1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
37 #define SH_ETH_DEF_MSG_ENABLE \
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
48 static const u16 sh_eth_offset_gigabit
[SH_ETH_MAX_REGISTER_OFFSET
] = {
49 SH_ETH_OFFSET_DEFAULTS
,
104 [TSU_CTRST
] = 0x0004,
105 [TSU_FWEN0
] = 0x0010,
106 [TSU_FWEN1
] = 0x0014,
108 [TSU_BSYSL0
] = 0x0020,
109 [TSU_BSYSL1
] = 0x0024,
110 [TSU_PRISL0
] = 0x0028,
111 [TSU_PRISL1
] = 0x002c,
112 [TSU_FWSL0
] = 0x0030,
113 [TSU_FWSL1
] = 0x0034,
114 [TSU_FWSLC
] = 0x0038,
115 [TSU_QTAGM0
] = 0x0040,
116 [TSU_QTAGM1
] = 0x0044,
118 [TSU_FWINMK
] = 0x0054,
119 [TSU_ADQT0
] = 0x0048,
120 [TSU_ADQT1
] = 0x004c,
121 [TSU_VTAG0
] = 0x0058,
122 [TSU_VTAG1
] = 0x005c,
123 [TSU_ADSBSY
] = 0x0060,
125 [TSU_POST1
] = 0x0070,
126 [TSU_POST2
] = 0x0074,
127 [TSU_POST3
] = 0x0078,
128 [TSU_POST4
] = 0x007c,
129 [TSU_ADRH0
] = 0x0100,
145 static const u16 sh_eth_offset_fast_rz
[SH_ETH_MAX_REGISTER_OFFSET
] = {
146 SH_ETH_OFFSET_DEFAULTS
,
191 [TSU_CTRST
] = 0x0004,
192 [TSU_FWSLC
] = 0x0038,
193 [TSU_VTAG0
] = 0x0058,
194 [TSU_ADSBSY
] = 0x0060,
196 [TSU_POST1
] = 0x0070,
197 [TSU_POST2
] = 0x0074,
198 [TSU_POST3
] = 0x0078,
199 [TSU_POST4
] = 0x007c,
200 [TSU_ADRH0
] = 0x0100,
208 static const u16 sh_eth_offset_fast_rcar
[SH_ETH_MAX_REGISTER_OFFSET
] = {
209 SH_ETH_OFFSET_DEFAULTS
,
256 static const u16 sh_eth_offset_fast_sh4
[SH_ETH_MAX_REGISTER_OFFSET
] = {
257 SH_ETH_OFFSET_DEFAULTS
,
310 static const u16 sh_eth_offset_fast_sh3_sh2
[SH_ETH_MAX_REGISTER_OFFSET
] = {
311 SH_ETH_OFFSET_DEFAULTS
,
359 [TSU_CTRST
] = 0x0004,
360 [TSU_FWEN0
] = 0x0010,
361 [TSU_FWEN1
] = 0x0014,
363 [TSU_BSYSL0
] = 0x0020,
364 [TSU_BSYSL1
] = 0x0024,
365 [TSU_PRISL0
] = 0x0028,
366 [TSU_PRISL1
] = 0x002c,
367 [TSU_FWSL0
] = 0x0030,
368 [TSU_FWSL1
] = 0x0034,
369 [TSU_FWSLC
] = 0x0038,
370 [TSU_QTAGM0
] = 0x0040,
371 [TSU_QTAGM1
] = 0x0044,
372 [TSU_ADQT0
] = 0x0048,
373 [TSU_ADQT1
] = 0x004c,
375 [TSU_FWINMK
] = 0x0054,
376 [TSU_ADSBSY
] = 0x0060,
378 [TSU_POST1
] = 0x0070,
379 [TSU_POST2
] = 0x0074,
380 [TSU_POST3
] = 0x0078,
381 [TSU_POST4
] = 0x007c,
396 [TSU_ADRH0
] = 0x0100,
399 static void sh_eth_rcv_snd_disable(struct net_device
*ndev
);
400 static struct net_device_stats
*sh_eth_get_stats(struct net_device
*ndev
);
402 static void sh_eth_write(struct net_device
*ndev
, u32 data
, int enum_index
)
404 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
405 u16 offset
= mdp
->reg_offset
[enum_index
];
407 if (WARN_ON(offset
== SH_ETH_OFFSET_INVALID
))
410 iowrite32(data
, mdp
->addr
+ offset
);
413 static u32
sh_eth_read(struct net_device
*ndev
, int enum_index
)
415 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
416 u16 offset
= mdp
->reg_offset
[enum_index
];
418 if (WARN_ON(offset
== SH_ETH_OFFSET_INVALID
))
421 return ioread32(mdp
->addr
+ offset
);
424 static void sh_eth_modify(struct net_device
*ndev
, int enum_index
, u32 clear
,
427 sh_eth_write(ndev
, (sh_eth_read(ndev
, enum_index
) & ~clear
) | set
,
431 static u16
sh_eth_tsu_get_offset(struct sh_eth_private
*mdp
, int enum_index
)
433 return mdp
->reg_offset
[enum_index
];
436 static void sh_eth_tsu_write(struct sh_eth_private
*mdp
, u32 data
,
439 u16 offset
= sh_eth_tsu_get_offset(mdp
, enum_index
);
441 if (WARN_ON(offset
== SH_ETH_OFFSET_INVALID
))
444 iowrite32(data
, mdp
->tsu_addr
+ offset
);
447 static u32
sh_eth_tsu_read(struct sh_eth_private
*mdp
, int enum_index
)
449 u16 offset
= sh_eth_tsu_get_offset(mdp
, enum_index
);
451 if (WARN_ON(offset
== SH_ETH_OFFSET_INVALID
))
454 return ioread32(mdp
->tsu_addr
+ offset
);
457 static void sh_eth_soft_swap(char *src
, int len
)
459 #ifdef __LITTLE_ENDIAN
461 u32
*maxp
= p
+ DIV_ROUND_UP(len
, sizeof(u32
));
463 for (; p
< maxp
; p
++)
468 static void sh_eth_select_mii(struct net_device
*ndev
)
470 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
473 switch (mdp
->phy_interface
) {
474 case PHY_INTERFACE_MODE_RGMII
... PHY_INTERFACE_MODE_RGMII_TXID
:
477 case PHY_INTERFACE_MODE_GMII
:
480 case PHY_INTERFACE_MODE_MII
:
483 case PHY_INTERFACE_MODE_RMII
:
488 "PHY interface mode was not setup. Set to MII.\n");
493 sh_eth_write(ndev
, value
, RMII_MII
);
496 static void sh_eth_set_duplex(struct net_device
*ndev
)
498 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
500 sh_eth_modify(ndev
, ECMR
, ECMR_DM
, mdp
->duplex
? ECMR_DM
: 0);
503 static void sh_eth_chip_reset(struct net_device
*ndev
)
505 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
508 sh_eth_tsu_write(mdp
, ARSTR_ARST
, ARSTR
);
512 static int sh_eth_soft_reset(struct net_device
*ndev
)
514 sh_eth_modify(ndev
, EDMR
, EDMR_SRST_ETHER
, EDMR_SRST_ETHER
);
516 sh_eth_modify(ndev
, EDMR
, EDMR_SRST_ETHER
, 0);
521 static int sh_eth_check_soft_reset(struct net_device
*ndev
)
525 for (cnt
= 100; cnt
> 0; cnt
--) {
526 if (!(sh_eth_read(ndev
, EDMR
) & EDMR_SRST_GETHER
))
531 netdev_err(ndev
, "Device reset failed\n");
535 static int sh_eth_soft_reset_gether(struct net_device
*ndev
)
537 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
540 sh_eth_write(ndev
, EDSR_ENALL
, EDSR
);
541 sh_eth_modify(ndev
, EDMR
, EDMR_SRST_GETHER
, EDMR_SRST_GETHER
);
543 ret
= sh_eth_check_soft_reset(ndev
);
548 sh_eth_write(ndev
, 0, TDLAR
);
549 sh_eth_write(ndev
, 0, TDFAR
);
550 sh_eth_write(ndev
, 0, TDFXR
);
551 sh_eth_write(ndev
, 0, TDFFR
);
552 sh_eth_write(ndev
, 0, RDLAR
);
553 sh_eth_write(ndev
, 0, RDFAR
);
554 sh_eth_write(ndev
, 0, RDFXR
);
555 sh_eth_write(ndev
, 0, RDFFR
);
557 /* Reset HW CRC register */
558 if (mdp
->cd
->hw_checksum
)
559 sh_eth_write(ndev
, 0, CSMR
);
561 /* Select MII mode */
562 if (mdp
->cd
->select_mii
)
563 sh_eth_select_mii(ndev
);
568 static void sh_eth_set_rate_gether(struct net_device
*ndev
)
570 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
572 switch (mdp
->speed
) {
573 case 10: /* 10BASE */
574 sh_eth_write(ndev
, GECMR_10
, GECMR
);
576 case 100:/* 100BASE */
577 sh_eth_write(ndev
, GECMR_100
, GECMR
);
579 case 1000: /* 1000BASE */
580 sh_eth_write(ndev
, GECMR_1000
, GECMR
);
587 static struct sh_eth_cpu_data r7s72100_data
= {
588 .soft_reset
= sh_eth_soft_reset_gether
,
590 .chip_reset
= sh_eth_chip_reset
,
591 .set_duplex
= sh_eth_set_duplex
,
593 .register_type
= SH_ETH_REG_FAST_RZ
,
595 .edtrr_trns
= EDTRR_TRNS_GETHER
,
596 .ecsr_value
= ECSR_ICD
,
597 .ecsipr_value
= ECSIPR_ICDIP
,
598 .eesipr_value
= EESIPR_TWB1IP
| EESIPR_TWBIP
| EESIPR_TC1IP
|
599 EESIPR_TABTIP
| EESIPR_RABTIP
| EESIPR_RFCOFIP
|
601 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
602 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
603 EESIPR_RMAFIP
| EESIPR_RRFIP
|
604 EESIPR_RTLFIP
| EESIPR_RTSFIP
|
605 EESIPR_PREIP
| EESIPR_CERFIP
,
607 .tx_check
= EESR_TC1
| EESR_FTC
,
608 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
609 EESR_RFE
| EESR_RDE
| EESR_RFRMER
| EESR_TFE
|
611 .fdr_value
= 0x0000070f,
627 static void sh_eth_chip_reset_r8a7740(struct net_device
*ndev
)
629 sh_eth_chip_reset(ndev
);
631 sh_eth_select_mii(ndev
);
635 static struct sh_eth_cpu_data r8a7740_data
= {
636 .soft_reset
= sh_eth_soft_reset_gether
,
638 .chip_reset
= sh_eth_chip_reset_r8a7740
,
639 .set_duplex
= sh_eth_set_duplex
,
640 .set_rate
= sh_eth_set_rate_gether
,
642 .register_type
= SH_ETH_REG_GIGABIT
,
644 .edtrr_trns
= EDTRR_TRNS_GETHER
,
645 .ecsr_value
= ECSR_ICD
| ECSR_MPD
,
646 .ecsipr_value
= ECSIPR_LCHNGIP
| ECSIPR_ICDIP
| ECSIPR_MPDIP
,
647 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
648 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
649 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
650 0x0000f000 | EESIPR_CNDIP
| EESIPR_DLCIP
|
651 EESIPR_CDIP
| EESIPR_TROIP
| EESIPR_RMAFIP
|
652 EESIPR_CEEFIP
| EESIPR_CELFIP
|
653 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
654 EESIPR_PREIP
| EESIPR_CERFIP
,
656 .tx_check
= EESR_TC1
| EESR_FTC
,
657 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
658 EESR_RFE
| EESR_RDE
| EESR_RFRMER
| EESR_TFE
|
660 .fdr_value
= 0x0000070f,
678 /* There is CPU dependent code */
679 static void sh_eth_set_rate_rcar(struct net_device
*ndev
)
681 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
683 switch (mdp
->speed
) {
684 case 10: /* 10BASE */
685 sh_eth_modify(ndev
, ECMR
, ECMR_ELB
, 0);
687 case 100:/* 100BASE */
688 sh_eth_modify(ndev
, ECMR
, ECMR_ELB
, ECMR_ELB
);
694 static struct sh_eth_cpu_data rcar_gen1_data
= {
695 .soft_reset
= sh_eth_soft_reset
,
697 .set_duplex
= sh_eth_set_duplex
,
698 .set_rate
= sh_eth_set_rate_rcar
,
700 .register_type
= SH_ETH_REG_FAST_RCAR
,
702 .edtrr_trns
= EDTRR_TRNS_ETHER
,
703 .ecsr_value
= ECSR_PSRTO
| ECSR_LCHNG
| ECSR_ICD
,
704 .ecsipr_value
= ECSIPR_PSRTOIP
| ECSIPR_LCHNGIP
| ECSIPR_ICDIP
,
705 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ADEIP
| EESIPR_ECIIP
|
706 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
707 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
708 EESIPR_RMAFIP
| EESIPR_RRFIP
|
709 EESIPR_RTLFIP
| EESIPR_RTSFIP
|
710 EESIPR_PREIP
| EESIPR_CERFIP
,
712 .tx_check
= EESR_FTC
| EESR_CND
| EESR_DLC
| EESR_CD
| EESR_TRO
,
713 .eesr_err_check
= EESR_TWB
| EESR_TABT
| EESR_RABT
| EESR_RFE
|
714 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
715 .fdr_value
= 0x00000f0f,
724 /* R-Car Gen2 and RZ/G1 */
725 static struct sh_eth_cpu_data rcar_gen2_data
= {
726 .soft_reset
= sh_eth_soft_reset
,
728 .set_duplex
= sh_eth_set_duplex
,
729 .set_rate
= sh_eth_set_rate_rcar
,
731 .register_type
= SH_ETH_REG_FAST_RCAR
,
733 .edtrr_trns
= EDTRR_TRNS_ETHER
,
734 .ecsr_value
= ECSR_PSRTO
| ECSR_LCHNG
| ECSR_ICD
| ECSR_MPD
,
735 .ecsipr_value
= ECSIPR_PSRTOIP
| ECSIPR_LCHNGIP
| ECSIPR_ICDIP
|
737 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ADEIP
| EESIPR_ECIIP
|
738 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
739 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
740 EESIPR_RMAFIP
| EESIPR_RRFIP
|
741 EESIPR_RTLFIP
| EESIPR_RTSFIP
|
742 EESIPR_PREIP
| EESIPR_CERFIP
,
744 .tx_check
= EESR_FTC
| EESR_CND
| EESR_DLC
| EESR_CD
| EESR_TRO
,
745 .eesr_err_check
= EESR_TWB
| EESR_TABT
| EESR_RABT
| EESR_RFE
|
746 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
747 .fdr_value
= 0x00000f0f,
749 .trscer_err_mask
= DESC_I_RINT8
,
761 static struct sh_eth_cpu_data r8a77980_data
= {
762 .soft_reset
= sh_eth_soft_reset_gether
,
764 .set_duplex
= sh_eth_set_duplex
,
765 .set_rate
