1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 The full GNU General Public License is included in this distribution in
17 the file called "COPYING".
19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
21 Documentation available at:
22 http://www.stlinux.com
24 https://bugzilla.stlinux.com/
25 *******************************************************************************/
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
57 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60 /* Module parameters */
62 static int watchdog
= TX_TIMEO
;
63 module_param(watchdog
, int, 0644);
64 MODULE_PARM_DESC(watchdog
, "Transmit timeout in milliseconds (default 5s)");
66 static int debug
= -1;
67 module_param(debug
, int, 0644);
68 MODULE_PARM_DESC(debug
, "Message Level (-1: default, 0: no output, 16: all)");
70 static int phyaddr
= -1;
71 module_param(phyaddr
, int, 0444);
72 MODULE_PARM_DESC(phyaddr
, "Physical device address");
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77 static int flow_ctrl
= FLOW_OFF
;
78 module_param(flow_ctrl
, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl
, "Flow control ability [on/off]");
81 static int pause
= PAUSE_TIME
;
82 module_param(pause
, int, 0644);
83 MODULE_PARM_DESC(pause
, "Flow Control Pause Time");
86 static int tc
= TC_DEFAULT
;
87 module_param(tc
, int, 0644);
88 MODULE_PARM_DESC(tc
, "DMA threshold control value");
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz
= DEFAULT_BUFSIZE
;
92 module_param(buf_sz
, int, 0644);
93 MODULE_PARM_DESC(buf_sz
, "DMA buffer size");
95 #define STMMAC_RX_COPYBREAK 256
97 static const u32 default_msg_level
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
98 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
99 NETIF_MSG_IFDOWN
| NETIF_MSG_TIMER
);
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
103 module_param(eee_timer
, int, 0644);
104 MODULE_PARM_DESC(eee_timer
, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
110 static unsigned int chain_mode
;
111 module_param(chain_mode
, int, 0444);
112 MODULE_PARM_DESC(chain_mode
, "To use chain instead of ring mode");
114 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
);
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device
*dev
);
118 static void stmmac_exit_fs(struct net_device
*dev
);
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 * stmmac_verify_args - verify the driver parameters.
125 * Description: it checks the driver parameters and set a default in case of
128 static void stmmac_verify_args(void)
130 if (unlikely(watchdog
< 0))
132 if (unlikely((buf_sz
< DEFAULT_BUFSIZE
) || (buf_sz
> BUF_SIZE_16KiB
)))
133 buf_sz
= DEFAULT_BUFSIZE
;
134 if (unlikely(flow_ctrl
> 1))
135 flow_ctrl
= FLOW_AUTO
;
136 else if (likely(flow_ctrl
< 0))
137 flow_ctrl
= FLOW_OFF
;
138 if (unlikely((pause
< 0) || (pause
> 0xffff)))
141 eee_timer
= STMMAC_DEFAULT_LPI_TIMER
;
145 * stmmac_disable_all_queues - Disable all queues
146 * @priv: driver private structure
148 static void stmmac_disable_all_queues(struct stmmac_priv
*priv
)
150 u32 rx_queues_cnt
= priv
->plat
->rx_queues_to_use
;
151 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
152 u32 maxq
= max(rx_queues_cnt
, tx_queues_cnt
);
155 for (queue
= 0; queue
< maxq
; queue
++) {
156 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
158 napi_disable(&ch
->napi
);
163 * stmmac_enable_all_queues - Enable all queues
164 * @priv: driver private structure
166 static void stmmac_enable_all_queues(struct stmmac_priv
*priv
)
168 u32 rx_queues_cnt
= priv
->plat
->rx_queues_to_use
;
169 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
170 u32 maxq
= max(rx_queues_cnt
, tx_queues_cnt
);
173 for (queue
= 0; queue
< maxq
; queue
++) {
174 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
176 napi_enable(&ch
->napi
);
181 * stmmac_stop_all_queues - Stop all queues
182 * @priv: driver private structure
184 static void stmmac_stop_all_queues(struct stmmac_priv
*priv
)
186 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
189 for (queue
= 0; queue
< tx_queues_cnt
; queue
++)
190 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
194 * stmmac_start_all_queues - Start all queues
195 * @priv: driver private structure
197 static void stmmac_start_all_queues(struct stmmac_priv
*priv
)
199 u32 tx_queues_cnt
= priv
->plat
->tx_queues_to_use
;
202 for (queue
= 0; queue
< tx_queues_cnt
; queue
++)
203 netif_tx_start_queue(netdev_get_tx_queue(priv
->dev
, queue
));
206 static void stmmac_service_event_schedule(struct stmmac_priv
*priv
)
208 if (!test_bit(STMMAC_DOWN
, &priv
->state
) &&
209 !test_and_set_bit(STMMAC_SERVICE_SCHED
, &priv
->state
))
210 queue_work(priv
->wq
, &priv
->service_task
);
213 static void stmmac_global_err(struct stmmac_priv
*priv
)
215 netif_carrier_off(priv
->dev
);
216 set_bit(STMMAC_RESET_REQUESTED
, &priv
->state
);
217 stmmac_service_event_schedule(priv
);
221 * stmmac_clk_csr_set - dynamically set the MDC clock
222 * @priv: driver private structure
223 * Description: this is to dynamically set the MDC clock according to the csr
226 * If a specific clk_csr value is passed from the platform
227 * this means that the CSR Clock Range selection cannot be
228 * changed at run-time and it is fixed (as reported in the driver
229 * documentation). Viceversa the driver will try to set the MDC
230 * clock dynamically according to the actual clock input.
232 static void stmmac_clk_csr_set(struct stmmac_priv
*priv
)
236 clk_rate
= clk_get_rate(priv
->plat
->stmmac_clk
);
238 /* Platform provided default clk_csr would be assumed valid
239 * for all other cases except for the below mentioned ones.
240 * For values higher than the IEEE 802.3 specified frequency
241 * we can not estimate the proper divider as it is not known
242 * the frequency of clk_csr_i. So we do not change the default
245 if (!(priv
->clk_csr
& MAC_CSR_H_FRQ_MASK
)) {
246 if (clk_rate
< CSR_F_35M
)
247 priv
->clk_csr
= STMMAC_CSR_20_35M
;
248 else if ((clk_rate
>= CSR_F_35M
) && (clk_rate
< CSR_F_60M
))
249 priv
->clk_csr
= STMMAC_CSR_35_60M
;
250 else if ((clk_rate
>= CSR_F_60M
) && (clk_rate
< CSR_F_100M
))
251 priv
->clk_csr
= STMMAC_CSR_60_100M
;
252 else if ((clk_rate
>= CSR_F_100M
) && (clk_rate
< CSR_F_150M
))
253 priv
->clk_csr
= STMMAC_CSR_100_150M
;
254 else if ((clk_rate
>= CSR_F_150M
) && (clk_rate
< CSR_F_250M
))
255 priv
->clk_csr
= STMMAC_CSR_150_250M
;
256 else if ((clk_rate
>= CSR_F_250M
) && (clk_rate
< CSR_F_300M
))
257 priv
->clk_csr
= STMMAC_CSR_250_300M
;
260 if (priv
->plat
->has_sun8i
) {
261 if (clk_rate
> 160000000)
262 priv
->clk_csr
= 0x03;
263 else if (clk_rate
> 80000000)
264 priv
->clk_csr
= 0x02;
265 else if (clk_rate
> 40000000)
266 priv
->clk_csr
= 0x01;
271 if (priv
->plat
->has_xgmac
) {
272 if (clk_rate
> 400000000)
274 else if (clk_rate
> 350000000)
276 else if (clk_rate
> 300000000)
278 else if (clk_rate
> 250000000)
280 else if (clk_rate
> 150000000)
287 static void print_pkt(unsigned char *buf
, int len
)
289 pr_debug("len = %d byte, buf addr: 0x%p\n", len
, buf
);
290 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET
, buf
, len
);
293 static inline u32
stmmac_tx_avail(struct stmmac_priv
*priv
, u32 queue
)
295 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
298 if (tx_q
->dirty_tx
> tx_q
->cur_tx
)
299 avail
= tx_q
->dirty_tx
- tx_q
->cur_tx
- 1;
301 avail
= DMA_TX_SIZE
- tx_q
->cur_tx
+ tx_q
->dirty_tx
- 1;
307 * stmmac_rx_dirty - Get RX queue dirty
308 * @priv: driver private structure
309 * @queue: RX queue index
311 static inline u32
stmmac_rx_dirty(struct stmmac_priv
*priv
, u32 queue
)
313 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
316 if (rx_q
->dirty_rx
<= rx_q
->cur_rx
)
317 dirty
= rx_q
->cur_rx
- rx_q
->dirty_rx
;
319 dirty
= DMA_RX_SIZE
- rx_q
->dirty_rx
+ rx_q
->cur_rx
;
325 * stmmac_hw_fix_mac_speed - callback for speed selection
326 * @priv: driver private structure
327 * Description: on some platforms (e.g. ST), some HW system configuration
328 * registers have to be set according to the link speed negotiated.
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv
*priv
)
332 struct net_device
*ndev
= priv
->dev
;
333 struct phy_device
*phydev
= ndev
->phydev
;
335 if (likely(priv
->plat
->fix_mac_speed
))
336 priv
->plat
->fix_mac_speed(priv
->plat
->bsp_priv
, phydev
->speed
);
340 * stmmac_enable_eee_mode - check and enter in LPI mode
341 * @priv: driver private structure
342 * Description: this function is to verify and enter in LPI mode in case of
345 static void stmmac_enable_eee_mode(struct stmmac_priv
*priv
)
347 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
350 /* check if all TX queues have the work finished */
351 for (queue
= 0; queue
< tx_cnt
; queue
++) {
352 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
354 if (tx_q
->dirty_tx
!= tx_q
->cur_tx
)
355 return; /* still unfinished work */
358 /* Check and enter in LPI mode */
359 if (!priv
->tx_path_in_lpi_mode
)
360 stmmac_set_eee_mode(priv
, priv
->hw
,
361 priv
->plat
->en_tx_lpi_clockgating
);
365 * stmmac_disable_eee_mode - disable and exit from LPI mode
366 * @priv: driver private structure
367 * Description: this function is to exit and disable EEE in case of
368 * LPI state is true. This is called by the xmit.
370 void stmmac_disable_eee_mode(struct stmmac_priv
*priv
)
372 stmmac_reset_eee_mode(priv
, priv
->hw
);
373 del_timer_sync(&priv
->eee_ctrl_timer
);
374 priv
->tx_path_in_lpi_mode
= false;
378 * stmmac_eee_ctrl_timer - EEE TX SW timer.
381 * if there is no data transfer and if we are not in LPI state,
382 * then MAC Transmitter can be moved to LPI state.
384 static void stmmac_eee_ctrl_timer(struct timer_list
*t
)
386 struct stmmac_priv
*priv
= from_timer(priv
, t
, eee_ctrl_timer
);
388 stmmac_enable_eee_mode(priv
);
389 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_T(eee_timer
));
393 * stmmac_eee_init - init EEE
394 * @priv: driver private structure
396 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
397 * can also manage EEE, this function enable the LPI state and start related
400 bool stmmac_eee_init(struct stmmac_priv
*priv
)
402 struct net_device
*ndev
= priv
->dev
;
403 int interface
= priv
->plat
->interface
;
406 if ((interface
!= PHY_INTERFACE_MODE_MII
) &&
407 (interface
!= PHY_INTERFACE_MODE_GMII
) &&
408 !phy_interface_mode_is_rgmii(interface
))
411 /* Using PCS we cannot dial with the phy registers at this stage
412 * so we do not support extra feature like EEE.
414 if ((priv
->hw
->pcs
== STMMAC_PCS_RGMII
) ||
415 (priv
->hw
->pcs
== STMMAC_PCS_TBI
) ||
416 (priv
->hw
->pcs
== STMMAC_PCS_RTBI
))
419 /* MAC core supports the EEE feature. */
420 if (priv
->dma_cap
.eee
) {
421 int tx_lpi_timer
= priv
->tx_lpi_timer
;
423 /* Check if the PHY supports EEE */
424 if (phy_init_eee(ndev
->phydev
, 1)) {
425 /* To manage at run-time if the EEE cannot be supported
426 * anymore (for example because the lp caps have been
428 * In that case the driver disable own timers.
430 mutex_lock(&priv
->lock
);
431 if (priv
->eee_active
) {
432 netdev_dbg(priv
->dev
, "disable EEE\n");
433 del_timer_sync(&priv
->eee_ctrl_timer
);
434 stmmac_set_eee_timer(priv
, priv
->hw
, 0,
437 priv
->eee_active
= 0;
438 mutex_unlock(&priv
->lock
);
441 /* Activate the EEE and start timers */
442 mutex_lock(&priv
->lock
);
443 if (!priv
->eee_active
) {
444 priv
->eee_active
= 1;
445 timer_setup(&priv
->eee_ctrl_timer
,
446 stmmac_eee_ctrl_timer
, 0);
447 mod_timer(&priv
->eee_ctrl_timer
,
448 STMMAC_LPI_T(eee_timer
));
450 stmmac_set_eee_timer(priv
, priv
->hw
,
451 STMMAC_DEFAULT_LIT_LS
, tx_lpi_timer
);
453 /* Set HW EEE according to the speed */
454 stmmac_set_eee_pls(priv
, priv
->hw
, ndev
->phydev
->link
);
457 mutex_unlock(&priv
->lock
);
459 netdev_dbg(priv
->dev
, "Energy-Efficient Ethernet initialized\n");
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466 * @priv: driver private structure
467 * @p : descriptor pointer
468 * @skb : the socket buffer
470 * This function will read timestamp from the descriptor & pass it to stack.
471 * and also perform some sanity checks.
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv
*priv
,
474 struct dma_desc
*p
, struct sk_buff
*skb
)
476 struct skb_shared_hwtstamps shhwtstamp
;
479 if (!priv
->hwts_tx_en
)
482 /* exit if skb doesn't support hw tstamp */
483 if (likely(!skb
|| !(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)))
486 /* check tx tstamp status */
487 if (stmmac_get_tx_timestamp_status(priv
, p
)) {
488 /* get the valid tstamp */
489 stmmac_get_timestamp(priv
, p
, priv
->adv_ts
, &ns
);
491 memset(&shhwtstamp
, 0, sizeof(struct skb_shared_hwtstamps
));
492 shhwtstamp
.hwtstamp
= ns_to_ktime(ns
);
494 netdev_dbg(priv
->dev
, "get valid TX hw timestamp %llu\n", ns
);
495 /* pass tstamp to stack */
496 skb_tstamp_tx(skb
, &shhwtstamp
);
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503 * @priv: driver private structure
504 * @p : descriptor pointer
505 * @np : next descriptor pointer
506 * @skb : the socket buffer
508 * This function will read received packet's timestamp from the descriptor
509 * and pass it to stack. It also perform some sanity checks.
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv
*priv
, struct dma_desc
*p
,
512 struct dma_desc
*np
, struct sk_buff
*skb
)
514 struct skb_shared_hwtstamps
*shhwtstamp
= NULL
;
515 struct dma_desc
*desc
= p
;
518 if (!priv
->hwts_rx_en
)
520 /* For GMAC4, the valid timestamp is from CTX next desc. */
521 if (priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
)
524 /* Check if timestamp is available */
525 if (stmmac_get_rx_timestamp_status(priv
, p
, np
, priv
->adv_ts
)) {
526 stmmac_get_timestamp(priv
, desc
, priv
->adv_ts
, &ns
);
527 netdev_dbg(priv
->dev
, "get valid RX hw timestamp %llu\n", ns
);
528 shhwtstamp
= skb_hwtstamps(skb
);
529 memset(shhwtstamp
, 0, sizeof(struct skb_shared_hwtstamps
));
530 shhwtstamp
->hwtstamp
= ns_to_ktime(ns
);
532 netdev_dbg(priv
->dev
, "cannot get RX hw timestamp\n");
537 * stmmac_hwtstamp_ioctl - control hardware timestamping.
538 * @dev: device pointer.
539 * @ifr: An IOCTL specific structure, that can contain a pointer to
540 * a proprietary structure used to pass information to the driver.
542 * This function configures the MAC to enable/disable both outgoing(TX)
543 * and incoming(RX) packets time stamping based on user input.
545 * 0 on success and an appropriate -ve integer on failure.
