1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
7 * This driver uses the sungem driver (c) David Miller
8 * (davem@redhat.com) as its basis.
10 * The cassini chip has a number of features that distinguish it from
12 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
13 * load balancing (non-VLAN mode)
14 * batching of multiple packets
15 * multiple CPU dispatching
16 * page-based RX descriptor engine with separate completion rings
17 * Gigabit support (GMII and PCS interface)
18 * MIF link up/down detection works
20 * RX is handled by page sized buffers that are attached as fragments to
21 * the skb. here's what's done:
22 * -- driver allocates pages at a time and keeps reference counts
24 * -- the upper protocol layers assume that the header is in the skb
25 * itself. as a result, cassini will copy a small amount (64 bytes)
27 * -- driver appends the rest of the data pages as frags to skbuffs
28 * and increments the reference count
29 * -- on page reclamation, the driver swaps the page with a spare page.
30 * if that page is still in use, it frees its reference to that page,
31 * and allocates a new page for use. otherwise, it just recycles the
34 * NOTE: cassini can parse the header. however, it's not worth it
35 * as long as the network stack requires a header copy.
37 * TX has 4 queues. currently these queues are used in a round-robin
38 * fashion for load balancing. They can also be used for QoS. for that
39 * to work, however, QoS information needs to be exposed down to the driver
40 * level so that subqueues get targeted to particular transmit rings.
41 * alternatively, the queues can be configured via use of the all-purpose
44 * RX DATA: the rx completion ring has all the info, but the rx desc
45 * ring has all of the data. RX can conceivably come in under multiple
46 * interrupts, but the INT# assignment needs to be set up properly by
47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48 * that. also, the two descriptor rings are designed to distinguish between
49 * encrypted and non-encrypted packets, but we use them for buffering
52 * by default, the selective clear mask is set up to process rx packets.
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
85 #include <net/checksum.h>
87 #include <linux/atomic.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
92 #define cas_page_map(x) kmap_atomic((x))
93 #define cas_page_unmap(x) kunmap_atomic((x))
94 #define CAS_NCPUS num_online_cpus()
96 #define cas_skb_release(x) netif_rx(x)
98 /* select which firmware to use */
99 #define USE_HP_WORKAROUND
100 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
101 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
105 #define USE_TX_COMPWB /* use completion writeback registers */
106 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
107 #define USE_RX_BLANK /* hw interrupt mitigation */
108 #undef USE_ENTROPY_DEV /* don't test for entropy device */
110 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
111 * also, we need to make cp->lock finer-grained.
118 #undef USE_VPD_DEBUG /* debug vpd information if defined */
120 /* rx processing options */
121 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
122 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
123 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
124 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
125 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
127 #define DRV_MODULE_NAME "cassini"
128 #define DRV_MODULE_VERSION "1.6"
129 #define DRV_MODULE_RELDATE "21 May 2008"
131 #define CAS_DEF_MSG_ENABLE \
141 /* length of time before we decide the hardware is borked,
142 * and dev->tx_timeout() should be called to fix the problem
144 #define CAS_TX_TIMEOUT (HZ)
145 #define CAS_LINK_TIMEOUT (22*HZ/10)
146 #define CAS_LINK_FAST_TIMEOUT (1)
148 /* timeout values for state changing. these specify the number
149 * of 10us delays to be used before giving up.
151 #define STOP_TRIES_PHY 1000
152 #define STOP_TRIES 5000
154 /* specify a minimum frame size to deal with some fifo issues
155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
156 * 2 * page_size - 0x50
158 #define CAS_MIN_FRAME 97
159 #define CAS_1000MB_MIN_FRAME 255
160 #define CAS_MIN_MTU 60
161 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
165 * Eliminate these and use separate atomic counters for each, to
166 * avoid a race condition.
169 #define CAS_RESET_MTU 1
170 #define CAS_RESET_ALL 2
171 #define CAS_RESET_SPARE 3
174 static char version
[] =
175 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
177 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
178 static int link_mode
;
180 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
181 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
182 MODULE_LICENSE("GPL");
183 MODULE_FIRMWARE("sun/cassini.bin");
184 module_param(cassini_debug
, int, 0);
185 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
186 module_param(link_mode
, int, 0);
187 MODULE_PARM_DESC(link_mode
, "default link mode");
190 * Work around for a PCS bug in which the link goes down due to the chip
191 * being confused and never showing a link status of "up."
193 #define DEFAULT_LINKDOWN_TIMEOUT 5
195 * Value in seconds, for user input.
197 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
198 module_param(linkdown_timeout
, int, 0);
199 MODULE_PARM_DESC(linkdown_timeout
,
200 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
203 * value in 'ticks' (units used by jiffies). Set when we init the
204 * module because 'HZ' in actually a function call on some flavors of
205 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
207 static int link_transition_timeout
;
211 static u16 link_modes
[] = {
212 BMCR_ANENABLE
, /* 0 : autoneg */
213 0, /* 1 : 10bt half duplex */
214 BMCR_SPEED100
, /* 2 : 100bt half duplex */
215 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
216 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
217 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
220 static const struct pci_device_id cas_pci_tbl
[] = {
221 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
222 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
223 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
224 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
228 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
230 static void cas_set_link_modes(struct cas
*cp
);
232 static inline void cas_lock_tx(struct cas
*cp
)
236 for (i
= 0; i
< N_TX_RINGS
; i
++)
237 spin_lock_nested(&cp
->tx_lock
[i
], i
);
240 static inline void cas_lock_all(struct cas
*cp
)
242 spin_lock_irq(&cp
->lock
);
246 /* WTZ: QA was finding deadlock problems with the previous
247 * versions after long test runs with multiple cards per machine.
248 * See if replacing cas_lock_all with safer versions helps. The
249 * symptoms QA is reporting match those we'd expect if interrupts
250 * aren't being properly restored, and we fixed a previous deadlock
251 * with similar symptoms by using save/restore versions in other
254 #define cas_lock_all_save(cp, flags) \
256 struct cas *xxxcp = (cp); \
257 spin_lock_irqsave(&xxxcp->lock, flags); \
258 cas_lock_tx(xxxcp); \
261 static inline void cas_unlock_tx(struct cas
*cp
)
265 for (i
= N_TX_RINGS
; i
> 0; i
--)
266 spin_unlock(&cp
->tx_lock
[i
- 1]);
269 static inline void cas_unlock_all(struct cas
*cp
)
272 spin_unlock_irq(&cp
->lock
);
275 #define cas_unlock_all_restore(cp, flags) \
277 struct cas *xxxcp = (cp); \
278 cas_unlock_tx(xxxcp); \
279 spin_unlock_irqrestore(&xxxcp->lock, flags); \
282 static void cas_disable_irq(struct cas
*cp
, const int ring
)
284 /* Make sure we won't get any more interrupts */
286 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
290 /* disable completion interrupts and selectively mask */
291 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
293 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
303 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
304 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
308 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
309 REG_PLUS_INTRN_MASK(ring
));
315 static inline void cas_mask_intr(struct cas
*cp
)
319 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
320 cas_disable_irq(cp
, i
);
323 static void cas_enable_irq(struct cas
*cp
, const int ring
)
325 if (ring
== 0) { /* all but TX_DONE */
326 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
330 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
332 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
342 writel(INTRN_MASK_RX_EN
, cp
->regs
+
343 REG_PLUS_INTRN_MASK(ring
));
352 static inline void cas_unmask_intr(struct cas
*cp
)
356 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
357 cas_enable_irq(cp
, i
);
360 static inline void cas_entropy_gather(struct cas
*cp
)
362 #ifdef USE_ENTROPY_DEV
363 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
366 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
367 readl(cp
->regs
+ REG_ENTROPY_IV
),
372 static inline void cas_entropy_reset(struct cas
*cp
)
374 #ifdef USE_ENTROPY_DEV
375 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
378 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
379 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
380 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
381 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
383 /* if we read back 0x0, we don't have an entropy device */
384 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
385 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
389 /* access to the phy. the following assumes that we've initialized the MIF to
390 * be in frame rather than bit-bang mode
392 static u16
cas_phy_read(struct cas
*cp
, int reg
)
395 int limit
= STOP_TRIES_PHY
;
397 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
398 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
399 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
400 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
401 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
403 /* poll for completion */
404 while (limit
-- > 0) {
406 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
407 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
408 return cmd
& MIF_FRAME_DATA_MASK
;
410 return 0xFFFF; /* -1 */
413 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
415 int limit
= STOP_TRIES_PHY
;
418 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
419 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
420 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
421 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
422 cmd
|= val
& MIF_FRAME_DATA_MASK
;
423 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
425 /* poll for completion */
426 while (limit
-- > 0) {
428 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
429 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
435 static void cas_phy_powerup(struct cas
*cp
)
437 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
439 if ((ctl
& BMCR_PDOWN
) == 0)
442 cas_phy_write(cp
, MII_BMCR
, ctl
);
445 static void cas_phy_powerdown(struct cas
*cp
)
447 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
449 if (ctl
& BMCR_PDOWN
)
452 cas_phy_write(cp
, MII_BMCR
, ctl
);
455 /* cp->lock held. note: the last put_page will free the buffer */
456 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
458 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
460 __free_pages(page
->buffer
, cp
->page_order
);
465 #ifdef RX_COUNT_BUFFERS
466 #define RX_USED_ADD(x, y) ((x)->used += (y))
467 #define RX_USED_SET(x, y) ((x)->used = (y))
469 #define RX_USED_ADD(x, y)
470 #define RX_USED_SET(x, y)
473 /* local page allocation routines for the receive buffers. jumbo pages
474 * require at least 8K contiguous and 8K aligned buffers.
476 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
480 page
= kmalloc(sizeof(cas_page_t
), flags
);
484 INIT_LIST_HEAD(&page
->list
);
485 RX_USED_SET(page
, 0);
486 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
489 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
490 cp
->page_size
, PCI_DMA_FROMDEVICE
);
498 /* initialize spare pool of rx buffers, but allocate during the open */
499 static void cas_spare_init(struct cas
*cp
)
501 spin_lock(&cp
->rx_inuse_lock
);
502 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
503 spin_unlock(&cp
->rx_inuse_lock
);
505 spin_lock(&cp
->rx_spare_lock
);
506 INIT_LIST_HEAD(&cp
->rx_spare_list
);
507 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
508 spin_unlock(&cp
->rx_spare_lock
);
511 /* used on close. free all the spare buffers. */
512 static void cas_spare_free(struct cas
*cp
)
514 struct list_head list
, *elem
, *tmp
;
516 /* free spare buffers */
517 INIT_LIST_HEAD(&list
);
518 spin_lock(&cp
->rx_spare_lock
);
519 list_splice_init(&cp
->rx_spare_list
, &list
);
520 spin_unlock(&cp
->rx_spare_lock
);
521 list_for_each_safe(elem
, tmp
, &list
) {
522 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
525 INIT_LIST_HEAD(&list
);
528 * Looks like Adrian had protected this with a different
529 * lock than used everywhere else to manipulate this list.
531 spin_lock(&cp
->rx_inuse_lock
);
532 list_splice_init(&cp
->rx_inuse_list
, &list
);
533 spin_unlock(&cp
->rx_inuse_lock
);
535 spin_lock(&cp
->rx_spare_lock
);
536 list_splice_init(&cp
->rx_inuse_list
, &list
);
537 spin_unlock(&cp
->rx_spare_lock
);
539 list_for_each_safe(elem
, tmp
, &list
) {
540 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
544 /* replenish spares if needed */
545 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
547 struct list_head list
, *elem
, *tmp
;
550 /* check inuse list. if we don't need any more free buffers,
554 /* make a local copy of the list */
555 INIT_LIST_HEAD(&list
);
556 spin_lock(&cp
->rx_inuse_lock
);
557 list_splice_init(&cp
->rx_inuse_list
, &list
);
558 spin_unlock(&cp
->rx_inuse_lock
);
560 list_for_each_safe(elem
, tmp
, &list
) {
561 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
564 * With the lockless pagecache, cassini buffering scheme gets
565 * slightly less accurate: we might find that a page has an
566 * elevated reference count here, due to a speculative ref,
567 * and skip it as in-use. Ideally we would be able to reclaim
568 * it. However this would be such a rare case, it doesn't
569 * matter too much as we should pick it up the next time round.
571 * Importantly, if we find that the page has a refcount of 1
572 * here (our refcount), then we know it is definitely not inuse
573 * so we can reuse it.
575 if (page_count(page
->buffer
) > 1)
579 spin_lock(&cp
->rx_spare_lock
);
580 if (cp
->rx_spares_needed
> 0) {
581 list_add(elem
, &cp
->rx_spare_list
);
582 cp
->rx_spares_needed
--;
583 spin_unlock(&cp
->rx_spare_lock
);
585 spin_unlock(&cp
->rx_spare_lock
);
586 cas_page_free(cp
, page
);
590 /* put any inuse buffers back on the list */
591 if (!list_empty(&list
)) {
592 spin_lock(&cp
->rx_inuse_lock
);
593 list_splice(&list
, &cp
->rx_inuse_list
);
594 spin_unlock(&cp
->rx_inuse_lock
);
597 spin_lock(&cp
->rx_spare_lock
);
598 needed
= cp
->rx_spares_needed
;
599 spin_unlock(&cp
->rx_spare_lock
);
603 /* we still need spares, so try to allocate some */
604 INIT_LIST_HEAD(&list
);
607 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
610 list_add(&spare
->list
, &list
);
614 spin_lock(&cp
->rx_spare_lock
);
615 list_splice(&list
, &cp
->rx_spare_list
);
616 cp
->rx_spares_needed
-= i
;
617 spin_unlock(&cp
->rx_spare_lock
);
620 /* pull a page from the list. */
621 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
623 struct list_head
*entry
;
626 spin_lock(&cp
->rx_spare_lock
);
627 if (list_empty(&cp
->rx_spare_list
)) {
628 /* try to do a quick recovery */
629 spin_unlock(&cp
->rx_spare_lock
);
630 cas_spare_recover(cp
, GFP_ATOMIC
);
631 spin_lock(&cp
->rx_spare_lock
);
632 if (list_empty(&cp
->rx_spare_list
)) {
633 netif_err(cp
, rx_err
, cp
->dev
,
634 "no spare buffers available\n");
635 spin_unlock(&cp
->rx_spare_lock
);
640 entry
= cp
->rx_spare_list
.next
;
642 recover
= ++cp
->rx_spares_needed
;
643 spin_unlock(&cp
->rx_spare_lock
);
645 /* trigger the timer to do the recovery */
646 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
648 atomic_inc(&cp
->reset_task_pending
);
649 atomic_inc(&cp
->reset_task_pending_spare
);
650 schedule_work(&cp
->reset_task
);
652 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
653 schedule_work(&cp
->reset_task
);
656 return list_entry(entry
, cas_page_t
, list
);
660 static void cas_mif_poll(struct cas
*cp
, const int enable
)
664 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
665 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
667 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
668 cfg
|= MIF_CFG_PHY_SELECT
;
670 /* poll and interrupt on link status change. */
672 cfg
|= MIF_CFG_POLL_EN
;
673 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
674 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
676 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
677 cp
->regs
+ REG_MIF_MASK
);
678 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
681 /* Must be invoked under cp->lock */
682 static void cas_begin_auto_negotiation(struct cas
*cp
,
683 const struct ethtool_link_ksettings
*ep
)
689 int oldstate
= cp
->lstate
;
690 int link_was_not_down
= !(oldstate
== link_down
);
692 /* Setup link parameters */
695 lcntl
= cp
->link_cntl
;
696 if (ep
->base
.autoneg
== AUTONEG_ENABLE
) {
697 cp
->link_cntl
= BMCR_ANENABLE
;
699 u32 speed
= ep
->base
.speed
;
701 if (speed
== SPEED_100
)
702 cp
->link_cntl
|= BMCR_SPEED100
;
703 else if (speed
== SPEED_1000
)
704 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
705 if (ep
->base
.duplex
== DUPLEX_FULL
)
706 cp
->link_cntl
|= BMCR_FULLDPLX
;
709 changed
= (lcntl
!= cp
->link_cntl
);
712 if (cp
->lstate
== link_up
) {
713 netdev_info(cp
->dev
, "PCS link down\n");
716 netdev_info(cp
->dev
, "link configuration changed\n");
719 cp
->lstate
= link_down
;
720 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
725 * WTZ: If the old state was link_up, we turn off the carrier
726 * to replicate everything we do elsewhere on a link-down
727 * event when we were already in a link-up state..