= sh_eth_set_rate_gether
,
767 .register_type
= SH_ETH_REG_GIGABIT
,
769 .edtrr_trns
= EDTRR_TRNS_GETHER
,
770 .ecsr_value
= ECSR_PSRTO
| ECSR_LCHNG
| ECSR_ICD
| ECSR_MPD
,
771 .ecsipr_value
= ECSIPR_PSRTOIP
| ECSIPR_LCHNGIP
| ECSIPR_ICDIP
|
773 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
774 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
775 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
776 EESIPR_RMAFIP
| EESIPR_RRFIP
|
777 EESIPR_RTLFIP
| EESIPR_RTSFIP
|
778 EESIPR_PREIP
| EESIPR_CERFIP
,
780 .tx_check
= EESR_FTC
| EESR_CD
| EESR_TRO
,
781 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
782 EESR_RFE
| EESR_RDE
| EESR_RFRMER
|
783 EESR_TFE
| EESR_TDE
| EESR_ECI
,
784 .fdr_value
= 0x0000070f,
803 static struct sh_eth_cpu_data r7s9210_data
= {
804 .soft_reset
= sh_eth_soft_reset
,
806 .set_duplex
= sh_eth_set_duplex
,
807 .set_rate
= sh_eth_set_rate_rcar
,
809 .register_type
= SH_ETH_REG_FAST_SH4
,
811 .edtrr_trns
= EDTRR_TRNS_ETHER
,
812 .ecsr_value
= ECSR_ICD
,
813 .ecsipr_value
= ECSIPR_ICDIP
,
814 .eesipr_value
= EESIPR_TWBIP
| EESIPR_TABTIP
| EESIPR_RABTIP
|
815 EESIPR_RFCOFIP
| EESIPR_ECIIP
| EESIPR_FTCIP
|
816 EESIPR_TDEIP
| EESIPR_TFUFIP
| EESIPR_FRIP
|
817 EESIPR_RDEIP
| EESIPR_RFOFIP
| EESIPR_CNDIP
|
818 EESIPR_DLCIP
| EESIPR_CDIP
| EESIPR_TROIP
|
819 EESIPR_RMAFIP
| EESIPR_RRFIP
| EESIPR_RTLFIP
|
820 EESIPR_RTSFIP
| EESIPR_PREIP
| EESIPR_CERFIP
,
822 .tx_check
= EESR_FTC
| EESR_CND
| EESR_DLC
| EESR_CD
| EESR_TRO
,
823 .eesr_err_check
= EESR_TWB
| EESR_TABT
| EESR_RABT
| EESR_RFE
|
824 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
826 .fdr_value
= 0x0000070f,
836 #endif /* CONFIG_OF */
838 static void sh_eth_set_rate_sh7724(struct net_device
*ndev
)
840 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
842 switch (mdp
->speed
) {
843 case 10: /* 10BASE */
844 sh_eth_modify(ndev
, ECMR
, ECMR_RTM
, 0);
846 case 100:/* 100BASE */
847 sh_eth_modify(ndev
, ECMR
, ECMR_RTM
, ECMR_RTM
);
853 static struct sh_eth_cpu_data sh7724_data
= {
854 .soft_reset
= sh_eth_soft_reset
,
856 .set_duplex
= sh_eth_set_duplex
,
857 .set_rate
= sh_eth_set_rate_sh7724
,
859 .register_type
= SH_ETH_REG_FAST_SH4
,
861 .edtrr_trns
= EDTRR_TRNS_ETHER
,
862 .ecsr_value
= ECSR_PSRTO
| ECSR_LCHNG
| ECSR_ICD
,
863 .ecsipr_value
= ECSIPR_PSRTOIP
| ECSIPR_LCHNGIP
| ECSIPR_ICDIP
,
864 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ADEIP
| EESIPR_ECIIP
|
865 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
866 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
867 EESIPR_RMAFIP
| EESIPR_RRFIP
|
868 EESIPR_RTLFIP
| EESIPR_RTSFIP
|
869 EESIPR_PREIP
| EESIPR_CERFIP
,
871 .tx_check
= EESR_FTC
| EESR_CND
| EESR_DLC
| EESR_CD
| EESR_TRO
,
872 .eesr_err_check
= EESR_TWB
| EESR_TABT
| EESR_RABT
| EESR_RFE
|
873 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
882 static void sh_eth_set_rate_sh7757(struct net_device
*ndev
)
884 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
886 switch (mdp
->speed
) {
887 case 10: /* 10BASE */
888 sh_eth_write(ndev
, 0, RTRATE
);
890 case 100:/* 100BASE */
891 sh_eth_write(ndev
, 1, RTRATE
);
897 static struct sh_eth_cpu_data sh7757_data
= {
898 .soft_reset
= sh_eth_soft_reset
,
900 .set_duplex
= sh_eth_set_duplex
,
901 .set_rate
= sh_eth_set_rate_sh7757
,
903 .register_type
= SH_ETH_REG_FAST_SH4
,
905 .edtrr_trns
= EDTRR_TRNS_ETHER
,
906 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
907 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
908 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
909 0x0000f000 | EESIPR_CNDIP
| EESIPR_DLCIP
|
910 EESIPR_CDIP
| EESIPR_TROIP
| EESIPR_RMAFIP
|
911 EESIPR_CEEFIP
| EESIPR_CELFIP
|
912 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
913 EESIPR_PREIP
| EESIPR_CERFIP
,
915 .tx_check
= EESR_FTC
| EESR_CND
| EESR_DLC
| EESR_CD
| EESR_TRO
,
916 .eesr_err_check
= EESR_TWB
| EESR_TABT
| EESR_RABT
| EESR_RFE
|
917 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
919 .irq_flags
= IRQF_SHARED
,
930 #define SH_GIGA_ETH_BASE 0xfee00000UL
931 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
932 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
933 static void sh_eth_chip_reset_giga(struct net_device
*ndev
)
935 u32 mahr
[2], malr
[2];
938 /* save MAHR and MALR */
939 for (i
= 0; i
< 2; i
++) {
940 malr
[i
] = ioread32((void *)GIGA_MALR(i
));
941 mahr
[i
] = ioread32((void *)GIGA_MAHR(i
));
944 sh_eth_chip_reset(ndev
);
946 /* restore MAHR and MALR */
947 for (i
= 0; i
< 2; i
++) {
948 iowrite32(malr
[i
], (void *)GIGA_MALR(i
));
949 iowrite32(mahr
[i
], (void *)GIGA_MAHR(i
));
953 static void sh_eth_set_rate_giga(struct net_device
*ndev
)
955 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
957 switch (mdp
->speed
) {
958 case 10: /* 10BASE */
959 sh_eth_write(ndev
, 0x00000000, GECMR
);
961 case 100:/* 100BASE */
962 sh_eth_write(ndev
, 0x00000010, GECMR
);
964 case 1000: /* 1000BASE */
965 sh_eth_write(ndev
, 0x00000020, GECMR
);
970 /* SH7757(GETHERC) */
971 static struct sh_eth_cpu_data sh7757_data_giga
= {
972 .soft_reset
= sh_eth_soft_reset_gether
,
974 .chip_reset
= sh_eth_chip_reset_giga
,
975 .set_duplex
= sh_eth_set_duplex
,
976 .set_rate
= sh_eth_set_rate_giga
,
978 .register_type
= SH_ETH_REG_GIGABIT
,
980 .edtrr_trns
= EDTRR_TRNS_GETHER
,
981 .ecsr_value
= ECSR_ICD
| ECSR_MPD
,
982 .ecsipr_value
= ECSIPR_LCHNGIP
| ECSIPR_ICDIP
| ECSIPR_MPDIP
,
983 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
984 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
985 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
986 0x0000f000 | EESIPR_CNDIP
| EESIPR_DLCIP
|
987 EESIPR_CDIP
| EESIPR_TROIP
| EESIPR_RMAFIP
|
988 EESIPR_CEEFIP
| EESIPR_CELFIP
|
989 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
990 EESIPR_PREIP
| EESIPR_CERFIP
,
992 .tx_check
= EESR_TC1
| EESR_FTC
,
993 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
994 EESR_RFE
| EESR_RDE
| EESR_RFRMER
| EESR_TFE
|
996 .fdr_value
= 0x0000072f,
998 .irq_flags
= IRQF_SHARED
,
1014 static struct sh_eth_cpu_data sh7734_data
= {
1015 .soft_reset
= sh_eth_soft_reset_gether
,
1017 .chip_reset
= sh_eth_chip_reset
,
1018 .set_duplex
= sh_eth_set_duplex
,
1019 .set_rate
= sh_eth_set_rate_gether
,
1021 .register_type
= SH_ETH_REG_GIGABIT
,
1023 .edtrr_trns
= EDTRR_TRNS_GETHER
,
1024 .ecsr_value
= ECSR_ICD
| ECSR_MPD
,
1025 .ecsipr_value
= ECSIPR_LCHNGIP
| ECSIPR_ICDIP
| ECSIPR_MPDIP
,
1026 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
1027 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
1028 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
1029 EESIPR_DLCIP
| EESIPR_CDIP
| EESIPR_TROIP
|
1030 EESIPR_RMAFIP
| EESIPR_CEEFIP
| EESIPR_CELFIP
|
1031 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
1032 EESIPR_PREIP
| EESIPR_CERFIP
,
1034 .tx_check
= EESR_TC1
| EESR_FTC
,
1035 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
1036 EESR_RFE
| EESR_RDE
| EESR_RFRMER
| EESR_TFE
|
1055 static struct sh_eth_cpu_data sh7763_data
= {
1056 .soft_reset
= sh_eth_soft_reset_gether
,
1058 .chip_reset
= sh_eth_chip_reset
,
1059 .set_duplex
= sh_eth_set_duplex
,
1060 .set_rate
= sh_eth_set_rate_gether
,
1062 .register_type
= SH_ETH_REG_GIGABIT
,
1064 .edtrr_trns
= EDTRR_TRNS_GETHER
,
1065 .ecsr_value
= ECSR_ICD
| ECSR_MPD
,
1066 .ecsipr_value
= ECSIPR_LCHNGIP
| ECSIPR_ICDIP
| ECSIPR_MPDIP
,
1067 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
1068 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
1069 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
1070 EESIPR_DLCIP
| EESIPR_CDIP
| EESIPR_TROIP
|
1071 EESIPR_RMAFIP
| EESIPR_CEEFIP
| EESIPR_CELFIP
|
1072 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
1073 EESIPR_PREIP
| EESIPR_CERFIP
,
1075 .tx_check
= EESR_TC1
| EESR_FTC
,
1076 .eesr_err_check
= EESR_TWB1
| EESR_TWB
| EESR_TABT
| EESR_RABT
|
1077 EESR_RDE
| EESR_RFRMER
| EESR_TFE
| EESR_TDE
,
1088 .irq_flags
= IRQF_SHARED
,
1094 static struct sh_eth_cpu_data sh7619_data
= {
1095 .soft_reset
= sh_eth_soft_reset
,
1097 .register_type
= SH_ETH_REG_FAST_SH3_SH2
,
1099 .edtrr_trns
= EDTRR_TRNS_ETHER
,
1100 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
1101 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
1102 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
1103 0x0000f000 | EESIPR_CNDIP
| EESIPR_DLCIP
|
1104 EESIPR_CDIP
| EESIPR_TROIP
| EESIPR_RMAFIP
|
1105 EESIPR_CEEFIP
| EESIPR_CELFIP
|
1106 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
1107 EESIPR_PREIP
| EESIPR_CERFIP
,
1115 static struct sh_eth_cpu_data sh771x_data
= {
1116 .soft_reset
= sh_eth_soft_reset
,
1118 .register_type
= SH_ETH_REG_FAST_SH3_SH2
,
1120 .edtrr_trns
= EDTRR_TRNS_ETHER
,
1121 .eesipr_value
= EESIPR_RFCOFIP
| EESIPR_ECIIP
|
1122 EESIPR_FTCIP
| EESIPR_TDEIP
| EESIPR_TFUFIP
|
1123 EESIPR_FRIP
| EESIPR_RDEIP
| EESIPR_RFOFIP
|
1124 0x0000f000 | EESIPR_CNDIP
| EESIPR_DLCIP
|
1125 EESIPR_CDIP
| EESIPR_TROIP
| EESIPR_RMAFIP
|
1126 EESIPR_CEEFIP
| EESIPR_CELFIP
|
1127 EESIPR_RRFIP
| EESIPR_RTLFIP
| EESIPR_RTSFIP
|
1128 EESIPR_PREIP
| EESIPR_CERFIP
,
1133 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data
*cd
)
1135 if (!cd
->ecsr_value
)
1136 cd
->ecsr_value
= DEFAULT_ECSR_INIT
;
1138 if (!cd
->ecsipr_value
)
1139 cd
->ecsipr_value
= DEFAULT_ECSIPR_INIT
;
1141 if (!cd
->fcftr_value
)
1142 cd
->fcftr_value
= DEFAULT_FIFO_F_D_RFF
|
1143 DEFAULT_FIFO_F_D_RFD
;
1146 cd
->fdr_value
= DEFAULT_FDR_INIT
;
1149 cd
->tx_check
= DEFAULT_TX_CHECK
;
1151 if (!cd
->eesr_err_check
)
1152 cd
->eesr_err_check
= DEFAULT_EESR_ERR_CHECK
;
1154 if (!cd
->trscer_err_mask
)
1155 cd
->trscer_err_mask
= DEFAULT_TRSCER_ERR_MASK
;
1158 static void sh_eth_set_receive_align(struct sk_buff
*skb
)
1160 uintptr_t reserve
= (uintptr_t)skb
->data
& (SH_ETH_RX_ALIGN
- 1);
1163 skb_reserve(skb
, SH_ETH_RX_ALIGN
- reserve
);
1166 /* Program the hardware MAC address from dev->dev_addr. */
1167 static void update_mac_address(struct net_device
*ndev
)
1170 (ndev
->dev_addr
[0] << 24) | (ndev
->dev_addr
[1] << 16) |
1171 (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]), MAHR
);
1173 (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]), MALR
);
1176 /* Get MAC address from SuperH MAC address register
1178 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1179 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1180 * When you want use this device, you must set MAC address in bootloader.