547 static int stmmac_hwtstamp_ioctl(struct net_device
*dev
, struct ifreq
*ifr
)
549 struct stmmac_priv
*priv
= netdev_priv(dev
);
550 struct hwtstamp_config config
;
551 struct timespec64 now
;
555 u32 ptp_over_ipv4_udp
= 0;
556 u32 ptp_over_ipv6_udp
= 0;
557 u32 ptp_over_ethernet
= 0;
558 u32 snap_type_sel
= 0;
559 u32 ts_master_en
= 0;
565 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
567 if (!(priv
->dma_cap
.time_stamp
|| priv
->adv_ts
)) {
568 netdev_alert(priv
->dev
, "No support for HW time stamping\n");
569 priv
->hwts_tx_en
= 0;
570 priv
->hwts_rx_en
= 0;
575 if (copy_from_user(&config
, ifr
->ifr_data
,
576 sizeof(struct hwtstamp_config
)))
579 netdev_dbg(priv
->dev
, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 __func__
, config
.flags
, config
.tx_type
, config
.rx_filter
);
582 /* reserved for future extensions */
586 if (config
.tx_type
!= HWTSTAMP_TX_OFF
&&
587 config
.tx_type
!= HWTSTAMP_TX_ON
)
591 switch (config
.rx_filter
) {
592 case HWTSTAMP_FILTER_NONE
:
593 /* time stamp no incoming packet at all */
594 config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
597 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
598 /* PTP v1, UDP, any kind of event packet */
599 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
600 /* take time stamp for all event messages */
602 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
604 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
606 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
607 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
610 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
611 /* PTP v1, UDP, Sync packet */
612 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_SYNC
;
613 /* take time stamp for SYNC messages only */
614 ts_event_en
= PTP_TCR_TSEVNTENA
;
616 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
617 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
620 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
621 /* PTP v1, UDP, Delay_req packet */
622 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
;
623 /* take time stamp for Delay_Req messages only */
624 ts_master_en
= PTP_TCR_TSMSTRENA
;
625 ts_event_en
= PTP_TCR_TSEVNTENA
;
627 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
628 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
631 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
632 /* PTP v2, UDP, any kind of event packet */
633 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_EVENT
;
634 ptp_v2
= PTP_TCR_TSVER2ENA
;
635 /* take time stamp for all event messages */
637 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
639 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
641 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
642 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
645 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
646 /* PTP v2, UDP, Sync packet */
647 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_SYNC
;
648 ptp_v2
= PTP_TCR_TSVER2ENA
;
649 /* take time stamp for SYNC messages only */
650 ts_event_en
= PTP_TCR_TSEVNTENA
;
652 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
653 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
656 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
657 /* PTP v2, UDP, Delay_req packet */
658 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
;
659 ptp_v2
= PTP_TCR_TSVER2ENA
;
660 /* take time stamp for Delay_Req messages only */
661 ts_master_en
= PTP_TCR_TSMSTRENA
;
662 ts_event_en
= PTP_TCR_TSEVNTENA
;
664 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
665 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
668 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
669 /* PTP v2/802.AS1 any layer, any kind of event packet */
670 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
671 ptp_v2
= PTP_TCR_TSVER2ENA
;
672 /* take time stamp for all event messages */
674 snap_type_sel
= PTP_GMAC4_TCR_SNAPTYPSEL_1
;
676 snap_type_sel
= PTP_TCR_SNAPTYPSEL_1
;
678 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
679 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
680 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
683 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
684 /* PTP v2/802.AS1, any layer, Sync packet */
685 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_SYNC
;
686 ptp_v2
= PTP_TCR_TSVER2ENA
;
687 /* take time stamp for SYNC messages only */
688 ts_event_en
= PTP_TCR_TSEVNTENA
;
690 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
691 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
692 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
695 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
696 /* PTP v2/802.AS1, any layer, Delay_req packet */
697 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
;
698 ptp_v2
= PTP_TCR_TSVER2ENA
;
699 /* take time stamp for Delay_Req messages only */
700 ts_master_en
= PTP_TCR_TSMSTRENA
;
701 ts_event_en
= PTP_TCR_TSEVNTENA
;
703 ptp_over_ipv4_udp
= PTP_TCR_TSIPV4ENA
;
704 ptp_over_ipv6_udp
= PTP_TCR_TSIPV6ENA
;
705 ptp_over_ethernet
= PTP_TCR_TSIPENA
;
708 case HWTSTAMP_FILTER_NTP_ALL
:
709 case HWTSTAMP_FILTER_ALL
:
710 /* time stamp any incoming packet */
711 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
712 tstamp_all
= PTP_TCR_TSENALL
;
719 switch (config
.rx_filter
) {
720 case HWTSTAMP_FILTER_NONE
:
721 config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
724 /* PTP v1, UDP, any kind of event packet */
725 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
729 priv
->hwts_rx_en
= ((config
.rx_filter
== HWTSTAMP_FILTER_NONE
) ? 0 : 1);
730 priv
->hwts_tx_en
= config
.tx_type
== HWTSTAMP_TX_ON
;
732 if (!priv
->hwts_tx_en
&& !priv
->hwts_rx_en
)
733 stmmac_config_hw_tstamping(priv
, priv
->ptpaddr
, 0);
735 value
= (PTP_TCR_TSENA
| PTP_TCR_TSCFUPDT
| PTP_TCR_TSCTRLSSR
|
736 tstamp_all
| ptp_v2
| ptp_over_ethernet
|
737 ptp_over_ipv6_udp
| ptp_over_ipv4_udp
| ts_event_en
|
738 ts_master_en
| snap_type_sel
);
739 stmmac_config_hw_tstamping(priv
, priv
->ptpaddr
, value
);
741 /* program Sub Second Increment reg */
742 stmmac_config_sub_second_increment(priv
,
743 priv
->ptpaddr
, priv
->plat
->clk_ptp_rate
,
745 temp
= div_u64(1000000000ULL, sec_inc
);
747 /* Store sub second increment and flags for later use */
748 priv
->sub_second_inc
= sec_inc
;
749 priv
->systime_flags
= value
;
751 /* calculate default added value:
753 * addend = (2^32)/freq_div_ratio;
754 * where, freq_div_ratio = 1e9ns/sec_inc
756 temp
= (u64
)(temp
<< 32);
757 priv
->default_addend
= div_u64(temp
, priv
->plat
->clk_ptp_rate
);
758 stmmac_config_addend(priv
, priv
->ptpaddr
, priv
->default_addend
);
760 /* initialize system time */
761 ktime_get_real_ts64(&now
);
763 /* lower 32 bits of tv_sec are safe until y2106 */
764 stmmac_init_systime(priv
, priv
->ptpaddr
,
765 (u32
)now
.tv_sec
, now
.tv_nsec
);
768 return copy_to_user(ifr
->ifr_data
, &config
,
769 sizeof(struct hwtstamp_config
)) ? -EFAULT
: 0;
773 * stmmac_init_ptp - init PTP
774 * @priv: driver private structure
775 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776 * This is done by looking at the HW cap. register.
777 * This function also registers the ptp driver.
779 static int stmmac_init_ptp(struct stmmac_priv
*priv
)
781 bool xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
783 if (!(priv
->dma_cap
.time_stamp
|| priv
->dma_cap
.atime_stamp
))
787 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 if (xmac
&& priv
->dma_cap
.atime_stamp
)
790 /* Dwmac 3.x core with extend_desc can support adv_ts */
791 else if (priv
->extend_desc
&& priv
->dma_cap
.atime_stamp
)
794 if (priv
->dma_cap
.time_stamp
)
795 netdev_info(priv
->dev
, "IEEE 1588-2002 Timestamp supported\n");
798 netdev_info(priv
->dev
,
799 "IEEE 1588-2008 Advanced Timestamp supported\n");
801 priv
->hwts_tx_en
= 0;
802 priv
->hwts_rx_en
= 0;
804 stmmac_ptp_register(priv
);
809 static void stmmac_release_ptp(struct stmmac_priv
*priv
)
811 if (priv
->plat
->clk_ptp_ref
)
812 clk_disable_unprepare(priv
->plat
->clk_ptp_ref
);
813 stmmac_ptp_unregister(priv
);
817 * stmmac_mac_flow_ctrl - Configure flow control in all queues
818 * @priv: driver private structure
819 * Description: It is used for configuring the flow control in all queues
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv
*priv
, u32 duplex
)
823 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
825 stmmac_flow_ctrl(priv
, priv
->hw
, duplex
, priv
->flow_ctrl
,
826 priv
->pause
, tx_cnt
);
830 * stmmac_adjust_link - adjusts the link parameters
831 * @dev: net device structure
832 * Description: this is the helper called by the physical abstraction layer
833 * drivers to communicate the phy link status. According the speed and duplex
834 * this driver can invoke registered glue-logic as well.
835 * It also invoke the eee initialization because it could happen when switch
836 * on different networks (that are eee capable).
838 static void stmmac_adjust_link(struct net_device
*dev
)
840 struct stmmac_priv
*priv
= netdev_priv(dev
);
841 struct phy_device
*phydev
= dev
->phydev
;
842 bool new_state
= false;
847 mutex_lock(&priv
->lock
);
850 u32 ctrl
= readl(priv
->ioaddr
+ MAC_CTRL_REG
);
852 /* Now we make sure that we can be in full duplex mode.
853 * If not, we operate in half-duplex mode. */
854 if (phydev
->duplex
!= priv
->oldduplex
) {
857 ctrl
&= ~priv
->hw
->link
.duplex
;
859 ctrl
|= priv
->hw
->link
.duplex
;
860 priv
->oldduplex
= phydev
->duplex
;
862 /* Flow Control operation */
864 stmmac_mac_flow_ctrl(priv
, phydev
->duplex
);
866 if (phydev
->speed
!= priv
->speed
) {
868 ctrl
&= ~priv
->hw
->link
.speed_mask
;
869 switch (phydev
->speed
) {
871 ctrl
|= priv
->hw
->link
.speed1000
;
874 ctrl
|= priv
->hw
->link
.speed100
;
877 ctrl
|= priv
->hw
->link
.speed10
;
880 netif_warn(priv
, link
, priv
->dev
,
881 "broken speed: %d\n", phydev
->speed
);
882 phydev
->speed
= SPEED_UNKNOWN
;
885 if (phydev
->speed
!= SPEED_UNKNOWN
)
886 stmmac_hw_fix_mac_speed(priv
);
887 priv
->speed
= phydev
->speed
;
890 writel(ctrl
, priv
->ioaddr
+ MAC_CTRL_REG
);
892 if (!priv
->oldlink
) {
894 priv
->oldlink
= true;
896 } else if (priv
->oldlink
) {
898 priv
->oldlink
= false;
899 priv
->speed
= SPEED_UNKNOWN
;
900 priv
->oldduplex
= DUPLEX_UNKNOWN
;
903 if (new_state
&& netif_msg_link(priv
))
904 phy_print_status(phydev
);
906 mutex_unlock(&priv
->lock
);
908 if (phydev
->is_pseudo_fixed_link
)
909 /* Stop PHY layer to call the hook to adjust the link in case
910 * of a switch is attached to the stmmac driver.
912 phydev
->irq
= PHY_IGNORE_INTERRUPT
;
914 /* At this stage, init the EEE if supported.
915 * Never called in case of fixed_link.
917 priv
->eee_enabled
= stmmac_eee_init(priv
);
921 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922 * @priv: driver private structure
923 * Description: this is to verify if the HW supports the PCS.
924 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925 * configured for the TBI, RTBI, or SGMII PHY interface.
927 static void stmmac_check_pcs_mode(struct stmmac_priv
*priv
)
929 int interface
= priv
->plat
->interface
;
931 if (priv
->dma_cap
.pcs
) {
932 if ((interface
== PHY_INTERFACE_MODE_RGMII
) ||
933 (interface
== PHY_INTERFACE_MODE_RGMII_ID
) ||
934 (interface
== PHY_INTERFACE_MODE_RGMII_RXID
) ||
935 (interface
== PHY_INTERFACE_MODE_RGMII_TXID
)) {
936 netdev_dbg(priv
->dev
, "PCS RGMII support enabled\n");
937 priv
->hw
->pcs
= STMMAC_PCS_RGMII
;
938 } else if (interface
== PHY_INTERFACE_MODE_SGMII
) {
939 netdev_dbg(priv
->dev
, "PCS SGMII support enabled\n");
940 priv
->hw
->pcs
= STMMAC_PCS_SGMII
;
946 * stmmac_init_phy - PHY initialization
947 * @dev: net device structure
948 * Description: it initializes the driver's PHY state, and attaches the PHY
953 static int stmmac_init_phy(struct net_device
*dev
)
955 struct stmmac_priv
*priv
= netdev_priv(dev
);
956 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
957 struct phy_device
*phydev
;
958 char phy_id_fmt
[MII_BUS_ID_SIZE
+ 3];
959 char bus_id
[MII_BUS_ID_SIZE
];
960 int interface
= priv
->plat
->interface
;
961 int max_speed
= priv
->plat
->max_speed
;
962 priv
->oldlink
= false;
963 priv
->speed
= SPEED_UNKNOWN
;
964 priv
->oldduplex
= DUPLEX_UNKNOWN
;
966 if (priv
->plat
->phy_node
) {
967 phydev
= of_phy_connect(dev
, priv
->plat
->phy_node
,
968 &stmmac_adjust_link
, 0, interface
);
970 snprintf(bus_id
, MII_BUS_ID_SIZE
, "stmmac-%x",
973 snprintf(phy_id_fmt
, MII_BUS_ID_SIZE
+ 3, PHY_ID_FMT
, bus_id
,
974 priv
->plat
->phy_addr
);
975 netdev_dbg(priv
->dev
, "%s: trying to attach to %s\n", __func__
,
978 phydev
= phy_connect(dev
, phy_id_fmt
, &stmmac_adjust_link
,
982 if (IS_ERR_OR_NULL(phydev
)) {
983 netdev_err(priv
->dev
, "Could not attach to PHY\n");
987 return PTR_ERR(phydev
);
990 /* Stop Advertising 1000BASE Capability if interface is not GMII */
991 if ((interface
== PHY_INTERFACE_MODE_MII
) ||
992 (interface
== PHY_INTERFACE_MODE_RMII
) ||
993 (max_speed
< 1000 && max_speed
> 0))
994 phydev
->advertising
&= ~(SUPPORTED_1000baseT_Half
|
995 SUPPORTED_1000baseT_Full
);
998 * Half-duplex mode not supported with multiqueue
999 * half-duplex can only works with single queue
1002 phydev
->supported
&= ~(SUPPORTED_1000baseT_Half
|
1003 SUPPORTED_100baseT_Half
|
1004 SUPPORTED_10baseT_Half
);
1007 * Broken HW is sometimes missing the pull-up resistor on the
1008 * MDIO line, which results in reads to non-existent devices returning
1009 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1011 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1013 if (!priv
->plat
->phy_node
&& phydev
->phy_id
== 0) {
1014 phy_disconnect(phydev
);
1018 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1019 * subsequent PHY polling, make sure we force a link transition if
1020 * we have a UP/DOWN/UP transition
1022 if (phydev
->is_pseudo_fixed_link
)
1023 phydev
->irq
= PHY_POLL
;
1025 phy_attached_info(phydev
);
1029 static void stmmac_display_rx_rings(struct stmmac_priv
*priv
)
1031 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
1035 /* Display RX rings */
1036 for (queue
= 0; queue
< rx_cnt
; queue
++) {
1037 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1039 pr_info("\tRX Queue %u rings\n", queue
);
1041 if (priv
->extend_desc
)
1042 head_rx
= (void *)rx_q
->dma_erx
;
1044 head_rx
= (void *)rx_q
->dma_rx
;
1046 /* Display RX ring */
1047 stmmac_display_ring(priv
, head_rx
, DMA_RX_SIZE
, true);
1051 static void stmmac_display_tx_rings(struct stmmac_priv
*priv
)
1053 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
1057 /* Display TX rings */
1058 for (queue
= 0; queue
< tx_cnt
; queue
++) {
1059 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1061 pr_info("\tTX Queue %d rings\n", queue
);
1063 if (priv
->extend_desc
)
1064 head_tx
= (void *)tx_q
->dma_etx
;
1066 head_tx
= (void *)tx_q
->dma_tx
;
1068 stmmac_display_ring(priv
, head_tx
, DMA_TX_SIZE
, false);
1072 static void stmmac_display_rings(struct stmmac_priv
*priv
)
1074 /* Display RX ring */
1075 stmmac_display_rx_rings(priv
);
1077 /* Display TX ring */
1078 stmmac_display_tx_rings(priv
);
1081 static int stmmac_set_bfsize(int mtu
, int bufsize
)
1085 if (mtu
>= BUF_SIZE_8KiB
)
1086 ret
= BUF_SIZE_16KiB
;
1087 else if (mtu
>= BUF_SIZE_4KiB
)
1088 ret
= BUF_SIZE_8KiB
;
1089 else if (mtu
>= BUF_SIZE_2KiB
)
1090 ret
= BUF_SIZE_4KiB
;
1091 else if (mtu
> DEFAULT_BUFSIZE
)
1092 ret
= BUF_SIZE_2KiB
;
1094 ret
= DEFAULT_BUFSIZE
;
1100 * stmmac_clear_rx_descriptors - clear RX descriptors
1101 * @priv: driver private structure
1102 * @queue: RX queue index
1103 * Description: this function is called to clear the RX descriptors
1104 * in case of both basic and extended descriptors are used.
1106 static void stmmac_clear_rx_descriptors(struct stmmac_priv
*priv
, u32 queue
)
1108 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1111 /* Clear the RX descriptors */
1112 for (i
= 0; i
< DMA_RX_SIZE
; i
++)
1113 if (priv
->extend_desc
)
1114 stmmac_init_rx_desc(priv
, &rx_q
->dma_erx
[i
].basic
,
1115 priv
->use_riwt
, priv
->mode
,
1116 (i
== DMA_RX_SIZE
- 1),
1119 stmmac_init_rx_desc(priv
, &rx_q
->dma_rx
[i
],
1120 priv
->use_riwt
, priv
->mode
,
1121 (i
== DMA_RX_SIZE
- 1),
1126 * stmmac_clear_tx_descriptors - clear tx descriptors
1127 * @priv: driver private structure
1128 * @queue: TX queue index.
1129 * Description: this function is called to clear the TX descriptors
1130 * in case of both basic and extended descriptors are used.
1132 static void stmmac_clear_tx_descriptors(struct stmmac_priv
*priv
, u32 queue
)
1134 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1137 /* Clear the TX descriptors */
1138 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1139 if (priv
->extend_desc
)
1140 stmmac_init_tx_desc(priv
, &tx_q
->dma_etx
[i
].basic
,
1141 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1143 stmmac_init_tx_desc(priv
, &tx_q
->dma_tx
[i
],
1144 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1148 * stmmac_clear_descriptors - clear descriptors
1149 * @priv: driver private structure
1150 * Description: this function is called to clear the TX and RX descriptors
1151 * in case of both basic and extended descriptors are used.
1153 static void stmmac_clear_descriptors(struct stmmac_priv
*priv
)
1155 u32 rx_queue_cnt
= priv
->plat
->rx_queues_to_use
;
1156 u32 tx_queue_cnt
= priv
->plat
->tx_queues_to_use
;
1159 /* Clear the RX descriptors */
1160 for (queue
= 0; queue
< rx_queue_cnt
; queue
++)
1161 stmmac_clear_rx_descriptors(priv
, queue
);
1163 /* Clear the TX descriptors */
1164 for (queue
= 0; queue
< tx_queue_cnt
; queue
++)
1165 stmmac_clear_tx_descriptors(priv
, queue
);
1169 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1170 * @priv: driver private structure
1171 * @p: descriptor pointer
1172 * @i: descriptor index
1174 * @queue: RX queue index
1175 * Description: this function is called to allocate a receive buffer, perform
1176 * the DMA mapping and init the descriptor.
