1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) Microsoft Corporation.
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
55 * Protocol versions. The low word is the minor version, the high word the
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 enum pci_protocol_version_t
{
64 PCI_PROTOCOL_VERSION_1_1
= PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2
= PCI_MAKE_VERSION(1, 2), /* RS1 */
68 #define CPU_AFFINITY_ALL -1ULL
71 * Supported protocol versions in the order of probing - highest go
74 static enum pci_protocol_version_t pci_protocol_versions
[] = {
75 PCI_PROTOCOL_VERSION_1_2
,
76 PCI_PROTOCOL_VERSION_1_1
,
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
82 static enum pci_protocol_version_t pci_protocol_version
;
84 #define PCI_CONFIG_MMIO_LENGTH 0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
90 #define STATUS_REVISION_MISMATCH 0xC0000059
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
99 enum pci_message_type
{
103 PCI_MESSAGE_BASE
= 0x42490000,
104 PCI_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 0,
105 PCI_QUERY_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 1,
106 PCI_POWER_STATE_CHANGE
= PCI_MESSAGE_BASE
+ 4,
107 PCI_QUERY_RESOURCE_REQUIREMENTS
= PCI_MESSAGE_BASE
+ 5,
108 PCI_QUERY_RESOURCE_RESOURCES
= PCI_MESSAGE_BASE
+ 6,
109 PCI_BUS_D0ENTRY
= PCI_MESSAGE_BASE
+ 7,
110 PCI_BUS_D0EXIT
= PCI_MESSAGE_BASE
+ 8,
111 PCI_READ_BLOCK
= PCI_MESSAGE_BASE
+ 9,
112 PCI_WRITE_BLOCK
= PCI_MESSAGE_BASE
+ 0xA,
113 PCI_EJECT
= PCI_MESSAGE_BASE
+ 0xB,
114 PCI_QUERY_STOP
= PCI_MESSAGE_BASE
+ 0xC,
115 PCI_REENABLE
= PCI_MESSAGE_BASE
+ 0xD,
116 PCI_QUERY_STOP_FAILED
= PCI_MESSAGE_BASE
+ 0xE,
117 PCI_EJECTION_COMPLETE
= PCI_MESSAGE_BASE
+ 0xF,
118 PCI_RESOURCES_ASSIGNED
= PCI_MESSAGE_BASE
+ 0x10,
119 PCI_RESOURCES_RELEASED
= PCI_MESSAGE_BASE
+ 0x11,
120 PCI_INVALIDATE_BLOCK
= PCI_MESSAGE_BASE
+ 0x12,
121 PCI_QUERY_PROTOCOL_VERSION
= PCI_MESSAGE_BASE
+ 0x13,
122 PCI_CREATE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x14,
123 PCI_DELETE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x15,
124 PCI_RESOURCES_ASSIGNED2
= PCI_MESSAGE_BASE
+ 0x16,
125 PCI_CREATE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x17,
126 PCI_DELETE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x18, /* unused */
131 * Structures defining the virtual PCI Express protocol.
143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144 * which is all this driver does. This representation is the one used in
145 * Windows, which is what is expected when sending this back and forth with
146 * the Hyper-V parent partition.
148 union win_slot_encoding
{
158 * Pretty much as defined in the PCI Specifications.
160 struct pci_function_description
{
161 u16 v_id
; /* vendor ID */
162 u16 d_id
; /* device ID */
168 union win_slot_encoding win_slot
;
169 u32 ser
; /* serial number */
175 * @delivery_mode: As defined in Intel's Programmer's
176 * Reference Manual, Volume 3, Chapter 8.
177 * @vector_count: Number of contiguous entries in the
178 * Interrupt Descriptor Table that are
179 * occupied by this Message-Signaled
180 * Interrupt. For "MSI", as first defined
181 * in PCI 2.2, this can be between 1 and
182 * 32. For "MSI-X," as first defined in PCI
183 * 3.0, this must be 1, as each MSI-X table
184 * entry would have its own descriptor.
185 * @reserved: Empty space
186 * @cpu_mask: All the target virtual processors.
197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
199 * @delivery_mode: As defined in Intel's Programmer's
200 * Reference Manual, Volume 3, Chapter 8.
201 * @vector_count: Number of contiguous entries in the
202 * Interrupt Descriptor Table that are
203 * occupied by this Message-Signaled
204 * Interrupt. For "MSI", as first defined
205 * in PCI 2.2, this can be between 1 and
206 * 32. For "MSI-X," as first defined in PCI
207 * 3.0, this must be 1, as each MSI-X table
208 * entry would have its own descriptor.
209 * @processor_count: number of bits enabled in array.
210 * @processor_array: All the target virtual processors.
212 struct hv_msi_desc2
{
217 u16 processor_array
[32];
221 * struct tran_int_desc
222 * @reserved: unused, padding
223 * @vector_count: same as in hv_msi_desc
224 * @data: This is the "data payload" value that is
225 * written by the device when it generates
226 * a message-signaled interrupt, either MSI
228 * @address: This is the address to which the data
229 * payload is written on interrupt
232 struct tran_int_desc
{
240 * A generic message format for virtual PCI.
241 * Specific message formats are defined later in the file.
248 struct pci_child_message
{
249 struct pci_message message_type
;
250 union win_slot_encoding wslot
;
253 struct pci_incoming_message
{
254 struct vmpacket_descriptor hdr
;
255 struct pci_message message_type
;
258 struct pci_response
{
259 struct vmpacket_descriptor hdr
;
260 s32 status
; /* negative values are failures */
264 void (*completion_func
)(void *context
, struct pci_response
*resp
,
265 int resp_packet_size
);
268 struct pci_message message
[0];
272 * Specific message types supporting the PCI protocol.
276 * Version negotiation message. Sent from the guest to the host.
277 * The guest is free to try different versions until the host
278 * accepts the version.
280 * pci_version: The protocol version requested.
281 * is_last_attempt: If TRUE, this is the last version guest will request.
282 * reservedz: Reserved field, set to zero.
285 struct pci_version_request
{
286 struct pci_message message_type
;
287 u32 protocol_version
;
291 * Bus D0 Entry. This is sent from the guest to the host when the virtual
292 * bus (PCI Express port) is ready for action.