1183 static void read_mac_address(struct net_device
*ndev
, unsigned char *mac
)
1185 if (mac
[0] || mac
[1] || mac
[2] || mac
[3] || mac
[4] || mac
[5]) {
1186 memcpy(ndev
->dev_addr
, mac
, ETH_ALEN
);
1188 u32 mahr
= sh_eth_read(ndev
, MAHR
);
1189 u32 malr
= sh_eth_read(ndev
, MALR
);
1191 ndev
->dev_addr
[0] = (mahr
>> 24) & 0xFF;
1192 ndev
->dev_addr
[1] = (mahr
>> 16) & 0xFF;
1193 ndev
->dev_addr
[2] = (mahr
>> 8) & 0xFF;
1194 ndev
->dev_addr
[3] = (mahr
>> 0) & 0xFF;
1195 ndev
->dev_addr
[4] = (malr
>> 8) & 0xFF;
1196 ndev
->dev_addr
[5] = (malr
>> 0) & 0xFF;
1201 void (*set_gate
)(void *addr
);
1202 struct mdiobb_ctrl ctrl
;
1206 static void sh_mdio_ctrl(struct mdiobb_ctrl
*ctrl
, u32 mask
, int set
)
1208 struct bb_info
*bitbang
= container_of(ctrl
, struct bb_info
, ctrl
);
1211 if (bitbang
->set_gate
)
1212 bitbang
->set_gate(bitbang
->addr
);
1214 pir
= ioread32(bitbang
->addr
);
1219 iowrite32(pir
, bitbang
->addr
);
1222 /* Data I/O pin control */
1223 static void sh_mmd_ctrl(struct mdiobb_ctrl
*ctrl
, int bit
)
1225 sh_mdio_ctrl(ctrl
, PIR_MMD
, bit
);
1229 static void sh_set_mdio(struct mdiobb_ctrl
*ctrl
, int bit
)
1231 sh_mdio_ctrl(ctrl
, PIR_MDO
, bit
);
1235 static int sh_get_mdio(struct mdiobb_ctrl
*ctrl
)
1237 struct bb_info
*bitbang
= container_of(ctrl
, struct bb_info
, ctrl
);
1239 if (bitbang
->set_gate
)
1240 bitbang
->set_gate(bitbang
->addr
);
1242 return (ioread32(bitbang
->addr
) & PIR_MDI
) != 0;
1245 /* MDC pin control */
1246 static void sh_mdc_ctrl(struct mdiobb_ctrl
*ctrl
, int bit
)
1248 sh_mdio_ctrl(ctrl
, PIR_MDC
, bit
);
1251 /* mdio bus control struct */
1252 static struct mdiobb_ops bb_ops
= {
1253 .owner
= THIS_MODULE
,
1254 .set_mdc
= sh_mdc_ctrl
,
1255 .set_mdio_dir
= sh_mmd_ctrl
,
1256 .set_mdio_data
= sh_set_mdio
,
1257 .get_mdio_data
= sh_get_mdio
,
1260 /* free Tx skb function */
1261 static int sh_eth_tx_free(struct net_device
*ndev
, bool sent_only
)
1263 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1264 struct sh_eth_txdesc
*txdesc
;
1269 for (; mdp
->cur_tx
- mdp
->dirty_tx
> 0; mdp
->dirty_tx
++) {
1270 entry
= mdp
->dirty_tx
% mdp
->num_tx_ring
;
1271 txdesc
= &mdp
->tx_ring
[entry
];
1272 sent
= !(txdesc
->status
& cpu_to_le32(TD_TACT
));
1273 if (sent_only
&& !sent
)
1275 /* TACT bit must be checked before all the following reads */
1277 netif_info(mdp
, tx_done
, ndev
,
1278 "tx entry %d status 0x%08x\n",
1279 entry
, le32_to_cpu(txdesc
->status
));
1280 /* Free the original skb. */
1281 if (mdp
->tx_skbuff
[entry
]) {
1282 dma_unmap_single(&mdp
->pdev
->dev
,
1283 le32_to_cpu(txdesc
->addr
),
1284 le32_to_cpu(txdesc
->len
) >> 16,
1286 dev_kfree_skb_irq(mdp
->tx_skbuff
[entry
]);
1287 mdp
->tx_skbuff
[entry
] = NULL
;
1290 txdesc
->status
= cpu_to_le32(TD_TFP
);
1291 if (entry
>= mdp
->num_tx_ring
- 1)
1292 txdesc
->status
|= cpu_to_le32(TD_TDLE
);
1295 ndev
->stats
.tx_packets
++;
1296 ndev
->stats
.tx_bytes
+= le32_to_cpu(txdesc
->len
) >> 16;
1302 /* free skb and descriptor buffer */
1303 static void sh_eth_ring_free(struct net_device
*ndev
)
1305 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1309 for (i
= 0; i
< mdp
->num_rx_ring
; i
++) {
1310 if (mdp
->rx_skbuff
[i
]) {
1311 struct sh_eth_rxdesc
*rxdesc
= &mdp
->rx_ring
[i
];
1313 dma_unmap_single(&mdp
->pdev
->dev
,
1314 le32_to_cpu(rxdesc
->addr
),
1315 ALIGN(mdp
->rx_buf_sz
, 32),
1319 ringsize
= sizeof(struct sh_eth_rxdesc
) * mdp
->num_rx_ring
;
1320 dma_free_coherent(&mdp
->pdev
->dev
, ringsize
, mdp
->rx_ring
,
1322 mdp
->rx_ring
= NULL
;
1325 /* Free Rx skb ringbuffer */
1326 if (mdp
->rx_skbuff
) {
1327 for (i
= 0; i
< mdp
->num_rx_ring
; i
++)
1328 dev_kfree_skb(mdp
->rx_skbuff
[i
]);
1330 kfree(mdp
->rx_skbuff
);
1331 mdp
->rx_skbuff
= NULL
;
1334 sh_eth_tx_free(ndev
, false);
1336 ringsize
= sizeof(struct sh_eth_txdesc
) * mdp
->num_tx_ring
;
1337 dma_free_coherent(&mdp
->pdev
->dev
, ringsize
, mdp
->tx_ring
,
1339 mdp
->tx_ring
= NULL
;
1342 /* Free Tx skb ringbuffer */
1343 kfree(mdp
->tx_skbuff
);
1344 mdp
->tx_skbuff
= NULL
;
1347 /* format skb and descriptor buffer */
1348 static void sh_eth_ring_format(struct net_device
*ndev
)
1350 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1352 struct sk_buff
*skb
;
1353 struct sh_eth_rxdesc
*rxdesc
= NULL
;
1354 struct sh_eth_txdesc
*txdesc
= NULL
;
1355 int rx_ringsize
= sizeof(*rxdesc
) * mdp
->num_rx_ring
;
1356 int tx_ringsize
= sizeof(*txdesc
) * mdp
->num_tx_ring
;
1357 int skbuff_size
= mdp
->rx_buf_sz
+ SH_ETH_RX_ALIGN
+ 32 - 1;
1358 dma_addr_t dma_addr
;
1366 memset(mdp
->rx_ring
, 0, rx_ringsize
);
1368 /* build Rx ring buffer */
1369 for (i
= 0; i
< mdp
->num_rx_ring
; i
++) {
1371 mdp
->rx_skbuff
[i
] = NULL
;
1372 skb
= netdev_alloc_skb(ndev
, skbuff_size
);
1375 sh_eth_set_receive_align(skb
);
1377 /* The size of the buffer is a multiple of 32 bytes. */
1378 buf_len
= ALIGN(mdp
->rx_buf_sz
, 32);
1379 dma_addr
= dma_map_single(&mdp
->pdev
->dev
, skb
->data
, buf_len
,
1381 if (dma_mapping_error(&mdp
->pdev
->dev
, dma_addr
)) {
1385 mdp
->rx_skbuff
[i
] = skb
;
1388 rxdesc
= &mdp
->rx_ring
[i
];
1389 rxdesc
->len
= cpu_to_le32(buf_len
<< 16);
1390 rxdesc
->addr
= cpu_to_le32(dma_addr
);
1391 rxdesc
->status
= cpu_to_le32(RD_RACT
| RD_RFP
);
1393 /* Rx descriptor address set */
1395 sh_eth_write(ndev
, mdp
->rx_desc_dma
, RDLAR
);
1396 if (mdp
->cd
->xdfar_rw
)
1397 sh_eth_write(ndev
, mdp
->rx_desc_dma
, RDFAR
);
1401 mdp
->dirty_rx
= (u32
) (i
- mdp
->num_rx_ring
);
1403 /* Mark the last entry as wrapping the ring. */
1405 rxdesc
->status
|= cpu_to_le32(RD_RDLE
);
1407 memset(mdp
->tx_ring
, 0, tx_ringsize
);
1409 /* build Tx ring buffer */
1410 for (i
= 0; i
< mdp
->num_tx_ring
; i
++) {
1411 mdp
->tx_skbuff
[i
] = NULL
;
1412 txdesc
= &mdp
->tx_ring
[i
];
1413 txdesc
->status
= cpu_to_le32(TD_TFP
);
1414 txdesc
->len
= cpu_to_le32(0);
1416 /* Tx descriptor address set */
1417 sh_eth_write(ndev
, mdp
->tx_desc_dma
, TDLAR
);
1418 if (mdp
->cd
->xdfar_rw
)
1419 sh_eth_write(ndev
, mdp
->tx_desc_dma
, TDFAR
);
1423 txdesc
->status
|= cpu_to_le32(TD_TDLE
);
1426 /* Get skb and descriptor buffer */
1427 static int sh_eth_ring_init(struct net_device
*ndev
)
1429 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1430 int rx_ringsize
, tx_ringsize
;
1432 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1433 * card needs room to do 8 byte alignment, +2 so we can reserve
1434 * the first 2 bytes, and +16 gets room for the status word from the
1437 mdp
->rx_buf_sz
= (ndev
->mtu
<= 1492 ? PKT_BUF_SZ
:
1438 (((ndev
->mtu
+ 26 + 7) & ~7) + 2 + 16));
1439 if (mdp
->cd
->rpadir
)
1440 mdp
->rx_buf_sz
+= NET_IP_ALIGN
;
1442 /* Allocate RX and TX skb rings */
1443 mdp
->rx_skbuff
= kcalloc(mdp
->num_rx_ring
, sizeof(*mdp
->rx_skbuff
),
1445 if (!mdp
->rx_skbuff
)
1448 mdp
->tx_skbuff
= kcalloc(mdp
->num_tx_ring
, sizeof(*mdp
->tx_skbuff
),
1450 if (!mdp
->tx_skbuff
)
1453 /* Allocate all Rx descriptors. */
1454 rx_ringsize
= sizeof(struct sh_eth_rxdesc
) * mdp
->num_rx_ring
;
1455 mdp
->rx_ring
= dma_alloc_coherent(&mdp
->pdev
->dev
, rx_ringsize
,
1456 &mdp
->rx_desc_dma
, GFP_KERNEL
);
1462 /* Allocate all Tx descriptors. */
1463 tx_ringsize
= sizeof(struct sh_eth_txdesc
) * mdp
->num_tx_ring
;
1464 mdp
->tx_ring
= dma_alloc_coherent(&mdp
->pdev
->dev
, tx_ringsize
,
1465 &mdp
->tx_desc_dma
, GFP_KERNEL
);
1471 /* Free Rx and Tx skb ring buffer and DMA buffer */
1472 sh_eth_ring_free(ndev
);
1477 static int sh_eth_dev_init(struct net_device
*ndev
)
1479 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1483 ret
= mdp
->cd
->soft_reset(ndev
);
1487 if (mdp
->cd
->rmiimode
)
1488 sh_eth_write(ndev
, 0x1, RMIIMODE
);
1490 /* Descriptor format */
1491 sh_eth_ring_format(ndev
);
1492 if (mdp
->cd
->rpadir
)
1493 sh_eth_write(ndev
, NET_IP_ALIGN
<< 16, RPADIR
);
1495 /* all sh_eth int mask */
1496 sh_eth_write(ndev
, 0, EESIPR
);
1498 #if defined(__LITTLE_ENDIAN)
1499 if (mdp
->cd
->hw_swap
)
1500 sh_eth_write(ndev
, EDMR_EL
, EDMR
);
1503 sh_eth_write(ndev
, 0, EDMR
);
1506 sh_eth_write(ndev
, mdp
->cd
->fdr_value
, FDR
);
1507 sh_eth_write(ndev
, 0, TFTR
);
1509 /* Frame recv control (enable multiple-packets per rx irq) */
1510 sh_eth_write(ndev
, RMCR_RNC
, RMCR
);
1512 sh_eth_write(ndev
, mdp
->cd
->trscer_err_mask
, TRSCER
);
1514 /* DMA transfer burst mode */
1516 sh_eth_modify(ndev
, EDMR
, EDMR_NBST
, EDMR_NBST
);
1518 /* Burst cycle count upper-limit */
1520 sh_eth_write(ndev
, 0x800, BCULR
);
1522 sh_eth_write(ndev
, mdp
->cd
->fcftr_value
, FCFTR
);
1524 if (!mdp
->cd
->no_trimd
)
1525 sh_eth_write(ndev
, 0, TRIMD
);
1527 /* Recv frame limit set register */
1528 sh_eth_write(ndev
, ndev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
+ ETH_FCS_LEN
,
1531 sh_eth_modify(ndev
, EESR
, 0, 0);
1532 mdp
->irq_enabled
= true;
1533 sh_eth_write(ndev
, mdp
->cd
->eesipr_value
, EESIPR
);
1535 /* PAUSE Prohibition */
1536 sh_eth_write(ndev
, ECMR_ZPF
| (mdp
->duplex
? ECMR_DM
: 0) |
1537 ECMR_TE
| ECMR_RE
, ECMR
);
1539 if (mdp
->cd
->set_rate
)
1540 mdp
->cd
->set_rate(ndev
);
1542 /* E-MAC Status Register clear */
1543 sh_eth_write(ndev
, mdp
->cd
->ecsr_value
, ECSR
);
1545 /* E-MAC Interrupt Enable register */
