1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
28 #include "workarounds.h"
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
34 * ring, this number is divided by the number of buffers per page to calculate
35 * the number of pages to store in the RX page recycle ring.
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS 128u
43 /* This is the percentage fill level below which new RX descriptors
44 * will be added to the RX descriptor ring.
46 static unsigned int rx_refill_threshold
;
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
53 * RX maximum head room required.
55 * This must be at least 1 to prevent overflow, plus one packet-worth
56 * to allow pipelined receives.
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
60 static inline u8
*efx_rx_buf_va(struct efx_rx_buffer
*buf
)
62 return page_address(buf
->page
) + buf
->page_offset
;
65 static inline u32
efx_rx_buf_hash(struct efx_nic
*efx
, const u8
*eh
)
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_hash_offset
));
70 const u8
*data
= eh
+ efx
->rx_packet_hash_offset
;
78 static inline struct efx_rx_buffer
*
79 efx_rx_buf_next(struct efx_rx_queue
*rx_queue
, struct efx_rx_buffer
*rx_buf
)
81 if (unlikely(rx_buf
== efx_rx_buffer(rx_queue
, rx_queue
->ptr_mask
)))
82 return efx_rx_buffer(rx_queue
, 0);
87 static inline void efx_sync_rx_buffer(struct efx_nic
*efx
,
88 struct efx_rx_buffer
*rx_buf
,
91 dma_sync_single_for_cpu(&efx
->pci_dev
->dev
, rx_buf
->dma_addr
, len
,
95 void efx_rx_config_page_split(struct efx_nic
*efx
)
97 efx
->rx_page_buf_step
= ALIGN(efx
->rx_dma_len
+ efx
->rx_ip_align
,
98 EFX_RX_BUF_ALIGNMENT
);
99 efx
->rx_bufs_per_page
= efx
->rx_buffer_order
? 1 :
100 ((PAGE_SIZE
- sizeof(struct efx_rx_page_state
)) /
101 efx
->rx_page_buf_step
);
102 efx
->rx_buffer_truesize
= (PAGE_SIZE
<< efx
->rx_buffer_order
) /
103 efx
->rx_bufs_per_page
;
104 efx
->rx_pages_per_batch
= DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH
,
105 efx
->rx_bufs_per_page
);
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page
*efx_reuse_page(struct efx_rx_queue
*rx_queue
)
111 struct efx_nic
*efx
= rx_queue
->efx
;
113 struct efx_rx_page_state
*state
;
116 index
= rx_queue
->page_remove
& rx_queue
->page_ptr_mask
;
117 page
= rx_queue
->page_ring
[index
];
121 rx_queue
->page_ring
[index
] = NULL
;
122 /* page_remove cannot exceed page_add. */
123 if (rx_queue
->page_remove
!= rx_queue
->page_add
)
124 ++rx_queue
->page_remove
;
126 /* If page_count is 1 then we hold the only reference to this page. */
127 if (page_count(page
) == 1) {
128 ++rx_queue
->page_recycle_count
;
131 state
= page_address(page
);
132 dma_unmap_page(&efx
->pci_dev
->dev
, state
->dma_addr
,
133 PAGE_SIZE
<< efx
->rx_buffer_order
,
136 ++rx_queue
->page_recycle_failed
;
143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
145 * @rx_queue: Efx RX queue
147 * This allocates a batch of pages, maps them for DMA, and populates
148 * struct efx_rx_buffers for each one. Return a negative error code or
149 * 0 on success. If a single page can be used for multiple buffers,
150 * then the page will either be inserted fully, or not at all.