1178 static int stmmac_init_rx_buffers(struct stmmac_priv
*priv
, struct dma_desc
*p
,
1179 int i
, gfp_t flags
, u32 queue
)
1181 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1182 struct sk_buff
*skb
;
1184 skb
= __netdev_alloc_skb_ip_align(priv
->dev
, priv
->dma_buf_sz
, flags
);
1186 netdev_err(priv
->dev
,
1187 "%s: Rx init fails; skb is NULL\n", __func__
);
1190 rx_q
->rx_skbuff
[i
] = skb
;
1191 rx_q
->rx_skbuff_dma
[i
] = dma_map_single(priv
->device
, skb
->data
,
1194 if (dma_mapping_error(priv
->device
, rx_q
->rx_skbuff_dma
[i
])) {
1195 netdev_err(priv
->dev
, "%s: DMA mapping error\n", __func__
);
1196 dev_kfree_skb_any(skb
);
1200 stmmac_set_desc_addr(priv
, p
, rx_q
->rx_skbuff_dma
[i
]);
1202 if (priv
->dma_buf_sz
== BUF_SIZE_16KiB
)
1203 stmmac_init_desc3(priv
, p
);
1209 * stmmac_free_rx_buffer - free RX dma buffers
1210 * @priv: private structure
1211 * @queue: RX queue index
1214 static void stmmac_free_rx_buffer(struct stmmac_priv
*priv
, u32 queue
, int i
)
1216 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1218 if (rx_q
->rx_skbuff
[i
]) {
1219 dma_unmap_single(priv
->device
, rx_q
->rx_skbuff_dma
[i
],
1220 priv
->dma_buf_sz
, DMA_FROM_DEVICE
);
1221 dev_kfree_skb_any(rx_q
->rx_skbuff
[i
]);
1223 rx_q
->rx_skbuff
[i
] = NULL
;
1227 * stmmac_free_tx_buffer - free RX dma buffers
1228 * @priv: private structure
1229 * @queue: RX queue index
1232 static void stmmac_free_tx_buffer(struct stmmac_priv
*priv
, u32 queue
, int i
)
1234 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1236 if (tx_q
->tx_skbuff_dma
[i
].buf
) {
1237 if (tx_q
->tx_skbuff_dma
[i
].map_as_page
)
1238 dma_unmap_page(priv
->device
,
1239 tx_q
->tx_skbuff_dma
[i
].buf
,
1240 tx_q
->tx_skbuff_dma
[i
].len
,
1243 dma_unmap_single(priv
->device
,
1244 tx_q
->tx_skbuff_dma
[i
].buf
,
1245 tx_q
->tx_skbuff_dma
[i
].len
,
1249 if (tx_q
->tx_skbuff
[i
]) {
1250 dev_kfree_skb_any(tx_q
->tx_skbuff
[i
]);
1251 tx_q
->tx_skbuff
[i
] = NULL
;
1252 tx_q
->tx_skbuff_dma
[i
].buf
= 0;
1253 tx_q
->tx_skbuff_dma
[i
].map_as_page
= false;
1258 * init_dma_rx_desc_rings - init the RX descriptor rings
1259 * @dev: net device structure
1261 * Description: this function initializes the DMA RX descriptors
1262 * and allocates the socket buffers. It supports the chained and ring
1265 static int init_dma_rx_desc_rings(struct net_device
*dev
, gfp_t flags
)
1267 struct stmmac_priv
*priv
= netdev_priv(dev
);
1268 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1274 bfsize
= stmmac_set_16kib_bfsize(priv
, dev
->mtu
);
1278 if (bfsize
< BUF_SIZE_16KiB
)
1279 bfsize
= stmmac_set_bfsize(dev
->mtu
, priv
->dma_buf_sz
);
1281 priv
->dma_buf_sz
= bfsize
;
1283 /* RX INITIALIZATION */
1284 netif_dbg(priv
, probe
, priv
->dev
,
1285 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1287 for (queue
= 0; queue
< rx_count
; queue
++) {
1288 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1290 netif_dbg(priv
, probe
, priv
->dev
,
1291 "(%s) dma_rx_phy=0x%08x\n", __func__
,
1292 (u32
)rx_q
->dma_rx_phy
);
1294 for (i
= 0; i
< DMA_RX_SIZE
; i
++) {
1297 if (priv
->extend_desc
)
1298 p
= &((rx_q
->dma_erx
+ i
)->basic
);
1300 p
= rx_q
->dma_rx
+ i
;
1302 ret
= stmmac_init_rx_buffers(priv
, p
, i
, flags
,
1305 goto err_init_rx_buffers
;
1307 netif_dbg(priv
, probe
, priv
->dev
, "[%p]\t[%p]\t[%x]\n",
1308 rx_q
->rx_skbuff
[i
], rx_q
->rx_skbuff
[i
]->data
,
1309 (unsigned int)rx_q
->rx_skbuff_dma
[i
]);
1313 rx_q
->dirty_rx
= (unsigned int)(i
- DMA_RX_SIZE
);
1315 stmmac_clear_rx_descriptors(priv
, queue
);
1317 /* Setup the chained descriptor addresses */
1318 if (priv
->mode
== STMMAC_CHAIN_MODE
) {
1319 if (priv
->extend_desc
)
1320 stmmac_mode_init(priv
, rx_q
->dma_erx
,
1321 rx_q
->dma_rx_phy
, DMA_RX_SIZE
, 1);
1323 stmmac_mode_init(priv
, rx_q
->dma_rx
,
1324 rx_q
->dma_rx_phy
, DMA_RX_SIZE
, 0);
1332 err_init_rx_buffers
:
1333 while (queue
>= 0) {
1335 stmmac_free_rx_buffer(priv
, queue
, i
);
1348 * init_dma_tx_desc_rings - init the TX descriptor rings
1349 * @dev: net device structure.
1350 * Description: this function initializes the DMA TX descriptors
1351 * and allocates the socket buffers. It supports the chained and ring
1354 static int init_dma_tx_desc_rings(struct net_device
*dev
)
1356 struct stmmac_priv
*priv
= netdev_priv(dev
);
1357 u32 tx_queue_cnt
= priv
->plat
->tx_queues_to_use
;
1361 for (queue
= 0; queue
< tx_queue_cnt
; queue
++) {
1362 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1364 netif_dbg(priv
, probe
, priv
->dev
,
1365 "(%s) dma_tx_phy=0x%08x\n", __func__
,
1366 (u32
)tx_q
->dma_tx_phy
);
1368 /* Setup the chained descriptor addresses */
1369 if (priv
->mode
== STMMAC_CHAIN_MODE
) {
1370 if (priv
->extend_desc
)
1371 stmmac_mode_init(priv
, tx_q
->dma_etx
,
1372 tx_q
->dma_tx_phy
, DMA_TX_SIZE
, 1);
1374 stmmac_mode_init(priv
, tx_q
->dma_tx
,
1375 tx_q
->dma_tx_phy
, DMA_TX_SIZE
, 0);
1378 for (i
= 0; i
< DMA_TX_SIZE
; i
++) {
1380 if (priv
->extend_desc
)
1381 p
= &((tx_q
->dma_etx
+ i
)->basic
);
1383 p
= tx_q
->dma_tx
+ i
;
1385 stmmac_clear_desc(priv
, p
);
1387 tx_q
->tx_skbuff_dma
[i
].buf
= 0;
1388 tx_q
->tx_skbuff_dma
[i
].map_as_page
= false;
1389 tx_q
->tx_skbuff_dma
[i
].len
= 0;
1390 tx_q
->tx_skbuff_dma
[i
].last_segment
= false;
1391 tx_q
->tx_skbuff
[i
] = NULL
;
1398 netdev_tx_reset_queue(netdev_get_tx_queue(priv
->dev
, queue
));
1405 * init_dma_desc_rings - init the RX/TX descriptor rings
1406 * @dev: net device structure
1408 * Description: this function initializes the DMA RX/TX descriptors
1409 * and allocates the socket buffers. It supports the chained and ring
1412 static int init_dma_desc_rings(struct net_device
*dev
, gfp_t flags
)
1414 struct stmmac_priv
*priv
= netdev_priv(dev
);
1417 ret
= init_dma_rx_desc_rings(dev
, flags
);
1421 ret
= init_dma_tx_desc_rings(dev
);
1423 stmmac_clear_descriptors(priv
);
1425 if (netif_msg_hw(priv
))
1426 stmmac_display_rings(priv
);
1432 * dma_free_rx_skbufs - free RX dma buffers
1433 * @priv: private structure
1434 * @queue: RX queue index
1436 static void dma_free_rx_skbufs(struct stmmac_priv
*priv
, u32 queue
)
1440 for (i
= 0; i
< DMA_RX_SIZE
; i
++)
1441 stmmac_free_rx_buffer(priv
, queue
, i
);
1445 * dma_free_tx_skbufs - free TX dma buffers
1446 * @priv: private structure
1447 * @queue: TX queue index
1449 static void dma_free_tx_skbufs(struct stmmac_priv
*priv
, u32 queue
)
1453 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1454 stmmac_free_tx_buffer(priv
, queue
, i
);
1458 * free_dma_rx_desc_resources - free RX dma desc resources
1459 * @priv: private structure
1461 static void free_dma_rx_desc_resources(struct stmmac_priv
*priv
)
1463 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1466 /* Free RX queue resources */
1467 for (queue
= 0; queue
< rx_count
; queue
++) {
1468 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1470 /* Release the DMA RX socket buffers */
1471 dma_free_rx_skbufs(priv
, queue
);
1473 /* Free DMA regions of consistent memory previously allocated */
1474 if (!priv
->extend_desc
)
1475 dma_free_coherent(priv
->device
,
1476 DMA_RX_SIZE
* sizeof(struct dma_desc
),
1477 rx_q
->dma_rx
, rx_q
->dma_rx_phy
);
1479 dma_free_coherent(priv
->device
, DMA_RX_SIZE
*
1480 sizeof(struct dma_extended_desc
),
1481 rx_q
->dma_erx
, rx_q
->dma_rx_phy
);
1483 kfree(rx_q
->rx_skbuff_dma
);
1484 kfree(rx_q
->rx_skbuff
);
1489 * free_dma_tx_desc_resources - free TX dma desc resources
1490 * @priv: private structure
1492 static void free_dma_tx_desc_resources(struct stmmac_priv
*priv
)
1494 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
1497 /* Free TX queue resources */
1498 for (queue
= 0; queue
< tx_count
; queue
++) {
1499 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1501 /* Release the DMA TX socket buffers */
1502 dma_free_tx_skbufs(priv
, queue
);
1504 /* Free DMA regions of consistent memory previously allocated */
1505 if (!priv
->extend_desc
)
1506 dma_free_coherent(priv
->device
,
1507 DMA_TX_SIZE
* sizeof(struct dma_desc
),
1508 tx_q
->dma_tx
, tx_q
->dma_tx_phy
);
1510 dma_free_coherent(priv
->device
, DMA_TX_SIZE
*
1511 sizeof(struct dma_extended_desc
),
1512 tx_q
->dma_etx
, tx_q
->dma_tx_phy
);
1514 kfree(tx_q
->tx_skbuff_dma
);
1515 kfree(tx_q
->tx_skbuff
);
1520 * alloc_dma_rx_desc_resources - alloc RX resources.
1521 * @priv: private structure
1522 * Description: according to which descriptor can be used (extend or basic)
1523 * this function allocates the resources for TX and RX paths. In case of
1524 * reception, for example, it pre-allocated the RX socket buffer in order to
1525 * allow zero-copy mechanism.
1527 static int alloc_dma_rx_desc_resources(struct stmmac_priv
*priv
)
1529 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
1533 /* RX queues buffers and DMA */
1534 for (queue
= 0; queue
< rx_count
; queue
++) {
1535 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
1537 rx_q
->queue_index
= queue
;
1538 rx_q
->priv_data
= priv
;
1540 rx_q
->rx_skbuff_dma
= kmalloc_array(DMA_RX_SIZE
,
1543 if (!rx_q
->rx_skbuff_dma
)
1546 rx_q
->rx_skbuff
= kmalloc_array(DMA_RX_SIZE
,
1547 sizeof(struct sk_buff
*),
1549 if (!rx_q
->rx_skbuff
)
1552 if (priv
->extend_desc
) {
1553 rx_q
->dma_erx
= dma_zalloc_coherent(priv
->device
,
1563 rx_q
->dma_rx
= dma_zalloc_coherent(priv
->device
,
1577 free_dma_rx_desc_resources(priv
);
1583 * alloc_dma_tx_desc_resources - alloc TX resources.
1584 * @priv: private structure
1585 * Description: according to which descriptor can be used (extend or basic)
1586 * this function allocates the resources for TX and RX paths. In case of
1587 * reception, for example, it pre-allocated the RX socket buffer in order to
1588 * allow zero-copy mechanism.
1590 static int alloc_dma_tx_desc_resources(struct stmmac_priv
*priv
)
1592 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
1596 /* TX queues buffers and DMA */
1597 for (queue
= 0; queue
< tx_count
; queue
++) {
1598 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1600 tx_q
->queue_index
= queue
;
1601 tx_q
->priv_data
= priv
;
1603 tx_q
->tx_skbuff_dma
= kmalloc_array(DMA_TX_SIZE
,
1604 sizeof(*tx_q
->tx_skbuff_dma
),
1606 if (!tx_q
->tx_skbuff_dma
)
1609 tx_q
->tx_skbuff
= kmalloc_array(DMA_TX_SIZE
,
1610 sizeof(struct sk_buff
*),
1612 if (!tx_q
->tx_skbuff
)
1615 if (priv
->extend_desc
) {
1616 tx_q
->dma_etx
= dma_zalloc_coherent(priv
->device
,
1625 tx_q
->dma_tx
= dma_zalloc_coherent(priv
->device
,
1639 free_dma_tx_desc_resources(priv
);
1645 * alloc_dma_desc_resources - alloc TX/RX resources.
1646 * @priv: private structure
1647 * Description: according to which descriptor can be used (extend or basic)
1648 * this function allocates the resources for TX and RX paths. In case of
1649 * reception, for example, it pre-allocated the RX socket buffer in order to
1650 * allow zero-copy mechanism.
1652 static int alloc_dma_desc_resources(struct stmmac_priv
*priv
)
1655 int ret
= alloc_dma_rx_desc_resources(priv
);
1660 ret
= alloc_dma_tx_desc_resources(priv
);
1666 * free_dma_desc_resources - free dma desc resources
1667 * @priv: private structure
1669 static void free_dma_desc_resources(struct stmmac_priv
*priv
)
1671 /* Release the DMA RX socket buffers */
1672 free_dma_rx_desc_resources(priv
);
1674 /* Release the DMA TX socket buffers */
1675 free_dma_tx_desc_resources(priv
);
1679 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1680 * @priv: driver private structure
1681 * Description: It is used for enabling the rx queues in the MAC
1683 static void stmmac_mac_enable_rx_queues(struct stmmac_priv
*priv
)
1685 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
1689 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
1690 mode
= priv
->plat
->rx_queues_cfg
[queue
].mode_to_use
;
1691 stmmac_rx_queue_enable(priv
, priv
->hw
, mode
, queue
);
1696 * stmmac_start_rx_dma - start RX DMA channel
1697 * @priv: driver private structure
1698 * @chan: RX channel index
1700 * This starts a RX DMA channel
1702 static void stmmac_start_rx_dma(struct stmmac_priv
*priv
, u32 chan
)
1704 netdev_dbg(priv
->dev
, "DMA RX processes started in channel %d\n", chan
);
1705 stmmac_start_rx(priv
, priv
->ioaddr
, chan
);
1709 * stmmac_start_tx_dma - start TX DMA channel
1710 * @priv: driver private structure
1711 * @chan: TX channel index
1713 * This starts a TX DMA channel
1715 static void stmmac_start_tx_dma(struct stmmac_priv
*priv
, u32 chan
)
1717 netdev_dbg(priv
->dev
, "DMA TX processes started in channel %d\n", chan
);
1718 stmmac_start_tx(priv
, priv
->ioaddr
, chan
);
1722 * stmmac_stop_rx_dma - stop RX DMA channel
1723 * @priv: driver private structure
1724 * @chan: RX channel index
1726 * This stops a RX DMA channel
1728 static void stmmac_stop_rx_dma(struct stmmac_priv
*priv
, u32 chan
)
1730 netdev_dbg(priv
->dev
, "DMA RX processes stopped in channel %d\n", chan
);
1731 stmmac_stop_rx(priv
, priv
->ioaddr
, chan
);
1735 * stmmac_stop_tx_dma - stop TX DMA channel
1736 * @priv: driver private structure
1737 * @chan: TX channel index
1739 * This stops a TX DMA channel
1741 static void stmmac_stop_tx_dma(struct stmmac_priv
*priv
, u32 chan
)
1743 netdev_dbg(priv
->dev
, "DMA TX processes stopped in channel %d\n", chan
);
1744 stmmac_stop_tx(priv
, priv
->ioaddr
, chan
);
1748 * stmmac_start_all_dma - start all RX and TX DMA channels
1749 * @priv: driver private structure
1751 * This starts all the RX and TX DMA channels
1753 static void stmmac_start_all_dma(struct stmmac_priv
*priv
)
1755 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1756 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1759 for (chan
= 0; chan
< rx_channels_count
; chan
++)
1760 stmmac_start_rx_dma(priv
, chan
);
1762 for (chan
= 0; chan
< tx_channels_count
; chan
++)
1763 stmmac_start_tx_dma(priv
, chan
);
1767 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1768 * @priv: driver private structure
1770 * This stops the RX and TX DMA channels
1772 static void stmmac_stop_all_dma(struct stmmac_priv
*priv
)
1774 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1775 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1778 for (chan
= 0; chan
< rx_channels_count
; chan
++)
1779 stmmac_stop_rx_dma(priv
, chan
);
1781 for (chan
= 0; chan
< tx_channels_count
; chan
++)
1782 stmmac_stop_tx_dma(priv
, chan
);
1786 * stmmac_dma_operation_mode - HW DMA operation mode
1787 * @priv: driver private structure
1788 * Description: it is used for configuring the DMA operation mode register in
1789 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1791 static void stmmac_dma_operation_mode(struct stmmac_priv
*priv
)
1793 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
1794 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
1795 int rxfifosz
= priv
->plat
->rx_fifo_size
;
1796 int txfifosz
= priv
->plat
->tx_fifo_size
;
1803 rxfifosz
= priv
->dma_cap
.rx_fifo_size
;
1805 txfifosz
= priv
->dma_cap
.tx_fifo_size
;
1807 /* Adjust for real per queue fifo size */
1808 rxfifosz
/= rx_channels_count
;
1809 txfifosz
/= tx_channels_count
;
1811 if (priv
->plat
->force_thresh_dma_mode
) {
1814 } else if (priv
->plat
->force_sf_dma_mode
|| priv
->plat
->tx_coe
) {
1816 * In case of GMAC, SF mode can be enabled
1817 * to perform the TX COE in HW. This depends on:
1818 * 1) TX COE if actually supported
1819 * 2) There is no bugged Jumbo frame support
1820 * that needs to not insert csum in the TDES.
1822 txmode
= SF_DMA_MODE
;
1823 rxmode
= SF_DMA_MODE
;
1824 priv
->xstats
.threshold
= SF_DMA_MODE
;
1827 rxmode
= SF_DMA_MODE
;
1830 /* configure all channels */
1831 for (chan
= 0; chan
< rx_channels_count
; chan
++) {
1832 qmode
= priv
->plat
->rx_queues_cfg
[chan
].mode_to_use
;
1834 stmmac_dma_rx_mode(priv
, priv
->ioaddr
, rxmode
, chan
,
1836 stmmac_set_dma_bfsize(priv
, priv
->ioaddr
, priv
->dma_buf_sz
,
1840 for (chan
= 0; chan
< tx_channels_count
; chan
++) {
1841 qmode
= priv
->plat
->tx_queues_cfg
[chan
].mode_to_use
;
1843 stmmac_dma_tx_mode(priv
, priv
->ioaddr
, txmode
, chan
,
1849 * stmmac_tx_clean - to manage the transmission completion
1850 * @priv: driver private structure
1851 * @queue: TX queue index
1852 * Description: it reclaims the transmit resources after transmission completes.