1546 sh_eth_write(ndev
, mdp
->cd
->ecsipr_value
, ECSIPR
);
1548 /* Set MAC address */
1549 update_mac_address(ndev
);
1553 sh_eth_write(ndev
, 1, APR
);
1555 sh_eth_write(ndev
, 1, MPR
);
1556 if (mdp
->cd
->tpauser
)
1557 sh_eth_write(ndev
, TPAUSER_UNLIMITED
, TPAUSER
);
1559 /* Setting the Rx mode will start the Rx process. */
1560 sh_eth_write(ndev
, EDRRR_R
, EDRRR
);
1565 static void sh_eth_dev_exit(struct net_device
*ndev
)
1567 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1570 /* Deactivate all TX descriptors, so DMA should stop at next
1571 * packet boundary if it's currently running
1573 for (i
= 0; i
< mdp
->num_tx_ring
; i
++)
1574 mdp
->tx_ring
[i
].status
&= ~cpu_to_le32(TD_TACT
);
1576 /* Disable TX FIFO egress to MAC */
1577 sh_eth_rcv_snd_disable(ndev
);
1579 /* Stop RX DMA at next packet boundary */
1580 sh_eth_write(ndev
, 0, EDRRR
);
1582 /* Aside from TX DMA, we can't tell when the hardware is
1583 * really stopped, so we need to reset to make sure.
1584 * Before doing that, wait for long enough to *probably*
1585 * finish transmitting the last packet and poll stats.
1587 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1588 sh_eth_get_stats(ndev
);
1589 mdp
->cd
->soft_reset(ndev
);
1591 /* Set the RMII mode again if required */
1592 if (mdp
->cd
->rmiimode
)
1593 sh_eth_write(ndev
, 0x1, RMIIMODE
);
1595 /* Set MAC address again */
1596 update_mac_address(ndev
);
1599 /* Packet receive function */
1600 static int sh_eth_rx(struct net_device
*ndev
, u32 intr_status
, int *quota
)
1602 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1603 struct sh_eth_rxdesc
*rxdesc
;
1605 int entry
= mdp
->cur_rx
% mdp
->num_rx_ring
;
1606 int boguscnt
= (mdp
->dirty_rx
+ mdp
->num_rx_ring
) - mdp
->cur_rx
;
1608 struct sk_buff
*skb
;
1610 int skbuff_size
= mdp
->rx_buf_sz
+ SH_ETH_RX_ALIGN
+ 32 - 1;
1611 dma_addr_t dma_addr
;
1615 boguscnt
= min(boguscnt
, *quota
);
1617 rxdesc
= &mdp
->rx_ring
[entry
];
1618 while (!(rxdesc
->status
& cpu_to_le32(RD_RACT
))) {
1619 /* RACT bit must be checked before all the following reads */
1621 desc_status
= le32_to_cpu(rxdesc
->status
);
1622 pkt_len
= le32_to_cpu(rxdesc
->len
) & RD_RFL
;
1627 netif_info(mdp
, rx_status
, ndev
,
1628 "rx entry %d status 0x%08x len %d\n",
1629 entry
, desc_status
, pkt_len
);
1631 if (!(desc_status
& RDFEND
))
1632 ndev
->stats
.rx_length_errors
++;
1634 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1635 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1636 * bit 0. However, in case of the R8A7740 and R7S72100
1637 * the RFS bits are from bit 25 to bit 16. So, the
1638 * driver needs right shifting by 16.
1640 if (mdp
->cd
->hw_checksum
)
1643 skb
= mdp
->rx_skbuff
[entry
];
1644 if (desc_status
& (RD_RFS1
| RD_RFS2
| RD_RFS3
| RD_RFS4
|
1645 RD_RFS5
| RD_RFS6
| RD_RFS10
)) {
1646 ndev
->stats
.rx_errors
++;
1647 if (desc_status
& RD_RFS1
)
1648 ndev
->stats
.rx_crc_errors
++;
1649 if (desc_status
& RD_RFS2
)
1650 ndev
->stats
.rx_frame_errors
++;
1651 if (desc_status
& RD_RFS3
)
1652 ndev
->stats
.rx_length_errors
++;
1653 if (desc_status
& RD_RFS4
)
1654 ndev
->stats
.rx_length_errors
++;
1655 if (desc_status
& RD_RFS6
)
1656 ndev
->stats
.rx_missed_errors
++;
1657 if (desc_status
& RD_RFS10
)
1658 ndev
->stats
.rx_over_errors
++;
1660 dma_addr
= le32_to_cpu(rxdesc
->addr
);
1661 if (!mdp
->cd
->hw_swap
)
1663 phys_to_virt(ALIGN(dma_addr
, 4)),
1665 mdp
->rx_skbuff
[entry
] = NULL
;
1666 if (mdp
->cd
->rpadir
)
1667 skb_reserve(skb
, NET_IP_ALIGN
);
1668 dma_unmap_single(&mdp
->pdev
->dev
, dma_addr
,
1669 ALIGN(mdp
->rx_buf_sz
, 32),
1671 skb_put(skb
, pkt_len
);
1672 skb
->protocol
= eth_type_trans(skb
, ndev
);
1673 netif_receive_skb(skb
);
1674 ndev
->stats
.rx_packets
++;
1675 ndev
->stats
.rx_bytes
+= pkt_len
;
1676 if (desc_status
& RD_RFS8
)
1677 ndev
->stats
.multicast
++;
1679 entry
= (++mdp
->cur_rx
) % mdp
->num_rx_ring
;
1680 rxdesc
= &mdp
->rx_ring
[entry
];
1683 /* Refill the Rx ring buffers. */
1684 for (; mdp
->cur_rx
- mdp
->dirty_rx
> 0; mdp
->dirty_rx
++) {
1685 entry
= mdp
->dirty_rx
% mdp
->num_rx_ring
;
1686 rxdesc
= &mdp
->rx_ring
[entry
];
1687 /* The size of the buffer is 32 byte boundary. */
1688 buf_len
= ALIGN(mdp
->rx_buf_sz
, 32);
1689 rxdesc
->len
= cpu_to_le32(buf_len
<< 16);
1691 if (mdp
->rx_skbuff
[entry
] == NULL
) {
1692 skb
= netdev_alloc_skb(ndev
, skbuff_size
);
1694 break; /* Better luck next round. */
1695 sh_eth_set_receive_align(skb
);
1696 dma_addr
= dma_map_single(&mdp
->pdev
->dev
, skb
->data
,
1697 buf_len
, DMA_FROM_DEVICE
);
1698 if (dma_mapping_error(&mdp
->pdev
->dev
, dma_addr
)) {
1702 mdp
->rx_skbuff
[entry
] = skb
;
1704 skb_checksum_none_assert(skb
);
1705 rxdesc
->addr
= cpu_to_le32(dma_addr
);
1707 dma_wmb(); /* RACT bit must be set after all the above writes */
1708 if (entry
>= mdp
->num_rx_ring
- 1)
1710 cpu_to_le32(RD_RACT
| RD_RFP
| RD_RDLE
);
1712 rxdesc
->status
|= cpu_to_le32(RD_RACT
| RD_RFP
);
1715 /* Restart Rx engine if stopped. */
1716 /* If we don't need to check status, don't. -KDU */
1717 if (!(sh_eth_read(ndev
, EDRRR
) & EDRRR_R
)) {
1718 /* fix the values for the next receiving if RDE is set */
1719 if (intr_status
& EESR_RDE
&& !mdp
->cd
->no_xdfar
) {
1720 u32 count
= (sh_eth_read(ndev
, RDFAR
) -
1721 sh_eth_read(ndev
, RDLAR
)) >> 4;
1723 mdp
->cur_rx
= count
;
1724 mdp
->dirty_rx
= count
;
1726 sh_eth_write(ndev
, EDRRR_R
, EDRRR
);
1729 *quota
-= limit
- boguscnt
- 1;
1734 static void sh_eth_rcv_snd_disable(struct net_device
*ndev
)
1736 /* disable tx and rx */
1737 sh_eth_modify(ndev
, ECMR
, ECMR_RE
| ECMR_TE
, 0);
1740 static void sh_eth_rcv_snd_enable(struct net_device
*ndev
)
1742 /* enable tx and rx */
1743 sh_eth_modify(ndev
, ECMR
, ECMR_RE
| ECMR_TE
, ECMR_RE
| ECMR_TE
);
1746 /* E-MAC interrupt handler */
1747 static void sh_eth_emac_interrupt(struct net_device
*ndev
)
1749 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1753 felic_stat
= sh_eth_read(ndev
, ECSR
) & sh_eth_read(ndev
, ECSIPR
);
1754 sh_eth_write(ndev
, felic_stat
, ECSR
); /* clear int */
1755 if (felic_stat
& ECSR_ICD
)
1756 ndev
->stats
.tx_carrier_errors
++;
1757 if (felic_stat
& ECSR_MPD
)
1758 pm_wakeup_event(&mdp
->pdev
->dev
, 0);
1759 if (felic_stat
& ECSR_LCHNG
) {
1761 if (mdp
->cd
->no_psr
|| mdp
->no_ether_link
)
1763 link_stat
= sh_eth_read(ndev
, PSR
);
1764 if (mdp
->ether_link_active_low
)
1765 link_stat
= ~link_stat
;
1766 if (!(link_stat
& PHY_ST_LINK
)) {
1767 sh_eth_rcv_snd_disable(ndev
);
1770 sh_eth_modify(ndev
, EESIPR
, EESIPR_ECIIP
, 0);
1772 sh_eth_modify(ndev
, ECSR
, 0, 0);
1773 sh_eth_modify(ndev
, EESIPR
, EESIPR_ECIIP
, EESIPR_ECIIP
);
1774 /* enable tx and rx */
1775 sh_eth_rcv_snd_enable(ndev
);
1780 /* error control function */
1781 static void sh_eth_error(struct net_device
*ndev
, u32 intr_status
)
1783 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1786 if (intr_status
& EESR_TWB
) {
1787 /* Unused write back interrupt */
1788 if (intr_status
& EESR_TABT
) { /* Transmit Abort int */
1789 ndev
->stats
.tx_aborted_errors
++;
1790 netif_err(mdp
, tx_err
, ndev
, "Transmit Abort\n");
1794 if (intr_status
& EESR_RABT
) {
1795 /* Receive Abort int */
1796 if (intr_status
& EESR_RFRMER
) {
1797 /* Receive Frame Overflow int */
1798 ndev
->stats
.rx_frame_errors
++;
1802 if (intr_status
& EESR_TDE
) {
1803 /* Transmit Descriptor Empty int */
1804 ndev
->stats
.tx_fifo_errors
++;
1805 netif_err(mdp
, tx_err
, ndev
, "Transmit Descriptor Empty\n");
1808 if (intr_status
& EESR_TFE
) {
1809 /* FIFO under flow */
1810 ndev
->stats
.tx_fifo_errors
++;
1811 netif_err(mdp
, tx_err
, ndev
, "Transmit FIFO Under flow\n");
1814 if (intr_status
& EESR_RDE
) {
1815 /* Receive Descriptor Empty int */
1816 ndev
->stats
.rx_over_errors
++;
1819 if (intr_status
& EESR_RFE
) {
1820 /* Receive FIFO Overflow int */
1821 ndev
->stats
.rx_fifo_errors
++;
1824 if (!mdp
->cd
->no_ade
&& (intr_status
& EESR_ADE
)) {
1826 ndev
->stats
.tx_fifo_errors
++;
1827 netif_err(mdp
, tx_err
, ndev
, "Address Error\n");
1830 mask
= EESR_TWB
| EESR_TABT
| EESR_ADE
| EESR_TDE
| EESR_TFE
;
1831 if (mdp
->cd
->no_ade
)
1833 if (intr_status
& mask
) {
1835 u32 edtrr
= sh_eth_read(ndev
, EDTRR
);
1838 netdev_err(ndev
, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1839 intr_status
, mdp
->cur_tx
, mdp
->dirty_tx
,
1840 (u32
)ndev
->state
, edtrr
);
1841 /* dirty buffer free */
1842 sh_eth_tx_free(ndev
, true);
1845 if (edtrr
^ mdp
->cd
->edtrr_trns
) {
1847 sh_eth_write(ndev
, mdp
->cd
->edtrr_trns
, EDTRR
);
1850 netif_wake_queue(ndev
);
1854 static irqreturn_t
sh_eth_interrupt(int irq
, void *netdev
)
1856 struct net_device
*ndev
= netdev
;
1857 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1858 struct sh_eth_cpu_data
*cd
= mdp
->cd
;
1859 irqreturn_t ret
= IRQ_NONE
;
1860 u32 intr_status
, intr_enable
;
1862 spin_lock(&mdp
->lock
);
1864 /* Get interrupt status */
1865 intr_status
= sh_eth_read(ndev
, EESR
);
1866 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1867 * enabled since it's the one that comes thru regardless of the mask,
1868 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1869 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1872 intr_enable