152 static int efx_init_rx_buffers(struct efx_rx_queue
*rx_queue
, bool atomic
)
154 struct efx_nic
*efx
= rx_queue
->efx
;
155 struct efx_rx_buffer
*rx_buf
;
157 unsigned int page_offset
;
158 struct efx_rx_page_state
*state
;
160 unsigned index
, count
;
164 page
= efx_reuse_page(rx_queue
);
166 page
= alloc_pages(__GFP_COMP
|
167 (atomic
? GFP_ATOMIC
: GFP_KERNEL
),
168 efx
->rx_buffer_order
);
169 if (unlikely(page
== NULL
))
172 dma_map_page(&efx
->pci_dev
->dev
, page
, 0,
173 PAGE_SIZE
<< efx
->rx_buffer_order
,
175 if (unlikely(dma_mapping_error(&efx
->pci_dev
->dev
,
177 __free_pages(page
, efx
->rx_buffer_order
);
180 state
= page_address(page
);
181 state
->dma_addr
= dma_addr
;
183 state
= page_address(page
);
184 dma_addr
= state
->dma_addr
;
187 dma_addr
+= sizeof(struct efx_rx_page_state
);
188 page_offset
= sizeof(struct efx_rx_page_state
);
191 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
192 rx_buf
= efx_rx_buffer(rx_queue
, index
);
193 rx_buf
->dma_addr
= dma_addr
+ efx
->rx_ip_align
;
195 rx_buf
->page_offset
= page_offset
+ efx
->rx_ip_align
;
196 rx_buf
->len
= efx
->rx_dma_len
;
198 ++rx_queue
->added_count
;
200 dma_addr
+= efx
->rx_page_buf_step
;
201 page_offset
+= efx
->rx_page_buf_step
;
202 } while (page_offset
+ efx
->rx_page_buf_step
<= PAGE_SIZE
);
204 rx_buf
->flags
= EFX_RX_BUF_LAST_IN_PAGE
;
205 } while (++count
< efx
->rx_pages_per_batch
);
210 /* Unmap a DMA-mapped page. This function is only called for the final RX
213 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
214 struct efx_rx_buffer
*rx_buf
)
216 struct page
*page
= rx_buf
->page
;
219 struct efx_rx_page_state
*state
= page_address(page
);
220 dma_unmap_page(&efx
->pci_dev
->dev
,
222 PAGE_SIZE
<< efx
->rx_buffer_order
,
227 static void efx_free_rx_buffers(struct efx_rx_queue
*rx_queue
,
228 struct efx_rx_buffer
*rx_buf
,
229 unsigned int num_bufs
)
233 put_page(rx_buf
->page
);
236 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
237 } while (--num_bufs
);
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241 * only be added if this is the final RX buffer, to prevent pages being used in
242 * the descriptor ring and appearing in the recycle ring simultaneously.
244 static void efx_recycle_rx_page(struct efx_channel
*channel
,
245 struct efx_rx_buffer
*rx_buf
)
247 struct page
*page
= rx_buf
->page
;
248 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
249 struct efx_nic
*efx
= rx_queue
->efx
;
252 /* Only recycle the page after processing the final buffer. */
253 if (!(rx_buf
->flags
& EFX_RX_BUF_LAST_IN_PAGE
))
256 index
= rx_queue
->page_add
& rx_queue
->page_ptr_mask
;
257 if (rx_queue
->page_ring
[index
] == NULL
) {
258 unsigned read_index
= rx_queue
->page_remove
&
259 rx_queue
->page_ptr_mask
;
261 /* The next slot in the recycle ring is available, but
262 * increment page_remove if the read pointer currently
265 if (read_index
== index
)
266 ++rx_queue
->page_remove
;
267 rx_queue
->page_ring
[index
] = page
;
268 ++rx_queue
->page_add
;
271 ++rx_queue
->page_recycle_full
;
272 efx_unmap_rx_buffer(efx
, rx_buf
);
273 put_page(rx_buf
->page
);
276 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
277 struct efx_rx_buffer
*rx_buf
)
279 /* Release the page reference we hold for the buffer. */
281 put_page(rx_buf
->page
);
283 /* If this is the last buffer in a page, unmap and free it. */
284 if (rx_buf
->flags
& EFX_RX_BUF_LAST_IN_PAGE
) {
285 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
286 efx_free_rx_buffers(rx_queue
, rx_buf
, 1);
291 /* Recycle the pages that are used by buffers that have just been received. */
292 static void efx_recycle_rx_pages(struct efx_channel
*channel
,
293 struct efx_rx_buffer
*rx_buf
,
294 unsigned int n_frags
)
296 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
299 efx_recycle_rx_page(channel
, rx_buf
);
300 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
304 static void efx_discard_rx_packet(struct efx_channel
*channel
,
305 struct efx_rx_buffer
*rx_buf
,
306 unsigned int n_frags
)
308 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
310 efx_recycle_rx_pages(channel
, rx_buf
, n_frags
);
312 efx_free_rx_buffers(rx_queue
, rx_buf
, n_frags
);
316 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
317 * @rx_queue: RX descriptor queue
319 * This will aim to fill the RX descriptor queue up to
320 * @rx_queue->@max_fill. If there is insufficient atomic
321 * memory to do so, a slow fill will be scheduled.
323 * The caller must provide serialisation (none is used here). In practise,
324 * this means this function must run from the NAPI handler, or be called
325 * when NAPI is disabled.
