_buff
*skb
;
1106 reg
= readl_relaxed(adpt
->base
+ rx_q
->consume_reg
);
1108 hw_consume_idx
= (reg
& rx_q
->consume_mask
) >> rx_q
->consume_shift
;
1109 num_consume_pkts
= (hw_consume_idx
>= rx_q
->rrd
.consume_idx
) ?
1110 (hw_consume_idx
- rx_q
->rrd
.consume_idx
) :
1111 (hw_consume_idx
+ rx_q
->rrd
.count
- rx_q
->rrd
.consume_idx
);
1114 if (!num_consume_pkts
)
1117 if (!emac_rx_process_rrd(adpt
, rx_q
, &rrd
))
1120 if (likely(RRD_NOR(&rrd
) == 1)) {
1122 rfbuf
= GET_RFD_BUFFER(rx_q
, RRD_SI(&rrd
));
1123 dma_unmap_single(adpt
->netdev
->dev
.parent
,
1124 rfbuf
->dma_addr
, rfbuf
->length
,
1126 rfbuf
->dma_addr
= 0;
1129 netdev_err(adpt
->netdev
,
1130 "error: multi-RFD not support yet!\n");
1133 emac_rx_rfd_clean(rx_q
, &rrd
);
1137 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1138 * with DF set are marked as error), drop packets based on the
1139 * error mask rather than the summary bit (ignoring L4F errors)
1141 if (rrd
.word
[EMAC_RRD_STATS_DW_IDX
] & EMAC_RRD_ERROR
) {
1142 netif_dbg(adpt
, rx_status
, adpt
->netdev
,
1143 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1144 rrd
.word
[0], rrd
.word
[1],
1145 rrd
.word
[2], rrd
.word
[3]);
1151 skb_put(skb
, RRD_PKT_SIZE(&rrd
) - ETH_FCS_LEN
);
1153 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
1154 if (netdev
->features
& NETIF_F_RXCSUM
)
1155 skb
->ip_summed
= RRD_L4F(&rrd
) ?
1156 CHECKSUM_NONE
: CHECKSUM_UNNECESSARY
;
1158 skb_checksum_none_assert(skb
);
1160 emac_receive_skb(rx_q
, skb
, (u16
)RRD_CVALN_TAG(&rrd
),
1161 (bool)RRD_CVTAG(&rrd
));
1164 } while (*num_pkts
< max_pkts
);
1167 proc_idx
= (rx_q
->rfd
.process_idx
<< rx_q
->process_shft
) &
1169 emac_reg_update32(adpt
->base
+ rx_q
->process_reg
,
1170 rx_q
->process_mask
, proc_idx
);
1171 emac_mac_rx_descs_refill(adpt
, rx_q
);
1175 /* get the number of free transmit descriptors */
1176 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue
*tx_q
)
1178 u32 produce_idx
= tx_q
->tpd
.produce_idx
;
1179 u32 consume_idx
= tx_q
->tpd
.consume_idx
;
1181 return (consume_idx
> produce_idx
) ?
1182 (consume_idx
- produce_idx
- 1) :
1183 (tx_q
->tpd
.count
+ consume_idx
- produce_idx
- 1);
1186 /* Process transmit event */
1187 void emac_mac_tx_process(struct emac_adapter
*adpt
, struct emac_tx_queue
*tx_q
)
1189 u32 reg
= readl_relaxed(adpt
->base
+ tx_q
->consume_reg
);
1190 u32 hw_consume_idx
, pkts_compl
= 0, bytes_compl
= 0;
1191 struct emac_buffer
*tpbuf
;
1193 hw_consume_idx
= (reg
& tx_q
->consume_mask
) >> tx_q
->consume_shift
;
1195 while (tx_q
->tpd
.consume_idx
!= hw_consume_idx
) {
1196 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.consume_idx
);
1197 if (tpbuf
->dma_addr
) {
1198 dma_unmap_page(adpt
->netdev
->dev
.parent
,
1199 tpbuf
->dma_addr
, tpbuf
->length
,
1201 tpbuf
->dma_addr
= 0;
1206 bytes_compl
+= tpbuf
->skb
->len
;
1207 dev_kfree_skb_irq(tpbuf
->skb
);
1211 if (++tx_q
->tpd
.consume_idx
== tx_q
->tpd
.count
)
1212 tx_q
->tpd
.consume_idx
= 0;
1215 netdev_completed_queue(adpt
->netdev
, pkts_compl
, bytes_compl
);
1217 if (netif_queue_stopped(adpt
->netdev
))
1218 if (emac_tpd_num_free_descs(tx_q
) > (MAX_SKB_FRAGS
+ 1))
1219 netif_wake_queue(adpt
->netdev
);
1222 /* Initialize all queue data structures */
1223 void emac_mac_rx_tx_ring_init_all(struct platform_device
*pdev
,
1224 struct emac_adapter
*adpt
)
1226 adpt
->rx_q
.netdev
= adpt
->netdev
;
1228 adpt
->rx_q
.produce_reg
= EMAC_MAILBOX_0
;
1229 adpt
->rx_q
.produce_mask