729 if (oldstate
== link_up
)
730 netif_carrier_off(cp
->dev
);
731 if (changed
&& link_was_not_down
) {
733 * WTZ: This branch will simply schedule a full reset after
734 * we explicitly changed link modes in an ioctl. See if this
735 * fixes the link-problems we were having for forced mode.
737 atomic_inc(&cp
->reset_task_pending
);
738 atomic_inc(&cp
->reset_task_pending_all
);
739 schedule_work(&cp
->reset_task
);
741 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
745 if (cp
->phy_type
& CAS_PHY_SERDES
) {
746 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
748 if (cp
->link_cntl
& BMCR_ANENABLE
) {
749 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
750 cp
->lstate
= link_aneg
;
752 if (cp
->link_cntl
& BMCR_FULLDPLX
)
753 val
|= PCS_MII_CTRL_DUPLEX
;
754 val
&= ~PCS_MII_AUTONEG_EN
;
755 cp
->lstate
= link_force_ok
;
757 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
758 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
762 ctl
= cas_phy_read(cp
, MII_BMCR
);
763 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
764 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
765 ctl
|= cp
->link_cntl
;
766 if (ctl
& BMCR_ANENABLE
) {
767 ctl
|= BMCR_ANRESTART
;
768 cp
->lstate
= link_aneg
;
770 cp
->lstate
= link_force_ok
;
772 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
773 cas_phy_write(cp
, MII_BMCR
, ctl
);
778 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
781 /* Must be invoked under cp->lock. */
782 static int cas_reset_mii_phy(struct cas
*cp
)
784 int limit
= STOP_TRIES_PHY
;
787 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
790 val
= cas_phy_read(cp
, MII_BMCR
);
791 if ((val
& BMCR_RESET
) == 0)
798 static void cas_saturn_firmware_init(struct cas
*cp
)
800 const struct firmware
*fw
;
801 const char fw_name
[] = "sun/cassini.bin";
804 if (PHY_NS_DP83065
!= cp
->phy_id
)
807 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
809 pr_err("Failed to load firmware \"%s\"\n",
814 pr_err("bogus length %zu in \"%s\"\n",
818 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
819 cp
->fw_size
= fw
->size
- 2;
820 cp
->fw_data
= vmalloc(cp
->fw_size
);
823 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
825 release_firmware(fw
);
828 static void cas_saturn_firmware_load(struct cas
*cp
)
835 cas_phy_powerdown(cp
);
837 /* expanded memory access mode */
838 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
840 /* pointer configuration for new firmware */
841 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
842 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
843 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
844 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
845 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
846 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
847 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
848 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
850 /* download new firmware */
851 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
852 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
853 for (i
= 0; i
< cp
->fw_size
; i
++)
854 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
856 /* enable firmware */
857 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
858 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
862 /* phy initialization */
863 static void cas_phy_init(struct cas
*cp
)
867 /* if we're in MII/GMII mode, set up phy */
868 if (CAS_PHY_MII(cp
->phy_type
)) {
869 writel(PCS_DATAPATH_MODE_MII
,
870 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
873 cas_reset_mii_phy(cp
); /* take out of isolate mode */
875 if (PHY_LUCENT_B0
== cp
->phy_id
) {
876 /* workaround link up/down issue with lucent */
877 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
878 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
879 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
881 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
882 /* workarounds for broadcom phy */
883 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
884 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
885 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
886 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
887 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
888 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
889 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
890 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
891 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
892 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
893 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
895 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
896 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
897 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
899 /* link workaround */
900 cas_phy_write(cp
, BROADCOM_MII_REG4
,
904 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
905 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
906 SATURN_PCFG_FSI
: 0x0,
907 cp
->regs
+ REG_SATURN_PCFG
);
909 /* load firmware to address 10Mbps auto-negotiation
910 * issue. NOTE: this will need to be changed if the
911 * default firmware gets fixed.
913 if (PHY_NS_DP83065
== cp
->phy_id
) {
914 cas_saturn_firmware_load(cp
);
919 /* advertise capabilities */
920 val
= cas_phy_read(cp
, MII_BMCR
);
921 val
&= ~BMCR_ANENABLE
;
922 cas_phy_write(cp
, MII_BMCR
, val
);
925 cas_phy_write(cp
, MII_ADVERTISE
,
926 cas_phy_read(cp
, MII_ADVERTISE
) |
927 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
928 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
929 CAS_ADVERTISE_PAUSE
|
930 CAS_ADVERTISE_ASYM_PAUSE
));
932 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
933 /* make sure that we don't advertise half
934 * duplex to avoid a chip issue
936 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
937 val
&= ~CAS_ADVERTISE_1000HALF
;
938 val
|= CAS_ADVERTISE_1000FULL
;
939 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
943 /* reset pcs for serdes */
947 writel(PCS_DATAPATH_MODE_SERDES
,
948 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
950 /* enable serdes pins on saturn */
951 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
952 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
954 /* Reset PCS unit. */
955 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
956 val
|= PCS_MII_RESET
;
957 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
960 while (--limit
> 0) {
962 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
967 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
968 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
970 /* Make sure PCS is disabled while changing advertisement
973 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
975 /* Advertise all capabilities except half-duplex. */
976 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
977 val
&= ~PCS_MII_ADVERT_HD
;
978 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
979 PCS_MII_ADVERT_ASYM_PAUSE
);
980 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
983 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
985 /* pcs workaround: enable sync detect */
986 writel(PCS_SERDES_CTRL_SYNCD_EN
,
987 cp
->regs
+ REG_PCS_SERDES_CTRL
);
992 static int cas_pcs_link_check(struct cas
*cp
)
994 u32 stat
, state_machine
;
997 /* The link status bit latches on zero, so you must
998 * read it twice in such a case to see a transition
999 * to the link being up.
1001 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1002 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1003 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1005 /* The remote-fault indication is only valid
1006 * when autoneg has completed.
1008 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1009 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1010 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1011 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1013 /* work around link detection issue by querying the PCS state
1016 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1017 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1018 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1019 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1020 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1023 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1024 if (cp
->lstate
!= link_up
) {
1026 cp
->lstate
= link_up
;
1027 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1029 cas_set_link_modes(cp
);
1030 netif_carrier_on(cp
->dev
);
1033 } else if (cp
->lstate
== link_up
) {
1034 cp
->lstate
= link_down
;
1035 if (link_transition_timeout
!= 0 &&
1036 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1037 !cp
->link_transition_jiffies_valid
) {
1039 * force a reset, as a workaround for the
1040 * link-failure problem. May want to move this to a
1041 * point a bit earlier in the sequence. If we had
1042 * generated a reset a short time ago, we'll wait for
1043 * the link timer to check the status until a
1044 * timer expires (link_transistion_jiffies_valid is
1045 * true when the timer is running.) Instead of using
1046 * a system timer, we just do a check whenever the
1047 * link timer is running - this clears the flag after
1051 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1052 cp
->link_transition_jiffies
= jiffies
;
1053 cp
->link_transition_jiffies_valid
= 1;
1055 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1057 netif_carrier_off(cp
->dev
);
1059 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1061 /* Cassini only: if you force a mode, there can be
1062 * sync problems on link down. to fix that, the following
1063 * things need to be checked:
1064 * 1) read serialink state register
1065 * 2) read pcs status register to verify link down.
1066 * 3) if link down and serial link == 0x03, then you need
1067 * to global reset the chip.
1069 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1070 /* should check to see if we're in a forced mode */
1071 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1075 } else if (cp
->lstate
== link_down
) {
1076 if (link_transition_timeout
!= 0 &&
1077 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1078 !cp
->link_transition_jiffies_valid
) {
1079 /* force a reset, as a workaround for the
1080 * link-failure problem. May want to move
1081 * this to a point a bit earlier in the
1085 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1086 cp
->link_transition_jiffies
= jiffies
;
1087 cp
->link_transition_jiffies_valid
= 1;
1089 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1096 static int cas_pcs_interrupt(struct net_device
*dev
,
1097 struct cas
*cp
, u32 status
)
1099 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1101 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1103 return cas_pcs_link_check(cp
);
1106 static int cas_txmac_interrupt(struct net_device
*dev
,
1107 struct cas
*cp
, u32 status
)
1109 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1114 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1115 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1117 /* Defer timer expiration is quite normal,
1118 * don't even log the event.
1120 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1121 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1124 spin_lock(&cp
->stat_lock
[0]);
1125 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1126 netdev_err(dev
, "TX MAC xmit underrun\n");
1127 cp
->net_stats
[0].tx_fifo_errors
++;
1130 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1131 netdev_err(dev
, "TX MAC max packet size error\n");
1132 cp
->net_stats
[0].tx_errors
++;
1135 /* The rest are all cases of one of the 16-bit TX
1136 * counters expiring.
1138 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1139 cp
->net_stats
[0].collisions
+= 0x10000;
1141 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1142 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1143 cp
->net_stats
[0].collisions
+= 0x10000;
1146 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1147 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1148 cp
->net_stats
[0].collisions
+= 0x10000;
1150 spin_unlock(&cp
->stat_lock
[0]);
1152 /* We do not keep track of MAC_TX_COLL_FIRST and
1153 * MAC_TX_PEAK_ATTEMPTS events.
1158 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1160 cas_hp_inst_t
*inst
;
1165 while ((inst
= firmware
) && inst
->note
) {
1166 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1168 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1169 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1170 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1172 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1173 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1174 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1175 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1176 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1177 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1178 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1179 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1181 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1182 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1183 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1184 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1185 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1191 static void cas_init_rx_dma(struct cas
*cp
)
1193 u64 desc_dma
= cp
->block_dvma
;
1197 /* rx free descriptors */
1198 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1199 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1200 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1201 if ((N_RX_DESC_RINGS
> 1) &&
1202 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1203 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1204 writel(val
, cp
->regs
+ REG_RX_CFG
);
1206 val
= (unsigned long) cp
->init_rxds
[0] -
1207 (unsigned long) cp
->init_block
;
1208 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1209 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1210 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1212 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1213 /* rx desc 2 is for IPSEC packets. however,
1214 * we don't it that for that purpose.
1216 val
= (unsigned long) cp
->init_rxds
[1] -
1217 (unsigned long) cp
->init_block
;
1218 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1219 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1220 REG_PLUS_RX_DB1_LOW
);
1221 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1225 /* rx completion registers */
1226 val
= (unsigned long) cp
->init_rxcs
[0] -
1227 (unsigned long) cp
->init_block
;
1228 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1229 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1231 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1233 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1234 val
= (unsigned long) cp
->init_rxcs
[i
] -
1235 (unsigned long) cp
->init_block
;
1236 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1237 REG_PLUS_RX_CBN_HI(i
));
1238 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1239 REG_PLUS_RX_CBN_LOW(i
));
1243 /* read selective clear regs to prevent spurious interrupts
1244 * on reset because complete == kick.
1245 * selective clear set up to prevent interrupts on resets
1247 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1248 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1249 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1250 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1251 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1253 /* 2 is different from 3 and 4 */
1254 if (N_RX_COMP_RINGS
> 1)
1255 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1256 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1258 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1259 writel(INTR_RX_DONE_ALT
,
1260 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1263 /* set up pause thresholds */
1264 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1265 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1266 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1267 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1268 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1270 /* zero out dma reassembly buffers */
1271 for (i
= 0; i
< 64; i
++) {
1272 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1273 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1274 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1275 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1278 /* make sure address register is 0 for normal operation */
1279 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1280 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1282 /* interrupt mitigation */
1284 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1285 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1286 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1288 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1291 /* interrupt generation as a function of low water marks for
1292 * free desc and completion entries. these are used to trigger
1293 * housekeeping for rx descs. we don't use the free interrupt
1294 * as it's not very useful
1296 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1297 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1298 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1299 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1300 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1301 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1304 /* Random early detect registers. useful for congestion avoidance.
1305 * this should be tunable.
1307 writel(0x0, cp
->regs
+ REG_RX_RED
);
1309 /* receive page sizes. default == 2K (0x800) */
1311 if (cp
->page_size
== 0x1000)
1313 else if (cp
->page_size
== 0x2000)
1315 else if (cp
->page_size
== 0x4000)
1318 /* round mtu + offset. constrain to page size. */
1319 size
= cp
->dev
->mtu
+ 64;
1320 if (size
> cp
->page_size
)
1321 size
= cp
->page_size
;
1325 else if (size
<= 0x800)
1327 else if (size
<= 0x1000)
1332 cp
->mtu_stride
= 1 << (i
+ 10);
1333 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1334 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1335 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1336 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1337 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1339 /* enable the header parser if desired */
1340 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1343 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1344 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1345 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1346 writel(val
, cp
->regs
+ REG_HP_CFG
);
1349 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1351 memset(rxc
, 0, sizeof(*rxc
));
1352 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1355 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1356 * flipping is protected by the fact that the chip will not
1357 * hand back the same page index while it's being processed.