327 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
, bool atomic
)
329 struct efx_nic
*efx
= rx_queue
->efx
;
330 unsigned int fill_level
, batch_size
;
333 if (!rx_queue
->refill_enabled
)
336 /* Calculate current fill level, and exit if we don't need to fill */
337 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
338 EFX_WARN_ON_ONCE_PARANOID(fill_level
> rx_queue
->efx
->rxq_entries
);
339 if (fill_level
>= rx_queue
->fast_fill_trigger
)
342 /* Record minimum fill level */
343 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
345 rx_queue
->min_fill
= fill_level
;
348 batch_size
= efx
->rx_pages_per_batch
* efx
->rx_bufs_per_page
;
349 space
= rx_queue
->max_fill
- fill_level
;
350 EFX_WARN_ON_ONCE_PARANOID(space
< batch_size
);
352 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
353 "RX queue %d fast-filling descriptor ring from"
354 " level %d to level %d\n",
355 efx_rx_queue_index(rx_queue
), fill_level
,
360 rc
= efx_init_rx_buffers(rx_queue
, atomic
);
362 /* Ensure that we don't leave the rx queue empty */
363 if (rx_queue
->added_count
== rx_queue
->removed_count
)
364 efx_schedule_slow_fill(rx_queue
);
367 } while ((space
-= batch_size
) >= batch_size
);
369 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
370 "RX queue %d fast-filled descriptor ring "
371 "to level %d\n", efx_rx_queue_index(rx_queue
),
372 rx_queue
->added_count
- rx_queue
->removed_count
);
375 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
376 efx_nic_notify_rx_desc(rx_queue
);
379 void efx_rx_slow_fill(struct timer_list
*t
)
381 struct efx_rx_queue
*rx_queue
= from_timer(rx_queue
, t
, slow_fill
);
383 /* Post an event to cause NAPI to run and refill the queue */
384 efx_nic_generate_fill_event(rx_queue
);
385 ++rx_queue
->slow_fill_count
;
388 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
389 struct efx_rx_buffer
*rx_buf
,
392 struct efx_nic
*efx
= rx_queue
->efx
;
393 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
395 if (likely(len
<= max_len
))
398 /* The packet must be discarded, but this is only a fatal error
399 * if the caller indicated it was
401 rx_buf
->flags
|= EFX_RX_PKT_DISCARD
;
404 netif_err(efx
, rx_err
, efx
->net_dev
,
405 "RX queue %d overlength RX event (%#x > %#x)\n",
406 efx_rx_queue_index(rx_queue
), len
, max_len
);
408 efx_rx_queue_channel(rx_queue
)->n_rx_overlength
++;
411 /* Pass a received packet up through GRO. GRO can handle pages
412 * regardless of checksum state and skbs with a good checksum.
415 efx_rx_packet_gro(struct efx_channel
*channel
, struct efx_rx_buffer
*rx_buf
,
416 unsigned int n_frags
, u8
*eh
)
418 struct napi_struct
*napi
= &channel
->napi_str
;
419 gro_result_t gro_result
;
420 struct efx_nic
*efx
= channel
->efx
;
423 skb
= napi_get_frags(napi
);
424 if (unlikely(!skb
)) {
425 struct efx_rx_queue
*rx_queue
;
427 rx_queue
= efx_channel_get_rx_queue(channel
);
428 efx_free_rx_buffers(rx_queue
, rx_buf
, n_frags
);
432 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
433 skb_set_hash(skb
, efx_rx_buf_hash(efx
, eh
),
435 skb
->ip_summed
= ((rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ?