1854 static int stmmac_tx_clean(struct stmmac_priv
*priv
, int budget
, u32 queue
)
1856 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
1857 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1858 unsigned int entry
, count
= 0;
1860 __netif_tx_lock_bh(netdev_get_tx_queue(priv
->dev
, queue
));
1862 priv
->xstats
.tx_clean
++;
1864 entry
= tx_q
->dirty_tx
;
1865 while ((entry
!= tx_q
->cur_tx
) && (count
< budget
)) {
1866 struct sk_buff
*skb
= tx_q
->tx_skbuff
[entry
];
1870 if (priv
->extend_desc
)
1871 p
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
1873 p
= tx_q
->dma_tx
+ entry
;
1875 status
= stmmac_tx_status(priv
, &priv
->dev
->stats
,
1876 &priv
->xstats
, p
, priv
->ioaddr
);
1877 /* Check if the descriptor is owned by the DMA */
1878 if (unlikely(status
& tx_dma_own
))
1883 /* Make sure descriptor fields are read after reading
1888 /* Just consider the last segment and ...*/
1889 if (likely(!(status
& tx_not_ls
))) {
1890 /* ... verify the status error condition */
1891 if (unlikely(status
& tx_err
)) {
1892 priv
->dev
->stats
.tx_errors
++;
1894 priv
->dev
->stats
.tx_packets
++;
1895 priv
->xstats
.tx_pkt_n
++;
1897 stmmac_get_tx_hwtstamp(priv
, p
, skb
);
1900 if (likely(tx_q
->tx_skbuff_dma
[entry
].buf
)) {
1901 if (tx_q
->tx_skbuff_dma
[entry
].map_as_page
)
1902 dma_unmap_page(priv
->device
,
1903 tx_q
->tx_skbuff_dma
[entry
].buf
,
1904 tx_q
->tx_skbuff_dma
[entry
].len
,
1907 dma_unmap_single(priv
->device
,
1908 tx_q
->tx_skbuff_dma
[entry
].buf
,
1909 tx_q
->tx_skbuff_dma
[entry
].len
,
1911 tx_q
->tx_skbuff_dma
[entry
].buf
= 0;
1912 tx_q
->tx_skbuff_dma
[entry
].len
= 0;
1913 tx_q
->tx_skbuff_dma
[entry
].map_as_page
= false;
1916 stmmac_clean_desc3(priv
, tx_q
, p
);
1918 tx_q
->tx_skbuff_dma
[entry
].last_segment
= false;
1919 tx_q
->tx_skbuff_dma
[entry
].is_jumbo
= false;
1921 if (likely(skb
!= NULL
)) {
1923 bytes_compl
+= skb
->len
;
1924 dev_consume_skb_any(skb
);
1925 tx_q
->tx_skbuff
[entry
] = NULL
;
1928 stmmac_release_tx_desc(priv
, p
, priv
->mode
);
1930 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
1932 tx_q
->dirty_tx
= entry
;
1934 netdev_tx_completed_queue(netdev_get_tx_queue(priv
->dev
, queue
),
1935 pkts_compl
, bytes_compl
);
1937 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv
->dev
,
1939 stmmac_tx_avail(priv
, queue
) > STMMAC_TX_THRESH
) {
1941 netif_dbg(priv
, tx_done
, priv
->dev
,
1942 "%s: restart transmit\n", __func__
);
1943 netif_tx_wake_queue(netdev_get_tx_queue(priv
->dev
, queue
));
1946 if ((priv
->eee_enabled
) && (!priv
->tx_path_in_lpi_mode
)) {
1947 stmmac_enable_eee_mode(priv
);
1948 mod_timer(&priv
->eee_ctrl_timer
, STMMAC_LPI_T(eee_timer
));
1951 __netif_tx_unlock_bh(netdev_get_tx_queue(priv
->dev
, queue
));
1957 * stmmac_tx_err - to manage the tx error
1958 * @priv: driver private structure
1959 * @chan: channel index
1960 * Description: it cleans the descriptors and restarts the transmission
1961 * in case of transmission errors.
1963 static void stmmac_tx_err(struct stmmac_priv
*priv
, u32 chan
)
1965 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[chan
];
1968 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1970 stmmac_stop_tx_dma(priv
, chan
);
1971 dma_free_tx_skbufs(priv
, chan
);
1972 for (i
= 0; i
< DMA_TX_SIZE
; i
++)
1973 if (priv
->extend_desc
)
1974 stmmac_init_tx_desc(priv
, &tx_q
->dma_etx
[i
].basic
,
1975 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1977 stmmac_init_tx_desc(priv
, &tx_q
->dma_tx
[i
],
1978 priv
->mode
, (i
== DMA_TX_SIZE
- 1));
1982 netdev_tx_reset_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1983 stmmac_start_tx_dma(priv
, chan
);
1985 priv
->dev
->stats
.tx_errors
++;
1986 netif_tx_wake_queue(netdev_get_tx_queue(priv
->dev
, chan
));
1990 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1991 * @priv: driver private structure
1992 * @txmode: TX operating mode
1993 * @rxmode: RX operating mode
1994 * @chan: channel index
1995 * Description: it is used for configuring of the DMA operation mode in
1996 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1999 static void stmmac_set_dma_operation_mode(struct stmmac_priv
*priv
, u32 txmode
,
2000 u32 rxmode
, u32 chan
)
2002 u8 rxqmode
= priv
->plat
->rx_queues_cfg
[chan
].mode_to_use
;
2003 u8 txqmode
= priv
->plat
->tx_queues_cfg
[chan
].mode_to_use
;
2004 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2005 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2006 int rxfifosz
= priv
->plat
->rx_fifo_size
;
2007 int txfifosz
= priv
->plat
->tx_fifo_size
;
2010 rxfifosz
= priv
->dma_cap
.rx_fifo_size
;
2012 txfifosz
= priv
->dma_cap
.tx_fifo_size
;
2014 /* Adjust for real per queue fifo size */
2015 rxfifosz
/= rx_channels_count
;
2016 txfifosz
/= tx_channels_count
;
2018 stmmac_dma_rx_mode(priv
, priv
->ioaddr
, rxmode
, chan
, rxfifosz
, rxqmode
);
2019 stmmac_dma_tx_mode(priv
, priv
->ioaddr
, txmode
, chan
, txfifosz
, txqmode
);
2022 static bool stmmac_safety_feat_interrupt(struct stmmac_priv
*priv
)
2026 ret
= stmmac_safety_feat_irq_status(priv
, priv
->dev
,
2027 priv
->ioaddr
, priv
->dma_cap
.asp
, &priv
->sstats
);
2028 if (ret
&& (ret
!= -EINVAL
)) {
2029 stmmac_global_err(priv
);
2036 static int stmmac_napi_check(struct stmmac_priv
*priv
, u32 chan
)
2038 int status
= stmmac_dma_interrupt_status(priv
, priv
->ioaddr
,
2039 &priv
->xstats
, chan
);
2040 struct stmmac_channel
*ch
= &priv
->channel
[chan
];
2041 bool needs_work
= false;
2043 if ((status
& handle_rx
) && ch
->has_rx
) {
2046 status
&= ~handle_rx
;
2049 if ((status
& handle_tx
) && ch
->has_tx
) {
2052 status
&= ~handle_tx
;
2055 if (needs_work
&& napi_schedule_prep(&ch
->napi
)) {
2056 stmmac_disable_dma_irq(priv
, priv
->ioaddr
, chan
);
2057 __napi_schedule(&ch
->napi
);
2064 * stmmac_dma_interrupt - DMA ISR
2065 * @priv: driver private structure
2066 * Description: this is the DMA ISR. It is called by the main ISR.
2067 * It calls the dwmac dma routine and schedule poll method in case of some
2070 static void stmmac_dma_interrupt(struct stmmac_priv
*priv
)
2072 u32 tx_channel_count
= priv
->plat
->tx_queues_to_use
;
2073 u32 rx_channel_count
= priv
->plat
->rx_queues_to_use
;
2074 u32 channels_to_check
= tx_channel_count
> rx_channel_count
?
2075 tx_channel_count
: rx_channel_count
;
2077 int status
[max_t(u32
, MTL_MAX_TX_QUEUES
, MTL_MAX_RX_QUEUES
)];
2079 /* Make sure we never check beyond our status buffer. */
2080 if (WARN_ON_ONCE(channels_to_check
> ARRAY_SIZE(status
)))
2081 channels_to_check
= ARRAY_SIZE(status
);
2083 for (chan
= 0; chan
< channels_to_check
; chan
++)
2084 status
[chan
] = stmmac_napi_check(priv
, chan
);
2086 for (chan
= 0; chan
< tx_channel_count
; chan
++) {
2087 if (unlikely(status
[chan
] & tx_hard_error_bump_tc
)) {
2088 /* Try to bump up the dma threshold on this failure */
2089 if (unlikely(priv
->xstats
.threshold
!= SF_DMA_MODE
) &&
2092 if (priv
->plat
->force_thresh_dma_mode
)
2093 stmmac_set_dma_operation_mode(priv
,
2098 stmmac_set_dma_operation_mode(priv
,
2102 priv
->xstats
.threshold
= tc
;
2104 } else if (unlikely(status
[chan
] == tx_hard_error
)) {
2105 stmmac_tx_err(priv
, chan
);
2111 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2112 * @priv: driver private structure
2113 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2115 static void stmmac_mmc_setup(struct stmmac_priv
*priv
)
2117 unsigned int mode
= MMC_CNTRL_RESET_ON_READ
| MMC_CNTRL_COUNTER_RESET
|
2118 MMC_CNTRL_PRESET
| MMC_CNTRL_FULL_HALF_PRESET
;
2120 dwmac_mmc_intr_all_mask(priv
->mmcaddr
);
2122 if (priv
->dma_cap
.rmon
) {
2123 dwmac_mmc_ctrl(priv
->mmcaddr
, mode
);
2124 memset(&priv
->mmc
, 0, sizeof(struct stmmac_counters
));
2126 netdev_info(priv
->dev
, "No MAC Management Counters available\n");
2130 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2131 * @priv: driver private structure
2133 * new GMAC chip generations have a new register to indicate the
2134 * presence of the optional feature/functions.
2135 * This can be also used to override the value passed through the
2136 * platform and necessary for old MAC10/100 and GMAC chips.
2138 static int stmmac_get_hw_features(struct stmmac_priv
*priv
)
2140 return stmmac_get_hw_feature(priv
, priv
->ioaddr
, &priv
->dma_cap
) == 0;
2144 * stmmac_check_ether_addr - check if the MAC addr is valid
2145 * @priv: driver private structure
2147 * it is to verify if the MAC address is valid, in case of failures it
2148 * generates a random MAC address
2150 static void stmmac_check_ether_addr(struct stmmac_priv
*priv
)
2152 if (!is_valid_ether_addr(priv
->dev
->dev_addr
)) {
2153 stmmac_get_umac_addr(priv
, priv
->hw
, priv
->dev
->dev_addr
, 0);
2154 if (!is_valid_ether_addr(priv
->dev
->dev_addr
))
2155 eth_hw_addr_random(priv
->dev
);
2156 netdev_info(priv
->dev
, "device MAC address %pM\n",
2157 priv
->dev
->dev_addr
);
2162 * stmmac_init_dma_engine - DMA init.
2163 * @priv: driver private structure
2165 * It inits the DMA invoking the specific MAC/GMAC callback.
2166 * Some DMA parameters can be passed from the platform;
2167 * in case of these are not passed a default is kept for the MAC or GMAC.
2169 static int stmmac_init_dma_engine(struct stmmac_priv
*priv
)
2171 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2172 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2173 u32 dma_csr_ch
= max(rx_channels_count
, tx_channels_count
);
2174 struct stmmac_rx_queue
*rx_q
;
2175 struct stmmac_tx_queue
*tx_q
;
2180 if (!priv
->plat
->dma_cfg
|| !priv
->plat
->dma_cfg
->pbl
) {
2181 dev_err(priv
->device
, "Invalid DMA configuration\n");
2185 if (priv
->extend_desc
&& (priv
->mode
== STMMAC_RING_MODE
))
2188 ret
= stmmac_reset(priv
, priv
->ioaddr
);
2190 dev_err(priv
->device
, "Failed to reset the dma\n");
2194 /* DMA Configuration */
2195 stmmac_dma_init(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
, atds
);
2197 if (priv
->plat
->axi
)
2198 stmmac_axi(priv
, priv
->ioaddr
, priv
->plat
->axi
);
2200 /* DMA CSR Channel configuration */
2201 for (chan
= 0; chan
< dma_csr_ch
; chan
++)
2202 stmmac_init_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
, chan
);
2204 /* DMA RX Channel Configuration */
2205 for (chan
= 0; chan
< rx_channels_count
; chan
++) {
2206 rx_q
= &priv
->rx_queue
[chan
];
2208 stmmac_init_rx_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
,
2209 rx_q
->dma_rx_phy
, chan
);
2211 rx_q
->rx_tail_addr
= rx_q
->dma_rx_phy
+
2212 (DMA_RX_SIZE
* sizeof(struct dma_desc
));
2213 stmmac_set_rx_tail_ptr(priv
, priv
->ioaddr
,
2214 rx_q
->rx_tail_addr
, chan
);
2217 /* DMA TX Channel Configuration */
2218 for (chan
= 0; chan
< tx_channels_count
; chan
++) {
2219 tx_q
= &priv
->tx_queue
[chan
];
2221 stmmac_init_tx_chan(priv
, priv
->ioaddr
, priv
->plat
->dma_cfg
,
2222 tx_q
->dma_tx_phy
, chan
);
2224 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
;
2225 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
,
2226 tx_q
->tx_tail_addr
, chan
);
2232 static void stmmac_tx_timer_arm(struct stmmac_priv
*priv
, u32 queue
)
2234 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
2236 mod_timer(&tx_q
->txtimer
, STMMAC_COAL_TIMER(priv
->tx_coal_timer
));
2240 * stmmac_tx_timer - mitigation sw timer for tx.
2241 * @data: data pointer
2243 * This is the timer handler to directly invoke the stmmac_tx_clean.
2245 static void stmmac_tx_timer(struct timer_list
*t
)
2247 struct stmmac_tx_queue
*tx_q
= from_timer(tx_q
, t
, txtimer
);
2248 struct stmmac_priv
*priv
= tx_q
->priv_data
;
2249 struct stmmac_channel
*ch
;
2251 ch
= &priv
->channel
[tx_q
->queue_index
];
2253 if (likely(napi_schedule_prep(&ch
->napi
)))
2254 __napi_schedule(&ch
->napi
);
2258 * stmmac_init_tx_coalesce - init tx mitigation options.
2259 * @priv: driver private structure
2261 * This inits the transmit coalesce parameters: i.e. timer rate,
2262 * timer handler and default threshold used for enabling the
2263 * interrupt on completion bit.
2265 static void stmmac_init_tx_coalesce(struct stmmac_priv
*priv
)
2267 u32 tx_channel_count
= priv
->plat
->tx_queues_to_use
;
2270 priv
->tx_coal_frames
= STMMAC_TX_FRAMES
;
2271 priv
->tx_coal_timer
= STMMAC_COAL_TX_TIMER
;
2273 for (chan
= 0; chan
< tx_channel_count
; chan
++) {
2274 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[chan
];
2276 timer_setup(&tx_q
->txtimer
, stmmac_tx_timer
, 0);
2280 static void stmmac_set_rings_length(struct stmmac_priv
*priv
)
2282 u32 rx_channels_count
= priv
->plat
->rx_queues_to_use
;
2283 u32 tx_channels_count
= priv
->plat
->tx_queues_to_use
;
2286 /* set TX ring length */
2287 for (chan
= 0; chan
< tx_channels_count
; chan
++)
2288 stmmac_set_tx_ring_len(priv
, priv
->ioaddr
,
2289 (DMA_TX_SIZE
- 1), chan
);
2291 /* set RX ring length */
2292 for (chan
= 0; chan
< rx_channels_count
; chan
++)
2293 stmmac_set_rx_ring_len(priv
, priv
->ioaddr
,
2294 (DMA_RX_SIZE
- 1), chan
);
2298 * stmmac_set_tx_queue_weight - Set TX queue weight
2299 * @priv: driver private structure
2300 * Description: It is used for setting TX queues weight
2302 static void stmmac_set_tx_queue_weight(struct stmmac_priv
*priv
)
2304 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2308 for (queue
= 0; queue
< tx_queues_count
; queue
++) {
2309 weight
= priv
->plat
->tx_queues_cfg
[queue
].weight
;
2310 stmmac_set_mtl_tx_queue_weight(priv
, priv
->hw
, weight
, queue
);
2315 * stmmac_configure_cbs - Configure CBS in TX queue
2316 * @priv: driver private structure
2317 * Description: It is used for configuring CBS in AVB TX queues
2319 static void stmmac_configure_cbs(struct stmmac_priv
*priv
)
2321 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2325 /* queue 0 is reserved for legacy traffic */
2326 for (queue
= 1; queue
< tx_queues_count
; queue
++) {
2327 mode_to_use
= priv
->plat
->tx_queues_cfg
[queue
].mode_to_use
;
2328 if (mode_to_use
== MTL_QUEUE_DCB
)
2331 stmmac_config_cbs(priv
, priv
->hw
,
2332 priv
->plat
->tx_queues_cfg
[queue
].send_slope
,
2333 priv
->plat
->tx_queues_cfg
[queue
].idle_slope
,
2334 priv
->plat
->tx_queues_cfg
[queue
].high_credit
,
2335 priv
->plat
->tx_queues_cfg
[queue
].low_credit
,
2341 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2342 * @priv: driver private structure
2343 * Description: It is used for mapping RX queues to RX dma channels
2345 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv
*priv
)
2347 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2351 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2352 chan
= priv
->plat
->rx_queues_cfg
[queue
].chan
;
2353 stmmac_map_mtl_to_dma(priv
, priv
->hw
, queue
, chan
);
2358 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2359 * @priv: driver private structure
2360 * Description: It is used for configuring the RX Queue Priority
2362 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv
*priv
)
2364 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2368 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2369 if (!priv
->plat
->rx_queues_cfg
[queue
].use_prio
)
2372 prio
= priv
->plat
->rx_queues_cfg
[queue
].prio
;
2373 stmmac_rx_queue_prio(priv
, priv
->hw
, prio
, queue
);
2378 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2379 * @priv: driver private structure
2380 * Description: It is used for configuring the TX Queue Priority
2382 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv
*priv
)
2384 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2388 for (queue
= 0; queue
< tx_queues_count
; queue
++) {
2389 if (!priv
->plat
->tx_queues_cfg
[queue
].use_prio
)
2392 prio
= priv
->plat
->tx_queues_cfg
[queue
].prio
;
2393 stmmac_tx_queue_prio(priv
, priv
->hw
, prio
, queue
);
2398 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2399 * @priv: driver private structure
2400 * Description: It is used for configuring the RX queue routing
2402 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv
*priv
)
2404 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2408 for (queue
= 0; queue
< rx_queues_count
; queue
++) {
2409 /* no specific packet type routing specified for the queue */
2410 if (priv
->plat
->rx_queues_cfg
[queue
].pkt_route
== 0x0)
2413 packet
= priv
->plat
->rx_queues_cfg
[queue
].pkt_route
;
2414 stmmac_rx_queue_routing(priv
, priv
->hw
, packet
, queue
);
2419 * stmmac_mtl_configuration - Configure MTL
2420 * @priv: driver private structure
2421 * Description: It is used for configurring MTL
2423 static void stmmac_mtl_configuration(struct stmmac_priv
*priv
)
2425 u32 rx_queues_count
= priv
->plat
->rx_queues_to_use
;
2426 u32 tx_queues_count
= priv
->plat
->tx_queues_to_use
;
2428 if (tx_queues_count
> 1)
2429 stmmac_set_tx_queue_weight(priv
);
2431 /* Configure MTL RX algorithms */
2432 if (rx_queues_count
> 1)
2433 stmmac_prog_mtl_rx_algorithms(priv
, priv
->hw
,
2434 priv
->plat
->rx_sched_algorithm
);
2436 /* Configure MTL TX algorithms */
2437 if (tx_queues_count
> 1)
2438 stmmac_prog_mtl_tx_algorithms(priv
, priv
->hw
,
2439 priv
->plat
->tx_sched_algorithm
);
2441 /* Configure CBS in AVB TX queues */
2442 if (tx_queues_count
> 1)
2443 stmmac_configure_cbs(priv
);
2445 /* Map RX MTL to DMA channels */
2446 stmmac_rx_queue_dma_chan_map(priv
);
2448 /* Enable MAC RX Queues */
2449 stmmac_mac_enable_rx_queues(priv
);
2451 /* Set RX priorities */
2452 if (rx_queues_count
> 1)
2453 stmmac_mac_config_rx_queues_prio(priv
);
2455 /* Set TX priorities */
2456 if (tx_queues_count
> 1)
2457 stmmac_mac_config_tx_queues_prio(priv
);
2459 /* Set RX routing */
2460 if (rx_queues_count
> 1)
2461 stmmac_mac_config_rx_queues_routing(priv
);
2464 static void stmmac_safety_feat_configuration(struct stmmac_priv
*priv
)
2466 if (priv
->dma_cap
.asp
) {
2467 netdev_info(priv
->dev
, "Enabling Safety Features\n");
2468 stmmac_safety_feat_config(priv
, priv
->ioaddr
, priv
->dma_cap
.asp
);
2470 netdev_info(priv
->dev
, "No Safety Features support found\n");
2475 * stmmac_hw_setup - setup mac in a usable state.