1359 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1361 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1364 if (page_count(page
->buffer
) == 1)
1367 new = cas_page_dequeue(cp
);
1369 spin_lock(&cp
->rx_inuse_lock
);
1370 list_add(&page
->list
, &cp
->rx_inuse_list
);
1371 spin_unlock(&cp
->rx_inuse_lock
);
1376 /* this needs to be changed if we actually use the ENC RX DESC ring */
1377 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1380 cas_page_t
**page0
= cp
->rx_pages
[0];
1381 cas_page_t
**page1
= cp
->rx_pages
[1];
1383 /* swap if buffer is in use */
1384 if (page_count(page0
[index
]->buffer
) > 1) {
1385 cas_page_t
*new = cas_page_spare(cp
, index
);
1387 page1
[index
] = page0
[index
];
1391 RX_USED_SET(page0
[index
], 0);
1392 return page0
[index
];
1395 static void cas_clean_rxds(struct cas
*cp
)
1397 /* only clean ring 0 as ring 1 is used for spare buffers */
1398 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1401 /* release all rx flows */
1402 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1403 struct sk_buff
*skb
;
1404 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1405 cas_skb_release(skb
);
1409 /* initialize descriptors */
1410 size
= RX_DESC_RINGN_SIZE(0);
1411 for (i
= 0; i
< size
; i
++) {
1412 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1413 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1414 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1415 CAS_BASE(RX_INDEX_RING
, 0));
1418 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1420 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1423 static void cas_clean_rxcs(struct cas
*cp
)
1427 /* take ownership of rx comp descriptors */
1428 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1429 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1430 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1431 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1432 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1433 cas_rxc_init(rxc
+ j
);
1439 /* When we get a RX fifo overflow, the RX unit is probably hung
1440 * so we do the following.
1442 * If any part of the reset goes wrong, we return 1 and that causes the
1443 * whole chip to be reset.
1445 static int cas_rxmac_reset(struct cas
*cp
)
1447 struct net_device
*dev
= cp
->dev
;
1451 /* First, reset MAC RX. */
1452 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1453 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1454 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1458 if (limit
== STOP_TRIES
) {
1459 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1463 /* Second, disable RX DMA. */
1464 writel(0, cp
->regs
+ REG_RX_CFG
);
1465 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1466 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1470 if (limit
== STOP_TRIES
) {
1471 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1477 /* Execute RX reset command. */
1478 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1479 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1480 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1484 if (limit
== STOP_TRIES
) {
1485 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1489 /* reset driver rx state */
1493 /* Now, reprogram the rest of RX unit. */
1494 cas_init_rx_dma(cp
);
1497 val
= readl(cp
->regs
+ REG_RX_CFG
);
1498 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1499 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1500 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1501 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1506 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1509 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1514 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1516 /* these are all rollovers */
1517 spin_lock(&cp
->stat_lock
[0]);
1518 if (stat
& MAC_RX_ALIGN_ERR
)
1519 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1521 if (stat
& MAC_RX_CRC_ERR
)
1522 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1524 if (stat
& MAC_RX_LEN_ERR
)
1525 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1527 if (stat
& MAC_RX_OVERFLOW
) {
1528 cp
->net_stats
[0].rx_over_errors
++;
1529 cp
->net_stats
[0].rx_fifo_errors
++;
1532 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1535 spin_unlock(&cp
->stat_lock
[0]);
1539 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1542 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1547 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1548 "mac interrupt, stat: 0x%x\n", stat
);
1550 /* This interrupt is just for pause frame and pause
1551 * tracking. It is useful for diagnostics and debug
1552 * but probably by default we will mask these events.
1554 if (stat
& MAC_CTRL_PAUSE_STATE
)
1555 cp
->pause_entered
++;
1557 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1558 cp
->pause_last_time_recvd
= (stat
>> 16);
1564 /* Must be invoked under cp->lock. */
1565 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1569 switch (cp
->lstate
) {
1570 case link_force_ret
:
1571 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1572 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1573 cp
->timer_ticks
= 5;
1574 cp
->lstate
= link_force_ok
;
1575 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1579 val
= cas_phy_read(cp
, MII_BMCR
);
1581 /* Try forced modes. we try things in the following order:
1582 * 1000 full -> 100 full/half -> 10 half
1584 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1585 val
|= BMCR_FULLDPLX
;
1586 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1587 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1588 cas_phy_write(cp
, MII_BMCR
, val
);
1589 cp
->timer_ticks
= 5;
1590 cp
->lstate
= link_force_try
;
1591 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1594 case link_force_try
:
1595 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1596 val
= cas_phy_read(cp
, MII_BMCR
);
1597 cp
->timer_ticks
= 5;
1598 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1599 val
&= ~CAS_BMCR_SPEED1000
;
1600 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1601 cas_phy_write(cp
, MII_BMCR
, val
);
1605 if (val
& BMCR_SPEED100
) {
1606 if (val
& BMCR_FULLDPLX
) /* fd failed */
1607 val
&= ~BMCR_FULLDPLX
;
1608 else { /* 100Mbps failed */
1609 val
&= ~BMCR_SPEED100
;
1611 cas_phy_write(cp
, MII_BMCR
, val
);
1621 /* must be invoked with cp->lock held */
1622 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1626 if (bmsr
& BMSR_LSTATUS
) {
1627 /* Ok, here we got a link. If we had it due to a forced
1628 * fallback, and we were configured for autoneg, we
1629 * retry a short autoneg pass. If you know your hub is
1630 * broken, use ethtool ;)
1632 if ((cp
->lstate
== link_force_try
) &&
1633 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1634 cp
->lstate
= link_force_ret
;
1635 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1636 cas_mif_poll(cp
, 0);
1637 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1638 cp
->timer_ticks
= 5;
1640 netif_info(cp
, link
, cp
->dev
,
1641 "Got link after fallback, retrying autoneg once...\n");
1642 cas_phy_write(cp
, MII_BMCR
,
1643 cp
->link_fcntl
| BMCR_ANENABLE
|
1645 cas_mif_poll(cp
, 1);
1647 } else if (cp
->lstate
!= link_up
) {
1648 cp
->lstate
= link_up
;
1649 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1652 cas_set_link_modes(cp
);
1653 netif_carrier_on(cp
->dev
);
1659 /* link not up. if the link was previously up, we restart the
1663 if (cp
->lstate
== link_up
) {
1664 cp
->lstate
= link_down
;
1665 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1667 netif_carrier_off(cp
->dev
);
1669 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1672 } else if (++cp
->timer_ticks
> 10)
1673 cas_mdio_link_not_up(cp
);
1678 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1681 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1684 /* check for a link change */
1685 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1688 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1689 return cas_mii_link_check(cp
, bmsr
);
1692 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1695 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1700 netdev_err(dev
, "PCI error [%04x:%04x]",
1701 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1703 /* cassini+ has this reserved */
1704 if ((stat
& PCI_ERR_BADACK
) &&
1705 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1706 pr_cont(" <No ACK64# during ABS64 cycle>");
1708 if (stat
& PCI_ERR_DTRTO
)
1709 pr_cont(" <Delayed transaction timeout>");
1710 if (stat
& PCI_ERR_OTHER
)
1711 pr_cont(" <other>");
1712 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1713 pr_cont(" <BIM DMA 0 write req>");
1714 if (stat
& PCI_ERR_BIM_DMA_READ
)
1715 pr_cont(" <BIM DMA 0 read req>");
1718 if (stat
& PCI_ERR_OTHER
) {
1721 /* Interrogate PCI config space for the
1724 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1725 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1726 if (cfg
& PCI_STATUS_PARITY
)
1727 netdev_err(dev
, "PCI parity error detected\n");
1728 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1729 netdev_err(dev
, "PCI target abort\n");
1730 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1731 netdev_err(dev
, "PCI master acks target abort\n");
1732 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1733 netdev_err(dev
, "PCI master abort\n");
1734 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1735 netdev_err(dev
, "PCI system error SERR#\n");
1736 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1737 netdev_err(dev
, "PCI parity error\n");
1739 /* Write the error bits back to clear them. */
1740 cfg
&= (PCI_STATUS_PARITY
|
1741 PCI_STATUS_SIG_TARGET_ABORT
|
1742 PCI_STATUS_REC_TARGET_ABORT
|
1743 PCI_STATUS_REC_MASTER_ABORT
|
1744 PCI_STATUS_SIG_SYSTEM_ERROR
|
1745 PCI_STATUS_DETECTED_PARITY
);
1746 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1749 /* For all PCI errors, we should reset the chip. */
1753 /* All non-normal interrupt conditions get serviced here.
1754 * Returns non-zero if we should just exit the interrupt
1755 * handler right now (ie. if we reset the card which invalidates
1756 * all of the other original irq status bits).
1758 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1761 if (status
& INTR_RX_TAG_ERROR
) {
1762 /* corrupt RX tag framing */
1763 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1764 "corrupt rx tag framing\n");
1765 spin_lock(&cp
->stat_lock
[0]);
1766 cp
->net_stats
[0].rx_errors
++;
1767 spin_unlock(&cp
->stat_lock
[0]);
1771 if (status
& INTR_RX_LEN_MISMATCH
) {
1772 /* length mismatch. */
1773 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1774 "length mismatch for rx frame\n");
1775 spin_lock(&cp
->stat_lock
[0]);
1776 cp
->net_stats
[0].rx_errors
++;
1777 spin_unlock(&cp
->stat_lock
[0]);
1781 if (status
& INTR_PCS_STATUS
) {
1782 if (cas_pcs_interrupt(dev
, cp
, status
))
1786 if (status
& INTR_TX_MAC_STATUS
) {
1787 if (cas_txmac_interrupt(dev
, cp
, status
))
1791 if (status
& INTR_RX_MAC_STATUS
) {
1792 if (cas_rxmac_interrupt(dev
, cp
, status
))
1796 if (status
& INTR_MAC_CTRL_STATUS
) {
1797 if (cas_mac_interrupt(dev
, cp
, status
))
1801 if (status
& INTR_MIF_STATUS
) {
1802 if (cas_mif_interrupt(dev
, cp
, status
))
1806 if (status
& INTR_PCI_ERROR_STATUS
) {
1807 if (cas_pci_interrupt(dev
, cp
, status
))
1814 atomic_inc(&cp
->reset_task_pending
);
1815 atomic_inc(&cp
->reset_task_pending_all
);
1816 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1817 schedule_work(&cp
->reset_task
);
1819 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1820 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1821 schedule_work(&cp
->reset_task
);
1826 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1827 * determining whether to do a netif_stop/wakeup
1829 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1830 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1831 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1834 unsigned long off
= addr
+ len
;
1836 if (CAS_TABORT(cp
) == 1)
1838 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1840 return TX_TARGET_ABORT_LEN
;
1843 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1845 struct cas_tx_desc
*txds
;
1846 struct sk_buff
**skbs
;
1847 struct net_device
*dev
= cp
->dev
;
1850 spin_lock(&cp
->tx_lock
[ring
]);
1851 txds
= cp
->init_txds
[ring
];
1852 skbs
= cp
->tx_skbs
[ring
];
1853 entry
= cp
->tx_old
[ring
];
1855 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1856 while (entry
!= limit
) {
1857 struct sk_buff
*skb
= skbs
[entry
];
1863 /* this should never occur */
1864 entry
= TX_DESC_NEXT(ring
, entry
);
1868 /* however, we might get only a partial skb release. */
1869 count
-= skb_shinfo(skb
)->nr_frags
+
1870 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1874 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1875 "tx[%d] done, slot %d\n", ring
, entry
);
1878 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1880 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1881 struct cas_tx_desc
*txd
= txds
+ entry
;
1883 daddr
= le64_to_cpu(txd
->buffer
);
1884 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1885 le64_to_cpu(txd
->control
));
1886 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1888 entry
= TX_DESC_NEXT(ring
, entry
);
1890 /* tiny buffer may follow */
1891 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1892 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1893 entry
= TX_DESC_NEXT(ring
, entry
);
1897 spin_lock(&cp
->stat_lock
[ring
]);
1898 cp
->net_stats
[ring
].tx_packets
++;
1899 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1900 spin_unlock(&cp
->stat_lock
[ring
]);
1901 dev_kfree_skb_irq(skb
);
1903 cp
->tx_old
[ring
] = entry
;
1905 /* this is wrong for multiple tx rings. the net device needs
1906 * multiple queues for this to do the right thing. we wait
1907 * for 2*packets to be available when using tiny buffers
1909 if (netif_queue_stopped(dev
) &&
1910 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1911 netif_wake_queue(dev
);
1912 spin_unlock(&cp
->tx_lock
[ring
]);
1915 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1919 #ifdef USE_TX_COMPWB
1920 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1922 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1923 "tx interrupt, status: 0x%x, %llx\n",
1924 status
, (unsigned long long)compwb
);
1925 /* process all the rings */
1926 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1927 #ifdef USE_TX_COMPWB
1928 /* use the completion writeback registers */
1929 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1930 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1931 compwb
= TX_COMPWB_NEXT(compwb
);
1933 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1935 if (cp
->tx_old
[ring
] != limit
)
1936 cas_tx_ringN(cp
, ring
, limit
);
1941 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1942 int entry
, const u64
*words
,
1943 struct sk_buff
**skbref
)
1945 int dlen
, hlen
, len
, i
, alloclen
;
1946 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1947 struct cas_page
*page
;
1948 struct sk_buff
*skb
;
1949 void *addr
, *crcaddr
;
1953 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1954 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1957 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1960 alloclen
= max(hlen
, RX_COPY_MIN
);
1962 skb
= netdev_alloc_skb(cp
->dev
, alloclen
+ swivel
+ cp
->crc_size
);
1967 skb_reserve(skb
, swivel
);
1970 addr
= crcaddr
= NULL
;
1971 if (hlen
) { /* always copy header pages */
1972 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1973 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1974 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1978 if (!dlen
) /* attach FCS */
1980 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1981 PCI_DMA_FROMDEVICE
);
1982 addr
= cas_page_map(page
->buffer
);
1983 memcpy(p
, addr
+ off
, i
);
1984 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1985 PCI_DMA_FROMDEVICE
);
1986 cas_page_unmap(addr
);
1987 RX_USED_ADD(page
, 0x100);
1993 if (alloclen
< (hlen
+ dlen
)) {
1994 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
1996 /* normal or jumbo packets. we use frags */
1997 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
1998 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1999 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2001 hlen
= min(cp
->page_size
- off
, dlen
);
2003 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2004 "rx page overflow: %d\n", hlen
);
2005 dev_kfree_skb_irq(skb
);
2009 if (i
== dlen
) /* attach FCS */
2011 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2012 PCI_DMA_FROMDEVICE
);
2014 /* make sure we always copy a header */
2016 if (p
== (char *) skb
->data
) { /* not split */
2017 addr
= cas_page_map(page
->buffer
);
2018 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2019 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2020 PCI_DMA_FROMDEVICE
);
2021 cas_page_unmap(addr
);
2023 swivel
= RX_COPY_MIN
;
2024 RX_USED_ADD(page
, cp
->mtu_stride
);
2026 RX_USED_ADD(page
, hlen
);
2028 skb_put(skb
, alloclen
);
2030 skb_shinfo(skb
)->nr_frags
++;
2031 skb
->data_len
+= hlen
- swivel
;
2032 skb
->truesize
+= hlen
- swivel
;
2033 skb
->len
+= hlen
- swivel
;
2035 __skb_frag_set_page(frag
, page
->buffer
);
2036 __skb_frag_ref(frag
);
2037 frag
->page_offset
= off
;
2038 skb_frag_size_set(frag
, hlen
- swivel
);
2040 /* any more data? */
2041 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2045 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2046 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2047 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2048 hlen
+ cp
->crc_size
,
2049 PCI_DMA_FROMDEVICE
);
2050 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2051 hlen
+ cp
->crc_size
,
2052 PCI_DMA_FROMDEVICE
);
2054 skb_shinfo(skb
)->nr_frags
++;
2055 skb
->data_len
+= hlen
;
2059 __skb_frag_set_page(frag
, page
->buffer
);
2060 __skb_frag_ref(frag
);
2061 frag
->page_offset
= 0;
2062 skb_frag_size_set(frag
, hlen
);
2063 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2067 addr
= cas_page_map(page
->buffer
);
2068 crcaddr
= addr
+ off
+ hlen
;
2072 /* copying packet */
2076 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2077 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2078 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2079 hlen
= min(cp
->page_size
- off
, dlen
);
2081 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2082 "rx page overflow: %d\n", hlen
);
2083 dev_kfree_skb_irq(skb
);
2087 if (i
== dlen
) /* attach FCS */
2089 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2090 PCI_DMA_FROMDEVICE
);
2091 addr
= cas_page_map(page
->buffer
);
2092 memcpy(p
, addr
+ off
, i
);
2093 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2094 PCI_DMA_FROMDEVICE
);
2095 cas_page_unmap(addr
);
2096 if (p
== (char *) skb
->data
) /* not split */
2097 RX_USED_ADD(page
, cp
->mtu_stride
);
2099 RX_USED_ADD(page
, i
);
2101 /* any more data? */
2102 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2104 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2105 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2106 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2107 dlen
+ cp
->crc_size
,
2108 PCI_DMA_FROMDEVICE
);
2109 addr
= cas_page_map(page
->buffer
);
2110 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2111 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2112 dlen
+ cp
->crc_size
,
2113 PCI_DMA_FROMDEVICE
);
2114 cas_page_unmap(addr
);
2115 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2120 crcaddr
= skb
->data
+ alloclen
;
2122 skb_put(skb
, alloclen
);
2125 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2127 /* checksum includes FCS. strip it out. */
2128 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2129 csum_unfold(csum
)));
2131 cas_page_unmap(addr
);
2133 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2134 if (skb
->protocol
== htons(ETH_P_IP
)) {
2135 skb
->csum
= csum_unfold(~csum
);
2136 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2138 skb_checksum_none_assert(skb
);
2143 /* we can handle up to 64 rx flows at a time. we do the same thing
2144 * as nonreassm except that we batch up the buffers.