436 CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
);
437 skb
->csum_level
= !!(rx_buf
->flags
& EFX_RX_PKT_CSUM_LEVEL
);
440 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
441 rx_buf
->page
, rx_buf
->page_offset
,
444 skb
->len
+= rx_buf
->len
;
445 if (skb_shinfo(skb
)->nr_frags
== n_frags
)
448 rx_buf
= efx_rx_buf_next(&channel
->rx_queue
, rx_buf
);
451 skb
->data_len
= skb
->len
;
452 skb
->truesize
+= n_frags
* efx
->rx_buffer_truesize
;
454 skb_record_rx_queue(skb
, channel
->rx_queue
.core_index
);
456 gro_result
= napi_gro_frags(napi
);
457 if (gro_result
!= GRO_DROP
)
458 channel
->irq_mod_score
+= 2;
461 /* Allocate and construct an SKB around page fragments */
462 static struct sk_buff
*efx_rx_mk_skb(struct efx_channel
*channel
,
463 struct efx_rx_buffer
*rx_buf
,
464 unsigned int n_frags
,
467 struct efx_nic
*efx
= channel
->efx
;
470 /* Allocate an SKB to store the headers */
471 skb
= netdev_alloc_skb(efx
->net_dev
,
472 efx
->rx_ip_align
+ efx
->rx_prefix_size
+
474 if (unlikely(skb
== NULL
)) {
475 atomic_inc(&efx
->n_rx_noskb_drops
);
479 EFX_WARN_ON_ONCE_PARANOID(rx_buf
->len
< hdr_len
);
481 memcpy(skb
->data
+ efx
->rx_ip_align
, eh
- efx
->rx_prefix_size
,
482 efx
->rx_prefix_size
+ hdr_len
);
483 skb_reserve(skb
, efx
->rx_ip_align
+ efx
->rx_prefix_size
);
484 __skb_put(skb
, hdr_len
);
486 /* Append the remaining page(s) onto the frag list */
487 if (rx_buf
->len
> hdr_len
) {
488 rx_buf
->page_offset
+= hdr_len
;
489 rx_buf
->len
-= hdr_len
;
492 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
493 rx_buf
->page
, rx_buf
->page_offset
,
496 skb
->len
+= rx_buf
->len
;
497 skb
->data_len
+= rx_buf
->len
;
498 if (skb_shinfo(skb
)->nr_frags
== n_frags
)
501 rx_buf
= efx_rx_buf_next(&channel
->rx_queue
, rx_buf
);
504 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
509 skb
->truesize
+= n_frags
* efx
->rx_buffer_truesize
;
511 /* Move past the ethernet header */
512 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
514 skb_mark_napi_id(skb
, &channel
->napi_str
);
519 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
520 unsigned int n_frags
, unsigned int len
, u16 flags
)
522 struct efx_nic
*efx
= rx_queue
->efx
;
523 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
524 struct efx_rx_buffer
*rx_buf
;
526 rx_queue
->rx_packets
++;
528 rx_buf
= efx_rx_buffer(rx_queue
, index
);
529 rx_buf
->flags
|= flags
;
531 /* Validate the number of fragments and completed length */
533 if (!(flags
& EFX_RX_PKT_PREFIX_LEN
))
534 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
);
535 } else if (unlikely(n_frags
> EFX_RX_MAX_FRAGS
) ||
536 unlikely(len
<= (n_frags
- 1) * efx
->rx_dma_len
) ||
537 unlikely(len
> n_frags
* efx
->rx_dma_len
) ||
538 unlikely(!efx
->rx_scatter
)) {
539 /* If this isn't an explicit discard request, either
540 * the hardware or the driver is broken.
542 WARN_ON(!(len
== 0 && rx_buf
->flags
& EFX_RX_PKT_DISCARD
));
543 rx_buf
->flags
|= EFX_RX_PKT_DISCARD
;
546 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
547 "RX queue %d received ids %x-%x len %d %s%s\n",
548 efx_rx_queue_index(rx_queue
), index
,
549 (index
+ n_frags
- 1) & rx_queue
->ptr_mask
, len
,
550 (rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ? " [SUMMED]" : "",
551 (rx_buf
->flags
& EFX_RX_PKT_DISCARD
) ? " [DISCARD]" : "");
553 /* Discard packet, if instructed to do so. Process the
554 * previous receive first.
556 if (unlikely(rx_buf
->flags
& EFX_RX_PKT_DISCARD
)) {
557 efx_rx_flush_packet(channel
);
558 efx_discard_rx_packet(channel
, rx_buf
, n_frags
);
562 if (n_frags
== 1 && !(flags
& EFX_RX_PKT_PREFIX_LEN
))
565 /* Release and/or sync the DMA mapping - assumes all RX buffers
566 * consumed in-order per RX queue.
568 efx_sync_rx_buffer(efx
, rx_buf
, rx_buf
->len
);
570 /* Prefetch nice and early so data will (hopefully) be in cache by
571 * the time we look at it.
573 prefetch(efx_rx_buf_va(rx_buf
));
575 rx_buf
->page_offset
+= efx
->rx_prefix_size
;
576 rx_buf
->len
-= efx
->rx_prefix_size
;
579 /* Release/sync DMA mapping for additional fragments.
580 * Fix length for last fragment.