295 struct pci_bus_d0_entry
{
296 struct pci_message message_type
;
301 struct pci_bus_relations
{
302 struct pci_incoming_message incoming
;
304 struct pci_function_description func
[0];
307 struct pci_q_res_req_response
{
308 struct vmpacket_descriptor hdr
;
309 s32 status
; /* negative values are failures */
313 struct pci_set_power
{
314 struct pci_message message_type
;
315 union win_slot_encoding wslot
;
316 u32 power_state
; /* In Windows terms */
320 struct pci_set_power_response
{
321 struct vmpacket_descriptor hdr
;
322 s32 status
; /* negative values are failures */
323 union win_slot_encoding wslot
;
324 u32 resultant_state
; /* In Windows terms */
328 struct pci_resources_assigned
{
329 struct pci_message message_type
;
330 union win_slot_encoding wslot
;
331 u8 memory_range
[0x14][6]; /* not used here */
336 struct pci_resources_assigned2
{
337 struct pci_message message_type
;
338 union win_slot_encoding wslot
;
339 u8 memory_range
[0x14][6]; /* not used here */
340 u32 msi_descriptor_count
;
344 struct pci_create_interrupt
{
345 struct pci_message message_type
;
346 union win_slot_encoding wslot
;
347 struct hv_msi_desc int_desc
;
350 struct pci_create_int_response
{
351 struct pci_response response
;
353 struct tran_int_desc int_desc
;
356 struct pci_create_interrupt2
{
357 struct pci_message message_type
;
358 union win_slot_encoding wslot
;
359 struct hv_msi_desc2 int_desc
;
362 struct pci_delete_interrupt
{
363 struct pci_message message_type
;
364 union win_slot_encoding wslot
;
365 struct tran_int_desc int_desc
;
368 struct pci_dev_incoming
{
369 struct pci_incoming_message incoming
;
370 union win_slot_encoding wslot
;
373 struct pci_eject_response
{
374 struct pci_message message_type
;
375 union win_slot_encoding wslot
;
379 static int pci_ring_size
= (4 * PAGE_SIZE
);
382 * Definitions or interrupt steering hypercall.
384 #define HV_PARTITION_ID_SELF ((u64)-1)
385 #define HVCALL_RETARGET_INTERRUPT 0x7e
387 struct hv_interrupt_entry
{
388 u32 source
; /* 1 for MSI(-X) */
394 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
397 u64 format
; /* 0 (HvGenericSetSparse4k) */
399 u64 masks
[HV_VP_SET_BANK_COUNT_MAX
];
403 * flags for hv_device_interrupt_target.flags
405 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
406 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
408 struct hv_device_interrupt_target
{
413 struct hv_vp_set vp_set
;
417 struct retarget_msi_interrupt
{
418 u64 partition_id
; /* use "self" */
420 struct hv_interrupt_entry int_entry
;
422 struct hv_device_interrupt_target int_target
;
426 * Driver specific state.
429 enum hv_pcibus_state
{
437 struct hv_pcibus_device
{
438 struct pci_sysdata sysdata
;
439 enum hv_pcibus_state state
;
440 refcount_t remove_lock
;
441 struct hv_device
*hdev
;
442 resource_size_t low_mmio_space
;
443 resource_size_t high_mmio_space
;
444 struct resource
*mem_config
;
445 struct resource
*low_mmio_res
;
446 struct resource
*high_mmio_res
;
447 struct completion
*survey_event
;
448 struct completion remove_event
;
449 struct pci_bus
*pci_bus
;
450 spinlock_t config_lock
; /* Avoid two threads writing index page */
451 spinlock_t device_list_lock
; /* Protect lists below */
452 void __iomem
*cfg_addr
;
454 struct list_head resources_for_children
;
456 struct list_head children
;
457 struct list_head dr_list
;
459 struct msi_domain_info msi_info
;
460 struct msi_controller msi_chip
;
461 struct irq_domain
*irq_domain
;
463 /* hypercall arg, must not cross page boundary */
464 struct retarget_msi_interrupt retarget_msi_interrupt_params
;
466 spinlock_t retarget_msi_interrupt_lock
;
468 struct workqueue_struct
*wq
;
472 * Tracks "Device Relations" messages from the host, which must be both
473 * processed in order and deferred so that they don't run in the context
474 * of the incoming packet callback.
477 struct work_struct wrk
;
478 struct hv_pcibus_device
*bus
;
482 struct list_head list_entry
;
484 struct pci_function_description func
[0];
487 enum hv_pcichild_state
{
488 hv_pcichild_init
= 0,
489 hv_pcichild_requirements
,
490 hv_pcichild_resourced
,
491 hv_pcichild_ejecting
,
496 /* List protected by pci_rescan_remove_lock */
497 struct list_head list_entry
;
499 enum hv_pcichild_state state
;
500 struct pci_slot
*pci_slot
;
501 struct pci_function_description desc
;
502 bool reported_missing
;
503 struct hv_pcibus_device
*hbus
;
504 struct work_struct wrk
;
507 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
508 * read it back, for each of the BAR offsets within config space.
513 struct hv_pci_compl
{
514 struct completion host_event
;
515 s32 completion_status
;
518 static void hv_pci_onchannelcallback(void *context
);
521 * hv_pci_generic_compl() - Invoked for a completion packet
522 * @context: Set up by the sender of the packet.
523 * @resp: The response packet
524 * @resp_packet_size: Size in bytes of the packet
526 * This function is used to trigger an event and report status
527 * for any message for which the completion packet contains a
528 * status and nothing else.
530 static void hv_pci_generic_compl(void *context
, struct pci_response
*resp
,
531 int resp_packet_size
)
533 struct hv_pci_compl
*comp_pkt
= context
;
535 if (resp_packet_size
>= offsetofend(struct pci_response
, status
))
536 comp_pkt
->completion_status
= resp
->status
;
538 comp_pkt
->completion_status
= -1;
540 complete(&comp_pkt
->host_event
);
543 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
546 static void get_pcichild(struct hv_pci_dev
*hpdev
)
548 refcount_inc(&hpdev
->refs
);
551 static void put_pcichild(struct hv_pci_dev
*hpdev
)
553 if (refcount_dec_and_test(&hpdev
->refs
))
557 static void get_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
558 static void put_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
561 * There is no good way to get notified from vmbus_onoffer_rescind(),
562 * so let's use polling here, since this is not a hot path.
564 static int wait_for_response(struct hv_device
*hdev
,
565 struct completion
*comp
)
568 if (hdev
->channel
->rescind
) {
569 dev_warn_once(&hdev
->device
, "The device is gone.\n");
573 if (wait_for_completion_timeout(comp
, HZ
/ 10))
581 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
582 * @devfn: The Linux representation of PCI slot
584 * Windows uses a slightly different representation of PCI slot.
586 * Return: The Windows representation
588 static u32
devfn_to_wslot(int devfn
)
590 union win_slot_encoding wslot
;
593 wslot
.bits
.dev
= PCI_SLOT(devfn
);
594 wslot
.bits
.func
= PCI_FUNC(devfn
);
600 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
601 * @wslot: The Windows representation of PCI slot
603 * Windows uses a slightly different representation of PCI slot.
605 * Return: The Linux representation
607 static int wslot_to_devfn(u32 wslot
)
609 union win_slot_encoding slot_no
;
611 slot_no
.slot
= wslot
;
612 return PCI_DEVFN(slot_no
.bits
.dev
, slot_no
.bits
.func
);
616 * PCI Configuration Space for these root PCI buses is implemented as a pair
617 * of pages in memory-mapped I/O space. Writing to the first page chooses
618 * the PCI function being written or read. Once the first page has been
619 * written to, the following page maps in the entire configuration space of
624 * _hv_pcifront_read_config() - Internal PCI config read
625 * @hpdev: The PCI driver's representation of the device
626 * @where: Offset within config space
627 * @size: Size of the transfer
628 * @val: Pointer to the buffer receiving the data
630 static void _hv_pcifront_read_config(struct hv_pci_dev
*hpdev
, int where
,
634 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
637 * If the attempt is to read the IDs or the ROM BAR, simulate that.