2145 * NOTE: we currently just treat each flow as a bunch of packets that
2146 * we pass up. a better way would be to coalesce the packets
2147 * into a jumbo packet. to do that, we need to do the following:
2148 * 1) the first packet will have a clean split between header and
2150 * 2) each time the next flow packet comes in, extend the
2151 * data length and merge the checksums.
2152 * 3) on flow release, fix up the header.
2153 * 4) make sure the higher layer doesn't care.
2154 * because packets get coalesced, we shouldn't run into fragment count
2157 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2158 struct sk_buff
*skb
)
2160 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2161 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2163 /* this is protected at a higher layer, so no need to
2164 * do any additional locking here. stick the buffer
2167 __skb_queue_tail(flow
, skb
);
2168 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2169 while ((skb
= __skb_dequeue(flow
))) {
2170 cas_skb_release(skb
);
2175 /* put rx descriptor back on ring. if a buffer is in use by a higher
2176 * layer, this will need to put in a replacement.
2178 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2183 entry
= cp
->rx_old
[ring
];
2185 new = cas_page_swap(cp
, ring
, index
);
2186 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2187 cp
->init_rxds
[ring
][entry
].index
=
2188 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2189 CAS_BASE(RX_INDEX_RING
, ring
));
2191 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2192 cp
->rx_old
[ring
] = entry
;
2198 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2199 else if ((N_RX_DESC_RINGS
> 1) &&
2200 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2201 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2205 /* only when things are bad */
2206 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2208 unsigned int entry
, last
, count
, released
;
2210 cas_page_t
**page
= cp
->rx_pages
[ring
];
2212 entry
= cp
->rx_old
[ring
];
2214 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2215 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2218 count
= entry
& 0x3;
2219 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2221 while (entry
!= last
) {
2222 /* make a new buffer if it's still in use */
2223 if (page_count(page
[entry
]->buffer
) > 1) {
2224 cas_page_t
*new = cas_page_dequeue(cp
);
2226 /* let the timer know that we need to
2229 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2230 if (!timer_pending(&cp
->link_timer
))
2231 mod_timer(&cp
->link_timer
, jiffies
+
2232 CAS_LINK_FAST_TIMEOUT
);
2233 cp
->rx_old
[ring
] = entry
;
2234 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2237 spin_lock(&cp
->rx_inuse_lock
);
2238 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2239 spin_unlock(&cp
->rx_inuse_lock
);
2240 cp
->init_rxds
[ring
][entry
].buffer
=
2241 cpu_to_le64(new->dma_addr
);
2251 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2253 cp
->rx_old
[ring
] = entry
;
2259 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2260 else if ((N_RX_DESC_RINGS
> 1) &&
2261 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2262 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2267 /* process a completion ring. packets are set up in three basic ways:
2268 * small packets: should be copied header + data in single buffer.
2269 * large packets: header and data in a single buffer.
2270 * split packets: header in a separate buffer from data.
2271 * data may be in multiple pages. data may be > 256
2272 * bytes but in a single page.
2274 * NOTE: RX page posting is done in this routine as well. while there's
2275 * the capability of using multiple RX completion rings, it isn't
2276 * really worthwhile due to the fact that the page posting will
2277 * force serialization on the single descriptor ring.
2279 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2281 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2285 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2286 "rx[%d] interrupt, done: %d/%d\n",
2288 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2290 entry
= cp
->rx_new
[ring
];
2293 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2294 struct sk_buff
*uninitialized_var(skb
);
2299 words
[0] = le64_to_cpu(rxc
->word1
);
2300 words
[1] = le64_to_cpu(rxc
->word2
);
2301 words
[2] = le64_to_cpu(rxc
->word3
);
2302 words
[3] = le64_to_cpu(rxc
->word4
);
2304 /* don't touch if still owned by hw */
2305 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2309 /* hw hasn't cleared the zero bit yet */
2310 if (words
[3] & RX_COMP4_ZERO
) {
2314 /* get info on the packet */
2315 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2316 spin_lock(&cp
->stat_lock
[ring
]);
2317 cp
->net_stats
[ring
].rx_errors
++;
2318 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2319 cp
->net_stats
[ring
].rx_length_errors
++;
2320 if (words
[3] & RX_COMP4_BAD
)
2321 cp
->net_stats
[ring
].rx_crc_errors
++;
2322 spin_unlock(&cp
->stat_lock
[ring
]);
2324 /* We'll just return it to Cassini. */
2326 spin_lock(&cp
->stat_lock
[ring
]);
2327 ++cp
->net_stats
[ring
].rx_dropped
;
2328 spin_unlock(&cp
->stat_lock
[ring
]);
2332 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2338 /* see if it's a flow re-assembly or not. the driver
2339 * itself handles release back up.
2341 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2342 /* non-reassm: these always get released */
2343 cas_skb_release(skb
);
2345 cas_rx_flow_pkt(cp
, words
, skb
);
2348 spin_lock(&cp
->stat_lock
[ring
]);
2349 cp
->net_stats
[ring
].rx_packets
++;
2350 cp
->net_stats
[ring
].rx_bytes
+= len
;
2351 spin_unlock(&cp
->stat_lock
[ring
]);
2356 /* should it be released? */
2357 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2358 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2359 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2360 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2361 cas_post_page(cp
, dring
, i
);
2364 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2365 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2366 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2367 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2368 cas_post_page(cp
, dring
, i
);
2371 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2372 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2373 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2374 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2375 cas_post_page(cp
, dring
, i
);
2378 /* skip to the next entry */
2379 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2380 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2382 if (budget
&& (npackets
>= budget
))
2386 cp
->rx_new
[ring
] = entry
;
2389 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2394 /* put completion entries back on the ring */
2395 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2396 struct cas
*cp
, int ring
)
2398 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2401 last
= cp
->rx_cur
[ring
];
2402 entry
= cp
->rx_new
[ring
];
2403 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2404 "rxc[%d] interrupt, done: %d/%d\n",
2405 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2407 /* zero and re-mark descriptors */
2408 while (last
!= entry
) {
2409 cas_rxc_init(rxc
+ last
);
2410 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2412 cp
->rx_cur
[ring
] = last
;
2415 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2416 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2417 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2422 /* cassini can use all four PCI interrupts for the completion ring.
2423 * rings 3 and 4 are identical
2425 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2426 static inline void cas_handle_irqN(struct net_device
*dev
,
2427 struct cas
*cp
, const u32 status
,
2430 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2431 cas_post_rxcs_ringN(dev
, cp
, ring
);
2434 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2436 struct net_device
*dev
= dev_id
;
2437 struct cas
*cp
= netdev_priv(dev
);
2438 unsigned long flags
;
2439 int ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2440 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2442 /* check for shared irq */
2446 spin_lock_irqsave(&cp
->lock
, flags
);
2447 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2450 napi_schedule(&cp
->napi
);
2452 cas_rx_ringN(cp
, ring
, 0);
2454 status
&= ~INTR_RX_DONE_ALT
;
2458 cas_handle_irqN(dev
, cp
, status
, ring
);
2459 spin_unlock_irqrestore(&cp
->lock
, flags
);
2465 /* everything but rx packets */
2466 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2468 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2469 /* Frame arrived, no free RX buffers available.
2470 * NOTE: we can get this on a link transition. */
2471 cas_post_rxds_ringN(cp
, 1, 0);
2472 spin_lock(&cp
->stat_lock
[1]);
2473 cp
->net_stats
[1].rx_dropped
++;
2474 spin_unlock(&cp
->stat_lock
[1]);
2477 if (status
& INTR_RX_BUF_AE_1
)
2478 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2479 RX_AE_FREEN_VAL(1));
2481 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2482 cas_post_rxcs_ringN(cp
, 1);
2485 /* ring 2 handles a few more events than 3 and 4 */
2486 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2488 struct net_device
*dev
= dev_id
;
2489 struct cas
*cp
= netdev_priv(dev
);
2490 unsigned long flags
;
2491 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2493 /* check for shared interrupt */
2497 spin_lock_irqsave(&cp
->lock
, flags
);
2498 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2501 napi_schedule(&cp
->napi
);
2503 cas_rx_ringN(cp
, 1, 0);
2505 status
&= ~INTR_RX_DONE_ALT
;
2508 cas_handle_irq1(cp
, status
);
2509 spin_unlock_irqrestore(&cp
->lock
, flags
);
2514 static inline void cas_handle_irq(struct net_device
*dev
,
2515 struct cas
*cp
, const u32 status
)
2517 /* housekeeping interrupts */
2518 if (status
& INTR_ERROR_MASK
)
2519 cas_abnormal_irq(dev
, cp
, status
);
2521 if (status
& INTR_RX_BUF_UNAVAIL
) {
2522 /* Frame arrived, no free RX buffers available.
2523 * NOTE: we can get this on a link transition.