582 unsigned int tail_frags
= n_frags
- 1;
585 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
586 if (--tail_frags
== 0)
588 efx_sync_rx_buffer(efx
, rx_buf
, efx
->rx_dma_len
);
590 rx_buf
->len
= len
- (n_frags
- 1) * efx
->rx_dma_len
;
591 efx_sync_rx_buffer(efx
, rx_buf
, rx_buf
->len
);
594 /* All fragments have been DMA-synced, so recycle pages. */
595 rx_buf
= efx_rx_buffer(rx_queue
, index
);
596 efx_recycle_rx_pages(channel
, rx_buf
, n_frags
);
598 /* Pipeline receives so that we give time for packet headers to be
599 * prefetched into cache.
601 efx_rx_flush_packet(channel
);
602 channel
->rx_pkt_n_frags
= n_frags
;
603 channel
->rx_pkt_index
= index
;
606 static void efx_rx_deliver(struct efx_channel
*channel
, u8
*eh
,
607 struct efx_rx_buffer
*rx_buf
,
608 unsigned int n_frags
)
611 u16 hdr_len
= min_t(u16
, rx_buf
->len
, EFX_SKB_HEADERS
);
613 skb
= efx_rx_mk_skb(channel
, rx_buf
, n_frags
, eh
, hdr_len
);
614 if (unlikely(skb
== NULL
)) {
615 struct efx_rx_queue
*rx_queue
;
617 rx_queue
= efx_channel_get_rx_queue(channel
);
618 efx_free_rx_buffers(rx_queue
, rx_buf
, n_frags
);
621 skb_record_rx_queue(skb
, channel
->rx_queue
.core_index
);
623 /* Set the SKB flags */
624 skb_checksum_none_assert(skb
);
625 if (likely(rx_buf
->flags
& EFX_RX_PKT_CSUMMED
)) {
626 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
627 skb
->csum_level
= !!(rx_buf
->flags
& EFX_RX_PKT_CSUM_LEVEL
);
630 efx_rx_skb_attach_timestamp(channel
, skb
);
632 if (channel
->type
->receive_skb
)
633 if (channel
->type
->receive_skb(channel
, skb
))
636 /* Pass the packet up */
637 if (channel
->rx_list
!= NULL
)
638 /* Add to list, will pass up later */
639 list_add_tail(&skb
->list
, channel
->rx_list
);
641 /* No list, so pass it up now */
642 netif_receive_skb(skb
);
645 /* Handle a received packet. Second half: Touches packet payload. */
646 void __efx_rx_packet(struct efx_channel
*channel
)
648 struct efx_nic
*efx
= channel
->efx
;
649 struct efx_rx_buffer
*rx_buf
=
650 efx_rx_buffer(&channel
->rx_queue
, channel
->rx_pkt_index
);
651 u8
*eh
= efx_rx_buf_va(rx_buf
);
653 /* Read length from the prefix if necessary. This already
654 * excludes the length of the prefix itself.
656 if (rx_buf
->flags
& EFX_RX_PKT_PREFIX_LEN
)
657 rx_buf
->len
= le16_to_cpup((__le16
*)
658 (eh
+ efx
->rx_packet_len_offset
));
660 /* If we're in loopback test, then pass the packet directly to the
661 * loopback layer, and free the rx_buf here
663 if (unlikely(efx
->loopback_selftest
)) {
664 struct efx_rx_queue
*rx_queue
;
666 efx_loopback_rx_packet(efx
, eh
, rx_buf
->len
);
667 rx_queue
= efx_channel_get_rx_queue(channel
);
668 efx_free_rx_buffers(rx_queue
, rx_buf
,
669 channel
->rx_pkt_n_frags
);
673 if (unlikely(!(efx
->net_dev
->features
& NETIF_F_RXCSUM
)))
674 rx_buf
->flags
&= ~EFX_RX_PKT_CSUMMED
;
676 if ((rx_buf
->flags
& EFX_RX_PKT_TCP
) && !channel
->type
->receive_skb
)
677 efx_rx_packet_gro(channel
, rx_buf
, channel
->rx_pkt_n_frags
, eh
);
679 efx_rx_deliver(channel
, eh
, rx_buf
, channel
->rx_pkt_n_frags
);
681 channel
->rx_pkt_n_frags
= 0;
684 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
686 struct efx_nic
*efx
= rx_queue
->efx
;
687 unsigned int entries
;
690 /* Create the smallest power-of-two aligned ring */
691 entries
= max(roundup_pow_of_two(efx
->rxq_entries
), EFX_MIN_DMAQ_SIZE
);
692 EFX_WARN_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
693 rx_queue
->ptr_mask
= entries
- 1;
695 netif_dbg(efx
, probe
, efx
->net_dev
,
696 "creating RX queue %d size %#x mask %#x\n",
697 efx_rx_queue_index(rx_queue
), efx
->rxq_entries
,
700 /* Allocate RX buffers */
701 rx_queue
->buffer
= kcalloc(entries
, sizeof(*rx_queue
->buffer
),
703 if (!rx_queue
->buffer
)
706 rc
= efx_nic_probe_rx(rx_queue
);
708 kfree(rx_queue
->buffer
);
709 rx_queue
->buffer
= NULL
;
715 static void efx_init_rx_recycle_ring(struct efx_nic
*efx
,
716 struct efx_rx_queue
*rx_queue
)
718 unsigned int bufs_in_recycle_ring
, page_ring_size
;
720 /* Set the RX recycle ring size */
722 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_IOMMU