639 if (where
+ size
<= PCI_COMMAND
) {
640 memcpy(val
, ((u8
*)&hpdev
->desc
.v_id
) + where
, size
);
641 } else if (where
>= PCI_CLASS_REVISION
&& where
+ size
<=
642 PCI_CACHE_LINE_SIZE
) {
643 memcpy(val
, ((u8
*)&hpdev
->desc
.rev
) + where
-
644 PCI_CLASS_REVISION
, size
);
645 } else if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&& where
+ size
<=
647 memcpy(val
, (u8
*)&hpdev
->desc
.subsystem_id
+ where
-
648 PCI_SUBSYSTEM_VENDOR_ID
, size
);
649 } else if (where
>= PCI_ROM_ADDRESS
&& where
+ size
<=
650 PCI_CAPABILITY_LIST
) {
651 /* ROM BARs are unimplemented */
653 } else if (where
>= PCI_INTERRUPT_LINE
&& where
+ size
<=
656 * Interrupt Line and Interrupt PIN are hard-wired to zero
657 * because this front-end only supports message-signaled
661 } else if (where
+ size
<= CFG_PAGE_SIZE
) {
662 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
663 /* Choose the function to be read. (See comment above) */
664 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
665 /* Make sure the function was chosen before we start reading. */
667 /* Read from that function's config space. */
680 * Make sure the read was done before we release the spinlock
681 * allowing consecutive reads/writes.
684 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
686 dev_err(&hpdev
->hbus
->hdev
->device
,
687 "Attempt to read beyond a function's config space.\n");
691 static u16
hv_pcifront_get_vendor_id(struct hv_pci_dev
*hpdev
)
695 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+
698 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
700 /* Choose the function to be read. (See comment above) */
701 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
702 /* Make sure the function was chosen before we start reading. */
704 /* Read from that function's config space. */
707 * mb() is not required here, because the spin_unlock_irqrestore()
711 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
717 * _hv_pcifront_write_config() - Internal PCI config write
718 * @hpdev: The PCI driver's representation of the device
719 * @where: Offset within config space
720 * @size: Size of the transfer
721 * @val: The data being transferred
723 static void _hv_pcifront_write_config(struct hv_pci_dev
*hpdev
, int where
,
727 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
729 if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&&
730 where
+ size
<= PCI_CAPABILITY_LIST
) {
731 /* SSIDs and ROM BARs are read-only */
732 } else if (where
>= PCI_COMMAND
&& where
+ size
<= CFG_PAGE_SIZE
) {
733 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
734 /* Choose the function to be written. (See comment above) */
735 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
736 /* Make sure the function was chosen before we start writing. */
738 /* Write to that function's config space. */
751 * Make sure the write was done before we release the spinlock
752 * allowing consecutive reads/writes.
755 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
757 dev_err(&hpdev
->hbus
->hdev
->device
,
758 "Attempt to write beyond a function's config space.\n");
763 * hv_pcifront_read_config() - Read configuration space
764 * @bus: PCI Bus structure
765 * @devfn: Device/function
766 * @where: Offset from base
767 * @size: Byte/word/dword
768 * @val: Value to be read
770 * Return: PCIBIOS_SUCCESSFUL on success
771 * PCIBIOS_DEVICE_NOT_FOUND on failure
773 static int hv_pcifront_read_config(struct pci_bus
*bus
, unsigned int devfn
,
774 int where
, int size
, u32
*val
)
776 struct hv_pcibus_device
*hbus
=
777 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
778 struct hv_pci_dev
*hpdev
;
780 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
782 return PCIBIOS_DEVICE_NOT_FOUND
;
784 _hv_pcifront_read_config(hpdev
, where
, size
, val
);
787 return PCIBIOS_SUCCESSFUL
;
791 * hv_pcifront_write_config() - Write configuration space
792 * @bus: PCI Bus structure
793 * @devfn: Device/function
794 * @where: Offset from base
795 * @size: Byte/word/dword
796 * @val: Value to be written to device
798 * Return: PCIBIOS_SUCCESSFUL on success
799 * PCIBIOS_DEVICE_NOT_FOUND on failure
801 static int hv_pcifront_write_config(struct pci_bus
*bus
, unsigned int devfn
,
802 int where
, int size
, u32 val
)
804 struct hv_pcibus_device
*hbus
=
805 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
806 struct hv_pci_dev
*hpdev
;
808 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
810 return PCIBIOS_DEVICE_NOT_FOUND
;
812 _hv_pcifront_write_config(hpdev
, where
, size
, val
);
815 return PCIBIOS_SUCCESSFUL
;
818 /* PCIe operations */
819 static struct pci_ops hv_pcifront_ops
= {
820 .read
= hv_pcifront_read_config
,
821 .write
= hv_pcifront_write_config
,
824 /* Interrupt management hooks */
825 static void hv_int_desc_free(struct hv_pci_dev
*hpdev
,
826 struct tran_int_desc
*int_desc
)
828 struct pci_delete_interrupt
*int_pkt
;
830 struct pci_packet pkt
;
831 u8 buffer
[sizeof(struct pci_delete_interrupt
)];
834 memset(&ctxt
, 0, sizeof(ctxt
));
835 int_pkt
= (struct pci_delete_interrupt
*)&ctxt
.pkt
.message
;
836 int_pkt
->message_type
.type
=
837 PCI_DELETE_INTERRUPT_MESSAGE
;
838 int_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
839 int_pkt
->int_desc
= *int_desc
;
840 vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, int_pkt
, sizeof(*int_pkt
),
841 (unsigned long)&ctxt
.pkt
, VM_PKT_DATA_INBAND
, 0);
846 * hv_msi_free() - Free the MSI.
847 * @domain: The interrupt domain pointer
848 * @info: Extra MSI-related context
849 * @irq: Identifies the IRQ.
851 * The Hyper-V parent partition and hypervisor are tracking the
852 * messages that are in use, keeping the interrupt redirection
853 * table up to date. This callback sends a message that frees
854 * the IRT entry and related tracking nonsense.
856 static void hv_msi_free(struct irq_domain
*domain
, struct msi_domain_info
*info
,
859 struct hv_pcibus_device
*hbus
;
860 struct hv_pci_dev
*hpdev
;
861 struct pci_dev
*pdev
;
862 struct tran_int_desc
*int_desc
;
863 struct irq_data
*irq_data
= irq_domain_get_irq_data(domain
, irq
);
864 struct msi_desc
*msi
= irq_data_get_msi_desc(irq_data
);
866 pdev
= msi_desc_to_pci_dev(msi
);
868 int_desc
= irq_data_get_irq_chip_data(irq_data
);
872 irq_data
->chip_data
= NULL
;
873 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
879 hv_int_desc_free(hpdev
, int_desc
);
883 static int hv_set_affinity(struct irq_data
*data
, const struct cpumask
*dest
,
886 struct irq_data
*parent
= data
->parent_data
;
888 return parent
->chip
->irq_set_affinity(parent
, dest
, force
);
891 static void hv_irq_mask(struct irq_data
*data
)
893 pci_msi_mask_irq(data
);
897 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
899 * @data: Describes the IRQ
901 * Build new a destination for the MSI and make a hypercall to
902 * update the Interrupt Redirection Table. "Device Logical ID"
903 * is built out of this PCI bus's instance GUID and the function
904 * number of the device.