2525 cas_post_rxds_ringN(cp
, 0, 0);
2526 spin_lock(&cp
->stat_lock
[0]);
2527 cp
->net_stats
[0].rx_dropped
++;
2528 spin_unlock(&cp
->stat_lock
[0]);
2529 } else if (status
& INTR_RX_BUF_AE
) {
2530 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2531 RX_AE_FREEN_VAL(0));
2534 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2535 cas_post_rxcs_ringN(dev
, cp
, 0);
2538 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2540 struct net_device
*dev
= dev_id
;
2541 struct cas
*cp
= netdev_priv(dev
);
2542 unsigned long flags
;
2543 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2548 spin_lock_irqsave(&cp
->lock
, flags
);
2549 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2550 cas_tx(dev
, cp
, status
);
2551 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2554 if (status
& INTR_RX_DONE
) {
2557 napi_schedule(&cp
->napi
);
2559 cas_rx_ringN(cp
, 0, 0);
2561 status
&= ~INTR_RX_DONE
;
2565 cas_handle_irq(dev
, cp
, status
);
2566 spin_unlock_irqrestore(&cp
->lock
, flags
);
2572 static int cas_poll(struct napi_struct
*napi
, int budget
)
2574 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2575 struct net_device
*dev
= cp
->dev
;
2576 int i
, enable_intr
, credits
;
2577 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2578 unsigned long flags
;
2580 spin_lock_irqsave(&cp
->lock
, flags
);
2581 cas_tx(dev
, cp
, status
);
2582 spin_unlock_irqrestore(&cp
->lock
, flags
);
2584 /* NAPI rx packets. we spread the credits across all of the
2587 * to make sure we're fair with the work we loop through each
2588 * ring N_RX_COMP_RING times with a request of
2589 * budget / N_RX_COMP_RINGS
2593 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2595 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2596 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2597 if (credits
>= budget
) {
2605 /* final rx completion */
2606 spin_lock_irqsave(&cp
->lock
, flags
);
2608 cas_handle_irq(dev
, cp
, status
);
2611 if (N_RX_COMP_RINGS
> 1) {
2612 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2614 cas_handle_irq1(dev
, cp
, status
);
2619 if (N_RX_COMP_RINGS
> 2) {
2620 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2622 cas_handle_irqN(dev
, cp
, status
, 2);
2627 if (N_RX_COMP_RINGS
> 3) {
2628 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2630 cas_handle_irqN(dev
, cp
, status
, 3);
2633 spin_unlock_irqrestore(&cp
->lock
, flags
);
2635 napi_complete(napi
);
2636 cas_unmask_intr(cp
);
2642 #ifdef CONFIG_NET_POLL_CONTROLLER
2643 static void cas_netpoll(struct net_device
*dev
)
2645 struct cas
*cp
= netdev_priv(dev
);
2647 cas_disable_irq(cp
, 0);
2648 cas_interrupt(cp
->pdev
->irq
, dev
);
2649 cas_enable_irq(cp
, 0);
2652 if (N_RX_COMP_RINGS
> 1) {
2653 /* cas_interrupt1(); */
2657 if (N_RX_COMP_RINGS
> 2) {
2658 /* cas_interruptN(); */
2662 if (N_RX_COMP_RINGS
> 3) {
2663 /* cas_interruptN(); */
2669 static void cas_tx_timeout(struct net_device
*dev
)
2671 struct cas
*cp
= netdev_priv(dev
);
2673 netdev_err(dev
, "transmit timed out, resetting\n");
2674 if (!cp
->hw_running
) {
2675 netdev_err(dev
, "hrm.. hw not running!\n");
2679 netdev_err(dev
, "MIF_STATE[%08x]\n",
2680 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2682 netdev_err(dev
, "MAC_STATE[%08x]\n",
2683 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2685 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2686 readl(cp
->regs
+ REG_TX_CFG
),
2687 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2688 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2689 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2690 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2691 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2692 readl(cp
->regs
+ REG_TX_SM_1
),
2693 readl(cp
->regs
+ REG_TX_SM_2
));
2695 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2696 readl(cp
->regs
+ REG_RX_CFG
),
2697 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2698 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2700 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2701 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2702 readl(cp
->regs
+ REG_HP_STATUS0
),
2703 readl(cp
->regs
+ REG_HP_STATUS1
),
2704 readl(cp
->regs
+ REG_HP_STATUS2
));
2707 atomic_inc(&cp
->reset_task_pending
);
2708 atomic_inc(&cp
->reset_task_pending_all
);
2709 schedule_work(&cp
->reset_task
);
2711 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2712 schedule_work(&cp
->reset_task
);
2716 static inline int cas_intme(int ring
, int entry
)
2718 /* Algorithm: IRQ every 1/2 of descriptors. */
2719 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2725 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2726 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2728 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2730 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2731 if (cas_intme(ring
, entry
))
2732 ctrl
|= TX_DESC_INTME
;
2734 ctrl
|= TX_DESC_EOF
;
2735 txd
->control
= cpu_to_le64(ctrl
);
2736 txd
->buffer
= cpu_to_le64(mapping
);
2739 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2742 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2745 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2746 const int entry
, const int tentry
)
2748 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2749 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2750 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2753 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2754 struct sk_buff
*skb
)
2756 struct net_device
*dev
= cp
->dev
;
2757 int entry
, nr_frags
, frag
, tabort
, tentry
;
2759 unsigned long flags
;
2763 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2765 /* This is a hard error, log it. */
2766 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2767 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2768 netif_stop_queue(dev
);
2769 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2770 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2775 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2776 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2777 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2779 ctrl
= TX_DESC_CSUM_EN
|
2780 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2781 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2784 entry
= cp
->tx_new
[ring
];
2785 cp
->tx_skbs
[ring
][entry
] = skb
;
2787 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2788 len
= skb_headlen(skb
);
2789 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2790 offset_in_page(skb
->data
), len
,
2794 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2795 if (unlikely(tabort
)) {
2796 /* NOTE: len is always > tabort */
2797 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2798 ctrl
| TX_DESC_SOF
, 0);
2799 entry
= TX_DESC_NEXT(ring
, entry
);
2801 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2802 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2803 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2804 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2807 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2808 TX_DESC_SOF
, (nr_frags
== 0));
2810 entry
= TX_DESC_NEXT(ring
, entry
);
2812 for (frag
= 0; frag
< nr_frags
; frag
++) {
2813 const skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2815 len
= skb_frag_size(fragp
);
2816 mapping
= skb_frag_dma_map(&cp
->pdev
->dev
, fragp
, 0, len
,
2819 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2820 if (unlikely(tabort
)) {
2823 /* NOTE: len is always > tabort */
2824 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2826 entry
= TX_DESC_NEXT(ring
, entry
);
2828 addr
= cas_page_map(skb_frag_page(fragp
));
2829 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2830 addr
+ fragp
->page_offset
+ len
- tabort
,
2832 cas_page_unmap(addr
);
2833 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2837 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2838 (frag
+ 1 == nr_frags
));
2839 entry
= TX_DESC_NEXT(ring
, entry
);
2842 cp
->tx_new
[ring
] = entry
;
2843 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2844 netif_stop_queue(dev
);
2846 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2847 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2848 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2849 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2850 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2854 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2856 struct cas
*cp
= netdev_priv(dev
);
2858 /* this is only used as a load-balancing hint, so it doesn't
2859 * need to be SMP safe
2863 if (skb_padto(skb
, cp
->min_frame_size
))
2864 return NETDEV_TX_OK
;
2866 /* XXX: we need some higher-level QoS hooks to steer packets to
2867 * individual queues.
2869 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2870 return NETDEV_TX_BUSY
;
2871 return NETDEV_TX_OK
;
2874 static void cas_init_tx_dma(struct cas
*cp
)
2876 u64 desc_dma
= cp
->block_dvma
;
2881 /* set up tx completion writeback registers. must be 8-byte aligned */
2882 #ifdef USE_TX_COMPWB
2883 off
= offsetof(struct cas_init_block
, tx_compwb
);
2884 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2885 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2888 /* enable completion writebacks, enable paced mode,
2889 * disable read pipe, and disable pre-interrupt compwbs
2891 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2892 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2893 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2894 TX_CFG_INTR_COMPWB_DIS
;
2896 /* write out tx ring info and tx desc bases */
2897 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2898 off
= (unsigned long) cp
->init_txds
[i
] -
2899 (unsigned long) cp
->init_block
;
2901 val
|= CAS_TX_RINGN_BASE(i
);
2902 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2903 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2905 /* don't zero out the kick register here as the system
2909 writel(val
, cp
->regs
+ REG_TX_CFG
);
2911 /* program max burst sizes. these numbers should be different
2915 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2916 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2917 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2918 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2920 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2921 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2922 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2923 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2927 /* Must be invoked under cp->lock. */
2928 static inline void cas_init_dma(struct cas
*cp
)
2930 cas_init_tx_dma(cp
);
2931 cas_init_rx_dma(cp
);
2934 static void cas_process_mc_list(struct cas
*cp
)
2938 struct netdev_hw_addr
*ha
;
2941 memset(hash_table
, 0, sizeof(hash_table
));
2942 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2943 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2944 /* use the alternate mac address registers for the
2945 * first 15 multicast addresses
2947 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2948 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2949 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2950 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2951 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2952 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2956 /* use hw hash table for the next series of
2957 * multicast addresses
2959 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2961 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2964 for (i
= 0; i
< 16; i
++)
2965 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2968 /* Must be invoked under cp->lock. */
2969 static u32
cas_setup_multicast(struct cas
*cp
)
2974 if (cp
->dev
->flags
& IFF_PROMISC
) {
2975 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2977 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2978 for (i
=0; i
< 16; i
++)
2979 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2980 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2983 cas_process_mc_list(cp
);
2984 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2990 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2991 static void cas_clear_mac_err(struct cas
*cp
)
2993 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
2994 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
2995 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
2996 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
2997 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
2998 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
2999 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3000 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3001 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3002 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3003 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3007 static void cas_mac_reset(struct cas
*cp
)
3011 /* do both TX and RX reset */
3012 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3013 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3018 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3026 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3031 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3032 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3033 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3034 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3035 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3036 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3040 /* Must be invoked under cp->lock. */
3041 static void cas_init_mac(struct cas
*cp
)
3043 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3047 /* setup core arbitration weight register */
3048 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3050 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3051 /* set the infinite burst register for chips that don't have
3054 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3055 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3058 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3060 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3061 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3062 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3064 /* change later for 802.3z */
3065 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3067 /* min frame + FCS */
3068 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3070 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3071 * specify the maximum frame size to prevent RX tag errors on
3074 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3075 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3076 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3077 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3079 /* NOTE: crc_size is used as a surrogate for half-duplex.
3080 * workaround saturn half-duplex issue by increasing preamble
3083 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3084 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3086 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3087 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3088 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3089 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3091 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3093 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3094 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3095 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3096 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3097 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3099 /* setup mac address in perfect filter array */
3100 for (i
= 0; i
< 45; i
++)
3101 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3103 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3104 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3105 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3107 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3108 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3109 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3111 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3113 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3114 cas_clear_mac_err(cp
);
3115 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3117 /* Setup MAC interrupts. We want to get all of the interesting
3118 * counter expiration events, but we do not want to hear about
3119 * normal rx/tx as the DMA engine tells us that.
3121 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3122 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3124 /* Don't enable even the PAUSE interrupts for now, we
3125 * make no use of those events other than to record them.
3127 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3130 /* Must be invoked under cp->lock. */
3131 static void cas_init_pause_thresholds(struct cas
*cp
)
3133 /* Calculate pause thresholds. Setting the OFF threshold to the
3134 * full RX fifo size effectively disables PAUSE generation
3136 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3137 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3139 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3140 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3141 cp
->rx_pause_off
= 7104;
3142 cp
->rx_pause_on
= 960;
3144 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3145 int on
= off
- max_frame
;
3146 cp
->rx_pause_off
= off
;
3147 cp
->rx_pause_on
= on
;
3152 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3154 int len
= strlen(str
) + 1;
3157 for (i
= 0; i
< len
; i
++) {
3158 if (readb(p
+ i
) != str
[i
])
3165 /* get the mac address by reading the vpd information in the rom.
3166 * also get the phy type and determine if there's an entropy generator.
3167 * NOTE: this is a bit convoluted for the following reasons:
3168 * 1) vpd info has order-dependent mac addresses for multinic cards
3169 * 2) the only way to determine the nic order is to use the slot
3171 * 3) fiber cards don't have bridges, so their slot numbers don't
3173 * 4) we don't actually know we have a fiber card until after
3174 * the mac addresses are parsed.
3176 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3179 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3180 void __iomem
*base
, *kstart
;
3183 #define VPD_FOUND_MAC 0x01
3184 #define VPD_FOUND_PHY 0x02
3186 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3189 #if defined(CONFIG_SPARC)
3190 const unsigned char *addr
;
3193 /* give us access to the PROM */
3194 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3195 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3197 /* check for an expansion rom */
3198 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3199 goto use_random_mac_addr
;
3201 /* search for beginning of vpd */
3203 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3204 /* check for PCIR */
3205 if ((readb(p
+ i
+ 0) == 0x50) &&
3206 (readb(p
+ i
+ 1) == 0x43) &&
3207 (readb(p
+ i
+ 2) == 0x49) &&
3208 (readb(p
+ i
+ 3) == 0x52)) {
3209 base
= p
+ (readb(p
+ i
+ 8) |
3210 (readb(p
+ i
+ 9) << 8));
3215 if (!base
|| (readb(base
) != 0x82))
3216 goto use_random_mac_addr
;
3218 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3219 while (i
< EXPANSION_ROM_SIZE
) {
3220 if (readb(base
+ i
) != 0x90) /* no vpd found */
3221 goto use_random_mac_addr
;
3223 /* found a vpd field */
3224 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3226 /* extract keywords */
3227 kstart
= base
+ i
+ 3;
3229 while ((p
- kstart
) < len
) {
3230 int klen
= readb(p
+ 2);
3236 /* look for the following things:
3237 * -- correct length == 29
3238 * 3 (type) + 2 (size) +
3239 * 18 (strlen("local-mac-address") + 1) +
3241 * -- VPD Instance 'I'
3242 * -- VPD Type Bytes 'B'
3243 * -- VPD data length == 6
3244 * -- property string == local-mac-address
3246 * -- correct length == 24
3247 * 3 (type) + 2 (size) +
3248 * 12 (strlen("entropy-dev") + 1) +
3249 * 7 (strlen("vms110") + 1)
3250 * -- VPD Instance 'I'
3251 * -- VPD Type String 'B'
3252 * -- VPD data length == 7
3253 * -- property string == entropy-dev
3255 * -- correct length == 18
3256 * 3 (type) + 2 (size) +
3257 * 9 (strlen("phy-type") + 1) +
3258 * 4 (strlen("pcs") + 1)
3259 * -- VPD Instance 'I'
3260 * -- VPD Type String 'S'
3261 * -- VPD data length == 4
3262 * -- property string == phy-type
3264 * -- correct length == 23
3265 * 3 (type) + 2 (size) +
3266 * 14 (strlen("phy-interface") + 1) +
3267 * 4 (strlen("pcs") + 1)
3268 * -- VPD Instance 'I'
3269 * -- VPD Type String 'S'
3270 * -- VPD data length == 4
3271 * -- property string == phy-interface
3273 if (readb(p
) != 'I')
3276 /* finally, check string and length */
3277 type
= readb(p
+ 3);
3279 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3280 cas_vpd_match(p
+ 5,
3281 "local-mac-address")) {
3282 if (mac_off
++ > offset
)
3285 /* set mac address */
3286 for (j
= 0; j
< 6; j
++)
3296 #ifdef USE_ENTROPY_DEV
3298 cas_vpd_match(p
+ 5, "entropy-dev") &&
3299 cas_vpd_match(p
+ 17, "vms110")) {
3300 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3305 if (found
& VPD_FOUND_PHY
)
3308 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3309 cas_vpd_match(p
+ 5, "phy-type")) {
3310 if (cas_vpd_match(p
+ 14, "pcs")) {
3311 phy_type
= CAS_PHY_SERDES
;
3316 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3317 cas_vpd_match(p
+ 5, "phy-interface")) {
3318 if (cas_vpd_match(p
+ 19, "pcs")) {
3319 phy_type
= CAS_PHY_SERDES
;
3324 found
|= VPD_FOUND_MAC
;
3328 found
|= VPD_FOUND_PHY
;
3336 use_random_mac_addr
:
3337 if (found
& VPD_FOUND_MAC
)
3340 #if defined(CONFIG_SPARC)
3341 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3343 memcpy(dev_addr
, addr
, ETH_ALEN
);
3348 /* Sun MAC prefix then 3 random bytes. */
3349 pr_info("MAC address not found in ROM VPD\n");
3353 get_random_bytes(dev_addr
+ 3, 3);
3356 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3360 /* check pci invariants */
3361 static void cas_check_pci_invariants(struct cas
*cp
)
3363 struct pci_dev
*pdev
= cp
->pdev
;
3366 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3367 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3368 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3369 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3370 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3371 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3373 /* Original Cassini supports HW CSUM, but it's not
3374 * enabled by default as it can trigger TX hangs.