;
724 if (iommu_present(&pci_bus_type
))
725 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_IOMMU
;
727 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_NOIOMMU
;
728 #endif /* CONFIG_PPC64 */
730 page_ring_size
= roundup_pow_of_two(bufs_in_recycle_ring
/
731 efx
->rx_bufs_per_page
);
732 rx_queue
->page_ring
= kcalloc(page_ring_size
,
733 sizeof(*rx_queue
->page_ring
), GFP_KERNEL
);
734 rx_queue
->page_ptr_mask
= page_ring_size
- 1;
737 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
739 struct efx_nic
*efx
= rx_queue
->efx
;
740 unsigned int max_fill
, trigger
, max_trigger
;
742 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
743 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue
));
745 /* Initialise ptr fields */
746 rx_queue
->added_count
= 0;
747 rx_queue
->notified_count
= 0;
748 rx_queue
->removed_count
= 0;
749 rx_queue
->min_fill
= -1U;
750 efx_init_rx_recycle_ring(efx
, rx_queue
);
752 rx_queue
->page_remove
= 0;
753 rx_queue
->page_add
= rx_queue
->page_ptr_mask
+ 1;
754 rx_queue
->page_recycle_count
= 0;
755 rx_queue
->page_recycle_failed
= 0;
756 rx_queue
->page_recycle_full
= 0;
758 /* Initialise limit fields */
759 max_fill
= efx
->rxq_entries
- EFX_RXD_HEAD_ROOM
;
761 max_fill
- efx
->rx_pages_per_batch
* efx
->rx_bufs_per_page
;
762 if (rx_refill_threshold
!= 0) {
763 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
764 if (trigger
> max_trigger
)
765 trigger
= max_trigger
;
767 trigger
= max_trigger
;
770 rx_queue
->max_fill
= max_fill
;
771 rx_queue
->fast_fill_trigger
= trigger
;
772 rx_queue
->refill_enabled
= true;
774 /* Set up RX descriptor ring */
775 efx_nic_init_rx(rx_queue
);
778 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
781 struct efx_nic
*efx
= rx_queue
->efx
;
782 struct efx_rx_buffer
*rx_buf
;
784 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
785 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue
));
787 del_timer_sync(&rx_queue
->slow_fill
);
789 /* Release RX buffers from the current read ptr to the write ptr */
790 if (rx_queue
->buffer
) {
791 for (i
= rx_queue
->removed_count
; i
< rx_queue
->added_count
;
793 unsigned index
= i
& rx_queue
->ptr_mask
;
794 rx_buf
= efx_rx_buffer(rx_queue
, index
);
795 efx_fini_rx_buffer(rx_queue
, rx_buf
);
799 /* Unmap and release the pages in the recycle ring. Remove the ring. */
800 for (i
= 0; i
<= rx_queue
->page_ptr_mask
; i
++) {
801 struct page
*page
= rx_queue
->page_ring
[i
];
802 struct efx_rx_page_state
*state
;
807 state
= page_address(page
);
808 dma_unmap_page(&efx
->pci_dev
->dev
, state
->dma_addr
,
809 PAGE_SIZE
<< efx
->rx_buffer_order
,
813 kfree(rx_queue
->page_ring
);
814 rx_queue
->page_ring
= NULL
;
817 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
819 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
820 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue
));
822 efx_nic_remove_rx(rx_queue
);
824 kfree(rx_queue
->buffer
);
825 rx_queue
->buffer
= NULL
;
829 module_param(rx_refill_threshold
, uint
, 0444);
830 MODULE_PARM_DESC(rx_refill_threshold
,
831 "RX descriptor ring refill threshold (%)");
833 #ifdef CONFIG_RFS_ACCEL
835 static void efx_filter_rfs_work(struct work_struct
*data
)
837 struct efx_async_filter_insertion
*req
= container_of(data
, struct efx_async_filter_insertion
,
839 struct efx_nic
*efx
= netdev_priv(req
->net_dev
);
840 struct efx_channel
*channel
= efx_get_channel(efx
, req
->rxq_index
);
841 int slot_idx
= req
- efx
->rps_slot
;
842 struct efx_arfs_rule
*rule
;
846 rc
= efx
->type
->filter_insert(efx
, &req
->spec
, true);
848 rc
%= efx
->type
->max_rx_ip_filters
;
849 if (efx
->rps_hash_table
) {
850 spin_lock_bh(&efx
->rps_hash_lock
);
851 rule
= efx_rps_hash_find(efx
, &req
->spec
);
852 /* The rule might have already gone, if someone else's request
853 * for the same spec was already worked and then expired before
854 * we got around to our work. In that case we have nothing
855 * tying us to an arfs_id, meaning that as soon as the filter
856 * is considered for expiry it will be removed.