906 static void hv_irq_unmask(struct irq_data
*data
)
908 struct msi_desc
*msi_desc
= irq_data_get_msi_desc(data
);
909 struct irq_cfg
*cfg
= irqd_cfg(data
);
910 struct retarget_msi_interrupt
*params
;
911 struct hv_pcibus_device
*hbus
;
912 struct cpumask
*dest
;
913 struct pci_bus
*pbus
;
914 struct pci_dev
*pdev
;
921 dest
= irq_data_get_effective_affinity_mask(data
);
922 pdev
= msi_desc_to_pci_dev(msi_desc
);
924 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
926 spin_lock_irqsave(&hbus
->retarget_msi_interrupt_lock
, flags
);
928 params
= &hbus
->retarget_msi_interrupt_params
;
929 memset(params
, 0, sizeof(*params
));
930 params
->partition_id
= HV_PARTITION_ID_SELF
;
931 params
->int_entry
.source
= 1; /* MSI(-X) */
932 params
->int_entry
.address
= msi_desc
->msg
.address_lo
;
933 params
->int_entry
.data
= msi_desc
->msg
.data
;
934 params
->device_id
= (hbus
->hdev
->dev_instance
.b
[5] << 24) |
935 (hbus
->hdev
->dev_instance
.b
[4] << 16) |
936 (hbus
->hdev
->dev_instance
.b
[7] << 8) |
937 (hbus
->hdev
->dev_instance
.b
[6] & 0xf8) |
938 PCI_FUNC(pdev
->devfn
);
939 params
->int_target
.vector
= cfg
->vector
;
942 * Honoring apic->irq_delivery_mode set to dest_Fixed by
943 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
944 * spurious interrupt storm. Not doing so does not seem to have a
945 * negative effect (yet?).
948 if (pci_protocol_version
>= PCI_PROTOCOL_VERSION_1_2
) {
950 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
951 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
952 * with >64 VP support.
953 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
954 * is not sufficient for this hypercall.
956 params
->int_target
.flags
|=
957 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET
;
958 params
->int_target
.vp_set
.valid_banks
=
959 (1ull << HV_VP_SET_BANK_COUNT_MAX
) - 1;
962 * var-sized hypercall, var-size starts after vp_mask (thus
963 * vp_set.format does not count, but vp_set.valid_banks does).
965 var_size
= 1 + HV_VP_SET_BANK_COUNT_MAX
;
967 for_each_cpu_and(cpu
, dest
, cpu_online_mask
) {
968 cpu_vmbus
= hv_cpu_number_to_vp_number(cpu
);
970 if (cpu_vmbus
>= HV_VP_SET_BANK_COUNT_MAX
* 64) {
971 dev_err(&hbus
->hdev
->device
,
972 "too high CPU %d", cpu_vmbus
);
977 params
->int_target
.vp_set
.masks
[cpu_vmbus
/ 64] |=
978 (1ULL << (cpu_vmbus
& 63));
981 for_each_cpu_and(cpu
, dest
, cpu_online_mask
) {
982 params
->int_target
.vp_mask
|=
983 (1ULL << hv_cpu_number_to_vp_number(cpu
));
987 res
= hv_do_hypercall(HVCALL_RETARGET_INTERRUPT
| (var_size
<< 17),
991 spin_unlock_irqrestore(&hbus
->retarget_msi_interrupt_lock
, flags
);
994 dev_err(&hbus
->hdev
->device
,
995 "%s() failed: %#llx", __func__
, res
);
999 pci_msi_unmask_irq(data
);
1002 struct compose_comp_ctxt
{
1003 struct hv_pci_compl comp_pkt
;
1004 struct tran_int_desc int_desc
;
1007 static void hv_pci_compose_compl(void *context
, struct pci_response
*resp
,
1008 int resp_packet_size
)
1010 struct compose_comp_ctxt
*comp_pkt
= context
;
1011 struct pci_create_int_response
*int_resp
=
1012 (struct pci_create_int_response
*)resp
;
1014 comp_pkt
->comp_pkt
.completion_status
= resp
->status
;
1015 comp_pkt
->int_desc
= int_resp
->int_desc
;
1016 complete(&comp_pkt
->comp_pkt
.host_event
);
1019 static u32
hv_compose_msi_req_v1(
1020 struct pci_create_interrupt
*int_pkt
, struct cpumask
*affinity
,
1021 u32 slot
, u8 vector
)
1023 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE
;
1024 int_pkt
->wslot
.slot
= slot
;
1025 int_pkt
->int_desc
.vector
= vector
;
1026 int_pkt
->int_desc
.vector_count
= 1;
1027 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
1030 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1033 int_pkt
->int_desc
.cpu_mask
= CPU_AFFINITY_ALL
;
1035 return sizeof(*int_pkt
);
1038 static u32
hv_compose_msi_req_v2(
1039 struct pci_create_interrupt2
*int_pkt
, struct cpumask
*affinity
,
1040 u32 slot
, u8 vector
)
1044 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE2
;
1045 int_pkt
->wslot
.slot
= slot
;
1046 int_pkt
->int_desc
.vector
= vector
;
1047 int_pkt
->int_desc
.vector_count
= 1;
1048 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
1051 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1052 * by subsequent retarget in hv_irq_unmask().
1054 cpu
= cpumask_first_and(affinity
, cpu_online_mask
);
1055 int_pkt
->int_desc
.processor_array
[0] =
1056 hv_cpu_number_to_vp_number(cpu
);
1057 int_pkt
->int_desc
.processor_count
= 1;
1059 return sizeof(*int_pkt
);
1063 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1064 * @data: Everything about this MSI
1065 * @msg: Buffer that is filled in by this function
1067 * This function unpacks the IRQ looking for target CPU set, IDT
1068 * vector and mode and sends a message to the parent partition
1069 * asking for a mapping for that tuple in this partition. The
1070 * response supplies a data value and address to which that data
1071 * should be written to trigger that interrupt.