3376 if (pdev
->revision
< CAS_ID_REV2
)
3377 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3379 /* Only sun has original cassini chips. */
3380 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3382 /* We use a flag because the same phy might be externally
3385 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3386 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3387 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3392 static int cas_check_invariants(struct cas
*cp
)
3394 struct pci_dev
*pdev
= cp
->pdev
;
3398 /* get page size for rx buffers. */
3400 #ifdef USE_PAGE_ORDER
3401 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3402 /* see if we can allocate larger pages */
3403 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3404 CAS_JUMBO_PAGE_SHIFT
-
3407 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3408 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3410 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3414 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3416 /* Fetch the FIFO configurations. */
3417 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3418 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3420 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3421 * they're both connected.
3423 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3424 PCI_SLOT(pdev
->devfn
));
3425 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3426 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3427 return 0; /* no more checking needed */
3431 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3432 if (cfg
& MIF_CFG_MDIO_1
) {
3433 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3434 } else if (cfg
& MIF_CFG_MDIO_0
) {
3435 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3438 cas_mif_poll(cp
, 0);
3439 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3441 for (i
= 0; i
< 32; i
++) {
3445 for (j
= 0; j
< 3; j
++) {
3447 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3448 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3449 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3450 cp
->phy_id
= phy_id
;
3455 pr_err("MII phy did not respond [%08x]\n",
3456 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3460 /* see if we can do gigabit */
3461 cfg
= cas_phy_read(cp
, MII_BMSR
);
3462 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3463 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3464 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3468 /* Must be invoked under cp->lock. */
3469 static inline void cas_start_dma(struct cas
*cp
)
3476 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3477 writel(val
, cp
->regs
+ REG_TX_CFG
);
3478 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3479 writel(val
, cp
->regs
+ REG_RX_CFG
);
3481 /* enable the mac */
3482 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3483 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3484 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3485 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3489 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3490 if ((val
& MAC_TX_CFG_EN
))
3494 if (i
< 0) txfailed
= 1;
3497 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3498 if ((val
& MAC_RX_CFG_EN
)) {
3501 "enabling mac failed [tx:%08x:%08x]\n",
3502 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3503 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3505 goto enable_rx_done
;
3509 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3510 (txfailed
? "tx,rx" : "rx"),
3511 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3512 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3515 cas_unmask_intr(cp
); /* enable interrupts */
3516 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3517 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3519 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3520 if (N_RX_DESC_RINGS
> 1)
3521 writel(RX_DESC_RINGN_SIZE(1) - 4,
3522 cp
->regs
+ REG_PLUS_RX_KICK1
);
3524 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3525 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3529 /* Must be invoked under cp->lock. */
3530 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3533 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3534 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3535 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3536 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3551 /* use GMII registers */
3552 val
= cas_phy_read(cp
, MII_LPA
);
3553 if (val
& CAS_LPA_PAUSE
)
3556 if (val
& CAS_LPA_ASYM_PAUSE
)
3559 if (val
& LPA_DUPLEX
)
3564 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3565 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3566 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3568 if (val
& CAS_LPA_1000FULL
)
3573 /* A link-up condition has occurred, initialize and enable the
3576 * Must be invoked under cp->lock.
3578 static void cas_set_link_modes(struct cas
*cp
)
3581 int full_duplex
, speed
, pause
;
3587 if (CAS_PHY_MII(cp
->phy_type
)) {
3588 cas_mif_poll(cp
, 0);
3589 val
= cas_phy_read(cp
, MII_BMCR
);
3590 if (val
& BMCR_ANENABLE
) {
3591 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3594 if (val
& BMCR_FULLDPLX
)
3597 if (val
& BMCR_SPEED100
)
3599 else if (val
& CAS_BMCR_SPEED1000
)
3600 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3603 cas_mif_poll(cp
, 1);
3606 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3607 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3608 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3609 if (val
& PCS_MII_CTRL_DUPLEX
)
3614 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3615 speed
, full_duplex
? "full" : "half");
3617 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3618 if (CAS_PHY_MII(cp
->phy_type
)) {
3619 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3621 val
|= MAC_XIF_DISABLE_ECHO
;
3624 val
|= MAC_XIF_FDPLX_LED
;
3626 val
|= MAC_XIF_GMII_MODE
;
3627 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3629 /* deal with carrier and collision detect. */
3630 val
= MAC_TX_CFG_IPG_EN
;
3632 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3633 val
|= MAC_TX_CFG_IGNORE_COLL
;
3635 #ifndef USE_CSMA_CD_PROTO
3636 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3637 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3640 /* val now set up for REG_MAC_TX_CFG */
3642 /* If gigabit and half-duplex, enable carrier extension
3643 * mode. increase slot time to 512 bytes as well.
3644 * else, disable it and make sure slot time is 64 bytes.
3645 * also activate checksum bug workaround
3647 if ((speed
== 1000) && !full_duplex
) {
3648 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3649 cp
->regs
+ REG_MAC_TX_CFG
);
3651 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3652 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3653 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3654 cp
->regs
+ REG_MAC_RX_CFG
);
3656 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3659 /* minimum size gigabit frame at half duplex */
3660 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3663 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3665 /* checksum bug workaround. don't strip FCS when in
3668 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3670 val
|= MAC_RX_CFG_STRIP_FCS
;
3672 cp
->min_frame_size
= CAS_MIN_MTU
;
3674 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3676 cp
->min_frame_size
= CAS_MIN_FRAME
;
3678 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3679 cp
->regs
+ REG_MAC_RX_CFG
);
3680 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3683 if (netif_msg_link(cp
)) {
3685 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3689 } else if (pause
& 0x10) {
3690 netdev_info(cp
->dev
, "TX pause enabled\n");
3692 netdev_info(cp
->dev
, "Pause is disabled\n");
3696 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3697 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3698 if (pause
) { /* symmetric or asymmetric pause */
3699 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3700 if (pause
& 0x01) { /* symmetric pause */
3701 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3704 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3708 /* Must be invoked under cp->lock. */
3709 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3714 cas_init_pause_thresholds(cp
);
3719 /* Default aneg parameters */
3720 cp
->timer_ticks
= 0;
3721 cas_begin_auto_negotiation(cp
, NULL
);
3722 } else if (cp
->lstate
== link_up
) {
3723 cas_set_link_modes(cp
);
3724 netif_carrier_on(cp
->dev
);
3728 /* Must be invoked under cp->lock. on earlier cassini boards,
3729 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3730 * let it settle out, and then restore pci state.
3732 static void cas_hard_reset(struct cas
*cp
)
3734 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3736 pci_restore_state(cp
->pdev
);
3740 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3744 /* issue a global reset. don't use RSTOUT. */
3745 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3746 /* For PCS, when the blkflag is set, we should set the
3747 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3748 * the last autonegotiation from being cleared. We'll
3749 * need some special handling if the chip is set into a
3752 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3753 cp
->regs
+ REG_SW_RESET
);
3755 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3758 /* need to wait at least 3ms before polling register */
3762 while (limit
-- > 0) {
3763 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3764 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3768 netdev_err(cp
->dev
, "sw reset failed\n");
3771 /* enable various BIM interrupts */
3772 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3773 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3775 /* clear out pci error status mask for handled errors.
3776 * we don't deal with DMA counter overflows as they happen
3779 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3780 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3781 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3782 REG_PCI_ERR_STATUS_MASK
);
3784 /* set up for MII by default to address mac rx reset timeout
3787 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3790 static void cas_reset(struct cas
*cp
, int blkflag
)
3795 cas_global_reset(cp
, blkflag
);
3797 cas_entropy_reset(cp
);
3799 /* disable dma engines. */
3800 val
= readl(cp
->regs
+ REG_TX_CFG
);
3801 val
&= ~TX_CFG_DMA_EN
;
3802 writel(val
, cp
->regs
+ REG_TX_CFG
);
3804 val
= readl(cp
->regs
+ REG_RX_CFG
);
3805 val
&= ~RX_CFG_DMA_EN
;
3806 writel(val
, cp
->regs
+ REG_RX_CFG
);
3808 /* program header parser */
3809 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3810 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3811 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3813 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3816 /* clear out error registers */
3817 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3818 cas_clear_mac_err(cp
);
3819 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3822 /* Shut down the chip, must be called with pm_mutex held. */
3823 static void cas_shutdown(struct cas
*cp
)
3825 unsigned long flags
;
3827 /* Make us not-running to avoid timers respawning */
3830 del_timer_sync(&cp
->link_timer
);
3832 /* Stop the reset task */
3834 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3835 atomic_read(&cp
->reset_task_pending_spare
) ||
3836 atomic_read(&cp
->reset_task_pending_all
))
3840 while (atomic_read(&cp
->reset_task_pending
))
3843 /* Actually stop the chip */
3844 cas_lock_all_save(cp
, flags
);
3846 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3847 cas_phy_powerdown(cp
);
3848 cas_unlock_all_restore(cp
, flags
);
3851 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3853 struct cas
*cp
= netdev_priv(dev
);
3856 if (!netif_running(dev
) || !netif_device_present(dev
))
3859 /* let the reset task handle it */
3861 atomic_inc(&cp
->reset_task_pending
);
3862 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3863 atomic_inc(&cp
->reset_task_pending_all
);
3865 atomic_inc(&cp
->reset_task_pending_mtu
);
3867 schedule_work(&cp
->reset_task
);
3869 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3870 CAS_RESET_ALL
: CAS_RESET_MTU
);
3871 pr_err("reset called in cas_change_mtu\n");
3872 schedule_work(&cp
->reset_task
);
3875 flush_work(&cp
->reset_task
);
3879 static void cas_clean_txd(struct cas
*cp
, int ring
)
3881 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3882 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3886 size
= TX_DESC_RINGN_SIZE(ring
);
3887 for (i
= 0; i
< size
; i
++) {
3890 if (skbs
[i
] == NULL
)
3896 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3897 int ent
= i
& (size
- 1);
3899 /* first buffer is never a tiny buffer and so
3900 * needs to be unmapped.
3902 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3903 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3904 le64_to_cpu(txd
[ent
].control
));
3905 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3908 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3911 /* next buffer might by a tiny buffer.
3914 ent
= i
& (size
- 1);
3915 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3919 dev_kfree_skb_any(skb
);
3922 /* zero out tiny buf usage */
3923 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3926 /* freed on close */
3927 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3929 cas_page_t
**page
= cp
->rx_pages
[ring
];
3932 size
= RX_DESC_RINGN_SIZE(ring
);
3933 for (i
= 0; i
< size
; i
++) {
3935 cas_page_free(cp
, page
[i
]);
3941 static void cas_free_rxds(struct cas
*cp
)
3945 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3946 cas_free_rx_desc(cp
, i
);
3949 /* Must be invoked under cp->lock. */
3950 static void cas_clean_rings(struct cas
*cp
)
3954 /* need to clean all tx rings */
3955 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3956 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3957 for (i
= 0; i
< N_TX_RINGS
; i
++)
3958 cas_clean_txd(cp
, i
);
3960 /* zero out init block */
3961 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3966 /* allocated on open */
3967 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3969 cas_page_t
**page
= cp
->rx_pages
[ring
];
3972 size
= RX_DESC_RINGN_SIZE(ring
);
3973 for (i
= 0; i
< size
; i
++) {
3974 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
3980 static int cas_alloc_rxds(struct cas
*cp
)
3984 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
3985 if (cas_alloc_rx_desc(cp
, i
) < 0) {
3993 static void cas_reset_task(struct work_struct
*work
)
3995 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
3997 int pending
= atomic_read(&cp
->reset_task_pending
);
3999 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4000 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4001 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4003 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4004 /* We can have more tasks scheduled than actually
4007 atomic_dec(&cp
->reset_task_pending
);
4011 /* The link went down, we reset the ring, but keep
4012 * DMA stopped. Use this function for reset
4015 if (cp
->hw_running
) {
4016 unsigned long flags
;
4018 /* Make sure we don't get interrupts or tx packets */
4019 netif_device_detach(cp
->dev
);
4020 cas_lock_all_save(cp
, flags
);
4023 /* We call cas_spare_recover when we call cas_open.
4024 * but we do not initialize the lists cas_spare_recover
4025 * uses until cas_open is called.
4027 cas_spare_recover(cp
, GFP_ATOMIC
);
4030 /* test => only pending_spare set */
4031 if (!pending_all
&& !pending_mtu
)
4034 if (pending
== CAS_RESET_SPARE
)
4037 /* when pending == CAS_RESET_ALL, the following
4038 * call to cas_init_hw will restart auto negotiation.
4039 * Setting the second argument of cas_reset to
4040 * !(pending == CAS_RESET_ALL) will set this argument
4041 * to 1 (avoiding reinitializing the PHY for the normal
4042 * PCS case) when auto negotiation is not restarted.
4045 cas_reset(cp
, !(pending_all
> 0));
4047 cas_clean_rings(cp
);
4048 cas_init_hw(cp
, (pending_all
> 0));
4050 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4052 cas_clean_rings(cp
);
4053 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4057 cas_unlock_all_restore(cp
, flags
);
4058 netif_device_attach(cp
->dev
);
4061 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4062 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4063 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4064 atomic_dec(&cp
->reset_task_pending
);
4066 atomic_set(&cp
->reset_task_pending
, 0);
4070 static void cas_link_timer(struct timer_list
*t
)
4072 struct cas
*cp
= from_timer(cp
, t
, link_timer
);
4073 int mask
, pending
= 0, reset
= 0;
4074 unsigned long flags
;
4076 if (link_transition_timeout
!= 0 &&
4077 cp
->link_transition_jiffies_valid
&&
4078 ((jiffies
- cp
->link_transition_jiffies
) >
4079 (link_transition_timeout
))) {
4080 /* One-second counter so link-down workaround doesn't
4081 * cause resets to occur so fast as to fool the switch
4082 * into thinking the link is down.