2476 * @dev : pointer to the device structure.
2478 * this is the main function to setup the HW in a usable state because the
2479 * dma engine is reset, the core registers are configured (e.g. AXI,
2480 * Checksum features, timers). The DMA is ready to start receiving and
2483 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2486 static int stmmac_hw_setup(struct net_device
*dev
, bool init_ptp
)
2488 struct stmmac_priv
*priv
= netdev_priv(dev
);
2489 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
2490 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
2494 /* DMA initialization and SW reset */
2495 ret
= stmmac_init_dma_engine(priv
);
2497 netdev_err(priv
->dev
, "%s: DMA engine initialization failed\n",
2502 /* Copy the MAC addr into the HW */
2503 stmmac_set_umac_addr(priv
, priv
->hw
, dev
->dev_addr
, 0);
2505 /* PS and related bits will be programmed according to the speed */
2506 if (priv
->hw
->pcs
) {
2507 int speed
= priv
->plat
->mac_port_sel_speed
;
2509 if ((speed
== SPEED_10
) || (speed
== SPEED_100
) ||
2510 (speed
== SPEED_1000
)) {
2511 priv
->hw
->ps
= speed
;
2513 dev_warn(priv
->device
, "invalid port speed\n");
2518 /* Initialize the MAC Core */
2519 stmmac_core_init(priv
, priv
->hw
, dev
);
2522 stmmac_mtl_configuration(priv
);
2524 /* Initialize Safety Features */
2525 stmmac_safety_feat_configuration(priv
);
2527 ret
= stmmac_rx_ipc(priv
, priv
->hw
);
2529 netdev_warn(priv
->dev
, "RX IPC Checksum Offload disabled\n");
2530 priv
->plat
->rx_coe
= STMMAC_RX_COE_NONE
;
2531 priv
->hw
->rx_csum
= 0;
2534 /* Enable the MAC Rx/Tx */
2535 stmmac_mac_set(priv
, priv
->ioaddr
, true);
2537 /* Set the HW DMA mode and the COE */
2538 stmmac_dma_operation_mode(priv
);
2540 stmmac_mmc_setup(priv
);
2543 ret
= clk_prepare_enable(priv
->plat
->clk_ptp_ref
);
2545 netdev_warn(priv
->dev
, "failed to enable PTP reference clock: %d\n", ret
);
2547 ret
= stmmac_init_ptp(priv
);
2548 if (ret
== -EOPNOTSUPP
)
2549 netdev_warn(priv
->dev
, "PTP not supported by HW\n");
2551 netdev_warn(priv
->dev
, "PTP init failed\n");
2554 priv
->tx_lpi_timer
= STMMAC_DEFAULT_TWT_LS
;
2556 if (priv
->use_riwt
) {
2557 ret
= stmmac_rx_watchdog(priv
, priv
->ioaddr
, MAX_DMA_RIWT
, rx_cnt
);
2559 priv
->rx_riwt
= MAX_DMA_RIWT
;
2563 stmmac_pcs_ctrl_ane(priv
, priv
->hw
, 1, priv
->hw
->ps
, 0);
2565 /* set TX and RX rings length */
2566 stmmac_set_rings_length(priv
);
2570 for (chan
= 0; chan
< tx_cnt
; chan
++)
2571 stmmac_enable_tso(priv
, priv
->ioaddr
, 1, chan
);
2574 /* Start the ball rolling... */
2575 stmmac_start_all_dma(priv
);
2580 static void stmmac_hw_teardown(struct net_device
*dev
)
2582 struct stmmac_priv
*priv
= netdev_priv(dev
);
2584 clk_disable_unprepare(priv
->plat
->clk_ptp_ref
);
2588 * stmmac_open - open entry point of the driver
2589 * @dev : pointer to the device structure.
2591 * This function is the open entry point of the driver.
2593 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2596 static int stmmac_open(struct net_device
*dev
)
2598 struct stmmac_priv
*priv
= netdev_priv(dev
);
2602 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
2603 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
2604 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
) {
2605 ret
= stmmac_init_phy(dev
);
2607 netdev_err(priv
->dev
,
2608 "%s: Cannot attach to PHY (error: %d)\n",
2614 /* Extra statistics */
2615 memset(&priv
->xstats
, 0, sizeof(struct stmmac_extra_stats
));
2616 priv
->xstats
.threshold
= tc
;
2618 priv
->dma_buf_sz
= STMMAC_ALIGN(buf_sz
);
2619 priv
->rx_copybreak
= STMMAC_RX_COPYBREAK
;
2621 ret
= alloc_dma_desc_resources(priv
);
2623 netdev_err(priv
->dev
, "%s: DMA descriptors allocation failed\n",
2625 goto dma_desc_error
;
2628 ret
= init_dma_desc_rings(dev
, GFP_KERNEL
);
2630 netdev_err(priv
->dev
, "%s: DMA descriptors initialization failed\n",
2635 ret
= stmmac_hw_setup(dev
, true);
2637 netdev_err(priv
->dev
, "%s: Hw setup failed\n", __func__
);
2641 stmmac_init_tx_coalesce(priv
);
2644 phy_start(dev
->phydev
);
2646 /* Request the IRQ lines */
2647 ret
= request_irq(dev
->irq
, stmmac_interrupt
,
2648 IRQF_SHARED
, dev
->name
, dev
);
2649 if (unlikely(ret
< 0)) {
2650 netdev_err(priv
->dev
,
2651 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2652 __func__
, dev
->irq
, ret
);
2656 /* Request the Wake IRQ in case of another line is used for WoL */
2657 if (priv
->wol_irq
!= dev
->irq
) {
2658 ret
= request_irq(priv
->wol_irq
, stmmac_interrupt
,
2659 IRQF_SHARED
, dev
->name
, dev
);
2660 if (unlikely(ret
< 0)) {
2661 netdev_err(priv
->dev
,
2662 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2663 __func__
, priv
->wol_irq
, ret
);
2668 /* Request the IRQ lines */
2669 if (priv
->lpi_irq
> 0) {
2670 ret
= request_irq(priv
->lpi_irq
, stmmac_interrupt
, IRQF_SHARED
,
2672 if (unlikely(ret
< 0)) {
2673 netdev_err(priv
->dev
,
2674 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2675 __func__
, priv
->lpi_irq
, ret
);
2680 stmmac_enable_all_queues(priv
);
2681 stmmac_start_all_queues(priv
);
2686 if (priv
->wol_irq
!= dev
->irq
)
2687 free_irq(priv
->wol_irq
, dev
);
2689 free_irq(dev
->irq
, dev
);
2692 phy_stop(dev
->phydev
);
2694 for (chan
= 0; chan
< priv
->plat
->tx_queues_to_use
; chan
++)
2695 del_timer_sync(&priv
->tx_queue
[chan
].txtimer
);
2697 stmmac_hw_teardown(dev
);
2699 free_dma_desc_resources(priv
);
2702 phy_disconnect(dev
->phydev
);
2708 * stmmac_release - close entry point of the driver
2709 * @dev : device pointer.
2711 * This is the stop entry point of the driver.
2713 static int stmmac_release(struct net_device
*dev
)
2715 struct stmmac_priv
*priv
= netdev_priv(dev
);
2718 if (priv
->eee_enabled
)
2719 del_timer_sync(&priv
->eee_ctrl_timer
);
2721 /* Stop and disconnect the PHY */
2723 phy_stop(dev
->phydev
);
2724 phy_disconnect(dev
->phydev
);
2727 stmmac_stop_all_queues(priv
);
2729 stmmac_disable_all_queues(priv
);
2731 for (chan
= 0; chan
< priv
->plat
->tx_queues_to_use
; chan
++)
2732 del_timer_sync(&priv
->tx_queue
[chan
].txtimer
);
2734 /* Free the IRQ lines */
2735 free_irq(dev
->irq
, dev
);
2736 if (priv
->wol_irq
!= dev
->irq
)
2737 free_irq(priv
->wol_irq
, dev
);
2738 if (priv
->lpi_irq
> 0)
2739 free_irq(priv
->lpi_irq
, dev
);
2741 /* Stop TX/RX DMA and clear the descriptors */
2742 stmmac_stop_all_dma(priv
);
2744 /* Release and free the Rx/Tx resources */
2745 free_dma_desc_resources(priv
);
2747 /* Disable the MAC Rx/Tx */
2748 stmmac_mac_set(priv
, priv
->ioaddr
, false);
2750 netif_carrier_off(dev
);
2752 stmmac_release_ptp(priv
);
2758 * stmmac_tso_allocator - close entry point of the driver
2759 * @priv: driver private structure
2760 * @des: buffer start address
2761 * @total_len: total length to fill in descriptors
2762 * @last_segmant: condition for the last descriptor
2763 * @queue: TX queue index
2765 * This function fills descriptor and request new descriptors according to
2766 * buffer length to fill
2768 static void stmmac_tso_allocator(struct stmmac_priv
*priv
, unsigned int des
,
2769 int total_len
, bool last_segment
, u32 queue
)
2771 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
2772 struct dma_desc
*desc
;
2776 tmp_len
= total_len
;
2778 while (tmp_len
> 0) {
2779 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2780 WARN_ON(tx_q
->tx_skbuff
[tx_q
->cur_tx
]);
2781 desc
= tx_q
->dma_tx
+ tx_q
->cur_tx
;
2783 desc
->des0
= cpu_to_le32(des
+ (total_len
- tmp_len
));
2784 buff_size
= tmp_len
>= TSO_MAX_BUFF_SIZE
?
2785 TSO_MAX_BUFF_SIZE
: tmp_len
;
2787 stmmac_prepare_tso_tx_desc(priv
, desc
, 0, buff_size
,
2789 (last_segment
) && (tmp_len
<= TSO_MAX_BUFF_SIZE
),
2792 tmp_len
-= TSO_MAX_BUFF_SIZE
;
2797 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2798 * @skb : the socket buffer
2799 * @dev : device pointer
2800 * Description: this is the transmit function that is called on TSO frames
2801 * (support available on GMAC4 and newer chips).
2802 * Diagram below show the ring programming in case of TSO frames:
2806 * | DES0 |---> buffer1 = L2/L3/L4 header
2807 * | DES1 |---> TCP Payload (can continue on next descr...)
2808 * | DES2 |---> buffer 1 and 2 len
2809 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2815 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
2817 * | DES2 | --> buffer 1 and 2 len
2821 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2823 static netdev_tx_t
stmmac_tso_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2825 struct dma_desc
*desc
, *first
, *mss_desc
= NULL
;
2826 struct stmmac_priv
*priv
= netdev_priv(dev
);
2827 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2828 u32 queue
= skb_get_queue_mapping(skb
);
2829 unsigned int first_entry
, des
;
2830 struct stmmac_tx_queue
*tx_q
;
2831 int tmp_pay_len
= 0;
2836 tx_q
= &priv
->tx_queue
[queue
];
2838 /* Compute header lengths */
2839 proto_hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2841 /* Desc availability based on threshold should be enough safe */
2842 if (unlikely(stmmac_tx_avail(priv
, queue
) <
2843 (((skb
->len
- proto_hdr_len
) / TSO_MAX_BUFF_SIZE
+ 1)))) {
2844 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev
, queue
))) {
2845 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
,
2847 /* This is a hard error, log it. */
2848 netdev_err(priv
->dev
,
2849 "%s: Tx Ring full when queue awake\n",
2852 return NETDEV_TX_BUSY
;
2855 pay_len
= skb_headlen(skb
) - proto_hdr_len
; /* no frags */
2857 mss
= skb_shinfo(skb
)->gso_size
;
2859 /* set new MSS value if needed */
2860 if (mss
!= tx_q
->mss
) {
2861 mss_desc
= tx_q
->dma_tx
+ tx_q
->cur_tx
;
2862 stmmac_set_mss(priv
, mss_desc
, mss
);
2864 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2865 WARN_ON(tx_q
->tx_skbuff
[tx_q
->cur_tx
]);
2868 if (netif_msg_tx_queued(priv
)) {
2869 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2870 __func__
, tcp_hdrlen(skb
), proto_hdr_len
, pay_len
, mss
);
2871 pr_info("\tskb->len %d, skb->data_len %d\n", skb
->len
,
2875 first_entry
= tx_q
->cur_tx
;
2876 WARN_ON(tx_q
->tx_skbuff
[first_entry
]);
2878 desc
= tx_q
->dma_tx
+ first_entry
;
2881 /* first descriptor: fill Headers on Buf1 */
2882 des
= dma_map_single(priv
->device
, skb
->data
, skb_headlen(skb
),
2884 if (dma_mapping_error(priv
->device
, des
))
2887 tx_q
->tx_skbuff_dma
[first_entry
].buf
= des
;
2888 tx_q
->tx_skbuff_dma
[first_entry
].len
= skb_headlen(skb
);
2890 first
->des0
= cpu_to_le32(des
);
2892 /* Fill start of payload in buff2 of first descriptor */
2894 first
->des1
= cpu_to_le32(des
+ proto_hdr_len
);
2896 /* If needed take extra descriptors to fill the remaining payload */
2897 tmp_pay_len
= pay_len
- TSO_MAX_BUFF_SIZE
;
2899 stmmac_tso_allocator(priv
, des
, tmp_pay_len
, (nfrags
== 0), queue
);
2901 /* Prepare fragments */
2902 for (i
= 0; i
< nfrags
; i
++) {
2903 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2905 des
= skb_frag_dma_map(priv
->device
, frag
, 0,
2906 skb_frag_size(frag
),
2908 if (dma_mapping_error(priv
->device
, des
))
2911 stmmac_tso_allocator(priv
, des
, skb_frag_size(frag
),
2912 (i
== nfrags
- 1), queue
);
2914 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].buf
= des
;
2915 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].len
= skb_frag_size(frag
);
2916 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].map_as_page
= true;
2919 tx_q
->tx_skbuff_dma
[tx_q
->cur_tx
].last_segment
= true;
2921 /* Only the last descriptor gets to point to the skb. */
2922 tx_q
->tx_skbuff
[tx_q
->cur_tx
] = skb
;
2924 /* We've used all descriptors we need for this skb, however,
2925 * advance cur_tx so that it references a fresh descriptor.
2926 * ndo_start_xmit will fill this descriptor the next time it's
2927 * called and stmmac_tx_clean may clean up to this descriptor.
2929 tx_q
->cur_tx
= STMMAC_GET_ENTRY(tx_q
->cur_tx
, DMA_TX_SIZE
);
2931 if (unlikely(stmmac_tx_avail(priv
, queue
) <= (MAX_SKB_FRAGS
+ 1))) {
2932 netif_dbg(priv
, hw
, priv
->dev
, "%s: stop transmitted packets\n",
2934 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
2937 dev
->stats
.tx_bytes
+= skb
->len
;
2938 priv
->xstats
.tx_tso_frames
++;
2939 priv
->xstats
.tx_tso_nfrags
+= nfrags
;
2941 /* Manage tx mitigation */
2942 tx_q
->tx_count_frames
+= nfrags
+ 1;
2943 if (likely(priv
->tx_coal_frames
> tx_q
->tx_count_frames
) &&
2944 !(priv
->synopsys_id
>= DWMAC_CORE_4_00
&&
2945 (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2946 priv
->hwts_tx_en
)) {
2947 stmmac_tx_timer_arm(priv
, queue
);
2949 tx_q
->tx_count_frames
= 0;
2950 stmmac_set_tx_ic(priv
, desc
);
2951 priv
->xstats
.tx_set_ic_bit
++;
2954 skb_tx_timestamp(skb
);
2956 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2957 priv
->hwts_tx_en
)) {
2958 /* declare that device is doing timestamping */
2959 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2960 stmmac_enable_tx_timestamp(priv
, first
);
2963 /* Complete the first descriptor before granting the DMA */
2964 stmmac_prepare_tso_tx_desc(priv
, first
, 1,
2967 1, tx_q
->tx_skbuff_dma
[first_entry
].last_segment
,
2968 tcp_hdrlen(skb
) / 4, (skb
->len
- proto_hdr_len
));
2970 /* If context desc is used to change MSS */
2972 /* Make sure that first descriptor has been completely
2973 * written, including its own bit. This is because MSS is
2974 * actually before first descriptor, so we need to make
2975 * sure that MSS's own bit is the last thing written.
2978 stmmac_set_tx_owner(priv
, mss_desc
);
2981 /* The own bit must be the latest setting done when prepare the
2982 * descriptor and then barrier is needed to make sure that
2983 * all is coherent before granting the DMA engine.
2987 if (netif_msg_pktdata(priv
)) {
2988 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2989 __func__
, tx_q
->cur_tx
, tx_q
->dirty_tx
, first_entry
,
2990 tx_q
->cur_tx
, first
, nfrags
);
2992 stmmac_display_ring(priv
, (void *)tx_q
->dma_tx
, DMA_TX_SIZE
, 0);
2994 pr_info(">>> frame to be transmitted: ");
2995 print_pkt(skb
->data
, skb_headlen(skb
));
2998 netdev_tx_sent_queue(netdev_get_tx_queue(dev
, queue
), skb
->len
);
3000 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
+ (tx_q
->cur_tx
* sizeof(*desc
));
3001 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
, tx_q
->tx_tail_addr
, queue
);
3002 stmmac_tx_timer_arm(priv
, queue
);
3004 return NETDEV_TX_OK
;
3007 dev_err(priv
->device
, "Tx dma map failed\n");
3009 priv
->dev
->stats
.tx_dropped
++;
3010 return NETDEV_TX_OK
;
3014 * stmmac_xmit - Tx entry point of the driver
3015 * @skb : the socket buffer
3016 * @dev : device pointer
3017 * Description : this is the tx entry point of the driver.