= sh_eth_read(ndev
, EESIPR
);
1873 intr_status
&= intr_enable
| EESIPR_ECIIP
;
1874 if (intr_status
& (EESR_RX_CHECK
| cd
->tx_check
| EESR_ECI
|
1875 cd
->eesr_err_check
))
1880 if (unlikely(!mdp
->irq_enabled
)) {
1881 sh_eth_write(ndev
, 0, EESIPR
);
1885 if (intr_status
& EESR_RX_CHECK
) {
1886 if (napi_schedule_prep(&mdp
->napi
)) {
1887 /* Mask Rx interrupts */
1888 sh_eth_write(ndev
, intr_enable
& ~EESR_RX_CHECK
,
1890 __napi_schedule(&mdp
->napi
);
1893 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1894 intr_status
, intr_enable
);
1899 if (intr_status
& cd
->tx_check
) {
1900 /* Clear Tx interrupts */
1901 sh_eth_write(ndev
, intr_status
& cd
->tx_check
, EESR
);
1903 sh_eth_tx_free(ndev
, true);
1904 netif_wake_queue(ndev
);
1907 /* E-MAC interrupt */
1908 if (intr_status
& EESR_ECI
)
1909 sh_eth_emac_interrupt(ndev
);
1911 if (intr_status
& cd
->eesr_err_check
) {
1912 /* Clear error interrupts */
1913 sh_eth_write(ndev
, intr_status
& cd
->eesr_err_check
, EESR
);
1915 sh_eth_error(ndev
, intr_status
);
1919 spin_unlock(&mdp
->lock
);
1924 static int sh_eth_poll(struct napi_struct
*napi
, int budget
)
1926 struct sh_eth_private
*mdp
= container_of(napi
, struct sh_eth_private
,
1928 struct net_device
*ndev
= napi
->dev
;
1933 intr_status
= sh_eth_read(ndev
, EESR
);
1934 if (!(intr_status
& EESR_RX_CHECK
))
1936 /* Clear Rx interrupts */
1937 sh_eth_write(ndev
, intr_status
& EESR_RX_CHECK
, EESR
);
1939 if (sh_eth_rx(ndev
, intr_status
, "a
))
1943 napi_complete(napi
);
1945 /* Reenable Rx interrupts */
1946 if (mdp
->irq_enabled
)
1947 sh_eth_write(ndev
, mdp
->cd
->eesipr_value
, EESIPR
);
1949 return budget
- quota
;
1952 /* PHY state control function */
1953 static void sh_eth_adjust_link(struct net_device
*ndev
)
1955 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
1956 struct phy_device
*phydev
= ndev
->phydev
;
1957 unsigned long flags
;
1960 spin_lock_irqsave(&mdp
->lock
, flags
);
1962 /* Disable TX and RX right over here, if E-MAC change is ignored */
1963 if (mdp
->cd
->no_psr
|| mdp
->no_ether_link
)
1964 sh_eth_rcv_snd_disable(ndev
);
1967 if (phydev
->duplex
!= mdp
->duplex
) {
1969 mdp
->duplex
= phydev
->duplex
;
1970 if (mdp
->cd
->set_duplex
)
1971 mdp
->cd
->set_duplex(ndev
);
1974 if (phydev
->speed
!= mdp
->speed
) {
1976 mdp
->speed
= phydev
->speed
;
1977 if (mdp
->cd
->set_rate
)
1978 mdp
->cd
->set_rate(ndev
);
1981 sh_eth_modify(ndev
, ECMR
, ECMR_TXF
, 0);
1983 mdp
->link
= phydev
->link
;
1985 } else if (mdp
->link
) {
1992 /* Enable TX and RX right over here, if E-MAC change is ignored */
1993 if ((mdp
->cd
->no_psr
|| mdp
->no_ether_link
) && phydev
->link
)
1994 sh_eth_rcv_snd_enable(ndev
);
1997 spin_unlock_irqrestore(&mdp
->lock
, flags
);
1999 if (new_state
&& netif_msg_link(mdp
))
2000 phy_print_status(phydev
);
2003 /* PHY init function */
2004 static int sh_eth_phy_init(struct net_device
*ndev
)
2006 struct device_node
*np
= ndev
->dev
.parent
->of_node
;
2007 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2008 struct phy_device
*phydev
;
2014 /* Try connect to PHY */
2016 struct device_node
*pn
;
2018 pn
= of_parse_phandle(np
, "phy-handle", 0);
2019 phydev
= of_phy_connect(ndev
, pn
,
2020 sh_eth_adjust_link
, 0,
2021 mdp
->phy_interface
);
2025 phydev
= ERR_PTR(-ENOENT
);
2027 char phy_id
[MII_BUS_ID_SIZE
+ 3];
2029 snprintf(phy_id
, sizeof(phy_id
), PHY_ID_FMT
,
2030 mdp
->mii_bus
->id
, mdp
->phy_id
);
2032 phydev
= phy_connect(ndev
, phy_id
, sh_eth_adjust_link
,
2033 mdp
->phy_interface
);
2036 if (IS_ERR(phydev
)) {
2037 netdev_err(ndev
, "failed to connect PHY\n");
2038 return PTR_ERR(phydev
);
2041 /* mask with MAC supported features */
2042 if (mdp
->cd
->register_type
!= SH_ETH_REG_GIGABIT
) {
2043 int err
= phy_set_max_speed(phydev
, SPEED_100
);
2045 netdev_err(ndev
, "failed to limit PHY to 100 Mbit/s\n");
2046 phy_disconnect(phydev
);
2051 phy_attached_info(phydev
);
2056 /* PHY control start function */
2057 static int sh_eth_phy_start(struct net_device
*ndev
)
2061 ret
= sh_eth_phy_init(ndev
);
2065 phy_start(ndev
->phydev
);
2070 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2071 * version must be bumped as well. Just adding registers up to that
2072 * limit is fine, as long as the existing register indices don't
2075 #define SH_ETH_REG_DUMP_VERSION 1
2076 #define SH_ETH_REG_DUMP_MAX_REGS 256
2078 static size_t __sh_eth_get_regs(struct net_device
*ndev
, u32
*buf
)
2080 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2081 struct sh_eth_cpu_data
*cd
= mdp
->cd
;
2085 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET
> SH_ETH_REG_DUMP_MAX_REGS
);
2087 /* Dump starts with a bitmap that tells ethtool which
2088 * registers are defined for this chip.
2090 len
= DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS
, 32);
2098 /* Add a register to the dump, if it has a defined offset.
2099 * This automatically skips most undefined registers, but for
2100 * some it is also necessary to check a capability flag in
2101 * struct sh_eth_cpu_data.
2103 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2104 #define add_reg_from(reg, read_expr) do { \
2105 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2107 mark_reg_valid(reg); \
2108 *buf++ = read_expr; \
2113 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2114 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2180 if (cd
->hw_checksum
)
2186 add_tsu_reg(TSU_CTRST
);
2187 if (cd
->dual_port
) {
2188 add_tsu_reg(TSU_FWEN0
);
2189 add_tsu_reg(TSU_FWEN1
);
2190 add_tsu_reg(TSU_FCM
);
2191 add_tsu_reg(TSU_BSYSL0
);
2192 add_tsu_reg(TSU_BSYSL1
);
2193 add_tsu_reg(TSU_PRISL0
);
2194 add_tsu_reg(TSU_PRISL1
);
2195 add_tsu_reg(TSU_FWSL0
);
2196 add_tsu_reg(TSU_FWSL1
);
2198 add_tsu_reg(TSU_FWSLC
);
2199 if (cd
->dual_port
) {
2200 add_tsu_reg(TSU_QTAGM0
);
2201 add_tsu_reg(TSU_QTAGM1
);
2202 add_tsu_reg(TSU_FWSR
);
2203 add_tsu_reg(TSU_FWINMK
);
2204 add_tsu_reg(TSU_ADQT0
);
2205 add_tsu_reg(TSU_ADQT1
);
2206 add_tsu_reg(TSU_VTAG0
);
2207 add_tsu_reg(TSU_VTAG1
);
2209 add_tsu_reg(TSU_ADSBSY
);
2210 add_tsu_reg(TSU_TEN
);
2211 add_tsu_reg(TSU_POST1
);
2212 add_tsu_reg(TSU_POST2
);
2213 add_tsu_reg(TSU_POST3
);
2214 add_tsu_reg(TSU_POST4
);
2215 /* This is the start of a table, not just a single register. */
2219 mark_reg_valid(TSU_ADRH0
);
2220 for (i
= 0; i
< SH_ETH_TSU_CAM_ENTRIES
* 2; i
++)
2221 *buf
++ = ioread32(mdp
->tsu_addr
+
2222 mdp
->reg_offset
[TSU_ADRH0
] +
2225 len
+= SH_ETH_TSU_CAM_ENTRIES
* 2;
2228 #undef mark_reg_valid
2236 static int sh_eth_get_regs_len(struct net_device
*ndev
)
2238 return __sh_eth_get_regs(ndev
, NULL
);
2241 static void sh_eth_get_regs(struct net_device
*ndev
, struct ethtool_regs
*regs
,
2244 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2246 regs
->version
= SH_ETH_REG_DUMP_VERSION
;
2248 pm_runtime_get_sync(&mdp
->pdev
->dev
);
2249 __sh_eth_get_regs(ndev
, buf
);
2250 pm_runtime_put_sync(&mdp
->pdev
->dev
);
2253 static u32
sh_eth_get_msglevel(struct net_device
*ndev
)
2255 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2256 return mdp
->msg_enable
;
2259 static void sh_eth_set_msglevel(struct net_device
*ndev
, u32 value
)
2261 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2262 mdp
->msg_enable
= value
;
2265 static const char sh_eth_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2266 "rx_current", "tx_current",
2267 "rx_dirty", "tx_dirty",
2269 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2271 static int sh_eth_get_sset_count(struct net_device
*netdev
, int sset
)
2275 return SH_ETH_STATS_LEN
;
2281 static void sh_eth_get_ethtool_stats(struct net_device
*ndev
,
2282 struct ethtool_stats
*stats
, u64
*data
)
2284 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2287 /* device-specific stats */
2288 data
[i
++] = mdp
->cur_rx
;
2289 data
[i
++] = mdp
->cur_tx
;
2290 data
[i
++] = mdp
->dirty_rx
;
2291 data
[i
++] = mdp
->dirty_tx
;
2294 static void sh_eth_get_strings(struct net_device
*ndev
, u32 stringset
, u8
*data
)
2296 switch (stringset
) {
2298 memcpy(data
, *sh_eth_gstrings_stats
,
2299 sizeof(sh_eth_gstrings_stats
));
2304 static void sh_eth_get_ringparam(struct net_device
*ndev
,
2305 struct ethtool_ringparam
*ring
)
2307 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2309 ring
->rx_max_pending
= RX_RING_MAX
;
2310 ring
->tx_max_pending
= TX_RING_MAX
;
2311 ring
->rx_pending
= mdp
->num_rx_ring
;
2312 ring
->tx_pending
= mdp
->num_tx_ring
;
2315 static int sh_eth_set_ringparam(struct net_device
*ndev
,
2316 struct ethtool_ringparam
*ring
)
2318 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2321 if (ring
->tx_pending
> TX_RING_MAX
||
2322 ring
->rx_pending
> RX_RING_MAX
||
2323 ring
->tx_pending
< TX_RING_MIN
||
2324 ring
->rx_pending
< RX_RING_MIN
)
2326 if (ring
->rx_mini_pending
|| ring
->rx_jumbo_pending
)
2329 if (netif_running(ndev
)) {
2330 netif_device_detach(ndev
);
2331 netif_tx_disable(ndev
);
2333 /* Serialise with the interrupt handler and NAPI, then
2334 * disable interrupts. We have to clear the
2335 * irq_enabled flag first to ensure that interrupts
2336 * won't be re-enabled.