4084 cp
->link_transition_jiffies_valid
= 0;
4087 if (!cp
->hw_running
)
4090 spin_lock_irqsave(&cp
->lock
, flags
);
4092 cas_entropy_gather(cp
);
4094 /* If the link task is still pending, we just
4095 * reschedule the link timer
4098 if (atomic_read(&cp
->reset_task_pending_all
) ||
4099 atomic_read(&cp
->reset_task_pending_spare
) ||
4100 atomic_read(&cp
->reset_task_pending_mtu
))
4103 if (atomic_read(&cp
->reset_task_pending
))
4107 /* check for rx cleaning */
4108 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4111 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4112 rmask
= CAS_FLAG_RXD_POST(i
);
4113 if ((mask
& rmask
) == 0)
4116 /* post_rxds will do a mod_timer */
4117 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4121 cp
->cas_flags
&= ~rmask
;
4125 if (CAS_PHY_MII(cp
->phy_type
)) {
4127 cas_mif_poll(cp
, 0);
4128 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4129 /* WTZ: Solaris driver reads this twice, but that
4130 * may be due to the PCS case and the use of a
4131 * common implementation. Read it twice here to be
4134 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4135 cas_mif_poll(cp
, 1);
4136 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4137 reset
= cas_mii_link_check(cp
, bmsr
);
4139 reset
= cas_pcs_link_check(cp
);
4145 /* check for tx state machine confusion */
4146 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4147 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4149 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4151 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4152 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4153 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4154 "tx err: MAC_STATE[%08x]\n", val
);
4159 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4160 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4161 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4162 if ((val
== 0) && (wptr
!= rptr
)) {
4163 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4164 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4176 atomic_inc(&cp
->reset_task_pending
);
4177 atomic_inc(&cp
->reset_task_pending_all
);
4178 schedule_work(&cp
->reset_task
);
4180 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4181 pr_err("reset called in cas_link_timer\n");
4182 schedule_work(&cp
->reset_task
);
4187 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4189 spin_unlock_irqrestore(&cp
->lock
, flags
);
4192 /* tiny buffers are used to avoid target abort issues with
4195 static void cas_tx_tiny_free(struct cas
*cp
)
4197 struct pci_dev
*pdev
= cp
->pdev
;
4200 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4201 if (!cp
->tx_tiny_bufs
[i
])
4204 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4205 cp
->tx_tiny_bufs
[i
],
4206 cp
->tx_tiny_dvma
[i
]);
4207 cp
->tx_tiny_bufs
[i
] = NULL
;
4211 static int cas_tx_tiny_alloc(struct cas
*cp
)
4213 struct pci_dev
*pdev
= cp
->pdev
;
4216 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4217 cp
->tx_tiny_bufs
[i
] =
4218 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4219 &cp
->tx_tiny_dvma
[i
]);
4220 if (!cp
->tx_tiny_bufs
[i
]) {
4221 cas_tx_tiny_free(cp
);
4229 static int cas_open(struct net_device
*dev
)
4231 struct cas
*cp
= netdev_priv(dev
);
4233 unsigned long flags
;
4235 mutex_lock(&cp
->pm_mutex
);
4237 hw_was_up
= cp
->hw_running
;
4239 /* The power-management mutex protects the hw_running
4240 * etc. state so it is safe to do this bit without cp->lock
4242 if (!cp
->hw_running
) {
4243 /* Reset the chip */
4244 cas_lock_all_save(cp
, flags
);
4245 /* We set the second arg to cas_reset to zero
4246 * because cas_init_hw below will have its second
4247 * argument set to non-zero, which will force
4248 * autonegotiation to start.
4252 cas_unlock_all_restore(cp
, flags
);
4256 if (cas_tx_tiny_alloc(cp
) < 0)
4259 /* alloc rx descriptors */
4260 if (cas_alloc_rxds(cp
) < 0)
4263 /* allocate spares */
4265 cas_spare_recover(cp
, GFP_KERNEL
);
4267 /* We can now request the interrupt as we know it's masked
4268 * on the controller. cassini+ has up to 4 interrupts
4269 * that can be used, but you need to do explicit pci interrupt
4270 * mapping to expose them
4272 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4273 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4274 netdev_err(cp
->dev
, "failed to request irq !\n");
4280 napi_enable(&cp
->napi
);
4283 cas_lock_all_save(cp
, flags
);
4284 cas_clean_rings(cp
);
4285 cas_init_hw(cp
, !hw_was_up
);
4287 cas_unlock_all_restore(cp
, flags
);
4289 netif_start_queue(dev
);
4290 mutex_unlock(&cp
->pm_mutex
);
4297 cas_tx_tiny_free(cp
);
4299 mutex_unlock(&cp
->pm_mutex
);
4303 static int cas_close(struct net_device
*dev
)
4305 unsigned long flags
;
4306 struct cas
*cp
= netdev_priv(dev
);
4309 napi_disable(&cp
->napi
);
4311 /* Make sure we don't get distracted by suspend/resume */
4312 mutex_lock(&cp
->pm_mutex
);
4314 netif_stop_queue(dev
);
4316 /* Stop traffic, mark us closed */
4317 cas_lock_all_save(cp
, flags
);
4321 cas_begin_auto_negotiation(cp
, NULL
);
4322 cas_clean_rings(cp
);
4323 cas_unlock_all_restore(cp
, flags
);
4325 free_irq(cp
->pdev
->irq
, (void *) dev
);
4328 cas_tx_tiny_free(cp
);
4329 mutex_unlock(&cp
->pm_mutex
);
4334 const char name
[ETH_GSTRING_LEN
];
4335 } ethtool_cassini_statnames
[] = {
4342 {"rx_frame_errors"},
4343 {"rx_length_errors"},
4346 {"tx_aborted_errors"},
4353 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4356 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4357 } ethtool_register_table
[] = {
4372 {REG_PCS_MII_STATUS
},
4373 {REG_PCS_STATE_MACHINE
},
4374 {REG_MAC_COLL_EXCESS
},
4377 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4378 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4380 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4384 unsigned long flags
;
4386 spin_lock_irqsave(&cp
->lock
, flags
);
4387 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4390 if (ethtool_register_table
[i
].offsets
< 0) {
4391 hval
= cas_phy_read(cp
,
4392 -ethtool_register_table
[i
].offsets
);
4395 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4397 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4399 spin_unlock_irqrestore(&cp
->lock
, flags
);
4402 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4404 struct cas
*cp
= netdev_priv(dev
);
4405 struct net_device_stats
*stats
= cp
->net_stats
;
4406 unsigned long flags
;
4410 /* we collate all of the stats into net_stats[N_TX_RING] */
4411 if (!cp
->hw_running
)
4412 return stats
+ N_TX_RINGS
;
4414 /* collect outstanding stats */
4415 /* WTZ: the Cassini spec gives these as 16 bit counters but
4416 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4417 * in case the chip somehow puts any garbage in the other bits.
4418 * Also, counter usage didn't seem to mach what Adrian did
4419 * in the parts of the code that set these quantities. Made
4422 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4423 stats
[N_TX_RINGS
].rx_crc_errors
+=
4424 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4425 stats
[N_TX_RINGS
].rx_frame_errors
+=
4426 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4427 stats
[N_TX_RINGS
].rx_length_errors
+=
4428 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4430 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4431 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4432 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4433 stats
[N_TX_RINGS
].collisions
+=
4434 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4436 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4437 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4438 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4439 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4441 cas_clear_mac_err(cp
);
4443 /* saved bits that are unique to ring 0 */
4444 spin_lock(&cp
->stat_lock
[0]);
4445 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4446 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4447 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4448 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4449 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4450 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4451 spin_unlock(&cp
->stat_lock
[0]);
4453 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4454 spin_lock(&cp
->stat_lock
[i
]);
4455 stats
[N_TX_RINGS
].rx_length_errors
+=
4456 stats
[i
].rx_length_errors
;
4457 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4458 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4459 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4460 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4461 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4462 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4463 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4464 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4465 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4466 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4467 spin_unlock(&cp
->stat_lock
[i
]);
4469 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4470 return stats
+ N_TX_RINGS
;
4474 static void cas_set_multicast(struct net_device
*dev
)
4476 struct cas
*cp
= netdev_priv(dev
);
4477 u32 rxcfg
, rxcfg_new
;
4478 unsigned long flags
;
4479 int limit
= STOP_TRIES
;
4481 if (!cp
->hw_running
)
4484 spin_lock_irqsave(&cp
->lock
, flags
);
4485 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4487 /* disable RX MAC and wait for completion */
4488 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4489 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4495 /* disable hash filter and wait for completion */
4497 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4498 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4499 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4505 /* program hash filters */
4506 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4508 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4509 spin_unlock_irqrestore(&cp
->lock
, flags
);
4512 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4514 struct cas
*cp
= netdev_priv(dev
);
4515 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
4516 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
4517 strlcpy(info
->bus_info
, pci_name(cp
->pdev
), sizeof(info
->bus_info
));
4520 static int cas_get_link_ksettings(struct net_device
*dev
,
4521 struct ethtool_link_ksettings
*cmd
)
4523 struct cas
*cp
= netdev_priv(dev
);
4525 int full_duplex
, speed
, pause
;
4526 unsigned long flags
;
4527 enum link_state linkstate
= link_up
;
4528 u32 supported
, advertising
;
4531 supported
= SUPPORTED_Autoneg
;
4532 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4533 supported
|= SUPPORTED_1000baseT_Full
;
4534 advertising
|= ADVERTISED_1000baseT_Full
;
4537 /* Record PHY settings if HW is on. */
4538 spin_lock_irqsave(&cp
->lock
, flags
);
4540 linkstate
= cp
->lstate
;
4541 if (CAS_PHY_MII(cp
->phy_type
)) {
4542 cmd
->base
.port
= PORT_MII
;
4543 cmd
->base
.phy_address
= cp
->phy_addr
;
4544 advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4545 ADVERTISED_10baseT_Half
|
4546 ADVERTISED_10baseT_Full
|
4547 ADVERTISED_100baseT_Half
|
4548 ADVERTISED_100baseT_Full
;
4551 (SUPPORTED_10baseT_Half
|
4552 SUPPORTED_10baseT_Full
|
4553 SUPPORTED_100baseT_Half
|
4554 SUPPORTED_100baseT_Full
|
4555 SUPPORTED_TP
| SUPPORTED_MII
);
4557 if (cp
->hw_running
) {
4558 cas_mif_poll(cp
, 0);
4559 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4560 cas_read_mii_link_mode(cp
, &full_duplex
,
4562 cas_mif_poll(cp
, 1);
4566 cmd
->base
.port
= PORT_FIBRE
;
4567 cmd
->base
.phy_address
= 0;
4568 supported
|= SUPPORTED_FIBRE
;
4569 advertising
|= ADVERTISED_FIBRE
;
4571 if (cp
->hw_running
) {
4572 /* pcs uses the same bits as mii */
4573 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4574 cas_read_pcs_link_mode(cp
, &full_duplex
,
4578 spin_unlock_irqrestore(&cp
->lock
, flags
);
4580 if (bmcr
& BMCR_ANENABLE
) {
4581 advertising
|= ADVERTISED_Autoneg
;
4582 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
4583 cmd
->base
.speed
= ((speed
== 10) ?
4586 SPEED_1000
: SPEED_100
));
4587 cmd
->base
.duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4589 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
4590 cmd
->base
.speed
= ((bmcr
& CAS_BMCR_SPEED1000
) ?
4592 ((bmcr
& BMCR_SPEED100
) ?
4593 SPEED_100
: SPEED_10
));
4594 cmd
->base
.duplex
= (bmcr
& BMCR_FULLDPLX
) ?
4595 DUPLEX_FULL
: DUPLEX_HALF
;
4597 if (linkstate
!= link_up
) {
4598 /* Force these to "unknown" if the link is not up and
4599 * autonogotiation in enabled. We can set the link
4600 * speed to 0, but not cmd->duplex,
4601 * because its legal values are 0 and 1. Ethtool will
4602 * print the value reported in parentheses after the
4603 * word "Unknown" for unrecognized values.
4605 * If in forced mode, we report the speed and duplex
4606 * settings that we configured.
4608 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4609 cmd
->base
.speed
= 0;
4610 cmd
->base
.duplex
= 0xff;
4612 cmd
->base
.speed
= SPEED_10
;
4613 if (cp
->link_cntl
& BMCR_SPEED100
) {
4614 cmd
->base
.speed
= SPEED_100
;
4615 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4616 cmd
->base
.speed
= SPEED_1000
;
4618 cmd
->base
.duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
) ?
4619 DUPLEX_FULL
: DUPLEX_HALF
;
4623 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
4625 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
4631 static int cas_set_link_ksettings(struct net_device
*dev
,
4632 const struct ethtool_link_ksettings
*cmd
)
4634 struct cas
*cp
= netdev_priv(dev
);
4635 unsigned long flags
;
4636 u32 speed
= cmd
->base
.speed
;
4638 /* Verify the settings we care about. */
4639 if (cmd
->base
.autoneg
!= AUTONEG_ENABLE
&&
4640 cmd
->base
.autoneg
!= AUTONEG_DISABLE
)
4643 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
&&
4644 ((speed
!= SPEED_1000
&&
4645 speed
!= SPEED_100
&&
4646 speed
!= SPEED_10
) ||
4647 (cmd
->base
.duplex
!= DUPLEX_HALF
&&
4648 cmd
->base
.duplex
!= DUPLEX_FULL
)))
4651 /* Apply settings and restart link process. */
4652 spin_lock_irqsave(&cp
->lock
, flags
);
4653 cas_begin_auto_negotiation(cp
, cmd
);
4654 spin_unlock_irqrestore(&cp
->lock
, flags
);
4658 static int cas_nway_reset(struct net_device
*dev
)
4660 struct cas
*cp
= netdev_priv(dev
);
4661 unsigned long flags
;
4663 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4666 /* Restart link process. */
4667 spin_lock_irqsave(&cp
->lock
, flags
);
4668 cas_begin_auto_negotiation(cp
, NULL
);
4669 spin_unlock_irqrestore(&cp
->lock
, flags
);
4674 static u32
cas_get_link(struct net_device
*dev
)
4676 struct cas
*cp
= netdev_priv(dev
);
4677 return cp
->lstate
== link_up
;
4680 static u32
cas_get_msglevel(struct net_device
*dev
)
4682 struct cas
*cp
= netdev_priv(dev
);
4683 return cp
->msg_enable
;
4686 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4688 struct cas
*cp
= netdev_priv(dev
);
4689 cp
->msg_enable
= value
;
4692 static int cas_get_regs_len(struct net_device
*dev
)
4694 struct cas
*cp
= netdev_priv(dev
);
4695 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4698 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4701 struct cas
*cp
= netdev_priv(dev
);
4703 /* cas_read_regs handles locks (cp->lock). */
4704 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4707 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4711 return CAS_NUM_STAT_KEYS
;
4717 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4719 memcpy(data
, ðtool_cassini_statnames
,
4720 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4723 static void cas_get_ethtool_stats(struct net_device
*dev
,
4724 struct ethtool_stats
*estats
, u64
*data
)
4726 struct cas
*cp
= netdev_priv(dev
);
4727 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4729 data
[i
++] = stats
->collisions
;
4730 data
[i
++] = stats
->rx_bytes
;
4731 data
[i
++] = stats
->rx_crc_errors
;
4732 data
[i
++] = stats
->rx_dropped
;
4733 data
[i
++] = stats
->rx_errors
;
4734 data
[i
++] = stats
->rx_fifo_errors
;
4735 data
[i
++] = stats
->rx_frame_errors
;
4736 data
[i
++] = stats
->rx_length_errors
;
4737 data
[i
++] = stats
->rx_over_errors
;
4738 data
[i
++] = stats
->rx_packets
;
4739 data
[i
++] = stats
->tx_aborted_errors
;
4740 data
[i
++] = stats
->tx_bytes
;
4741 data
[i
++] = stats
->tx_dropped
;
4742 data
[i
++] = stats
->tx_errors
;
4743 data
[i
++] = stats
->tx_fifo_errors
;
4744 data
[i
++] = stats
->tx_packets
;
4745 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4748 static const struct ethtool_ops cas_ethtool_ops
= {
4749 .get_drvinfo
= cas_get_drvinfo
,
4750 .nway_reset
= cas_nway_reset
,
4751 .get_link
= cas_get_link
,
4752 .get_msglevel
= cas_get_msglevel
,
4753 .set_msglevel
= cas_set_msglevel
,
4754 .get_regs_len
= cas_get_regs_len
,
4755 .get_regs
= cas_get_regs
,
4756 .get_sset_count
= cas_get_sset_count
,
4757 .get_strings
= cas_get_strings
,
4758 .get_ethtool_stats
= cas_get_ethtool_stats
,
4759 .get_link_ksettings
= cas_get_link_ksettings
,
4760 .set_link_ksettings
= cas_set_link_ksettings
,
4763 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4765 struct cas
*cp
= netdev_priv(dev
);
4766 struct mii_ioctl_data
*data
= if_mii(ifr
);
4767 unsigned long flags
;
4768 int rc
= -EOPNOTSUPP
;
4770 /* Hold the PM mutex while doing ioctl's or we may collide
4771 * with open/close and power management and oops.