1073 static void hv_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
1075 struct irq_cfg
*cfg
= irqd_cfg(data
);
1076 struct hv_pcibus_device
*hbus
;
1077 struct hv_pci_dev
*hpdev
;
1078 struct pci_bus
*pbus
;
1079 struct pci_dev
*pdev
;
1080 struct cpumask
*dest
;
1081 unsigned long flags
;
1082 struct compose_comp_ctxt comp
;
1083 struct tran_int_desc
*int_desc
;
1085 struct pci_packet pci_pkt
;
1087 struct pci_create_interrupt v1
;
1088 struct pci_create_interrupt2 v2
;
1095 pdev
= msi_desc_to_pci_dev(irq_data_get_msi_desc(data
));
1096 dest
= irq_data_get_effective_affinity_mask(data
);
1098 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
1099 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
1101 goto return_null_message
;
1103 /* Free any previous message that might have already been composed. */
1104 if (data
->chip_data
) {
1105 int_desc
= data
->chip_data
;
1106 data
->chip_data
= NULL
;
1107 hv_int_desc_free(hpdev
, int_desc
);
1110 int_desc
= kzalloc(sizeof(*int_desc
), GFP_ATOMIC
);
1112 goto drop_reference
;
1114 memset(&ctxt
, 0, sizeof(ctxt
));
1115 init_completion(&comp
.comp_pkt
.host_event
);
1116 ctxt
.pci_pkt
.completion_func
= hv_pci_compose_compl
;
1117 ctxt
.pci_pkt
.compl_ctxt
= &comp
;
1119 switch (pci_protocol_version
) {
1120 case PCI_PROTOCOL_VERSION_1_1
:
1121 size
= hv_compose_msi_req_v1(&ctxt
.int_pkts
.v1
,
1123 hpdev
->desc
.win_slot
.slot
,
1127 case PCI_PROTOCOL_VERSION_1_2
:
1128 size
= hv_compose_msi_req_v2(&ctxt
.int_pkts
.v2
,
1130 hpdev
->desc
.win_slot
.slot
,
1135 /* As we only negotiate protocol versions known to this driver,
1136 * this path should never hit. However, this is it not a hot
1137 * path so we print a message to aid future updates.
1139 dev_err(&hbus
->hdev
->device
,
1140 "Unexpected vPCI protocol, update driver.");
1144 ret
= vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, &ctxt
.int_pkts
,
1145 size
, (unsigned long)&ctxt
.pci_pkt
,
1147 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1149 dev_err(&hbus
->hdev
->device
,
1150 "Sending request for interrupt failed: 0x%x",
1151 comp
.comp_pkt
.completion_status
);
1156 * Since this function is called with IRQ locks held, can't
1157 * do normal wait for completion; instead poll.
1159 while (!try_wait_for_completion(&comp
.comp_pkt
.host_event
)) {
1160 /* 0xFFFF means an invalid PCI VENDOR ID. */
1161 if (hv_pcifront_get_vendor_id(hpdev
) == 0xFFFF) {
1162 dev_err_once(&hbus
->hdev
->device
,
1163 "the device has gone\n");
1168 * When the higher level interrupt code calls us with
1169 * interrupt disabled, we must poll the channel by calling
1170 * the channel callback directly when channel->target_cpu is
1171 * the current CPU. When the higher level interrupt code
1172 * calls us with interrupt enabled, let's add the
1173 * local_irq_save()/restore() to avoid race:
1174 * hv_pci_onchannelcallback() can also run in tasklet.
1176 local_irq_save(flags
);
1178 if (hbus
->hdev
->channel
->target_cpu
== smp_processor_id())
1179 hv_pci_onchannelcallback(hbus
);
1181 local_irq_restore(flags
);
1183 if (hpdev
->state
== hv_pcichild_ejecting
) {
1184 dev_err_once(&hbus
->hdev
->device
,
1185 "the device is being ejected\n");
1192 if (comp
.comp_pkt
.completion_status
< 0) {
1193 dev_err(&hbus
->hdev
->device
,
1194 "Request for interrupt failed: 0x%x",
1195 comp
.comp_pkt
.completion_status
);
1200 * Record the assignment so that this can be unwound later. Using
1201 * irq_set_chip_data() here would be appropriate, but the lock it takes
1204 *int_desc
= comp
.int_desc
;
1205 data
->chip_data
= int_desc
;
1207 /* Pass up the result. */
1208 msg
->address_hi
= comp
.int_desc
.address
>> 32;
1209 msg
->address_lo
= comp
.int_desc
.address
& 0xffffffff;
1210 msg
->data
= comp
.int_desc
.data
;
1212 put_pcichild(hpdev
);
1218 put_pcichild(hpdev
);
1219 return_null_message
:
1220 msg
->address_hi
= 0;
1221 msg
->address_lo
= 0;
1225 /* HW Interrupt Chip Descriptor */
1226 static struct irq_chip hv_msi_irq_chip
= {
1227 .name
= "Hyper-V PCIe MSI",
1228 .irq_compose_msi_msg
= hv_compose_msi_msg
,
1229 .irq_set_affinity
= hv_set_affinity
,
1230 .irq_ack
= irq_chip_ack_parent
,
1231 .irq_mask
= hv_irq_mask
,
1232 .irq_unmask
= hv_irq_unmask
,
1235 static irq_hw_number_t
hv_msi_domain_ops_get_hwirq(struct msi_domain_info
*info
,
1236 msi_alloc_info_t
*arg
)
1238 return arg
->msi_hwirq
;
1241 static struct msi_domain_ops hv_msi_ops
= {
1242 .get_hwirq
= hv_msi_domain_ops_get_hwirq
,
1243 .msi_prepare
= pci_msi_prepare
,
1244 .set_desc
= pci_msi_set_desc
,
1245 .msi_free
= hv_msi_free
,
1249 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1250 * @hbus: The root PCI bus
1252 * This function creates an IRQ domain which will be used for
1253 * interrupts from devices that have been passed through. These
1254 * devices only support MSI and MSI-X, not line-based interrupts
1255 * or simulations of line-based interrupts through PCIe's
1256 * fabric-layer messages. Because interrupts are remapped, we
1257 * can support multi-message MSI here.
1259 * Return: '0' on success and error value on failure
1261 static int hv_pcie_init_irq_domain(struct hv_pcibus_device
*hbus
)
1263 hbus
->msi_info
.chip
= &hv_msi_irq_chip
;
1264 hbus
->msi_info
.ops
= &hv_msi_ops
;
1265 hbus
->msi_info
.flags
= (MSI_FLAG_USE_DEF_DOM_OPS
|
1266 MSI_FLAG_USE_DEF_CHIP_OPS
| MSI_FLAG_MULTI_PCI_MSI
|
1268 hbus
->msi_info
.handler
= handle_edge_irq
;
1269 hbus
->msi_info
.handler_name
= "edge";
1270 hbus
->msi_info
.data
= hbus
;
1271 hbus
->irq_domain
= pci_msi_create_irq_domain(hbus
->sysdata
.fwnode
,
1274 if (!hbus
->irq_domain
) {
1275 dev_err(&hbus
->hdev
->device
,
1276 "Failed to build an MSI IRQ domain\n");
1284 * get_bar_size() - Get the address space consumed by a BAR
1285 * @bar_val: Value that a BAR returned after -1 was written
1288 * This function returns the size of the BAR, rounded up to 1
1289 * page. It has to be rounded up because the hypervisor's page
1290 * table entry that maps the BAR into the VM can't specify an
1291 * offset within a page. The invariant is that the hypervisor
1292 * must place any BARs of smaller than page length at the
1293 * beginning of a page.
1295 * Return: Size in bytes of the consumed MMIO space.