= RFD0_PROD_IDX_BMSK
;
1230 adpt
->rx_q
.produce_shift
= RFD0_PROD_IDX_SHFT
;
1232 adpt
->rx_q
.process_reg
= EMAC_MAILBOX_0
;
1233 adpt
->rx_q
.process_mask
= RFD0_PROC_IDX_BMSK
;
1234 adpt
->rx_q
.process_shft
= RFD0_PROC_IDX_SHFT
;
1236 adpt
->rx_q
.consume_reg
= EMAC_MAILBOX_3
;
1237 adpt
->rx_q
.consume_mask
= RFD0_CONS_IDX_BMSK
;
1238 adpt
->rx_q
.consume_shift
= RFD0_CONS_IDX_SHFT
;
1240 adpt
->rx_q
.irq
= &adpt
->irq
;
1241 adpt
->rx_q
.intr
= adpt
->irq
.mask
& ISR_RX_PKT
;
1243 adpt
->tx_q
.produce_reg
= EMAC_MAILBOX_15
;
1244 adpt
->tx_q
.produce_mask
= NTPD_PROD_IDX_BMSK
;
1245 adpt
->tx_q
.produce_shift
= NTPD_PROD_IDX_SHFT
;
1247 adpt
->tx_q
.consume_reg
= EMAC_MAILBOX_2
;
1248 adpt
->tx_q
.consume_mask
= NTPD_CONS_IDX_BMSK
;
1249 adpt
->tx_q
.consume_shift
= NTPD_CONS_IDX_SHFT
;
1252 /* Fill up transmit descriptors with TSO and Checksum offload information */
1253 static int emac_tso_csum(struct emac_adapter
*adpt
,
1254 struct emac_tx_queue
*tx_q
,
1255 struct sk_buff
*skb
,
1256 struct emac_tpd
*tpd
)
1258 unsigned int hdr_len
;
1261 if (skb_is_gso(skb
)) {
1262 if (skb_header_cloned(skb
)) {
1263 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1268 if (skb
->protocol
== htons(ETH_P_IP
)) {
1269 u32 pkt_len
= ((unsigned char *)ip_hdr(skb
) - skb
->data
)
1270 + ntohs(ip_hdr(skb
)->tot_len
);
1271 if (skb
->len
> pkt_len
)
1272 pskb_trim(skb
, pkt_len
);
1275 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1276 if (unlikely(skb
->len
== hdr_len
)) {
1277 /* we only need to do csum */
1278 netif_warn(adpt
, tx_err
, adpt
->netdev
,
1279 "tso not needed for packet with 0 data\n");
1283 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
1284 ip_hdr(skb
)->check
= 0;
1285 tcp_hdr(skb
)->check
=
1286 ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
1289 TPD_IPV4_SET(tpd
, 1);
1292 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
1293 /* ipv6 tso need an extra tpd */
1294 struct emac_tpd extra_tpd
;
1296 memset(tpd
, 0, sizeof(*tpd
));
1297 memset(&extra_tpd
, 0, sizeof(extra_tpd
));
1299 ipv6_hdr(skb
)->payload_len
= 0;
1300 tcp_hdr(skb
)->check
=
1301 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1302 &ipv6_hdr(skb
)->daddr
,
1304 TPD_PKT_LEN_SET(&extra_tpd
, skb
->len
);
1305 TPD_LSO_SET(&extra_tpd
, 1);
1306 TPD_LSOV_SET(&extra_tpd
, 1);
1307 emac_tx_tpd_create(adpt
, tx_q
, &extra_tpd
);
1308 TPD_LSOV_SET(tpd
, 1);
1311 TPD_LSO_SET(tpd
, 1);
1312 TPD_TCPHDR_OFFSET_SET(tpd
, skb_transport_offset(skb
));
1313 TPD_MSS_SET(tpd
, skb_shinfo(skb
)->gso_size
);
1318 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
1319 unsigned int css
, cso
;
1321 cso
= skb_transport_offset(skb
);
1322 if (unlikely(cso
& 0x1)) {
1323 netdev_err(adpt
->netdev
,
1324 "error: payload offset should be even\n");
1327 css
= cso
+ skb
->csum_offset
;
1329 TPD_PAYLOAD_OFFSET_SET(tpd
, cso
>> 1);
1330 TPD_CXSUM_OFFSET_SET(tpd
, css
>> 1);
1331 TPD_CSX_SET(tpd
, 1);
1337 /* Fill up transmit descriptors */
1338 static void emac_tx_fill_tpd(struct emac_adapter
*adpt
,
1339 struct emac_tx_queue
*tx_q
, struct sk_buff
*skb
,
1340 struct emac_tpd
*tpd
)
1342 unsigned int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1343 unsigned int first
= tx_q
->tpd
.produce_idx
;
1344 unsigned int len
= skb_headlen(skb
);
1345 struct emac_buffer
*tpbuf
= NULL
;
1346 unsigned int mapped_len
= 0;
1351 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1353 mapped_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1355 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1356 tpbuf