2338 mdp
->irq_enabled
= false;
2339 synchronize_irq(ndev
->irq
);
2340 napi_synchronize(&mdp
->napi
);
2341 sh_eth_write(ndev
, 0x0000, EESIPR
);
2343 sh_eth_dev_exit(ndev
);
2345 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2346 sh_eth_ring_free(ndev
);
2349 /* Set new parameters */
2350 mdp
->num_rx_ring
= ring
->rx_pending
;
2351 mdp
->num_tx_ring
= ring
->tx_pending
;
2353 if (netif_running(ndev
)) {
2354 ret
= sh_eth_ring_init(ndev
);
2356 netdev_err(ndev
, "%s: sh_eth_ring_init failed.\n",
2360 ret
= sh_eth_dev_init(ndev
);
2362 netdev_err(ndev
, "%s: sh_eth_dev_init failed.\n",
2367 netif_device_attach(ndev
);
2373 static void sh_eth_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2375 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2380 if (mdp
->cd
->magic
) {
2381 wol
->supported
= WAKE_MAGIC
;
2382 wol
->wolopts
= mdp
->wol_enabled
? WAKE_MAGIC
: 0;
2386 static int sh_eth_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2388 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2390 if (!mdp
->cd
->magic
|| wol
->wolopts
& ~WAKE_MAGIC
)
2393 mdp
->wol_enabled
= !!(wol
->wolopts
& WAKE_MAGIC
);
2395 device_set_wakeup_enable(&mdp
->pdev
->dev
, mdp
->wol_enabled
);
2400 static const struct ethtool_ops sh_eth_ethtool_ops
= {
2401 .get_regs_len
= sh_eth_get_regs_len
,
2402 .get_regs
= sh_eth_get_regs
,
2403 .nway_reset
= phy_ethtool_nway_reset
,
2404 .get_msglevel
= sh_eth_get_msglevel
,
2405 .set_msglevel
= sh_eth_set_msglevel
,
2406 .get_link
= ethtool_op_get_link
,
2407 .get_strings
= sh_eth_get_strings
,
2408 .get_ethtool_stats
= sh_eth_get_ethtool_stats
,
2409 .get_sset_count
= sh_eth_get_sset_count
,
2410 .get_ringparam
= sh_eth_get_ringparam
,
2411 .set_ringparam
= sh_eth_set_ringparam
,
2412 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
2413 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
2414 .get_wol
= sh_eth_get_wol
,
2415 .set_wol
= sh_eth_set_wol
,
2418 /* network device open function */
2419 static int sh_eth_open(struct net_device
*ndev
)
2421 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2424 pm_runtime_get_sync(&mdp
->pdev
->dev
);
2426 napi_enable(&mdp
->napi
);
2428 ret
= request_irq(ndev
->irq
, sh_eth_interrupt
,
2429 mdp
->cd
->irq_flags
, ndev
->name
, ndev
);
2431 netdev_err(ndev
, "Can not assign IRQ number\n");
2435 /* Descriptor set */
2436 ret
= sh_eth_ring_init(ndev
);
2441 ret
= sh_eth_dev_init(ndev
);
2445 /* PHY control start*/
2446 ret
= sh_eth_phy_start(ndev
);
2450 netif_start_queue(ndev
);
2457 free_irq(ndev
->irq
, ndev
);
2459 napi_disable(&mdp
->napi
);
2460 pm_runtime_put_sync(&mdp
->pdev
->dev
);
2464 /* Timeout function */
2465 static void sh_eth_tx_timeout(struct net_device
*ndev
)
2467 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2468 struct sh_eth_rxdesc
*rxdesc
;
2471 netif_stop_queue(ndev
);
2473 netif_err(mdp
, timer
, ndev
,
2474 "transmit timed out, status %8.8x, resetting...\n",
2475 sh_eth_read(ndev
, EESR
));
2477 /* tx_errors count up */
2478 ndev
->stats
.tx_errors
++;
2480 /* Free all the skbuffs in the Rx queue. */
2481 for (i
= 0; i
< mdp
->num_rx_ring
; i
++) {
2482 rxdesc
= &mdp
->rx_ring
[i
];
2483 rxdesc
->status
= cpu_to_le32(0);
2484 rxdesc
->addr
= cpu_to_le32(0xBADF00D0);
2485 dev_kfree_skb(mdp
->rx_skbuff
[i
]);
2486 mdp
->rx_skbuff
[i
] = NULL
;
2488 for (i
= 0; i
< mdp
->num_tx_ring
; i
++) {
2489 dev_kfree_skb(mdp
->tx_skbuff
[i
]);
2490 mdp
->tx_skbuff
[i
] = NULL
;
2494 sh_eth_dev_init(ndev
);
2496 netif_start_queue(ndev
);
2499 /* Packet transmit function */
2500 static int sh_eth_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
2502 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2503 struct sh_eth_txdesc
*txdesc
;
2504 dma_addr_t dma_addr
;
2506 unsigned long flags
;
2508 spin_lock_irqsave(&mdp
->lock
, flags
);
2509 if ((mdp
->cur_tx
- mdp
->dirty_tx
) >= (mdp
->num_tx_ring
- 4)) {
2510 if (!sh_eth_tx_free(ndev
, true)) {
2511 netif_warn(mdp
, tx_queued
, ndev
, "TxFD exhausted.\n");
2512 netif_stop_queue(ndev
);
2513 spin_unlock_irqrestore(&mdp
->lock
, flags
);
2514 return NETDEV_TX_BUSY
;
2517 spin_unlock_irqrestore(&mdp
->lock
, flags
);
2519 if (skb_put_padto(skb
, ETH_ZLEN
))
2520 return NETDEV_TX_OK
;
2522 entry
= mdp
->cur_tx
% mdp
->num_tx_ring
;
2523 mdp
->tx_skbuff
[entry
] = skb
;
2524 txdesc
= &mdp
->tx_ring
[entry
];
2526 if (!mdp
->cd
->hw_swap
)
2527 sh_eth_soft_swap(PTR_ALIGN(skb
->data
, 4), skb
->len
+ 2);
2528 dma_addr
= dma_map_single(&mdp
->pdev
->dev
, skb
->data
, skb
->len
,
2530 if (dma_mapping_error(&mdp
->pdev
->dev
, dma_addr
)) {
2532 return NETDEV_TX_OK
;
2534 txdesc
->addr
= cpu_to_le32(dma_addr
);
2535 txdesc
->len
= cpu_to_le32(skb
->len
<< 16);
2537 dma_wmb(); /* TACT bit must be set after all the above writes */
2538 if (entry
>= mdp
->num_tx_ring
- 1)
2539 txdesc
->status
|= cpu_to_le32(TD_TACT
| TD_TDLE
);
2541 txdesc
->status
|= cpu_to_le32(TD_TACT
);
2545 if (!(sh_eth_read(ndev
, EDTRR
) & mdp
->cd
->edtrr_trns
))
2546 sh_eth_write(ndev
, mdp
->cd
->edtrr_trns
, EDTRR
);
2548 return NETDEV_TX_OK
;
2551 /* The statistics registers have write-clear behaviour, which means we
2552 * will lose any increment between the read and write. We mitigate
2553 * this by only clearing when we read a non-zero value, so we will
2554 * never falsely report a total of zero.
2557 sh_eth_update_stat(struct net_device
*ndev
, unsigned long *stat
, int reg
)
2559 u32 delta
= sh_eth_read(ndev
, reg
);
2563 sh_eth_write(ndev
, 0, reg
);
2567 static struct net_device_stats
*sh_eth_get_stats(struct net_device
*ndev
)
2569 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2571 if (mdp
->cd
->no_tx_cntrs
)
2572 return &ndev
->stats
;
2574 if (!mdp
->is_opened
)
2575 return &ndev
->stats
;
2577 sh_eth_update_stat(ndev
, &ndev
->stats
.tx_dropped
, TROCR
);
2578 sh_eth_update_stat(ndev
, &ndev
->stats
.collisions
, CDCR
);
2579 sh_eth_update_stat(ndev
, &ndev
->stats
.tx_carrier_errors
, LCCR
);
2581 if (mdp
->cd
->cexcr
) {
2582 sh_eth_update_stat(ndev
, &ndev
->stats
.tx_carrier_errors
,
2584 sh_eth_update_stat(ndev
, &ndev
->stats
.tx_carrier_errors
,
2587 sh_eth_update_stat(ndev
, &ndev
->stats
.tx_carrier_errors
,
2591 return &ndev
->stats
;
2594 /* device close function */
2595 static int sh_eth_close(struct net_device
*ndev
)
2597 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2599 netif_stop_queue(ndev
);
2601 /* Serialise with the interrupt handler and NAPI, then disable
2602 * interrupts. We have to clear the irq_enabled flag first to
2603 * ensure that interrupts won't be re-enabled.