3018 * It programs the chain or the ring and supports oversized frames
3021 static netdev_tx_t
stmmac_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3023 struct stmmac_priv
*priv
= netdev_priv(dev
);
3024 unsigned int nopaged_len
= skb_headlen(skb
);
3025 int i
, csum_insertion
= 0, is_jumbo
= 0;
3026 u32 queue
= skb_get_queue_mapping(skb
);
3027 int nfrags
= skb_shinfo(skb
)->nr_frags
;
3029 unsigned int first_entry
;
3030 struct dma_desc
*desc
, *first
;
3031 struct stmmac_tx_queue
*tx_q
;
3032 unsigned int enh_desc
;
3035 tx_q
= &priv
->tx_queue
[queue
];
3037 if (priv
->tx_path_in_lpi_mode
)
3038 stmmac_disable_eee_mode(priv
);
3040 /* Manage oversized TCP frames for GMAC4 device */
3041 if (skb_is_gso(skb
) && priv
->tso
) {
3042 if (skb_shinfo(skb
)->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))
3043 return stmmac_tso_xmit(skb
, dev
);
3046 if (unlikely(stmmac_tx_avail(priv
, queue
) < nfrags
+ 1)) {
3047 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev
, queue
))) {
3048 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
,
3050 /* This is a hard error, log it. */
3051 netdev_err(priv
->dev
,
3052 "%s: Tx Ring full when queue awake\n",
3055 return NETDEV_TX_BUSY
;
3058 entry
= tx_q
->cur_tx
;
3059 first_entry
= entry
;
3060 WARN_ON(tx_q
->tx_skbuff
[first_entry
]);
3062 csum_insertion
= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
3064 if (likely(priv
->extend_desc
))
3065 desc
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
3067 desc
= tx_q
->dma_tx
+ entry
;
3071 enh_desc
= priv
->plat
->enh_desc
;
3072 /* To program the descriptors according to the size of the frame */
3074 is_jumbo
= stmmac_is_jumbo_frm(priv
, skb
->len
, enh_desc
);
3076 if (unlikely(is_jumbo
)) {
3077 entry
= stmmac_jumbo_frm(priv
, tx_q
, skb
, csum_insertion
);
3078 if (unlikely(entry
< 0) && (entry
!= -EINVAL
))
3082 for (i
= 0; i
< nfrags
; i
++) {
3083 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3084 int len
= skb_frag_size(frag
);
3085 bool last_segment
= (i
== (nfrags
- 1));
3087 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
3088 WARN_ON(tx_q
->tx_skbuff
[entry
]);
3090 if (likely(priv
->extend_desc
))
3091 desc
= (struct dma_desc
*)(tx_q
->dma_etx
+ entry
);
3093 desc
= tx_q
->dma_tx
+ entry
;
3095 des
= skb_frag_dma_map(priv
->device
, frag
, 0, len
,
3097 if (dma_mapping_error(priv
->device
, des
))
3098 goto dma_map_err
; /* should reuse desc w/o issues */
3100 tx_q
->tx_skbuff_dma
[entry
].buf
= des
;
3102 stmmac_set_desc_addr(priv
, desc
, des
);
3104 tx_q
->tx_skbuff_dma
[entry
].map_as_page
= true;
3105 tx_q
->tx_skbuff_dma
[entry
].len
= len
;
3106 tx_q
->tx_skbuff_dma
[entry
].last_segment
= last_segment
;
3108 /* Prepare the descriptor and set the own bit too */
3109 stmmac_prepare_tx_desc(priv
, desc
, 0, len
, csum_insertion
,
3110 priv
->mode
, 1, last_segment
, skb
->len
);
3113 /* Only the last descriptor gets to point to the skb. */
3114 tx_q
->tx_skbuff
[entry
] = skb
;
3116 /* We've used all descriptors we need for this skb, however,
3117 * advance cur_tx so that it references a fresh descriptor.
3118 * ndo_start_xmit will fill this descriptor the next time it's
3119 * called and stmmac_tx_clean may clean up to this descriptor.
3121 entry
= STMMAC_GET_ENTRY(entry
, DMA_TX_SIZE
);
3122 tx_q
->cur_tx
= entry
;
3124 if (netif_msg_pktdata(priv
)) {
3127 netdev_dbg(priv
->dev
,
3128 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3129 __func__
, tx_q
->cur_tx
, tx_q
->dirty_tx
, first_entry
,
3130 entry
, first
, nfrags
);
3132 if (priv
->extend_desc
)
3133 tx_head
= (void *)tx_q
->dma_etx
;
3135 tx_head
= (void *)tx_q
->dma_tx
;
3137 stmmac_display_ring(priv
, tx_head
, DMA_TX_SIZE
, false);
3139 netdev_dbg(priv
->dev
, ">>> frame to be transmitted: ");
3140 print_pkt(skb
->data
, skb
->len
);
3143 if (unlikely(stmmac_tx_avail(priv
, queue
) <= (MAX_SKB_FRAGS
+ 1))) {
3144 netif_dbg(priv
, hw
, priv
->dev
, "%s: stop transmitted packets\n",
3146 netif_tx_stop_queue(netdev_get_tx_queue(priv
->dev
, queue
));
3149 dev
->stats
.tx_bytes
+= skb
->len
;
3151 /* According to the coalesce parameter the IC bit for the latest
3152 * segment is reset and the timer re-started to clean the tx status.
3153 * This approach takes care about the fragments: desc is the first
3154 * element in case of no SG.
3156 tx_q
->tx_count_frames
+= nfrags
+ 1;
3157 if (likely(priv
->tx_coal_frames
> tx_q
->tx_count_frames
) &&
3158 !(priv
->synopsys_id
>= DWMAC_CORE_4_00
&&
3159 (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
3160 priv
->hwts_tx_en
)) {
3161 stmmac_tx_timer_arm(priv
, queue
);
3163 tx_q
->tx_count_frames
= 0;
3164 stmmac_set_tx_ic(priv
, desc
);
3165 priv
->xstats
.tx_set_ic_bit
++;
3168 skb_tx_timestamp(skb
);
3170 /* Ready to fill the first descriptor and set the OWN bit w/o any
3171 * problems because all the descriptors are actually ready to be
3172 * passed to the DMA engine.
3174 if (likely(!is_jumbo
)) {
3175 bool last_segment
= (nfrags
== 0);
3177 des
= dma_map_single(priv
->device
, skb
->data
,
3178 nopaged_len
, DMA_TO_DEVICE
);
3179 if (dma_mapping_error(priv
->device
, des
))
3182 tx_q
->tx_skbuff_dma
[first_entry
].buf
= des
;
3184 stmmac_set_desc_addr(priv
, first
, des
);
3186 tx_q
->tx_skbuff_dma
[first_entry
].len
= nopaged_len
;
3187 tx_q
->tx_skbuff_dma
[first_entry
].last_segment
= last_segment
;
3189 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
3190 priv
->hwts_tx_en
)) {
3191 /* declare that device is doing timestamping */
3192 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3193 stmmac_enable_tx_timestamp(priv
, first
);
3196 /* Prepare the first descriptor setting the OWN bit too */
3197 stmmac_prepare_tx_desc(priv
, first
, 1, nopaged_len
,
3198 csum_insertion
, priv
->mode
, 1, last_segment
,
3201 stmmac_set_tx_owner(priv
, first
);
3204 /* The own bit must be the latest setting done when prepare the
3205 * descriptor and then barrier is needed to make sure that
3206 * all is coherent before granting the DMA engine.
3210 netdev_tx_sent_queue(netdev_get_tx_queue(dev
, queue
), skb
->len
);
3212 stmmac_enable_dma_transmission(priv
, priv
->ioaddr
);
3214 tx_q
->tx_tail_addr
= tx_q
->dma_tx_phy
+ (tx_q
->cur_tx
* sizeof(*desc
));
3215 stmmac_set_tx_tail_ptr(priv
, priv
->ioaddr
, tx_q
->tx_tail_addr
, queue
);
3216 stmmac_tx_timer_arm(priv
, queue
);
3218 return NETDEV_TX_OK
;
3221 netdev_err(priv
->dev
, "Tx DMA map failed\n");
3223 priv
->dev
->stats
.tx_dropped
++;
3224 return NETDEV_TX_OK
;
3227 static void stmmac_rx_vlan(struct net_device
*dev
, struct sk_buff
*skb
)
3229 struct vlan_ethhdr
*veth
;
3233 veth
= (struct vlan_ethhdr
*)skb
->data
;
3234 vlan_proto
= veth
->h_vlan_proto
;
3236 if ((vlan_proto
== htons(ETH_P_8021Q
) &&
3237 dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) ||
3238 (vlan_proto
== htons(ETH_P_8021AD
) &&
3239 dev
->features
& NETIF_F_HW_VLAN_STAG_RX
)) {
3240 /* pop the vlan tag */
3241 vlanid
= ntohs(veth
->h_vlan_TCI
);
3242 memmove(skb
->data
+ VLAN_HLEN
, veth
, ETH_ALEN
* 2);
3243 skb_pull(skb
, VLAN_HLEN
);
3244 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlanid
);
3249 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue
*rx_q
)
3251 if (rx_q
->rx_zeroc_thresh
< STMMAC_RX_THRESH
)
3258 * stmmac_rx_refill - refill used skb preallocated buffers
3259 * @priv: driver private structure
3260 * @queue: RX queue index
3261 * Description : this is to reallocate the skb for the reception process
3262 * that is based on zero-copy.
3264 static inline void stmmac_rx_refill(struct stmmac_priv
*priv
, u32 queue
)
3266 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3267 int dirty
= stmmac_rx_dirty(priv
, queue
);
3268 unsigned int entry
= rx_q
->dirty_rx
;
3270 int bfsize
= priv
->dma_buf_sz
;
3272 while (dirty
-- > 0) {
3275 if (priv
->extend_desc
)
3276 p
= (struct dma_desc
*)(rx_q
->dma_erx
+ entry
);
3278 p
= rx_q
->dma_rx
+ entry
;
3280 if (likely(!rx_q
->rx_skbuff
[entry
])) {
3281 struct sk_buff
*skb
;
3283 skb
= netdev_alloc_skb_ip_align(priv
->dev
, bfsize
);
3284 if (unlikely(!skb
)) {
3285 /* so for a while no zero-copy! */
3286 rx_q
->rx_zeroc_thresh
= STMMAC_RX_THRESH
;
3287 if (unlikely(net_ratelimit()))
3288 dev_err(priv
->device
,
3289 "fail to alloc skb entry %d\n",
3294 rx_q
->rx_skbuff
[entry
] = skb
;
3295 rx_q
->rx_skbuff_dma
[entry
] =
3296 dma_map_single(priv
->device
, skb
->data
, bfsize
,
3298 if (dma_mapping_error(priv
->device
,
3299 rx_q
->rx_skbuff_dma
[entry
])) {
3300 netdev_err(priv
->dev
, "Rx DMA map failed\n");
3305 stmmac_set_desc_addr(priv
, p
, rx_q
->rx_skbuff_dma
[entry
]);
3306 stmmac_refill_desc3(priv
, rx_q
, p
);
3308 if (rx_q
->rx_zeroc_thresh
> 0)
3309 rx_q
->rx_zeroc_thresh
--;
3311 netif_dbg(priv
, rx_status
, priv
->dev
,
3312 "refill entry #%d\n", entry
);
3316 stmmac_set_rx_owner(priv
, p
, priv
->use_riwt
);
3320 entry
= STMMAC_GET_ENTRY(entry
, DMA_RX_SIZE
);
3322 rx_q
->dirty_rx
= entry
;
3323 stmmac_set_rx_tail_ptr(priv
, priv
->ioaddr
, rx_q
->rx_tail_addr
, queue
);
3327 * stmmac_rx - manage the receive process
3328 * @priv: driver private structure
3329 * @limit: napi bugget
3330 * @queue: RX queue index.
3331 * Description : this the function called by the napi poll method.
3332 * It gets all the frames inside the ring.
3334 static int stmmac_rx(struct stmmac_priv
*priv
, int limit
, u32 queue
)
3336 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3337 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
3338 unsigned int next_entry
= rx_q
->cur_rx
;
3339 int coe
= priv
->hw
->rx_csum
;
3340 unsigned int count
= 0;
3343 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
3345 if (netif_msg_rx_status(priv
)) {
3348 netdev_dbg(priv
->dev
, "%s: descriptor ring:\n", __func__
);
3349 if (priv
->extend_desc
)
3350 rx_head
= (void *)rx_q
->dma_erx
;
3352 rx_head
= (void *)rx_q
->dma_rx
;
3354 stmmac_display_ring(priv
, rx_head
, DMA_RX_SIZE
, true);
3356 while (count
< limit
) {
3359 struct dma_desc
*np
;
3363 if (priv
->extend_desc
)
3364 p
= (struct dma_desc
*)(rx_q
->dma_erx
+ entry
);
3366 p
= rx_q
->dma_rx
+ entry
;
3368 /* read the status of the incoming frame */
3369 status
= stmmac_rx_status(priv
, &priv
->dev
->stats
,
3371 /* check if managed by the DMA otherwise go ahead */
3372 if (unlikely(status
& dma_own
))
3377 rx_q
->cur_rx
= STMMAC_GET_ENTRY(rx_q
->cur_rx
, DMA_RX_SIZE
);
3378 next_entry
= rx_q
->cur_rx
;
3380 if (priv
->extend_desc
)
3381 np
= (struct dma_desc
*)(rx_q
->dma_erx
+ next_entry
);
3383 np
= rx_q
->dma_rx
+ next_entry
;
3387 if (priv
->extend_desc
)
3388 stmmac_rx_extended_status(priv
, &priv
->dev
->stats
,
3389 &priv
->xstats
, rx_q
->dma_erx
+ entry
);
3390 if (unlikely(status
== discard_frame
)) {
3391 priv
->dev
->stats
.rx_errors
++;
3392 if (priv
->hwts_rx_en
&& !priv
->extend_desc
) {
3393 /* DESC2 & DESC3 will be overwritten by device
3394 * with timestamp value, hence reinitialize
3395 * them in stmmac_rx_refill() function so that
3396 * device can reuse it.
3398 dev_kfree_skb_any(rx_q
->rx_skbuff
[entry
]);
3399 rx_q
->rx_skbuff
[entry
] = NULL
;
3400 dma_unmap_single(priv
->device
,
3401 rx_q
->rx_skbuff_dma
[entry
],
3406 struct sk_buff
*skb
;
3410 stmmac_get_desc_addr(priv
, p
, &des
);
3411 frame_len
= stmmac_get_rx_frame_len(priv
, p
, coe
);
3413 /* If frame length is greater than skb buffer size
3414 * (preallocated during init) then the packet is
3417 if (frame_len
> priv
->dma_buf_sz
) {
3418 if (net_ratelimit())
3419 netdev_err(priv
->dev
,
3420 "len %d larger than size (%d)\n",
3421 frame_len
, priv
->dma_buf_sz
);
3422 priv
->dev
->stats
.rx_length_errors
++;
3426 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3427 * Type frames (LLC/LLC-SNAP)
3429 * llc_snap is never checked in GMAC >= 4, so this ACS
3430 * feature is always disabled and packets need to be
3431 * stripped manually.
3433 if (unlikely(priv
->synopsys_id
>= DWMAC_CORE_4_00
) ||
3434 unlikely(status
!= llc_snap
))
3435 frame_len
-= ETH_FCS_LEN
;
3437 if (netif_msg_rx_status(priv
)) {
3438 netdev_dbg(priv
->dev
, "\tdesc: %p [entry %d] buff=0x%x\n",
3440 netdev_dbg(priv
->dev
, "frame size %d, COE: %d\n",
3444 /* The zero-copy is always used for all the sizes
3445 * in case of GMAC4 because it needs
3446 * to refill the used descriptors, always.
3448 if (unlikely(!xmac
&&
3449 ((frame_len
< priv
->rx_copybreak
) ||
3450 stmmac_rx_threshold_count(rx_q
)))) {
3451 skb
= netdev_alloc_skb_ip_align(priv
->dev
,
3453 if (unlikely(!skb
)) {
3454 if (net_ratelimit())
3455 dev_warn(priv
->device
,
3456 "packet dropped\n");
3457 priv
->dev
->stats
.rx_dropped
++;
3461 dma_sync_single_for_cpu(priv
->device
,
3465 skb_copy_to_linear_data(skb
,
3467 rx_skbuff
[entry
]->data
,
3470 skb_put(skb
, frame_len
);
3471 dma_sync_single_for_device(priv
->device
,
3476 skb
= rx_q
->rx_skbuff
[entry
];
3477 if (unlikely(!skb
)) {
3478 if (net_ratelimit())
3479 netdev_err(priv
->dev
,
3480 "%s: Inconsistent Rx chain\n",
3482 priv
->dev
->stats
.rx_dropped
++;
3485 prefetch(skb
->data
- NET_IP_ALIGN
);
3486 rx_q
->rx_skbuff
[entry
] = NULL
;
3487 rx_q
->rx_zeroc_thresh
++;
3489 skb_put(skb
, frame_len
);
3490 dma_unmap_single(priv
->device
,
3491 rx_q
->rx_skbuff_dma
[entry
],
3496 if (netif_msg_pktdata(priv
)) {
3497 netdev_dbg(priv
->dev
, "frame received (%dbytes)",
3499 print_pkt(skb
->data
, frame_len
);
3502 stmmac_get_rx_hwtstamp(priv
, p
, np
, skb
);
3504 stmmac_rx_vlan(priv
->dev
, skb
);
3506 skb
->protocol
= eth_type_trans(skb
, priv
->dev
);
3509 skb_checksum_none_assert(skb
);
3511 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3513 napi_gro_receive(&ch
->napi
, skb
);
3515 priv
->dev
->stats
.rx_packets
++;
3516 priv
->dev
->stats
.rx_bytes
+= frame_len
;
3520 stmmac_rx_refill(priv
, queue
);
3522 priv
->xstats
.rx_pkt_n
+= count
;
3528 * stmmac_poll - stmmac poll method (NAPI)
3529 * @napi : pointer to the napi structure.
3530 * @budget : maximum number of packets that the current CPU can receive from
3533 * To look at the incoming frames and clear the tx resources.
3535 static int stmmac_napi_poll(struct napi_struct
*napi
, int budget
)
3537 struct stmmac_channel
*ch
=
3538 container_of(napi
, struct stmmac_channel
, napi
);
3539 struct stmmac_priv
*priv
= ch
->priv_data
;
3540 int work_done
, rx_done
= 0, tx_done
= 0;
3541 u32 chan
= ch
->index
;
3543 priv
->xstats
.napi_poll
++;
3546 tx_done
= stmmac_tx_clean(priv
, budget
, chan
);
3548 rx_done
= stmmac_rx(priv
, budget
, chan
);
3550 work_done
= max(rx_done
, tx_done
);
3551 work_done
= min(work_done
, budget
);
3553 if (work_done
< budget
&& napi_complete_done(napi
, work_done
)) {
3556 stmmac_enable_dma_irq(priv
, priv
->ioaddr
, chan
);
3557 stat
= stmmac_dma_interrupt_status(priv
, priv
->ioaddr
,
3558 &priv
->xstats
, chan
);
3559 if (stat
&& napi_reschedule(napi
))
3560 stmmac_disable_dma_irq(priv
, priv
->ioaddr
, chan
);
3568 * @dev : Pointer to net device structure
3569 * Description: this function is called when a packet transmission fails to
3570 * complete within a reasonable time. The driver will mark the error in the
3571 * netdev structure and arrange for the device to be reset to a sane state
3572 * in order to transmit a new packet.
3574 static void stmmac_tx_timeout(struct net_device
*dev
)
3576 struct stmmac_priv
*priv
= netdev_priv(dev
);
3578 stmmac_global_err(priv
);
3582 * stmmac_set_rx_mode - entry point for multicast addressing
3583 * @dev : pointer to the device structure
3585 * This function is a driver entry point which gets called by the kernel
3586 * whenever multicast addresses must be enabled/disabled.
3590 static void stmmac_set_rx_mode(struct net_device
*dev
)
3592 struct stmmac_priv
*priv
= netdev_priv(dev
);
3594 stmmac_set_filter(priv
, priv
->hw
, dev
);
3598 * stmmac_change_mtu - entry point to change MTU size for the device.
3599 * @dev : device pointer.
3600 * @new_mtu : the new MTU size for the device.