4773 mutex_lock(&cp
->pm_mutex
);
4775 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4776 data
->phy_id
= cp
->phy_addr
;
4777 /* Fallthrough... */
4779 case SIOCGMIIREG
: /* Read MII PHY register. */
4780 spin_lock_irqsave(&cp
->lock
, flags
);
4781 cas_mif_poll(cp
, 0);
4782 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4783 cas_mif_poll(cp
, 1);
4784 spin_unlock_irqrestore(&cp
->lock
, flags
);
4788 case SIOCSMIIREG
: /* Write MII PHY register. */
4789 spin_lock_irqsave(&cp
->lock
, flags
);
4790 cas_mif_poll(cp
, 0);
4791 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4792 cas_mif_poll(cp
, 1);
4793 spin_unlock_irqrestore(&cp
->lock
, flags
);
4799 mutex_unlock(&cp
->pm_mutex
);
4803 /* When this chip sits underneath an Intel 31154 bridge, it is the
4804 * only subordinate device and we can tweak the bridge settings to
4805 * reflect that fact.
4807 static void cas_program_bridge(struct pci_dev
*cas_pdev
)
4809 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4815 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4818 /* Clear bit 10 (Bus Parking Control) in the Secondary
4819 * Arbiter Control/Status Register which lives at offset
4820 * 0x41. Using a 32-bit word read/modify/write at 0x40
4821 * is much simpler so that's how we do this.
4823 pci_read_config_dword(pdev
, 0x40, &val
);
4825 pci_write_config_dword(pdev
, 0x40, val
);
4827 /* Max out the Multi-Transaction Timer settings since
4828 * Cassini is the only device present.
4830 * The register is 16-bit and lives at 0x50. When the
4831 * settings are enabled, it extends the GRANT# signal
4832 * for a requestor after a transaction is complete. This
4833 * allows the next request to run without first needing
4834 * to negotiate the GRANT# signal back.
4836 * Bits 12:10 define the grant duration:
4844 * All other values are illegal.
4846 * Bits 09:00 define which REQ/GNT signal pairs get the
4847 * GRANT# signal treatment. We set them all.
4849 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4851 /* The Read Prefecth Policy register is 16-bit and sits at
4852 * offset 0x52. It enables a "smart" pre-fetch policy. We
4853 * enable it and max out all of the settings since only one
4854 * device is sitting underneath and thus bandwidth sharing is
4857 * The register has several 3 bit fields, which indicates a
4858 * multiplier applied to the base amount of prefetching the
4859 * chip would do. These fields are at:
4861 * 15:13 --- ReRead Primary Bus
4862 * 12:10 --- FirstRead Primary Bus
4863 * 09:07 --- ReRead Secondary Bus
4864 * 06:04 --- FirstRead Secondary Bus
4866 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4867 * get enabled on. Bit 3 is a grouped enabler which controls
4868 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4869 * the individual REQ/GNT pairs [2:0].
4871 pci_write_config_word(pdev
, 0x52,
4878 /* Force cacheline size to 0x8 */
4879 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4881 /* Force latency timer to maximum setting so Cassini can
4882 * sit on the bus as long as it likes.
4884 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4887 static const struct net_device_ops cas_netdev_ops
= {
4888 .ndo_open
= cas_open
,
4889 .ndo_stop
= cas_close
,
4890 .ndo_start_xmit
= cas_start_xmit
,
4891 .ndo_get_stats
= cas_get_stats
,
4892 .ndo_set_rx_mode
= cas_set_multicast
,
4893 .ndo_do_ioctl
= cas_ioctl
,
4894 .ndo_tx_timeout
= cas_tx_timeout
,
4895 .ndo_change_mtu
= cas_change_mtu
,
4896 .ndo_set_mac_address
= eth_mac_addr
,
4897 .ndo_validate_addr
= eth_validate_addr
,
4898 #ifdef CONFIG_NET_POLL_CONTROLLER
4899 .ndo_poll_controller
= cas_netpoll
,
4903 static int cas_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4905 static int cas_version_printed
= 0;
4906 unsigned long casreg_len
;
4907 struct net_device
*dev
;
4909 int i
, err
, pci_using_dac
;
4911 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4913 if (cas_version_printed
++ == 0)
4914 pr_info("%s", version
);
4916 err
= pci_enable_device(pdev
);
4918 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4922 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4923 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4924 "base address, aborting\n");
4926 goto err_out_disable_pdev
;
4929 dev
= alloc_etherdev(sizeof(*cp
));
4932 goto err_out_disable_pdev
;
4934 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4936 err
= pci_request_regions(pdev
, dev
->name
);
4938 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4939 goto err_out_free_netdev
;
4941 pci_set_master(pdev
);
4943 /* we must always turn on parity response or else parity
4944 * doesn't get generated properly. disable SERR/PERR as well.
4945 * in addition, we want to turn MWI on.
4947 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4948 pci_cmd
&= ~PCI_COMMAND_SERR
;
4949 pci_cmd
|= PCI_COMMAND_PARITY
;
4950 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4951 if (pci_try_set_mwi(pdev
))
4952 pr_warn("Could not enable MWI for %s\n", pci_name(pdev
));
4954 cas_program_bridge(pdev
);
4957 * On some architectures, the default cache line size set
4958 * by pci_try_set_mwi reduces perforamnce. We have to increase
4959 * it for this case. To start, we'll print some configuration
4963 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4964 &orig_cacheline_size
);
4965 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4966 cas_cacheline_size
=
4967 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4968 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4969 if (pci_write_config_byte(pdev
,
4970 PCI_CACHE_LINE_SIZE
,
4971 cas_cacheline_size
)) {
4972 dev_err(&pdev
->dev
, "Could not set PCI cache "
4974 goto err_out_free_res
;
4980 /* Configure DMA attributes. */
4981 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4983 err
= pci_set_consistent_dma_mask(pdev
,
4986 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
4987 "for consistent allocations\n");
4988 goto err_out_free_res
;
4992 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4994 dev_err(&pdev
->dev
, "No usable DMA configuration, "
4996 goto err_out_free_res
;
5001 casreg_len
= pci_resource_len(pdev
, 0);
5003 cp
= netdev_priv(dev
);
5006 /* A value of 0 indicates we never explicitly set it */
5007 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5010 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5013 #if defined(CONFIG_SPARC)
5014 cp
->of_node
= pci_device_to_OF_node(pdev
);
5017 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5018 cp
->link_transition_jiffies_valid
= 0;
5020 spin_lock_init(&cp
->lock
);
5021 spin_lock_init(&cp
->rx_inuse_lock
);
5022 spin_lock_init(&cp
->rx_spare_lock
);
5023 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5024 spin_lock_init(&cp
->stat_lock
[i
]);
5025 spin_lock_init(&cp
->tx_lock
[i
]);
5027 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5028 mutex_init(&cp
->pm_mutex
);
5030 timer_setup(&cp
->link_timer
, cas_link_timer
, 0);
5033 /* Just in case the implementation of atomic operations
5034 * change so that an explicit initialization is necessary.
5036 atomic_set(&cp
->reset_task_pending
, 0);
5037 atomic_set(&cp
->reset_task_pending_all
, 0);
5038 atomic_set(&cp
->reset_task_pending_spare
, 0);
5039 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5041 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5043 /* Default link parameters */
5044 if (link_mode
>= 0 && link_mode
< 6)
5045 cp
->link_cntl
= link_modes
[link_mode
];
5047 cp
->link_cntl
= BMCR_ANENABLE
;
5048 cp
->lstate
= link_down
;
5049 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5050 netif_carrier_off(cp
->dev
);
5051 cp
->timer_ticks
= 0;
5053 /* give us access to cassini registers */
5054 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5056 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5057 goto err_out_free_res
;
5059 cp
->casreg_len
= casreg_len
;
5061 pci_save_state(pdev
);
5062 cas_check_pci_invariants(cp
);
5065 if (cas_check_invariants(cp
))
5066 goto err_out_iounmap
;
5067 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5068 cas_saturn_firmware_init(cp
);
5070 cp
->init_block
= (struct cas_init_block
*)
5071 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5073 if (!cp
->init_block
) {
5074 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5075 goto err_out_iounmap
;
5078 for (i
= 0; i
< N_TX_RINGS
; i
++)
5079 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5081 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5082 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5084 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5085 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5087 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5088 skb_queue_head_init(&cp
->rx_flows
[i
]);
5090 dev
->netdev_ops
= &cas_netdev_ops
;
5091 dev
->ethtool_ops
= &cas_ethtool_ops
;
5092 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5095 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5097 dev
->irq
= pdev
->irq
;
5100 /* Cassini features. */
5101 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5102 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5105 dev
->features
|= NETIF_F_HIGHDMA
;
5107 /* MTU range: 60 - varies or 9000 */
5108 dev
->min_mtu
= CAS_MIN_MTU
;
5109 dev
->max_mtu
= CAS_MAX_MTU
;
5111 if (register_netdev(dev
)) {
5112 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5113 goto err_out_free_consistent
;
5116 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5117 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5118 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5119 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5120 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5121 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5124 pci_set_drvdata(pdev
, dev
);
5126 cas_entropy_reset(cp
);
5128 cas_begin_auto_negotiation(cp
, NULL
);
5131 err_out_free_consistent
:
5132 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5133 cp
->init_block
, cp
->block_dvma
);
5136 mutex_lock(&cp
->pm_mutex
);
5139 mutex_unlock(&cp
->pm_mutex
);
5141 pci_iounmap(pdev
, cp
->regs
);
5145 pci_release_regions(pdev
);
5147 /* Try to restore it in case the error occurred after we
5150 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5152 err_out_free_netdev
:
5155 err_out_disable_pdev
:
5156 pci_disable_device(pdev
);
5160 static void cas_remove_one(struct pci_dev
*pdev
)
5162 struct net_device
*dev
= pci_get_drvdata(pdev
);
5167 cp
= netdev_priv(dev
);
5168 unregister_netdev(dev
);
5172 mutex_lock(&cp
->pm_mutex
);
5173 cancel_work_sync(&cp
->reset_task
);
5176 mutex_unlock(&cp
->pm_mutex
);
5179 if (cp
->orig_cacheline_size
) {
5180 /* Restore the cache line size if we had modified
5183 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5184 cp
->orig_cacheline_size
);
5187 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5188 cp
->init_block
, cp
->block_dvma
);
5189 pci_iounmap(pdev
, cp
->regs
);
5191 pci_release_regions(pdev
);
5192 pci_disable_device(pdev
);
5196 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5198 struct net_device
*dev
= pci_get_drvdata(pdev
);
5199 struct cas
*cp
= netdev_priv(dev
);
5200 unsigned long flags
;
5202 mutex_lock(&cp
->pm_mutex
);
5204 /* If the driver is opened, we stop the DMA */
5206 netif_device_detach(dev
);
5208 cas_lock_all_save(cp
, flags
);
5210 /* We can set the second arg of cas_reset to 0
5211 * because on resume, we'll call cas_init_hw with
5212 * its second arg set so that autonegotiation is
5216 cas_clean_rings(cp
);
5217 cas_unlock_all_restore(cp
, flags
);
5222 mutex_unlock(&cp
->pm_mutex
);
5227 static int cas_resume(struct pci_dev
*pdev
)
5229 struct net_device
*dev
= pci_get_drvdata(pdev
);
5230 struct cas
*cp
= netdev_priv(dev
);
5232 netdev_info(dev
, "resuming\n");
5234 mutex_lock(&cp
->pm_mutex
);
5237 unsigned long flags
;
5238 cas_lock_all_save(cp
, flags
);
5241 cas_clean_rings(cp
);
5243 cas_unlock_all_restore(cp
, flags
);
5245 netif_device_attach(dev
);
5247 mutex_unlock(&cp
->pm_mutex
);
5250 #endif /* CONFIG_PM */
5252 static struct pci_driver cas_driver
= {
5253 .name
= DRV_MODULE_NAME
,
5254 .id_table
= cas_pci_tbl
,
5255 .probe
= cas_init_one
,
5256 .remove
= cas_remove_one
,
5258 .suspend
= cas_suspend
,
5259 .resume
= cas_resume
5263 static int __init
cas_init(void)
5265 if (linkdown_timeout
> 0)
5266 link_transition_timeout
= linkdown_timeout
* HZ
;
5268 link_transition_timeout
= 0;
5270 return pci_register_driver(&cas_driver
);
5273 static void __exit
cas_cleanup(void)
5275 pci_unregister_driver(&cas_driver
);
5278 module_init(cas_init
);
5279 module_exit(cas_cleanup
);