1297 static u64
get_bar_size(u64 bar_val
)
1299 return round_up((1 + ~(bar_val
& PCI_BASE_ADDRESS_MEM_MASK
)),
1304 * survey_child_resources() - Total all MMIO requirements
1305 * @hbus: Root PCI bus, as understood by this driver
1307 static void survey_child_resources(struct hv_pcibus_device
*hbus
)
1309 struct hv_pci_dev
*hpdev
;
1310 resource_size_t bar_size
= 0;
1311 unsigned long flags
;
1312 struct completion
*event
;
1316 /* If nobody is waiting on the answer, don't compute it. */
1317 event
= xchg(&hbus
->survey_event
, NULL
);
1321 /* If the answer has already been computed, go with it. */
1322 if (hbus
->low_mmio_space
|| hbus
->high_mmio_space
) {
1327 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1330 * Due to an interesting quirk of the PCI spec, all memory regions
1331 * for a child device are a power of 2 in size and aligned in memory,
1332 * so it's sufficient to just add them up without tracking alignment.
1334 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1335 for (i
= 0; i
< 6; i
++) {
1336 if (hpdev
->probed_bar
[i
] & PCI_BASE_ADDRESS_SPACE_IO
)
1337 dev_err(&hbus
->hdev
->device
,
1338 "There's an I/O BAR in this list!\n");
1340 if (hpdev
->probed_bar
[i
] != 0) {
1342 * A probed BAR has all the upper bits set that
1346 bar_val
= hpdev
->probed_bar
[i
];
1347 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1349 ((u64
)hpdev
->probed_bar
[++i
] << 32);
1351 bar_val
|= 0xffffffff00000000ULL
;
1353 bar_size
= get_bar_size(bar_val
);
1355 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1356 hbus
->high_mmio_space
+= bar_size
;
1358 hbus
->low_mmio_space
+= bar_size
;
1363 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1368 * prepopulate_bars() - Fill in BARs with defaults
1369 * @hbus: Root PCI bus, as understood by this driver
1371 * The core PCI driver code seems much, much happier if the BARs
1372 * for a device have values upon first scan. So fill them in.
1373 * The algorithm below works down from large sizes to small,
1374 * attempting to pack the assignments optimally. The assumption,
1375 * enforced in other parts of the code, is that the beginning of
1376 * the memory-mapped I/O space will be aligned on the largest
1379 static void prepopulate_bars(struct hv_pcibus_device
*hbus
)
1381 resource_size_t high_size
= 0;
1382 resource_size_t low_size
= 0;
1383 resource_size_t high_base
= 0;
1384 resource_size_t low_base
= 0;
1385 resource_size_t bar_size
;
1386 struct hv_pci_dev
*hpdev
;
1387 unsigned long flags
;
1393 if (hbus
->low_mmio_space
) {
1394 low_size
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
1395 low_base
= hbus
->low_mmio_res
->start
;
1398 if (hbus
->high_mmio_space
) {
1400 (63 - __builtin_clzll(hbus
->high_mmio_space
));
1401 high_base
= hbus
->high_mmio_res
->start
;
1404 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1406 /* Pick addresses for the BARs. */
1408 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1409 for (i
= 0; i
< 6; i
++) {
1410 bar_val
= hpdev
->probed_bar
[i
];
1413 high
= bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
;
1416 ((u64
)hpdev
->probed_bar
[i
+ 1]
1419 bar_val
|= 0xffffffffULL
<< 32;
1421 bar_size
= get_bar_size(bar_val
);
1423 if (high_size
!= bar_size
) {
1427 _hv_pcifront_write_config(hpdev
,
1428 PCI_BASE_ADDRESS_0
+ (4 * i
),
1430 (u32
)(high_base
& 0xffffff00));
1432 _hv_pcifront_write_config(hpdev
,
1433 PCI_BASE_ADDRESS_0
+ (4 * i
),
1434 4, (u32
)(high_base
>> 32));
1435 high_base
+= bar_size
;
1437 if (low_size
!= bar_size
)
1439 _hv_pcifront_write_config(hpdev
,
1440 PCI_BASE_ADDRESS_0
+ (4 * i
),
1442 (u32
)(low_base
& 0xffffff00));
1443 low_base
+= bar_size
;
1446 if (high_size
<= 1 && low_size
<= 1) {
1447 /* Set the memory enable bit. */
1448 _hv_pcifront_read_config(hpdev
, PCI_COMMAND
, 2,
1450 command
|= PCI_COMMAND_MEMORY
;
1451 _hv_pcifront_write_config(hpdev
, PCI_COMMAND
, 2,
1459 } while (high_size
|| low_size
);
1461 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1465 * Assign entries in sysfs pci slot directory.
1467 * Note that this function does not need to lock the children list
1468 * because it is called from pci_devices_present_work which
1469 * is serialized with hv_eject_device_work because they are on the
1470 * same ordered workqueue. Therefore hbus->children list will not change
1471 * even when pci_create_slot sleeps.
1473 static void hv_pci_assign_slots(struct hv_pcibus_device
*hbus
)
1475 struct hv_pci_dev
*hpdev
;
1476 char name
[SLOT_NAME_SIZE
];
1479 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1480 if (hpdev
->pci_slot
)
1483 slot_nr
= PCI_SLOT(wslot_to_devfn(hpdev
->desc
.win_slot
.slot
));
1484 snprintf(name
, SLOT_NAME_SIZE
, "%u", hpdev
->desc
.ser
);
1485 hpdev
->pci_slot
= pci_create_slot(hbus
->pci_bus
, slot_nr
,
1487 if (IS_ERR(hpdev
->pci_slot
)) {
1488 pr_warn("pci_create slot %s failed\n", name
);
1489 hpdev
->pci_slot
= NULL
;
1495 * Remove entries in sysfs pci slot directory.
1497 static void hv_pci_remove_slots(struct hv_pcibus_device
*hbus
)
1499 struct hv_pci_dev
*hpdev
;
1501 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1502 if (!hpdev
->pci_slot
)
1504 pci_destroy_slot(hpdev
->pci_slot
);
1505 hpdev
->pci_slot
= NULL
;
1510 * create_root_hv_pci_bus() - Expose a new root PCI bus
1511 * @hbus: Root PCI bus, as understood by this driver
1513 * Return: 0 on success, -errno on failure
1515 static int create_root_hv_pci_bus(struct hv_pcibus_device
*hbus
)
1517 /* Register the device */
1518 hbus
->pci_bus
= pci_create_root_bus(&hbus
->hdev
->device
,
1519 0, /* bus number is always zero */
1522 &hbus
->resources_for_children
);
1526 hbus
->pci_bus
->msi
= &hbus
->msi_chip
;
1527 hbus
->pci_bus
->msi
->dev
= &hbus
->hdev
->device
;
1529 pci_lock_rescan_remove();
1530 pci_scan_child_bus(hbus
->pci_bus
);
1531 pci_bus_assign_resources(hbus
->pci_bus
);
1532 hv_pci_assign_slots(hbus
);
1533 pci_bus_add_devices(hbus
->pci_bus
);
1534 pci_unlock_rescan_remove();
1535 hbus
->state
= hv_pcibus_installed
;
1539 struct q_res_req_compl
{
1540 struct completion host_event
;
1541 struct hv_pci_dev
*hpdev
;
1545 * q_resource_requirements() - Query Resource Requirements
1546 * @context: The completion context.
1547 * @resp: The response that came from the host.
1548 * @resp_packet_size: The size in bytes of resp.