3601 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3602 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3603 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3605 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3608 static int stmmac_change_mtu(struct net_device
*dev
, int new_mtu
)
3610 struct stmmac_priv
*priv
= netdev_priv(dev
);
3611 int txfifosz
= priv
->plat
->tx_fifo_size
;
3614 txfifosz
= priv
->dma_cap
.tx_fifo_size
;
3616 txfifosz
/= priv
->plat
->tx_queues_to_use
;
3618 if (netif_running(dev
)) {
3619 netdev_err(priv
->dev
, "must be stopped to change its MTU\n");
3623 new_mtu
= STMMAC_ALIGN(new_mtu
);
3625 /* If condition true, FIFO is too small or MTU too large */
3626 if ((txfifosz
< new_mtu
) || (new_mtu
> BUF_SIZE_16KiB
))
3631 netdev_update_features(dev
);
3636 static netdev_features_t
stmmac_fix_features(struct net_device
*dev
,
3637 netdev_features_t features
)
3639 struct stmmac_priv
*priv
= netdev_priv(dev
);
3641 if (priv
->plat
->rx_coe
== STMMAC_RX_COE_NONE
)
3642 features
&= ~NETIF_F_RXCSUM
;
3644 if (!priv
->plat
->tx_coe
)
3645 features
&= ~NETIF_F_CSUM_MASK
;
3647 /* Some GMAC devices have a bugged Jumbo frame support that
3648 * needs to have the Tx COE disabled for oversized frames
3649 * (due to limited buffer sizes). In this case we disable
3650 * the TX csum insertion in the TDES and not use SF.
3652 if (priv
->plat
->bugged_jumbo
&& (dev
->mtu
> ETH_DATA_LEN
))
3653 features
&= ~NETIF_F_CSUM_MASK
;
3655 /* Disable tso if asked by ethtool */
3656 if ((priv
->plat
->tso_en
) && (priv
->dma_cap
.tsoen
)) {
3657 if (features
& NETIF_F_TSO
)
3666 static int stmmac_set_features(struct net_device
*netdev
,
3667 netdev_features_t features
)
3669 struct stmmac_priv
*priv
= netdev_priv(netdev
);
3671 /* Keep the COE Type in case of csum is supporting */
3672 if (features
& NETIF_F_RXCSUM
)
3673 priv
->hw
->rx_csum
= priv
->plat
->rx_coe
;
3675 priv
->hw
->rx_csum
= 0;
3676 /* No check needed because rx_coe has been set before and it will be
3677 * fixed in case of issue.
3679 stmmac_rx_ipc(priv
, priv
->hw
);
3685 * stmmac_interrupt - main ISR
3686 * @irq: interrupt number.
3687 * @dev_id: to pass the net device pointer (must be valid).
3688 * Description: this is the main driver interrupt service routine.
3690 * o DMA service routine (to manage incoming frame reception and transmission
3692 * o Core interrupts to manage: remote wake-up, management counter, LPI
3695 static irqreturn_t
stmmac_interrupt(int irq
, void *dev_id
)
3697 struct net_device
*dev
= (struct net_device
*)dev_id
;
3698 struct stmmac_priv
*priv
= netdev_priv(dev
);
3699 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
3700 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
3705 xmac
= priv
->plat
->has_gmac4
|| priv
->plat
->has_xgmac
;
3706 queues_count
= (rx_cnt
> tx_cnt
) ? rx_cnt
: tx_cnt
;
3709 pm_wakeup_event(priv
->device
, 0);
3711 /* Check if adapter is up */
3712 if (test_bit(STMMAC_DOWN
, &priv
->state
))
3714 /* Check if a fatal error happened */
3715 if (stmmac_safety_feat_interrupt(priv
))
3718 /* To handle GMAC own interrupts */
3719 if ((priv
->plat
->has_gmac
) || xmac
) {
3720 int status
= stmmac_host_irq_status(priv
, priv
->hw
, &priv
->xstats
);
3723 if (unlikely(status
)) {
3724 /* For LPI we need to save the tx status */
3725 if (status
& CORE_IRQ_TX_PATH_IN_LPI_MODE
)
3726 priv
->tx_path_in_lpi_mode
= true;
3727 if (status
& CORE_IRQ_TX_PATH_EXIT_LPI_MODE
)
3728 priv
->tx_path_in_lpi_mode
= false;
3731 for (queue
= 0; queue
< queues_count
; queue
++) {
3732 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3734 mtl_status
= stmmac_host_mtl_irq_status(priv
, priv
->hw
,
3736 if (mtl_status
!= -EINVAL
)
3737 status
|= mtl_status
;
3739 if (status
& CORE_IRQ_MTL_RX_OVERFLOW
)
3740 stmmac_set_rx_tail_ptr(priv
, priv
->ioaddr
,
3745 /* PCS link status */
3746 if (priv
->hw
->pcs
) {
3747 if (priv
->xstats
.pcs_link
)
3748 netif_carrier_on(dev
);
3750 netif_carrier_off(dev
);
3754 /* To handle DMA interrupts */
3755 stmmac_dma_interrupt(priv
);
3760 #ifdef CONFIG_NET_POLL_CONTROLLER
3761 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3762 * to allow network I/O with interrupts disabled.
3764 static void stmmac_poll_controller(struct net_device
*dev
)
3766 disable_irq(dev
->irq
);
3767 stmmac_interrupt(dev
->irq
, dev
);
3768 enable_irq(dev
->irq
);
3773 * stmmac_ioctl - Entry point for the Ioctl
3774 * @dev: Device pointer.
3775 * @rq: An IOCTL specefic structure, that can contain a pointer to
3776 * a proprietary structure used to pass information to the driver.
3777 * @cmd: IOCTL command
3779 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3781 static int stmmac_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
3783 int ret
= -EOPNOTSUPP
;
3785 if (!netif_running(dev
))
3794 ret
= phy_mii_ioctl(dev
->phydev
, rq
, cmd
);
3797 ret
= stmmac_hwtstamp_ioctl(dev
, rq
);
3806 static int stmmac_setup_tc_block_cb(enum tc_setup_type type
, void *type_data
,
3809 struct stmmac_priv
*priv
= cb_priv
;
3810 int ret
= -EOPNOTSUPP
;
3812 stmmac_disable_all_queues(priv
);
3815 case TC_SETUP_CLSU32
:
3816 if (tc_cls_can_offload_and_chain0(priv
->dev
, type_data
))
3817 ret
= stmmac_tc_setup_cls_u32(priv
, priv
, type_data
);
3823 stmmac_enable_all_queues(priv
);
3827 static int stmmac_setup_tc_block(struct stmmac_priv
*priv
,
3828 struct tc_block_offload
*f
)
3830 if (f
->binder_type
!= TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS
)
3833 switch (f
->command
) {
3835 return tcf_block_cb_register(f
->block
, stmmac_setup_tc_block_cb
,
3836 priv
, priv
, f
->extack
);
3837 case TC_BLOCK_UNBIND
:
3838 tcf_block_cb_unregister(f
->block
, stmmac_setup_tc_block_cb
, priv
);
3845 static int stmmac_setup_tc(struct net_device
*ndev
, enum tc_setup_type type
,
3848 struct stmmac_priv
*priv
= netdev_priv(ndev
);
3851 case TC_SETUP_BLOCK
:
3852 return stmmac_setup_tc_block(priv
, type_data
);
3853 case TC_SETUP_QDISC_CBS
:
3854 return stmmac_tc_setup_cbs(priv
, priv
, type_data
);
3860 static u16
stmmac_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
3861 struct net_device
*sb_dev
,
3862 select_queue_fallback_t fallback
)
3864 if (skb_shinfo(skb
)->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
3866 * There is no way to determine the number of TSO
3867 * capable Queues. Let's use always the Queue 0
3868 * because if TSO is supported then at least this
3869 * one will be capable.
3874 return fallback(dev
, skb
, NULL
) % dev
->real_num_tx_queues
;
3877 static int stmmac_set_mac_address(struct net_device
*ndev
, void *addr
)
3879 struct stmmac_priv
*priv
= netdev_priv(ndev
);
3882 ret
= eth_mac_addr(ndev
, addr
);
3886 stmmac_set_umac_addr(priv
, priv
->hw
, ndev
->dev_addr
, 0);
3891 #ifdef CONFIG_DEBUG_FS
3892 static struct dentry
*stmmac_fs_dir
;
3894 static void sysfs_display_ring(void *head
, int size
, int extend_desc
,
3895 struct seq_file
*seq
)
3898 struct dma_extended_desc
*ep
= (struct dma_extended_desc
*)head
;
3899 struct dma_desc
*p
= (struct dma_desc
*)head
;
3901 for (i
= 0; i
< size
; i
++) {
3903 seq_printf(seq
, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3904 i
, (unsigned int)virt_to_phys(ep
),
3905 le32_to_cpu(ep
->basic
.des0
),
3906 le32_to_cpu(ep
->basic
.des1
),
3907 le32_to_cpu(ep
->basic
.des2
),
3908 le32_to_cpu(ep
->basic
.des3
));
3911 seq_printf(seq
, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3912 i
, (unsigned int)virt_to_phys(p
),
3913 le32_to_cpu(p
->des0
), le32_to_cpu(p
->des1
),
3914 le32_to_cpu(p
->des2
), le32_to_cpu(p
->des3
));
3917 seq_printf(seq
, "\n");
3921 static int stmmac_sysfs_ring_read(struct seq_file
*seq
, void *v
)
3923 struct net_device
*dev
= seq
->private;
3924 struct stmmac_priv
*priv
= netdev_priv(dev
);
3925 u32 rx_count
= priv
->plat
->rx_queues_to_use
;
3926 u32 tx_count
= priv
->plat
->tx_queues_to_use
;
3929 if ((dev
->flags
& IFF_UP
) == 0)
3932 for (queue
= 0; queue
< rx_count
; queue
++) {
3933 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
3935 seq_printf(seq
, "RX Queue %d:\n", queue
);
3937 if (priv
->extend_desc
) {
3938 seq_printf(seq
, "Extended descriptor ring:\n");
3939 sysfs_display_ring((void *)rx_q
->dma_erx
,
3940 DMA_RX_SIZE
, 1, seq
);
3942 seq_printf(seq
, "Descriptor ring:\n");
3943 sysfs_display_ring((void *)rx_q
->dma_rx
,
3944 DMA_RX_SIZE
, 0, seq
);
3948 for (queue
= 0; queue
< tx_count
; queue
++) {
3949 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
3951 seq_printf(seq
, "TX Queue %d:\n", queue
);
3953 if (priv
->extend_desc
) {
3954 seq_printf(seq
, "Extended descriptor ring:\n");
3955 sysfs_display_ring((void *)tx_q
->dma_etx
,
3956 DMA_TX_SIZE
, 1, seq
);
3958 seq_printf(seq
, "Descriptor ring:\n");
3959 sysfs_display_ring((void *)tx_q
->dma_tx
,
3960 DMA_TX_SIZE
, 0, seq
);
3967 static int stmmac_sysfs_ring_open(struct inode
*inode
, struct file
*file
)
3969 return single_open(file
, stmmac_sysfs_ring_read
, inode
->i_private
);
3972 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3974 static const struct file_operations stmmac_rings_status_fops
= {
3975 .owner
= THIS_MODULE
,
3976 .open
= stmmac_sysfs_ring_open
,
3978 .llseek
= seq_lseek
,
3979 .release
= single_release
,
3982 static int stmmac_sysfs_dma_cap_read(struct seq_file
*seq
, void *v
)
3984 struct net_device
*dev
= seq
->private;
3985 struct stmmac_priv
*priv
= netdev_priv(dev
);
3987 if (!priv
->hw_cap_support
) {
3988 seq_printf(seq
, "DMA HW features not supported\n");
3992 seq_printf(seq
, "==============================\n");
3993 seq_printf(seq
, "\tDMA HW features\n");
3994 seq_printf(seq
, "==============================\n");
3996 seq_printf(seq
, "\t10/100 Mbps: %s\n",
3997 (priv
->dma_cap
.mbps_10_100
) ? "Y" : "N");
3998 seq_printf(seq
, "\t1000 Mbps: %s\n",
3999 (priv
->dma_cap
.mbps_1000
) ? "Y" : "N");
4000 seq_printf(seq
, "\tHalf duplex: %s\n",
4001 (priv
->dma_cap
.half_duplex
) ? "Y" : "N");
4002 seq_printf(seq
, "\tHash Filter: %s\n",
4003 (priv
->dma_cap
.hash_filter
) ? "Y" : "N");
4004 seq_printf(seq
, "\tMultiple MAC address registers: %s\n",
4005 (priv
->dma_cap
.multi_addr
) ? "Y" : "N");
4006 seq_printf(seq
, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4007 (priv
->dma_cap
.pcs
) ? "Y" : "N");
4008 seq_printf(seq
, "\tSMA (MDIO) Interface: %s\n",
4009 (priv
->dma_cap
.sma_mdio
) ? "Y" : "N");
4010 seq_printf(seq
, "\tPMT Remote wake up: %s\n",
4011 (priv
->dma_cap
.pmt_remote_wake_up
) ? "Y" : "N");
4012 seq_printf(seq
, "\tPMT Magic Frame: %s\n",
4013 (priv
->dma_cap
.pmt_magic_frame
) ? "Y" : "N");
4014 seq_printf(seq
, "\tRMON module: %s\n",
4015 (priv
->dma_cap
.rmon
) ? "Y" : "N");
4016 seq_printf(seq
, "\tIEEE 1588-2002 Time Stamp: %s\n",
4017 (priv
->dma_cap
.time_stamp
) ? "Y" : "N");
4018 seq_printf(seq
, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4019 (priv
->dma_cap
.atime_stamp
) ? "Y" : "N");
4020 seq_printf(seq
, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4021 (priv
->dma_cap
.eee
) ? "Y" : "N");
4022 seq_printf(seq
, "\tAV features: %s\n", (priv
->dma_cap
.av
) ? "Y" : "N");
4023 seq_printf(seq
, "\tChecksum Offload in TX: %s\n",
4024 (priv
->dma_cap
.tx_coe
) ? "Y" : "N");
4025 if (priv
->synopsys_id
>= DWMAC_CORE_4_00
) {
4026 seq_printf(seq
, "\tIP Checksum Offload in RX: %s\n",
4027 (priv
->dma_cap
.rx_coe
) ? "Y" : "N");
4029 seq_printf(seq
, "\tIP Checksum Offload (type1) in RX: %s\n",
4030 (priv
->dma_cap
.rx_coe_type1
) ? "Y" : "N");
4031 seq_printf(seq
, "\tIP Checksum Offload (type2) in RX: %s\n",
4032 (priv
->dma_cap
.rx_coe_type2
) ? "Y" : "N");
4034 seq_printf(seq
, "\tRXFIFO > 2048bytes: %s\n",
4035 (priv
->dma_cap
.rxfifo_over_2048
) ? "Y" : "N");
4036 seq_printf(seq
, "\tNumber of Additional RX channel: %d\n",
4037 priv
->dma_cap
.number_rx_channel
);
4038 seq_printf(seq
, "\tNumber of Additional TX channel: %d\n",
4039 priv
->dma_cap
.number_tx_channel
);
4040 seq_printf(seq
, "\tEnhanced descriptors: %s\n",
4041 (priv
->dma_cap
.enh_desc
) ? "Y" : "N");
4046 static int stmmac_sysfs_dma_cap_open(struct inode
*inode
, struct file
*file
)
4048 return single_open(file
, stmmac_sysfs_dma_cap_read
, inode
->i_private
);
4051 static const struct file_operations stmmac_dma_cap_fops
= {
4052 .owner
= THIS_MODULE
,
4053 .open
= stmmac_sysfs_dma_cap_open
,
4055 .llseek
= seq_lseek
,
4056 .release
= single_release
,
4059 static int stmmac_init_fs(struct net_device
*dev
)
4061 struct stmmac_priv
*priv
= netdev_priv(dev
);
4063 /* Create per netdev entries */
4064 priv
->dbgfs_dir
= debugfs_create_dir(dev
->name
, stmmac_fs_dir
);
4066 if (!priv
->dbgfs_dir
|| IS_ERR(priv
->dbgfs_dir
)) {
4067 netdev_err(priv
->dev
, "ERROR failed to create debugfs directory\n");
4072 /* Entry to report DMA RX/TX rings */
4073 priv
->dbgfs_rings_status
=
4074 debugfs_create_file("descriptors_status", 0444,
4075 priv
->dbgfs_dir
, dev
,
4076 &stmmac_rings_status_fops
);
4078 if (!priv
->dbgfs_rings_status
|| IS_ERR(priv
->dbgfs_rings_status
)) {
4079 netdev_err(priv
->dev
, "ERROR creating stmmac ring debugfs file\n");
4080 debugfs_remove_recursive(priv
->dbgfs_dir
);
4085 /* Entry to report the DMA HW features */
4086 priv
->dbgfs_dma_cap
= debugfs_create_file("dma_cap", 0444,
4088 dev
, &stmmac_dma_cap_fops
);
4090 if (!priv
->dbgfs_dma_cap
|| IS_ERR(priv
->dbgfs_dma_cap
)) {
4091 netdev_err(priv
->dev
, "ERROR creating stmmac MMC debugfs file\n");
4092 debugfs_remove_recursive(priv
->dbgfs_dir
);
4100 static void stmmac_exit_fs(struct net_device
*dev
)
4102 struct stmmac_priv
*priv
= netdev_priv(dev
);
4104 debugfs_remove_recursive(priv
->dbgfs_dir
);
4106 #endif /* CONFIG_DEBUG_FS */
4108 static const struct net_device_ops stmmac_netdev_ops
= {
4109 .ndo_open
= stmmac_open
,
4110 .ndo_start_xmit
= stmmac_xmit
,
4111 .ndo_stop
= stmmac_release
,
4112 .ndo_change_mtu
= stmmac_change_mtu
,
4113 .ndo_fix_features
= stmmac_fix_features
,
4114 .ndo_set_features
= stmmac_set_features
,
4115 .ndo_set_rx_mode
= stmmac_set_rx_mode
,
4116 .ndo_tx_timeout
= stmmac_tx_timeout
,
4117 .ndo_do_ioctl
= stmmac_ioctl
,
4118 .ndo_setup_tc
= stmmac_setup_tc
,
4119 .ndo_select_queue
= stmmac_select_queue
,
4120 #ifdef CONFIG_NET_POLL_CONTROLLER
4121 .ndo_poll_controller
= stmmac_poll_controller
,
4123 .ndo_set_mac_address
= stmmac_set_mac_address
,
4126 static void stmmac_reset_subtask(struct stmmac_priv
*priv
)
4128 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED
, &priv
->state
))
4130 if (test_bit(STMMAC_DOWN
, &priv
->state
))
4133 netdev_err(priv
->dev
, "Reset adapter.\n");
4136 netif_trans_update(priv
->dev
);
4137 while (test_and_set_bit(STMMAC_RESETING
, &priv
->state
))
4138 usleep_range(1000, 2000);
4140 set_bit(STMMAC_DOWN
, &priv
->state
);
4141 dev_close(priv
->dev
);
4142 dev_open(priv
->dev
);
4143 clear_bit(STMMAC_DOWN
, &priv
->state
);
4144 clear_bit(STMMAC_RESETING
, &priv
->state
);
4148 static void stmmac_service_task(struct work_struct
*work
)
4150 struct stmmac_priv
*priv
= container_of(work
, struct stmmac_priv
,
4153 stmmac_reset_subtask(priv
);
4154 clear_bit(STMMAC_SERVICE_SCHED
, &priv
->state
);
4158 * stmmac_hw_init - Init the MAC device
4159 * @priv: driver private structure
4160 * Description: this function is to configure the MAC device according to
4161 * some platform parameters or the HW capability register. It prepares the
4162 * driver to use either ring or chain modes and to setup either enhanced or
4163 * normal descriptors.