2605 mdp
->irq_enabled
= false;
2606 synchronize_irq(ndev
->irq
);
2607 napi_disable(&mdp
->napi
);
2608 sh_eth_write(ndev
, 0x0000, EESIPR
);
2610 sh_eth_dev_exit(ndev
);
2612 /* PHY Disconnect */
2614 phy_stop(ndev
->phydev
);
2615 phy_disconnect(ndev
->phydev
);
2618 free_irq(ndev
->irq
, ndev
);
2620 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2621 sh_eth_ring_free(ndev
);
2623 pm_runtime_put_sync(&mdp
->pdev
->dev
);
2630 /* ioctl to device function */
2631 static int sh_eth_do_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
2633 struct phy_device
*phydev
= ndev
->phydev
;
2635 if (!netif_running(ndev
))
2641 return phy_mii_ioctl(phydev
, rq
, cmd
);
2644 static int sh_eth_change_mtu(struct net_device
*ndev
, int new_mtu
)
2646 if (netif_running(ndev
))
2649 ndev
->mtu
= new_mtu
;
2650 netdev_update_features(ndev
);
2655 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2656 static u32
sh_eth_tsu_get_post_mask(int entry
)
2658 return 0x0f << (28 - ((entry
% 8) * 4));
2661 static u32
sh_eth_tsu_get_post_bit(struct sh_eth_private
*mdp
, int entry
)
2663 return (0x08 >> (mdp
->port
<< 1)) << (28 - ((entry
% 8) * 4));
2666 static void sh_eth_tsu_enable_cam_entry_post(struct net_device
*ndev
,
2669 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2670 int reg
= TSU_POST1
+ entry
/ 8;
2673 tmp
= sh_eth_tsu_read(mdp
, reg
);
2674 sh_eth_tsu_write(mdp
, tmp
| sh_eth_tsu_get_post_bit(mdp
, entry
), reg
);
2677 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device
*ndev
,
2680 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2681 int reg
= TSU_POST1
+ entry
/ 8;
2682 u32 post_mask
, ref_mask
, tmp
;
2684 post_mask
= sh_eth_tsu_get_post_mask(entry
);
2685 ref_mask
= sh_eth_tsu_get_post_bit(mdp
, entry
) & ~post_mask
;
2687 tmp
= sh_eth_tsu_read(mdp
, reg
);
2688 sh_eth_tsu_write(mdp
, tmp
& ~post_mask
, reg
);
2690 /* If other port enables, the function returns "true" */
2691 return tmp
& ref_mask
;
2694 static int sh_eth_tsu_busy(struct net_device
*ndev
)
2696 int timeout
= SH_ETH_TSU_TIMEOUT_MS
* 100;
2697 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2699 while ((sh_eth_tsu_read(mdp
, TSU_ADSBSY
) & TSU_ADSBSY_0
)) {
2703 netdev_err(ndev
, "%s: timeout\n", __func__
);
2711 static int sh_eth_tsu_write_entry(struct net_device
*ndev
, u16 offset
,
2714 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2717 val
= addr
[0] << 24 | addr
[1] << 16 | addr
[2] << 8 | addr
[3];
2718 iowrite32(val
, mdp
->tsu_addr
+ offset
);
2719 if (sh_eth_tsu_busy(ndev
) < 0)
2722 val
= addr
[4] << 8 | addr
[5];
2723 iowrite32(val
, mdp
->tsu_addr
+ offset
+ 4);
2724 if (sh_eth_tsu_busy(ndev
) < 0)
2730 static void sh_eth_tsu_read_entry(struct net_device
*ndev
, u16 offset
, u8
*addr
)
2732 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2735 val
= ioread32(mdp
->tsu_addr
+ offset
);
2736 addr
[0] = (val
>> 24) & 0xff;
2737 addr
[1] = (val
>> 16) & 0xff;
2738 addr
[2] = (val
>> 8) & 0xff;
2739 addr
[3] = val
& 0xff;
2740 val
= ioread32(mdp
->tsu_addr
+ offset
+ 4);
2741 addr
[4] = (val
>> 8) & 0xff;
2742 addr
[5] = val
& 0xff;
2746 static int sh_eth_tsu_find_entry(struct net_device
*ndev
, const u8
*addr
)
2748 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2749 u16 reg_offset
= sh_eth_tsu_get_offset(mdp
, TSU_ADRH0
);
2751 u8 c_addr
[ETH_ALEN
];
2753 for (i
= 0; i
< SH_ETH_TSU_CAM_ENTRIES
; i
++, reg_offset
+= 8) {
2754 sh_eth_tsu_read_entry(ndev
, reg_offset
, c_addr
);
2755 if (ether_addr_equal(addr
, c_addr
))
2762 static int sh_eth_tsu_find_empty(struct net_device
*ndev
)
2767 memset(blank
, 0, sizeof(blank
));
2768 entry
= sh_eth_tsu_find_entry(ndev
, blank
);
2769 return (entry
< 0) ? -ENOMEM
: entry
;
2772 static int sh_eth_tsu_disable_cam_entry_table(struct net_device
*ndev
,
2775 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2776 u16 reg_offset
= sh_eth_tsu_get_offset(mdp
, TSU_ADRH0
);
2780 sh_eth_tsu_write(mdp
, sh_eth_tsu_read(mdp
, TSU_TEN
) &
2781 ~(1 << (31 - entry
)), TSU_TEN
);
2783 memset(blank
, 0, sizeof(blank
));
2784 ret
= sh_eth_tsu_write_entry(ndev
, reg_offset
+ entry
* 8, blank
);
2790 static int sh_eth_tsu_add_entry(struct net_device
*ndev
, const u8
*addr
)
2792 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2793 u16 reg_offset
= sh_eth_tsu_get_offset(mdp
, TSU_ADRH0
);
2799 i
= sh_eth_tsu_find_entry(ndev
, addr
);
2801 /* No entry found, create one */
2802 i
= sh_eth_tsu_find_empty(ndev
);
2805 ret
= sh_eth_tsu_write_entry(ndev
, reg_offset
+ i
* 8, addr
);
2809 /* Enable the entry */
2810 sh_eth_tsu_write(mdp
, sh_eth_tsu_read(mdp
, TSU_TEN
) |
2811 (1 << (31 - i
)), TSU_TEN
);
2814 /* Entry found or created, enable POST */
2815 sh_eth_tsu_enable_cam_entry_post(ndev
, i
);
2820 static int sh_eth_tsu_del_entry(struct net_device
*ndev
, const u8
*addr
)
2822 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2828 i
= sh_eth_tsu_find_entry(ndev
, addr
);
2831 if (sh_eth_tsu_disable_cam_entry_post(ndev
, i
))
2834 /* Disable the entry if both ports was disabled */
2835 ret
= sh_eth_tsu_disable_cam_entry_table(ndev
, i
);
2843 static int sh_eth_tsu_purge_all(struct net_device
*ndev
)
2845 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2851 for (i
= 0; i
< SH_ETH_TSU_CAM_ENTRIES
; i
++) {
2852 if (sh_eth_tsu_disable_cam_entry_post(ndev
, i
))
2855 /* Disable the entry if both ports was disabled */
2856 ret
= sh_eth_tsu_disable_cam_entry_table(ndev
, i
);
2864 static void sh_eth_tsu_purge_mcast(struct net_device
*ndev
)
2866 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2867 u16 reg_offset
= sh_eth_tsu_get_offset(mdp
, TSU_ADRH0
);
2874 for (i
= 0; i
< SH_ETH_TSU_CAM_ENTRIES
; i
++, reg_offset
+= 8) {
2875 sh_eth_tsu_read_entry(ndev
, reg_offset
, addr
);
2876 if (is_multicast_ether_addr(addr
))
2877 sh_eth_tsu_del_entry(ndev
, addr
);
2881 /* Update promiscuous flag and multicast filter */
2882 static void sh_eth_set_rx_mode(struct net_device
*ndev
)
2884 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2887 unsigned long flags
;
2889 spin_lock_irqsave(&mdp
->lock
, flags
);
2890 /* Initial condition is MCT = 1, PRM = 0.
2891 * Depending on ndev->flags, set PRM or clear MCT
2893 ecmr_bits
= sh_eth_read(ndev
, ECMR
) & ~ECMR_PRM
;
2895 ecmr_bits
|= ECMR_MCT
;
2897 if (!(ndev
->flags
& IFF_MULTICAST
)) {
2898 sh_eth_tsu_purge_mcast(ndev
);
2901 if (ndev
->flags
& IFF_ALLMULTI
) {
2902 sh_eth_tsu_purge_mcast(ndev
);
2903 ecmr_bits
&= ~ECMR_MCT
;
2907 if (ndev
->flags
& IFF_PROMISC
) {
2908 sh_eth_tsu_purge_all(ndev
);
2909 ecmr_bits
= (ecmr_bits
& ~ECMR_MCT
) | ECMR_PRM
;
2910 } else if (mdp
->cd
->tsu
) {
2911 struct netdev_hw_addr
*ha
;
2912 netdev_for_each_mc_addr(ha
, ndev
) {
2913 if (mcast_all
&& is_multicast_ether_addr(ha
->addr
))
2916 if (sh_eth_tsu_add_entry(ndev
, ha
->addr
) < 0) {
2918 sh_eth_tsu_purge_mcast(ndev
);
2919 ecmr_bits
&= ~ECMR_MCT
;
2926 /* update the ethernet mode */
2927 sh_eth_write(ndev
, ecmr_bits
, ECMR
);
2929 spin_unlock_irqrestore(&mdp
->lock
, flags
);
2932 static int sh_eth_get_vtag_index(struct sh_eth_private
*mdp
)
2940 static int sh_eth_vlan_rx_add_vid(struct net_device
*ndev
,
2941 __be16 proto
, u16 vid
)
2943 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2944 int vtag_reg_index
= sh_eth_get_vtag_index(mdp
);
2946 if (unlikely(!mdp
->cd
->tsu
))
2949 /* No filtering if vid = 0 */
2953 mdp
->vlan_num_ids
++;
2955 /* The controller has one VLAN tag HW filter. So, if the filter is
2956 * already enabled, the driver disables it and the filte
2958 if (mdp
->vlan_num_ids
> 1) {
2959 /* disable VLAN filter */
2960 sh_eth_tsu_write(mdp
, 0, vtag_reg_index
);
2964 sh_eth_tsu_write(mdp
, TSU_VTAG_ENABLE
| (vid
& TSU_VTAG_VID_MASK
),
2970 static int sh_eth_vlan_rx_kill_vid(struct net_device
*ndev
,
2971 __be16 proto
, u16 vid
)
2973 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
2974 int vtag_reg_index
= sh_eth_get_vtag_index(mdp
);
2976 if (unlikely(!mdp
->cd
->tsu
))
2979 /* No filtering if vid = 0 */
2983 mdp
->vlan_num_ids
--;
2984 sh_eth_tsu_write(mdp
, 0, vtag_reg_index
);
2989 /* SuperH's TSU register init function */
2990 static void sh_eth_tsu_init(struct sh_eth_private
*mdp
)
2992 if (!mdp
->cd
->dual_port
) {
2993 sh_eth_tsu_write(mdp
, 0, TSU_TEN
); /* Disable all CAM entry */
2994 sh_eth_tsu_write(mdp
, TSU_FWSLC_POSTENU
| TSU_FWSLC_POSTENL
,
2995 TSU_FWSLC
); /* Enable POST registers */
2999 sh_eth_tsu_write(mdp
, 0, TSU_FWEN0
); /* Disable forward(0->1) */
3000 sh_eth_tsu_write(mdp
, 0, TSU_FWEN1
); /* Disable forward(1->0) */
3001 sh_eth_tsu_write(mdp
, 0, TSU_FCM
); /* forward fifo 3k-3k */
3002 sh_eth_tsu_write(mdp
, 0xc, TSU_BSYSL0
);
3003 sh_eth_tsu_write(mdp
, 0xc, TSU_BSYSL1
);
3004 sh_eth_tsu_write(mdp
, 0, TSU_PRISL0
);
3005 sh_eth_tsu_write(mdp
, 0, TSU_PRISL1
);
3006 sh_eth_tsu_write(mdp
, 0, TSU_FWSL0
);
3007 sh_eth_tsu_write(mdp
, 0, TSU_FWSL1
);
3008 sh_eth_tsu_write(mdp
, TSU_FWSLC_POSTENU
| TSU_FWSLC_POSTENL
, TSU_FWSLC
);
3009 sh_eth_tsu_write(mdp
, 0, TSU_QTAGM0
); /* Disable QTAG(0->1) */
3010 sh_eth_tsu_write(mdp
, 0, TSU_QTAGM1
); /* Disable QTAG(1->0) */
3011 sh_eth_tsu_write(mdp
, 0, TSU_FWSR
); /* all interrupt status clear */
3012 sh_eth_tsu_write(mdp
, 0, TSU_FWINMK
); /* Disable all interrupt */
3013 sh_eth_tsu_write(mdp
, 0, TSU_TEN
); /* Disable all CAM entry */
3014 sh_eth_tsu_write(mdp
, 0, TSU_POST1
); /* Disable CAM entry [ 0- 7] */
3015 sh_eth_tsu_write(mdp
, 0, TSU_POST2
); /* Disable CAM entry [ 8-15] */
3016 sh_eth_tsu_write(mdp
, 0, TSU_POST3
); /* Disable CAM entry [16-23] */
3017 sh_eth_tsu_write(mdp
, 0, TSU_POST4
); /* Disable CAM entry [24-31] */
3020 /* MDIO bus release function */
3021 static int sh_mdio_release(struct sh_eth_private
*mdp
)
3023 /* unregister mdio bus */
3024 mdiobus_unregister(mdp
->mii_bus
);
3026 /* free bitbang info */
3027 free_mdio_bitbang(mdp
->mii_bus
);
3032 /* MDIO bus init function */
3033 static int sh_mdio_init(struct sh_eth_private
*mdp
,
3034 struct sh_eth_plat_data
*pd
)
3037 struct bb_info
*bitbang
;
3038 struct platform_device
*pdev
= mdp
->pdev
;
3039 struct device
*dev
= &mdp
->pdev
->dev
;
3041 /* create bit control struct for PHY */
3042 bitbang
= devm_kzalloc(dev
, sizeof(struct bb_info
), GFP_KERNEL
);
3047 bitbang
->addr
= mdp
->addr
+ mdp
->reg_offset
[PIR
];
3048 bitbang
->set_gate
= pd
->set_mdio_gate
;
3049 bitbang
->ctrl
.ops
= &bb_ops
;
3051 /* MII controller setting */
3052 mdp
->mii_bus
= alloc_mdio_bitbang(&bitbang
->ctrl
);
3056 /* Hook up MII support for ethtool */
3057 mdp
->mii_bus
->name
= "sh_mii";
3058 mdp
->mii_bus
->parent
= dev
;
3059 snprintf(mdp
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
3060 pdev
->name
, pdev
->id
);
3062 /* register MDIO bus */
3063 if (pd
->phy_irq
> 0)
3064 mdp
->mii_bus
->irq
[pd
->phy
] = pd
->phy_irq
;
3066 ret
= of_mdiobus_register(mdp
->mii_bus
, dev
->of_node
);
3073 free_mdio_bitbang(mdp
->mii_bus
);
3077 static const u16
*sh_eth_get_register_offset(int register_type
)
3079 const u16
*reg_offset
= NULL
;