860 rule
->filter_id
= EFX_ARFS_FILTER_ID_ERROR
;
862 rule
->filter_id
= rc
;
863 arfs_id
= rule
->arfs_id
;
865 spin_unlock_bh(&efx
->rps_hash_lock
);
868 /* Remember this so we can check whether to expire the filter
871 mutex_lock(&efx
->rps_mutex
);
872 channel
->rps_flow_id
[rc
] = req
->flow_id
;
873 ++channel
->rfs_filters_added
;
874 mutex_unlock(&efx
->rps_mutex
);
876 if (req
->spec
.ether_type
== htons(ETH_P_IP
))
877 netif_info(efx
, rx_status
, efx
->net_dev
,
878 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
879 (req
->spec
.ip_proto
== IPPROTO_TCP
) ? "TCP" : "UDP",
880 req
->spec
.rem_host
, ntohs(req
->spec
.rem_port
),
881 req
->spec
.loc_host
, ntohs(req
->spec
.loc_port
),
882 req
->rxq_index
, req
->flow_id
, rc
, arfs_id
);
884 netif_info(efx
, rx_status
, efx
->net_dev
,
885 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
886 (req
->spec
.ip_proto
== IPPROTO_TCP
) ? "TCP" : "UDP",
887 req
->spec
.rem_host
, ntohs(req
->spec
.rem_port
),
888 req
->spec
.loc_host
, ntohs(req
->spec
.loc_port
),
889 req
->rxq_index
, req
->flow_id
, rc
, arfs_id
);
892 /* Release references */
893 clear_bit(slot_idx
, &efx
->rps_slot_map
);
894 dev_put(req
->net_dev
);
897 int efx_filter_rfs(struct net_device
*net_dev
, const struct sk_buff
*skb
,
898 u16 rxq_index
, u32 flow_id
)
900 struct efx_nic
*efx
= netdev_priv(net_dev
);
901 struct efx_async_filter_insertion
*req
;
902 struct efx_arfs_rule
*rule
;
908 /* find a free slot */
909 for (slot_idx
= 0; slot_idx
< EFX_RPS_MAX_IN_FLIGHT
; slot_idx
++)
910 if (!test_and_set_bit(slot_idx
, &efx
->rps_slot_map
))
912 if (slot_idx
>= EFX_RPS_MAX_IN_FLIGHT
)
915 if (flow_id
== RPS_FLOW_ID_INVALID
) {
920 if (!skb_flow_dissect_flow_keys(skb
, &fk
, 0)) {
921 rc
= -EPROTONOSUPPORT
;
925 if (fk
.basic
.n_proto
!= htons(ETH_P_IP
) && fk
.basic
.n_proto
!= htons(ETH_P_IPV6
)) {
926 rc
= -EPROTONOSUPPORT
;
929 if (fk
.control
.flags
& FLOW_DIS_IS_FRAGMENT
) {
930 rc
= -EPROTONOSUPPORT
;
934 req
= efx
->rps_slot
+ slot_idx
;
935 efx_filter_init_rx(&req
->spec
, EFX_FILTER_PRI_HINT
,
936 efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0,
938 req
->spec
.match_flags
=
939 EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
940 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
941 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
;
942 req
->spec
.ether_type
= fk
.basic
.n_proto
;
943 req
->spec
.ip_proto
= fk
.basic
.ip_proto
;
945 if (fk
.basic
.n_proto
== htons(ETH_P_IP
)) {
946 req
->spec
.rem_host
[0] = fk
.addrs
.v4addrs
.src
;
947 req
->spec
.loc_host
[0] = fk
.addrs
.v4addrs
.dst
;
949 memcpy(req
->spec
.rem_host
, &fk
.addrs
.v6addrs
.src
,
950 sizeof(struct in6_addr
));
951 memcpy(req
->spec
.loc_host
, &fk
.addrs
.v6addrs
.dst
,
952 sizeof(struct in6_addr
));
955 req
->spec
.rem_port
= fk
.ports
.src
;
956 req
->spec
.loc_port
= fk
.ports
.dst
;
958 if (efx
->rps_hash_table
) {
959 /* Add it to ARFS hash table */
960 spin_lock(&efx
->rps_hash_lock
);
961 rule