4165 static int stmmac_hw_init(struct stmmac_priv
*priv
)
4169 /* dwmac-sun8i only work in chain mode */
4170 if (priv
->plat
->has_sun8i
)
4172 priv
->chain_mode
= chain_mode
;
4174 /* Initialize HW Interface */
4175 ret
= stmmac_hwif_init(priv
);
4179 /* Get the HW capability (new GMAC newer than 3.50a) */
4180 priv
->hw_cap_support
= stmmac_get_hw_features(priv
);
4181 if (priv
->hw_cap_support
) {
4182 dev_info(priv
->device
, "DMA HW capability register supported\n");
4184 /* We can override some gmac/dma configuration fields: e.g.
4185 * enh_desc, tx_coe (e.g. that are passed through the
4186 * platform) with the values from the HW capability
4187 * register (if supported).
4189 priv
->plat
->enh_desc
= priv
->dma_cap
.enh_desc
;
4190 priv
->plat
->pmt
= priv
->dma_cap
.pmt_remote_wake_up
;
4191 priv
->hw
->pmt
= priv
->plat
->pmt
;
4193 /* TXCOE doesn't work in thresh DMA mode */
4194 if (priv
->plat
->force_thresh_dma_mode
)
4195 priv
->plat
->tx_coe
= 0;
4197 priv
->plat
->tx_coe
= priv
->dma_cap
.tx_coe
;
4199 /* In case of GMAC4 rx_coe is from HW cap register. */
4200 priv
->plat
->rx_coe
= priv
->dma_cap
.rx_coe
;
4202 if (priv
->dma_cap
.rx_coe_type2
)
4203 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE2
;
4204 else if (priv
->dma_cap
.rx_coe_type1
)
4205 priv
->plat
->rx_coe
= STMMAC_RX_COE_TYPE1
;
4208 dev_info(priv
->device
, "No HW DMA feature register supported\n");
4211 if (priv
->plat
->rx_coe
) {
4212 priv
->hw
->rx_csum
= priv
->plat
->rx_coe
;
4213 dev_info(priv
->device
, "RX Checksum Offload Engine supported\n");
4214 if (priv
->synopsys_id
< DWMAC_CORE_4_00
)
4215 dev_info(priv
->device
, "COE Type %d\n", priv
->hw
->rx_csum
);
4217 if (priv
->plat
->tx_coe
)
4218 dev_info(priv
->device
, "TX Checksum insertion supported\n");
4220 if (priv
->plat
->pmt
) {
4221 dev_info(priv
->device
, "Wake-Up On Lan supported\n");
4222 device_set_wakeup_capable(priv
->device
, 1);
4225 if (priv
->dma_cap
.tsoen
)
4226 dev_info(priv
->device
, "TSO supported\n");
4228 /* Run HW quirks, if any */
4229 if (priv
->hwif_quirks
) {
4230 ret
= priv
->hwif_quirks(priv
);
4235 /* Rx Watchdog is available in the COREs newer than the 3.40.
4236 * In some case, for example on bugged HW this feature
4237 * has to be disable and this can be done by passing the
4238 * riwt_off field from the platform.
4240 if (((priv
->synopsys_id
>= DWMAC_CORE_3_50
) ||
4241 (priv
->plat
->has_xgmac
)) && (!priv
->plat
->riwt_off
)) {
4243 dev_info(priv
->device
,
4244 "Enable RX Mitigation via HW Watchdog Timer\n");
4252 * @device: device pointer
4253 * @plat_dat: platform data pointer
4254 * @res: stmmac resource pointer
4255 * Description: this is the main probe function used to
4256 * call the alloc_etherdev, allocate the priv structure.
4258 * returns 0 on success, otherwise errno.
4260 int stmmac_dvr_probe(struct device
*device
,
4261 struct plat_stmmacenet_data
*plat_dat
,
4262 struct stmmac_resources
*res
)
4264 struct net_device
*ndev
= NULL
;
4265 struct stmmac_priv
*priv
;
4269 ndev
= alloc_etherdev_mqs(sizeof(struct stmmac_priv
),
4275 SET_NETDEV_DEV(ndev
, device
);
4277 priv
= netdev_priv(ndev
);
4278 priv
->device
= device
;
4281 stmmac_set_ethtool_ops(ndev
);
4282 priv
->pause
= pause
;
4283 priv
->plat
= plat_dat
;
4284 priv
->ioaddr
= res
->addr
;
4285 priv
->dev
->base_addr
= (unsigned long)res
->addr
;
4287 priv
->dev
->irq
= res
->irq
;
4288 priv
->wol_irq
= res
->wol_irq
;
4289 priv
->lpi_irq
= res
->lpi_irq
;
4292 memcpy(priv
->dev
->dev_addr
, res
->mac
, ETH_ALEN
);
4294 dev_set_drvdata(device
, priv
->dev
);
4296 /* Verify driver arguments */
4297 stmmac_verify_args();
4299 /* Allocate workqueue */
4300 priv
->wq
= create_singlethread_workqueue("stmmac_wq");
4302 dev_err(priv
->device
, "failed to create workqueue\n");
4307 INIT_WORK(&priv
->service_task
, stmmac_service_task
);
4309 /* Override with kernel parameters if supplied XXX CRS XXX
4310 * this needs to have multiple instances
4312 if ((phyaddr
>= 0) && (phyaddr
<= 31))
4313 priv
->plat
->phy_addr
= phyaddr
;
4315 if (priv
->plat
->stmmac_rst
) {
4316 ret
= reset_control_assert(priv
->plat
->stmmac_rst
);
4317 reset_control_deassert(priv
->plat
->stmmac_rst
);
4318 /* Some reset controllers have only reset callback instead of
4319 * assert + deassert callbacks pair.
4321 if (ret
== -ENOTSUPP
)
4322 reset_control_reset(priv
->plat
->stmmac_rst
);
4325 /* Init MAC and get the capabilities */
4326 ret
= stmmac_hw_init(priv
);
4330 stmmac_check_ether_addr(priv
);
4332 /* Configure real RX and TX queues */
4333 netif_set_real_num_rx_queues(ndev
, priv
->plat
->rx_queues_to_use
);
4334 netif_set_real_num_tx_queues(ndev
, priv
->plat
->tx_queues_to_use
);
4336 ndev
->netdev_ops
= &stmmac_netdev_ops
;
4338 ndev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
4341 ret
= stmmac_tc_init(priv
, priv
);
4343 ndev
->hw_features
|= NETIF_F_HW_TC
;
4346 if ((priv
->plat
->tso_en
) && (priv
->dma_cap
.tsoen
)) {
4347 ndev
->hw_features
|= NETIF_F_TSO
| NETIF_F_TSO6
;
4349 dev_info(priv
->device
, "TSO feature enabled\n");
4351 ndev
->features
|= ndev
->hw_features
| NETIF_F_HIGHDMA
;
4352 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
4353 #ifdef STMMAC_VLAN_TAG_USED
4354 /* Both mac100 and gmac support receive VLAN tag detection */
4355 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_STAG_RX
;
4357 priv
->msg_enable
= netif_msg_init(debug
, default_msg_level
);
4359 /* MTU range: 46 - hw-specific max */
4360 ndev
->min_mtu
= ETH_ZLEN
- ETH_HLEN
;
4361 if ((priv
->plat
->enh_desc
) || (priv
->synopsys_id
>= DWMAC_CORE_4_00
))
4362 ndev
->max_mtu
= JUMBO_LEN
;
4363 else if (priv
->plat
->has_xgmac
)
4364 ndev
->max_mtu
= XGMAC_JUMBO_LEN
;
4366 ndev
->max_mtu
= SKB_MAX_HEAD(NET_SKB_PAD
+ NET_IP_ALIGN
);
4367 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4368 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4370 if ((priv
->plat
->maxmtu
< ndev
->max_mtu
) &&
4371 (priv
->plat
->maxmtu
>= ndev
->min_mtu
))
4372 ndev
->max_mtu
= priv
->plat
->maxmtu
;
4373 else if (priv
->plat
->maxmtu
< ndev
->min_mtu
)
4374 dev_warn(priv
->device
,
4375 "%s: warning: maxmtu having invalid value (%d)\n",
4376 __func__
, priv
->plat
->maxmtu
);
4379 priv
->flow_ctrl
= FLOW_AUTO
; /* RX/TX pause on */
4381 /* Setup channels NAPI */
4382 maxq
= max(priv
->plat
->rx_queues_to_use
, priv
->plat
->tx_queues_to_use
);
4384 for (queue
= 0; queue
< maxq
; queue
++) {
4385 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
4387 ch
->priv_data
= priv
;
4390 if (queue
< priv
->plat
->rx_queues_to_use
)
4392 if (queue
< priv
->plat
->tx_queues_to_use
)
4395 netif_napi_add(ndev
, &ch
->napi
, stmmac_napi_poll
,
4399 mutex_init(&priv
->lock
);
4401 /* If a specific clk_csr value is passed from the platform
4402 * this means that the CSR Clock Range selection cannot be
4403 * changed at run-time and it is fixed. Viceversa the driver'll try to
4404 * set the MDC clock dynamically according to the csr actual
4407 if (!priv
->plat
->clk_csr
)
4408 stmmac_clk_csr_set(priv
);
4410 priv
->clk_csr
= priv
->plat
->clk_csr
;
4412 stmmac_check_pcs_mode(priv
);
4414 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4415 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4416 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
) {
4417 /* MDIO bus Registration */
4418 ret
= stmmac_mdio_register(ndev
);
4420 dev_err(priv
->device
,
4421 "%s: MDIO bus (id: %d) registration failed",
4422 __func__
, priv
->plat
->bus_id
);
4423 goto error_mdio_register
;
4427 ret
= register_netdev(ndev
);
4429 dev_err(priv
->device
, "%s: ERROR %i registering the device\n",
4431 goto error_netdev_register
;
4434 #ifdef CONFIG_DEBUG_FS
4435 ret
= stmmac_init_fs(ndev
);
4437 netdev_warn(priv
->dev
, "%s: failed debugFS registration\n",
4443 error_netdev_register
:
4444 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4445 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4446 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
)
4447 stmmac_mdio_unregister(ndev
);
4448 error_mdio_register
:
4449 for (queue
= 0; queue
< maxq
; queue
++) {
4450 struct stmmac_channel
*ch
= &priv
->channel
[queue
];
4452 netif_napi_del(&ch
->napi
);
4455 destroy_workqueue(priv
->wq
);
4461 EXPORT_SYMBOL_GPL(stmmac_dvr_probe
);
4465 * @dev: device pointer
4466 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4467 * changes the link status, releases the DMA descriptor rings.
4469 int stmmac_dvr_remove(struct device
*dev
)
4471 struct net_device
*ndev
= dev_get_drvdata(dev
);
4472 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4474 netdev_info(priv
->dev
, "%s: removing driver", __func__
);
4476 #ifdef CONFIG_DEBUG_FS
4477 stmmac_exit_fs(ndev
);
4479 stmmac_stop_all_dma(priv
);
4481 stmmac_mac_set(priv
, priv
->ioaddr
, false);
4482 netif_carrier_off(ndev
);
4483 unregister_netdev(ndev
);
4484 if (priv
->plat
->stmmac_rst
)
4485 reset_control_assert(priv
->plat
->stmmac_rst
);
4486 clk_disable_unprepare(priv
->plat
->pclk
);
4487 clk_disable_unprepare(priv
->plat
->stmmac_clk
);
4488 if (priv
->hw
->pcs
!= STMMAC_PCS_RGMII
&&
4489 priv
->hw
->pcs
!= STMMAC_PCS_TBI
&&
4490 priv
->hw
->pcs
!= STMMAC_PCS_RTBI
)
4491 stmmac_mdio_unregister(ndev
);
4492 destroy_workqueue(priv
->wq
);
4493 mutex_destroy(&priv
->lock
);
4498 EXPORT_SYMBOL_GPL(stmmac_dvr_remove
);
4501 * stmmac_suspend - suspend callback
4502 * @dev: device pointer
4503 * Description: this is the function to suspend the device and it is called
4504 * by the platform driver to stop the network queue, release the resources,
4505 * program the PMT register (for WoL), clean and release driver resources.
4507 int stmmac_suspend(struct device
*dev
)
4509 struct net_device
*ndev
= dev_get_drvdata(dev
);
4510 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4513 if (!ndev
|| !netif_running(ndev
))
4517 phy_stop(ndev
->phydev
);
4519 mutex_lock(&priv
->lock
);
4521 netif_device_detach(ndev
);
4522 stmmac_stop_all_queues(priv
);
4524 stmmac_disable_all_queues(priv
);
4526 for (chan
= 0; chan
< priv
->plat
->tx_queues_to_use
; chan
++)
4527 del_timer_sync(&priv
->tx_queue
[chan
].txtimer
);
4529 /* Stop TX/RX DMA */
4530 stmmac_stop_all_dma(priv
);
4532 /* Enable Power down mode by programming the PMT regs */
4533 if (device_may_wakeup(priv
->device
)) {
4534 stmmac_pmt(priv
, priv
->hw
, priv
->wolopts
);
4537 stmmac_mac_set(priv
, priv
->ioaddr
, false);
4538 pinctrl_pm_select_sleep_state(priv
->device
);
4539 /* Disable clock in case of PWM is off */
4540 if (priv
->plat
->clk_ptp_ref
)
4541 clk_disable_unprepare(priv
->plat
->clk_ptp_ref
);
4542 clk_disable_unprepare(priv
->plat
->pclk
);
4543 clk_disable_unprepare(priv
->plat
->stmmac_clk
);
4545 mutex_unlock(&priv
->lock
);
4547 priv
->oldlink
= false;
4548 priv
->speed
= SPEED_UNKNOWN
;
4549 priv
->oldduplex
= DUPLEX_UNKNOWN
;
4552 EXPORT_SYMBOL_GPL(stmmac_suspend
);
4555 * stmmac_reset_queues_param - reset queue parameters
4556 * @dev: device pointer
4558 static void stmmac_reset_queues_param(struct stmmac_priv
*priv
)
4560 u32 rx_cnt
= priv
->plat
->rx_queues_to_use
;
4561 u32 tx_cnt
= priv
->plat
->tx_queues_to_use
;
4564 for (queue
= 0; queue
< rx_cnt
; queue
++) {
4565 struct stmmac_rx_queue
*rx_q
= &priv
->rx_queue
[queue
];
4571 for (queue
= 0; queue
< tx_cnt
; queue
++) {
4572 struct stmmac_tx_queue
*tx_q
= &priv
->tx_queue
[queue
];
4581 * stmmac_resume - resume callback
4582 * @dev: device pointer
4583 * Description: when resume this function is invoked to setup the DMA and CORE
4584 * in a usable state.
4586 int stmmac_resume(struct device
*dev
)
4588 struct net_device
*ndev
= dev_get_drvdata(dev
);
4589 struct stmmac_priv
*priv
= netdev_priv(ndev
);
4591 if (!netif_running(ndev
))
4594 /* Power Down bit, into the PM register, is cleared
4595 * automatically as soon as a magic packet or a Wake-up frame
4596 * is received. Anyway, it's better to manually clear
4597 * this bit because it can generate problems while resuming
4598 * from another devices (e.g. serial console).
4600 if (device_may_wakeup(priv
->device
)) {
4601 mutex_lock(&priv
->lock
);
4602 stmmac_pmt(priv
, priv
->hw
, 0);
4603 mutex_unlock(&priv
->lock
);
4606 pinctrl_pm_select_default_state(priv
->device
);
4607 /* enable the clk previously disabled */
4608 clk_prepare_enable(priv
->plat
->stmmac_clk
);
4609 clk_prepare_enable(priv
->plat
->pclk
);
4610 if (priv
->plat
->clk_ptp_ref
)
4611 clk_prepare_enable(priv
->plat
->clk_ptp_ref
);
4612 /* reset the phy so that it's ready */
4614 stmmac_mdio_reset(priv
->mii
);
4617 netif_device_attach(ndev
);
4619 mutex_lock(&priv
->lock
);
4621 stmmac_reset_queues_param(priv
);
4623 stmmac_clear_descriptors(priv
);
4625 stmmac_hw_setup(ndev
, false);
4626 stmmac_init_tx_coalesce(priv
);
4627 stmmac_set_rx_mode(ndev
);
4629 stmmac_enable_all_queues(priv
);
4631 stmmac_start_all_queues(priv
);
4633 mutex_unlock(&priv
->lock
);
4636 phy_start(ndev
->phydev
);
4640 EXPORT_SYMBOL_GPL(stmmac_resume
);
4643 static int __init
stmmac_cmdline_opt(char *str
)
4649 while ((opt
= strsep(&str
, ",")) != NULL
) {
4650 if (!strncmp(opt
, "debug:", 6)) {
4651 if (kstrtoint(opt
+ 6, 0, &debug
))
4653 } else if (!strncmp(opt
, "phyaddr:", 8)) {
4654 if (kstrtoint(opt
+ 8, 0, &phyaddr
))
4656 } else if (!strncmp(opt
, "buf_sz:", 7)) {
4657 if (kstrtoint(opt
+ 7, 0, &buf_sz
))
4659 } else if (!strncmp(opt
, "tc:", 3)) {
4660 if (kstrtoint(opt
+ 3, 0, &tc
))
4662 } else if (!strncmp(opt
, "watchdog:", 9)) {
4663 if (kstrtoint(opt
+ 9, 0, &watchdog
))
4665 } else if (!strncmp(opt
, "flow_ctrl:", 10)) {
4666 if (kstrtoint(opt
+ 10, 0, &flow_ctrl
))
4668 } else if (!strncmp(opt
, "pause:", 6)) {
4669 if (kstrtoint(opt
+ 6, 0, &pause
))
4671 } else if (!strncmp(opt
, "eee_timer:", 10)) {
4672 if (kstrtoint(opt
+ 10, 0, &eee_timer
))
4674 } else if (!strncmp(opt
, "chain_mode:", 11)) {
4675 if (kstrtoint(opt
+ 11, 0, &chain_mode
))
4682 pr_err("%s: ERROR broken module parameter conversion", __func__
);
4686 __setup("stmmaceth=", stmmac_cmdline_opt
);
4689 static int __init
stmmac_init(void)
4691 #ifdef CONFIG_DEBUG_FS
4692 /* Create debugfs main directory if it doesn't exist yet */
4693 if (!stmmac_fs_dir
) {
4694 stmmac_fs_dir
= debugfs_create_dir(STMMAC_RESOURCE_NAME
, NULL
);
4696 if (!stmmac_fs_dir
|| IS_ERR(stmmac_fs_dir
)) {
4697 pr_err("ERROR %s, debugfs create directory failed\n",
4698 STMMAC_RESOURCE_NAME
);
4708 static void __exit
stmmac_exit(void)
4710 #ifdef CONFIG_DEBUG_FS
4711 debugfs_remove_recursive(stmmac_fs_dir
);
4715 module_init(stmmac_init
)
4716 module_exit(stmmac_exit
)
4718 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4719 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4720 MODULE_LICENSE("GPL");