1550 * This function is invoked on completion of a Query Resource
1551 * Requirements packet.
1553 static void q_resource_requirements(void *context
, struct pci_response
*resp
,
1554 int resp_packet_size
)
1556 struct q_res_req_compl
*completion
= context
;
1557 struct pci_q_res_req_response
*q_res_req
=
1558 (struct pci_q_res_req_response
*)resp
;
1561 if (resp
->status
< 0) {
1562 dev_err(&completion
->hpdev
->hbus
->hdev
->device
,
1563 "query resource requirements failed: %x\n",
1566 for (i
= 0; i
< 6; i
++) {
1567 completion
->hpdev
->probed_bar
[i
] =
1568 q_res_req
->probed_bar
[i
];
1572 complete(&completion
->host_event
);
1576 * new_pcichild_device() - Create a new child device
1577 * @hbus: The internal struct tracking this root PCI bus.
1578 * @desc: The information supplied so far from the host
1581 * This function creates the tracking structure for a new child
1582 * device and kicks off the process of figuring out what it is.
1584 * Return: Pointer to the new tracking struct
1586 static struct hv_pci_dev
*new_pcichild_device(struct hv_pcibus_device
*hbus
,
1587 struct pci_function_description
*desc
)
1589 struct hv_pci_dev
*hpdev
;
1590 struct pci_child_message
*res_req
;
1591 struct q_res_req_compl comp_pkt
;
1593 struct pci_packet init_packet
;
1594 u8 buffer
[sizeof(struct pci_child_message
)];
1596 unsigned long flags
;
1599 hpdev
= kzalloc(sizeof(*hpdev
), GFP_KERNEL
);
1605 memset(&pkt
, 0, sizeof(pkt
));
1606 init_completion(&comp_pkt
.host_event
);
1607 comp_pkt
.hpdev
= hpdev
;
1608 pkt
.init_packet
.compl_ctxt
= &comp_pkt
;
1609 pkt
.init_packet
.completion_func
= q_resource_requirements
;
1610 res_req
= (struct pci_child_message
*)&pkt
.init_packet
.message
;
1611 res_req
->message_type
.type
= PCI_QUERY_RESOURCE_REQUIREMENTS
;
1612 res_req
->wslot
.slot
= desc
->win_slot
.slot
;
1614 ret
= vmbus_sendpacket(hbus
->hdev
->channel
, res_req
,
1615 sizeof(struct pci_child_message
),
1616 (unsigned long)&pkt
.init_packet
,
1618 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1622 if (wait_for_response(hbus
->hdev
, &comp_pkt
.host_event
))
1625 hpdev
->desc
= *desc
;
1626 refcount_set(&hpdev
->refs
, 1);
1627 get_pcichild(hpdev
);
1628 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1630 list_add_tail(&hpdev
->list_entry
, &hbus
->children
);
1631 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1640 * get_pcichild_wslot() - Find device from slot
1641 * @hbus: Root PCI bus, as understood by this driver
1642 * @wslot: Location on the bus
1644 * This function looks up a PCI device and returns the internal
1645 * representation of it. It acquires a reference on it, so that
1646 * the device won't be deleted while somebody is using it. The
1647 * caller is responsible for calling put_pcichild() to release
1650 * Return: Internal representation of a PCI device
1652 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
1655 unsigned long flags
;
1656 struct hv_pci_dev
*iter
, *hpdev
= NULL
;
1658 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1659 list_for_each_entry(iter
, &hbus
->children
, list_entry
) {
1660 if (iter
->desc
.win_slot
.slot
== wslot
) {
1662 get_pcichild(hpdev
);
1666 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1672 * pci_devices_present_work() - Handle new list of child devices
1673 * @work: Work struct embedded in struct hv_dr_work
1675 * "Bus Relations" is the Windows term for "children of this
1676 * bus." The terminology is preserved here for people trying to
1677 * debug the interaction between Hyper-V and Linux. This
1678 * function is called when the parent partition reports a list
1679 * of functions that should be observed under this PCI Express
1682 * This function updates the list, and must tolerate being
1683 * called multiple times with the same information. The typical
1684 * number of child devices is one, with very atypical cases
1685 * involving three or four, so the algorithms used here can be
1686 * simple and inefficient.
1688 * It must also treat the omission of a previously observed device as
1689 * notification that the device no longer exists.
1691 * Note that this function is serialized with hv_eject_device_work(),
1692 * because both are pushed to the ordered workqueue hbus->wq.
1694 static void pci_devices_present_work(struct work_struct
*work
)
1698 struct pci_function_description
*new_desc
;
1699 struct hv_pci_dev
*hpdev
;
1700 struct hv_pcibus_device
*hbus
;
1701 struct list_head removed
;
1702 struct hv_dr_work
*dr_wrk
;
1703 struct hv_dr_state
*dr
= NULL
;
1704 unsigned long flags
;
1706 dr_wrk
= container_of(work
, struct hv_dr_work
, wrk
);
1710 INIT_LIST_HEAD(&removed
);
1712 /* Pull this off the queue and process it if it was the last one. */
1713 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1714 while (!list_empty(&hbus
->dr_list
)) {
1715 dr
= list_first_entry(&hbus
->dr_list
, struct hv_dr_state
,
1717 list_del(&dr
->list_entry
);
1719 /* Throw this away if the list still has stuff in it. */
1720 if (!list_empty(&hbus
->dr_list
)) {
1725 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1732 /* First, mark all existing children as reported missing. */
1733 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1734 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1735 hpdev
->reported_missing
= true;
1737 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1739 /* Next, add back any reported devices. */
1740 for (child_no
= 0; child_no
< dr
->device_count
; child_no
++) {
1742 new_desc
= &dr
->func
[child_no
];
1744 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1745 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1746 if ((hpdev
->desc
.win_slot
.slot
== new_desc
->win_slot
.slot
) &&
1747 (hpdev
->desc
.v_id
== new_desc
->v_id
) &&
1748 (hpdev
->desc
.d_id
== new_desc
->d_id
) &&
1749 (hpdev
->desc
.ser
== new_desc
->ser
)) {
1750 hpdev
->reported_missing
= false;
1754 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1757 hpdev
= new_pcichild_device(hbus
, new_desc
);
1759 dev_err(&hbus
->hdev
->device
,
1760 "couldn't record a child device.\n");
1764 /* Move missing children to a list on the stack. */
1765 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1768 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1769 if (hpdev
->reported_missing
) {
1771 put_pcichild(hpdev
);
1772 list_move_tail(&hpdev
->list_entry
, &removed
);
1777 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1779 /* Delete everything that should no longer exist. */
1780 while (!list_empty(&removed
)) {
1781 hpdev
= list_first_entry(&removed
, struct hv_pci_dev
,
1783 list_del(&hpdev
->list_entry
);
1785 if (hpdev
->pci_slot
)
1786 pci_destroy_slot(hpdev
->pci_slot
);
1788 put_pcichild(hpdev
);
1791 switch (hbus
->state
) {
1792 case hv_pcibus_installed
:
1794 * Tell the core to rescan bus
1795 * because there may have been changes.