3081 switch (register_type
) {
3082 case SH_ETH_REG_GIGABIT
:
3083 reg_offset
= sh_eth_offset_gigabit
;
3085 case SH_ETH_REG_FAST_RZ
:
3086 reg_offset
= sh_eth_offset_fast_rz
;
3088 case SH_ETH_REG_FAST_RCAR
:
3089 reg_offset
= sh_eth_offset_fast_rcar
;
3091 case SH_ETH_REG_FAST_SH4
:
3092 reg_offset
= sh_eth_offset_fast_sh4
;
3094 case SH_ETH_REG_FAST_SH3_SH2
:
3095 reg_offset
= sh_eth_offset_fast_sh3_sh2
;
3102 static const struct net_device_ops sh_eth_netdev_ops
= {
3103 .ndo_open
= sh_eth_open
,
3104 .ndo_stop
= sh_eth_close
,
3105 .ndo_start_xmit
= sh_eth_start_xmit
,
3106 .ndo_get_stats
= sh_eth_get_stats
,
3107 .ndo_set_rx_mode
= sh_eth_set_rx_mode
,
3108 .ndo_tx_timeout
= sh_eth_tx_timeout
,
3109 .ndo_do_ioctl
= sh_eth_do_ioctl
,
3110 .ndo_change_mtu
= sh_eth_change_mtu
,
3111 .ndo_validate_addr
= eth_validate_addr
,
3112 .ndo_set_mac_address
= eth_mac_addr
,
3115 static const struct net_device_ops sh_eth_netdev_ops_tsu
= {
3116 .ndo_open
= sh_eth_open
,
3117 .ndo_stop
= sh_eth_close
,
3118 .ndo_start_xmit
= sh_eth_start_xmit
,
3119 .ndo_get_stats
= sh_eth_get_stats
,
3120 .ndo_set_rx_mode
= sh_eth_set_rx_mode
,
3121 .ndo_vlan_rx_add_vid
= sh_eth_vlan_rx_add_vid
,
3122 .ndo_vlan_rx_kill_vid
= sh_eth_vlan_rx_kill_vid
,
3123 .ndo_tx_timeout
= sh_eth_tx_timeout
,
3124 .ndo_do_ioctl
= sh_eth_do_ioctl
,
3125 .ndo_change_mtu
= sh_eth_change_mtu
,
3126 .ndo_validate_addr
= eth_validate_addr
,
3127 .ndo_set_mac_address
= eth_mac_addr
,
3131 static struct sh_eth_plat_data
*sh_eth_parse_dt(struct device
*dev
)
3133 struct device_node
*np
= dev
->of_node
;
3134 struct sh_eth_plat_data
*pdata
;
3135 const char *mac_addr
;
3138 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
3142 ret
= of_get_phy_mode(np
);
3145 pdata
->phy_interface
= ret
;
3147 mac_addr
= of_get_mac_address(np
);
3149 memcpy(pdata
->mac_addr
, mac_addr
, ETH_ALEN
);
3151 pdata
->no_ether_link
=
3152 of_property_read_bool(np
, "renesas,no-ether-link");
3153 pdata
->ether_link_active_low
=
3154 of_property_read_bool(np
, "renesas,ether-link-active-low");
3159 static const struct of_device_id sh_eth_match_table
[] = {
3160 { .compatible
= "renesas,gether-r8a7740", .data
= &r8a7740_data
},
3161 { .compatible
= "renesas,ether-r8a7743", .data
= &rcar_gen2_data
},
3162 { .compatible
= "renesas,ether-r8a7745", .data
= &rcar_gen2_data
},
3163 { .compatible
= "renesas,ether-r8a7778", .data
= &rcar_gen1_data
},
3164 { .compatible
= "renesas,ether-r8a7779", .data
= &rcar_gen1_data
},
3165 { .compatible
= "renesas,ether-r8a7790", .data
= &rcar_gen2_data
},
3166 { .compatible
= "renesas,ether-r8a7791", .data
= &rcar_gen2_data
},
3167 { .compatible
= "renesas,ether-r8a7793", .data
= &rcar_gen2_data
},
3168 { .compatible
= "renesas,ether-r8a7794", .data
= &rcar_gen2_data
},
3169 { .compatible
= "renesas,gether-r8a77980", .data
= &r8a77980_data
},
3170 { .compatible
= "renesas,ether-r7s72100", .data
= &r7s72100_data
},
3171 { .compatible
= "renesas,ether-r7s9210", .data
= &r7s9210_data
},
3172 { .compatible
= "renesas,rcar-gen1-ether", .data
= &rcar_gen1_data
},
3173 { .compatible
= "renesas,rcar-gen2-ether", .data
= &rcar_gen2_data
},
3176 MODULE_DEVICE_TABLE(of
, sh_eth_match_table
);
3178 static inline struct sh_eth_plat_data
*sh_eth_parse_dt(struct device
*dev
)
3184 static int sh_eth_drv_probe(struct platform_device
*pdev
)
3186 struct resource
*res
;
3187 struct sh_eth_plat_data
*pd
= dev_get_platdata(&pdev
->dev
);
3188 const struct platform_device_id
*id
= platform_get_device_id(pdev
);
3189 struct sh_eth_private
*mdp
;
3190 struct net_device
*ndev
;
3194 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3196 ndev
= alloc_etherdev(sizeof(struct sh_eth_private
));
3200 pm_runtime_enable(&pdev
->dev
);
3201 pm_runtime_get_sync(&pdev
->dev
);
3203 ret
= platform_get_irq(pdev
, 0);
3208 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3210 mdp
= netdev_priv(ndev
);
3211 mdp
->num_tx_ring
= TX_RING_SIZE
;
3212 mdp
->num_rx_ring
= RX_RING_SIZE
;
3213 mdp
->addr
= devm_ioremap_resource(&pdev
->dev
, res
);
3214 if (IS_ERR(mdp
->addr
)) {
3215 ret
= PTR_ERR(mdp
->addr
);
3219 ndev
->base_addr
= res
->start
;
3221 spin_lock_init(&mdp
->lock
);
3224 if (pdev
->dev
.of_node
)
3225 pd
= sh_eth_parse_dt(&pdev
->dev
);
3227 dev_err(&pdev
->dev
, "no platform data\n");
3233 mdp
->phy_id
= pd
->phy
;
3234 mdp
->phy_interface
= pd
->phy_interface
;
3235 mdp
->no_ether_link
= pd
->no_ether_link
;
3236 mdp
->ether_link_active_low
= pd
->ether_link_active_low
;
3240 mdp
->cd
= (struct sh_eth_cpu_data
*)id
->driver_data
;
3242 mdp
->cd
= (struct sh_eth_cpu_data
*)of_device_get_match_data(&pdev
->dev
);
3244 mdp
->reg_offset
= sh_eth_get_register_offset(mdp
->cd
->register_type
);
3245 if (!mdp
->reg_offset
) {
3246 dev_err(&pdev
->dev
, "Unknown register type (%d)\n",
3247 mdp
->cd
->register_type
);
3251 sh_eth_set_default_cpu_data(mdp
->cd
);
3253 /* User's manual states max MTU should be 2048 but due to the
3254 * alignment calculations in sh_eth_ring_init() the practical
3255 * MTU is a bit less. Maybe this can be optimized some more.
3257 ndev
->max_mtu
= 2000 - (ETH_HLEN
+ VLAN_HLEN
+ ETH_FCS_LEN
);
3258 ndev
->min_mtu
= ETH_MIN_MTU
;
3262 ndev
->netdev_ops
= &sh_eth_netdev_ops_tsu
;
3264 ndev
->netdev_ops
= &sh_eth_netdev_ops
;
3265 ndev
->ethtool_ops
= &sh_eth_ethtool_ops
;
3266 ndev
->watchdog_timeo
= TX_TIMEOUT
;
3268 /* debug message level */
3269 mdp
->msg_enable
= SH_ETH_DEF_MSG_ENABLE
;
3271 /* read and set MAC address */
3272 read_mac_address(ndev
, pd
->mac_addr
);
3273 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
3274 dev_warn(&pdev
->dev
,
3275 "no valid MAC address supplied, using a random one.\n");
3276 eth_hw_addr_random(ndev
);
3280 int port
= pdev
->id
< 0 ? 0 : pdev
->id
% 2;
3281 struct resource
*rtsu
;
3283 rtsu
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
3285 dev_err(&pdev
->dev
, "no TSU resource\n");
3289 /* We can only request the TSU region for the first port
3290 * of the two sharing this TSU for the probe to succeed...
3293 !devm_request_mem_region(&pdev
->dev
, rtsu
->start
,
3294 resource_size(rtsu
),
3295 dev_name(&pdev
->dev
))) {
3296 dev_err(&pdev
->dev
, "can't request TSU resource.\n");
3300 /* ioremap the TSU registers */
3301 mdp
->tsu_addr
= devm_ioremap(&pdev
->dev
, rtsu
->start
,
3302 resource_size(rtsu
));
3303 if (!mdp
->tsu_addr
) {
3304 dev_err(&pdev
->dev
, "TSU region ioremap() failed.\n");
3309 ndev
->features
= NETIF_F_HW_VLAN_CTAG_FILTER
;
3311 /* Need to init only the first port of the two sharing a TSU */
3313 if (mdp
->cd
->chip_reset
)
3314 mdp
->cd
->chip_reset(ndev
);
3316 /* TSU init (Init only)*/
3317 sh_eth_tsu_init(mdp
);
3321 if (mdp
->cd
->rmiimode
)
3322 sh_eth_write(ndev
, 0x1, RMIIMODE
);
3325 ret
= sh_mdio_init(mdp
, pd
);
3327 if (ret
!= -EPROBE_DEFER
)
3328 dev_err(&pdev
->dev
, "MDIO init failed: %d\n", ret
);
3332 netif_napi_add(ndev
, &mdp
->napi
, sh_eth_poll
, 64);
3334 /* network device register */
3335 ret
= register_netdev(ndev
);
3340 device_set_wakeup_capable(&pdev
->dev
, 1);
3342 /* print device information */
3343 netdev_info(ndev
, "Base address at 0x%x, %pM, IRQ %d.\n",
3344 (u32
)ndev
->base_addr
, ndev
->dev_addr
, ndev
->irq
);
3346 pm_runtime_put(&pdev
->dev
);
3347 platform_set_drvdata(pdev
, ndev
);
3352 netif_napi_del(&mdp
->napi
);
3353 sh_mdio_release(mdp
);
3359 pm_runtime_put(&pdev
->dev
);
3360 pm_runtime_disable(&pdev
->dev
);
3364 static int sh_eth_drv_remove(struct platform_device
*pdev
)
3366 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3367 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
3369 unregister_netdev(ndev
);
3370 netif_napi_del(&mdp
->napi
);
3371 sh_mdio_release(mdp
);
3372 pm_runtime_disable(&pdev
->dev
);
3379 #ifdef CONFIG_PM_SLEEP
3380 static int sh_eth_wol_setup(struct net_device
*ndev
)
3382 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
3384 /* Only allow ECI interrupts */
3385 synchronize_irq(ndev
->irq
);
3386 napi_disable(&mdp
->napi
);
3387 sh_eth_write(ndev
, EESIPR_ECIIP
, EESIPR
);
3389 /* Enable MagicPacket */
3390 sh_eth_modify(ndev
, ECMR
, ECMR_MPDE
, ECMR_MPDE
);
3392 return enable_irq_wake(ndev
->irq
);
3395 static int sh_eth_wol_restore(struct net_device
*ndev
)
3397 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
3400 napi_enable(&mdp
->napi
);
3402 /* Disable MagicPacket */
3403 sh_eth_modify(ndev
, ECMR
, ECMR_MPDE
, 0);
3405 /* The device needs to be reset to restore MagicPacket logic
3406 * for next wakeup. If we close and open the device it will
3407 * both be reset and all registers restored. This is what
3408 * happens during suspend and resume without WoL enabled.
3410 ret
= sh_eth_close(ndev
);
3413 ret
= sh_eth_open(ndev
);
3417 return disable_irq_wake(ndev
->irq
);
3420 static int sh_eth_suspend(struct device
*dev
)
3422 struct net_device
*ndev
= dev_get_drvdata(dev
);
3423 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
3426 if (!netif_running(ndev
))
3429 netif_device_detach(ndev
);
3431 if (mdp
->wol_enabled
)
3432 ret
= sh_eth_wol_setup(ndev
);
3434 ret
= sh_eth_close(ndev
);
3439 static int sh_eth_resume(struct device
*dev
)
3441 struct net_device
*ndev
= dev_get_drvdata(dev
);
3442 struct sh_eth_private
*mdp
= netdev_priv(ndev
);
3445 if (!netif_running(ndev
))
3448 if (mdp
->wol_enabled
)
3449 ret
= sh_eth_wol_restore(ndev
);
3451 ret
= sh_eth_open(ndev
);
3456 netif_device_attach(ndev
);
3462 static int sh_eth_runtime_nop(struct device
*dev
)
3464 /* Runtime PM callback shared between ->runtime_suspend()
3465 * and ->runtime_resume(). Simply returns success.
3467 * This driver re-initializes all registers after
3468 * pm_runtime_get_sync() anyway so there is no need
3469 * to save and restore registers here.
3474 static const struct dev_pm_ops sh_eth_dev_pm_ops
= {
3475 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend
, sh_eth_resume
)
3476 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop
, sh_eth_runtime_nop
, NULL
)
3478 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3480 #define SH_ETH_PM_OPS NULL
3483 static const struct platform_device_id sh_eth_id_table
[] = {
3484 { "sh7619-ether", (kernel_ulong_t
)&sh7619_data
},
3485 { "sh771x-ether", (kernel_ulong_t
)&sh771x_data
},
3486 { "sh7724-ether", (kernel_ulong_t
)&sh7724_data
},
3487 { "sh7734-gether", (kernel_ulong_t
)&sh7734_data
},
3488 { "sh7757-ether", (kernel_ulong_t
)&sh7757_data
},
3489 { "sh7757-gether", (kernel_ulong_t
)&sh7757_data_giga
},
3490 { "sh7763-gether", (kernel_ulong_t
)&sh7763_data
},
3493 MODULE_DEVICE_TABLE(platform
, sh_eth_id_table
);
3495 static struct platform_driver sh_eth_driver
= {
3496 .probe
= sh_eth_drv_probe
,
3497 .remove
= sh_eth_drv_remove
,
3498 .id_table
= sh_eth_id_table
,
3501 .pm
= SH_ETH_PM_OPS
,
3502 .of_match_table
= of_match_ptr(sh_eth_match_table
),
3506 module_platform_driver(sh_eth_driver
);
3508 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3509 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3510 MODULE_LICENSE("GPL v2");