->length
= mapped_len
;
1357 tpbuf
->dma_addr
= dma_map_page(adpt
->netdev
->dev
.parent
,
1358 virt_to_page(skb
->data
),
1359 offset_in_page(skb
->data
),
1362 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1367 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1368 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1369 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1370 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1374 if (mapped_len
< len
) {
1375 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1376 tpbuf
->length
= len
- mapped_len
;
1377 tpbuf
->dma_addr
= dma_map_page(adpt
->netdev
->dev
.parent
,
1378 virt_to_page(skb
->data
+
1380 offset_in_page(skb
->data
+
1382 tpbuf
->length
, DMA_TO_DEVICE
);
1383 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1388 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1389 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1390 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1391 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1395 for (i
= 0; i
< nr_frags
; i
++) {
1396 struct skb_frag_struct
*frag
;
1398 frag
= &skb_shinfo(skb
)->frags
[i
];
1400 tpbuf
= GET_TPD_BUFFER(tx_q
, tx_q
->tpd
.produce_idx
);
1401 tpbuf
->length
= frag
->size
;
1402 tpbuf
->dma_addr
= dma_map_page(adpt
->netdev
->dev
.parent
,
1403 frag
->page
.p
, frag
->page_offset
,
1404 tpbuf
->length
, DMA_TO_DEVICE
);
1405 ret
= dma_mapping_error(adpt
->netdev
->dev
.parent
,
1410 TPD_BUFFER_ADDR_L_SET(tpd
, lower_32_bits(tpbuf
->dma_addr
));
1411 TPD_BUFFER_ADDR_H_SET(tpd
, upper_32_bits(tpbuf
->dma_addr
));
1412 TPD_BUF_LEN_SET(tpd
, tpbuf
->length
);
1413 emac_tx_tpd_create(adpt
, tx_q
, tpd
);
1419 emac_tx_tpd_mark_last(adpt
, tx_q
);
1421 /* The last buffer info contain the skb address,
1422 * so it will be freed after unmap
1429 /* One of the memory mappings failed, so undo everything */
1430 tx_q
->tpd
.produce_idx
= first
;
1433 tpbuf
= GET_TPD_BUFFER(tx_q
, first
);
1434 dma_unmap_page(adpt
->netdev
->dev
.parent
, tpbuf
->dma_addr
,
1435 tpbuf
->length
, DMA_TO_DEVICE
);
1436 tpbuf
->dma_addr
= 0;
1439 if (++first
== tx_q
->tpd
.count
)
1446 /* Transmit the packet using specified transmit queue */
1447 int emac_mac_tx_buf_send(struct emac_adapter
*adpt
, struct emac_tx_queue
*tx_q
,
1448 struct sk_buff
*skb
)
1450 struct emac_tpd tpd
;
1453 memset(&tpd
, 0, sizeof(tpd
));
1455 if (emac_tso_csum(adpt
, tx_q
, skb
, &tpd
) != 0) {
1456 dev_kfree_skb_any(skb
);
1457 return NETDEV_TX_OK
;
1460 if (skb_vlan_tag_present(skb
)) {
1463 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb
), tag
);
1464 TPD_CVLAN_TAG_SET(&tpd
, tag
);
1465 TPD_INSTC_SET(&tpd
, 1);
1468 if (skb_network_offset(skb
) != ETH_HLEN
)
1469 TPD_TYP_SET(&tpd
, 1);
1471 emac_tx_fill_tpd(adpt
, tx_q
, skb
, &tpd
);
1473 netdev_sent_queue(adpt
->netdev
, skb
->len
);
1475 /* Make sure the are enough free descriptors to hold one
1476 * maximum-sized SKB. We need one desc for each fragment,
1477 * one for the checksum (emac_tso_csum), one for TSO, and
1478 * and one for the SKB header.
1480 if (emac_tpd_num_free_descs(tx_q
) < (MAX_SKB_FRAGS
+ 3))
1481 netif_stop_queue(adpt
->netdev
);
1483 /* update produce idx */
1484 prod_idx
= (tx_q
->tpd
.produce_idx
<< tx_q
->produce_shift
) &
1486 emac_reg_update32(adpt
->base
+ tx_q
->produce_reg
,
1487 tx_q
->produce_mask
, prod_idx
);
1489 return NETDEV_TX_OK
;