= efx_rps_hash_add(efx
, &req
->spec
, &new);
967 rule
->arfs_id
= efx
->rps_next_id
++ % RPS_NO_FILTER
;
969 /* Skip if existing or pending filter already does the right thing */
970 if (!new && rule
->rxq_index
== rxq_index
&&
971 rule
->filter_id
>= EFX_ARFS_FILTER_ID_PENDING
)
973 rule
->rxq_index
= rxq_index
;
974 rule
->filter_id
= EFX_ARFS_FILTER_ID_PENDING
;
975 spin_unlock(&efx
->rps_hash_lock
);
977 /* Without an ARFS hash table, we just use arfs_id 0 for all
978 * filters. This means if multiple flows hash to the same
979 * flow_id, all but the most recently touched will be eligible
985 /* Queue the request */
986 dev_hold(req
->net_dev
= net_dev
);
987 INIT_WORK(&req
->work
, efx_filter_rfs_work
);
988 req
->rxq_index
= rxq_index
;
989 req
->flow_id
= flow_id
;
990 schedule_work(&req
->work
);
993 spin_unlock(&efx
->rps_hash_lock
);
995 clear_bit(slot_idx
, &efx
->rps_slot_map
);
999 bool __efx_filter_rfs_expire(struct efx_nic
*efx
, unsigned int quota
)
1001 bool (*expire_one
)(struct efx_nic
*efx
, u32 flow_id
, unsigned int index
);
1002 unsigned int channel_idx
, index
, size
;
1005 if (!mutex_trylock(&efx
->rps_mutex
))
1007 expire_one
= efx
->type
->filter_rfs_expire_one
;
1008 channel_idx
= efx
->rps_expire_channel
;
1009 index
= efx
->rps_expire_index
;
1010 size
= efx
->type
->max_rx_ip_filters
;
1012 struct efx_channel
*channel
= efx_get_channel(efx
, channel_idx
);
1013 flow_id
= channel
->rps_flow_id
[index
];
1015 if (flow_id
!= RPS_FLOW_ID_INVALID
&&
1016 expire_one(efx
, flow_id
, index
)) {
1017 netif_info(efx
, rx_status
, efx
->net_dev
,
1018 "expired filter %d [queue %u flow %u]\n",
1019 index
, channel_idx
, flow_id
);
1020 channel
->rps_flow_id
[index
] = RPS_FLOW_ID_INVALID
;
1022 if (++index
== size
) {
1023 if (++channel_idx
== efx
->n_channels
)
1028 efx
->rps_expire_channel
= channel_idx
;
1029 efx
->rps_expire_index
= index
;
1031 mutex_unlock(&efx
->rps_mutex
);
1035 #endif /* CONFIG_RFS_ACCEL */
1038 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1039 * @spec: Specification to test
1041 * Return: %true if the specification is a non-drop RX filter that
1042 * matches a local MAC address I/G bit value of 1 or matches a local
1043 * IPv4 or IPv6 address value in the respective multicast address
1044 * range. Otherwise %false.
1046 bool efx_filter_is_mc_recipient(const struct efx_filter_spec
*spec
)
1048 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
) ||
1049 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
)
1052 if (spec
->match_flags
&
1053 (EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_LOC_MAC_IG
) &&
1054 is_multicast_ether_addr(spec
->loc_mac
))
1057 if ((spec
->match_flags
&
1058 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
1059 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
1060 if (spec
->ether_type
== htons(ETH_P_IP
) &&
1061 ipv4_is_multicast(spec
->loc_host
[0]))
1063 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
1064 ((const u8
*)spec
->loc_host
)[0] == 0xff)