1797 pci_lock_rescan_remove();
1798 pci_scan_child_bus(hbus
->pci_bus
);
1799 hv_pci_assign_slots(hbus
);
1800 pci_unlock_rescan_remove();
1803 case hv_pcibus_init
:
1804 case hv_pcibus_probed
:
1805 survey_child_resources(hbus
);
1817 * hv_pci_devices_present() - Handles list of new children
1818 * @hbus: Root PCI bus, as understood by this driver
1819 * @relations: Packet from host listing children
1821 * This function is invoked whenever a new list of devices for
1824 static void hv_pci_devices_present(struct hv_pcibus_device
*hbus
,
1825 struct pci_bus_relations
*relations
)
1827 struct hv_dr_state
*dr
;
1828 struct hv_dr_work
*dr_wrk
;
1829 unsigned long flags
;
1832 dr_wrk
= kzalloc(sizeof(*dr_wrk
), GFP_NOWAIT
);
1836 dr
= kzalloc(offsetof(struct hv_dr_state
, func
) +
1837 (sizeof(struct pci_function_description
) *
1838 (relations
->device_count
)), GFP_NOWAIT
);
1844 INIT_WORK(&dr_wrk
->wrk
, pci_devices_present_work
);
1846 dr
->device_count
= relations
->device_count
;
1847 if (dr
->device_count
!= 0) {
1848 memcpy(dr
->func
, relations
->func
,
1849 sizeof(struct pci_function_description
) *
1853 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1855 * If pending_dr is true, we have already queued a work,
1856 * which will see the new dr. Otherwise, we need to
1859 pending_dr
= !list_empty(&hbus
->dr_list
);
1860 list_add_tail(&dr
->list_entry
, &hbus
->dr_list
);
1861 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1867 queue_work(hbus
->wq
, &dr_wrk
->wrk
);
1872 * hv_eject_device_work() - Asynchronously handles ejection
1873 * @work: Work struct embedded in internal device struct
1875 * This function handles ejecting a device. Windows will
1876 * attempt to gracefully eject a device, waiting 60 seconds to
1877 * hear back from the guest OS that this completed successfully.
1878 * If this timer expires, the device will be forcibly removed.
1880 static void hv_eject_device_work(struct work_struct
*work
)
1882 struct pci_eject_response
*ejct_pkt
;
1883 struct hv_pcibus_device
*hbus
;
1884 struct hv_pci_dev
*hpdev
;
1885 struct pci_dev
*pdev
;
1886 unsigned long flags
;
1889 struct pci_packet pkt
;
1890 u8 buffer
[sizeof(struct pci_eject_response
)];
1893 hpdev
= container_of(work
, struct hv_pci_dev
, wrk
);
1896 WARN_ON(hpdev
->state
!= hv_pcichild_ejecting
);
1899 * Ejection can come before or after the PCI bus has been set up, so
1900 * attempt to find it and tear down the bus state, if it exists. This
1901 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1902 * because hbus->pci_bus may not exist yet.
1904 wslot
= wslot_to_devfn(hpdev
->desc
.win_slot
.slot
);
1905 pdev
= pci_get_domain_bus_and_slot(hbus
->sysdata
.domain
, 0, wslot
);
1907 pci_lock_rescan_remove();
1908 pci_stop_and_remove_bus_device(pdev
);
1910 pci_unlock_rescan_remove();
1913 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1914 list_del(&hpdev
->list_entry
);
1915 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1917 if (hpdev
->pci_slot
)
1918 pci_destroy_slot(hpdev
->pci_slot
);
1920 memset(&ctxt
, 0, sizeof(ctxt
));
1921 ejct_pkt
= (struct pci_eject_response
*)&ctxt
.pkt
.message
;
1922 ejct_pkt
->message_type
.type
= PCI_EJECTION_COMPLETE
;
1923 ejct_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
1924 vmbus_sendpacket(hbus
->hdev
->channel
, ejct_pkt
,
1925 sizeof(*ejct_pkt
), (unsigned long)&ctxt
.pkt
,
1926 VM_PKT_DATA_INBAND
, 0);
1928 /* For the get_pcichild() in hv_pci_eject_device() */
1929 put_pcichild(hpdev
);
1930 /* For the two refs got in new_pcichild_device() */
1931 put_pcichild(hpdev
);
1932 put_pcichild(hpdev
);
1933 /* hpdev has been freed. Do not use it any more. */
1939 * hv_pci_eject_device() - Handles device ejection
1940 * @hpdev: Internal device tracking struct
1942 * This function is invoked when an ejection packet arrives. It
1943 * just schedules work so that we don't re-enter the packet
1944 * delivery code handling the ejection.
1946 static void hv_pci_eject_device(struct hv_pci_dev
*hpdev
)
1948 hpdev
->state
= hv_pcichild_ejecting
;
1949 get_pcichild(hpdev
);
1950 INIT_WORK(&hpdev
->wrk
, hv_eject_device_work
);
1951 get_hvpcibus(hpdev
->hbus
);
1952 queue_work(hpdev
->hbus
->wq
, &hpdev
->wrk
);
1956 * hv_pci_onchannelcallback() - Handles incoming packets
1957 * @context: Internal bus tracking struct
1959 * This function is invoked whenever the host sends a packet to
1960 * this channel (which is private to this root PCI bus).
1962 static void hv_pci_onchannelcallback(void *context
)
1964 const int packet_size
= 0x100;
1966 struct hv_pcibus_device
*hbus
= context
;
1969 struct vmpacket_descriptor
*desc
;
1970 unsigned char *buffer
;
1971 int bufferlen
= packet_size
;
1972 struct pci_packet
*comp_packet
;
1973 struct pci_response
*response
;
1974 struct pci_incoming_message
*new_message
;
1975 struct pci_bus_relations
*bus_rel
;
1976 struct pci_dev_incoming
*dev_message
;
1977 struct hv_pci_dev
*hpdev
;
1979 buffer
= kmalloc(bufferlen
, GFP_ATOMIC
);
1984 ret
= vmbus_recvpacket_raw(hbus
->hdev
->channel
, buffer
,
1985 bufferlen
, &bytes_recvd
, &req_id
);
1987 if (ret
== -ENOBUFS
) {
1989 /* Handle large packet */
1990 bufferlen
= bytes_recvd
;
1991 buffer
= kmalloc(bytes_recvd
, GFP_ATOMIC
);
1997 /* Zero length indicates there are no more packets. */
1998 if (ret
|| !bytes_recvd
)
2002 * All incoming packets must be at least as large as a
2005 if (bytes_recvd
<= sizeof(struct pci_response
))
2007 desc
= (struct vmpacket_descriptor
*)buffer
;
2009 switch (desc
->type
) {
2013 * The host is trusted, and thus it's safe to interpret
2014 * this transaction ID as a pointer.
2016 comp_packet
= (struct pci_packet
*)req_id
;
2017 response
= (struct pci_response
*)buffer
;
2018 comp_packet
->completion_func(comp_packet
->compl_ctxt
,
2023 case VM_PKT_DATA_INBAND
:
2025 new_message
= (struct pci_incoming_message
*)buffer
;
2026 switch (new_message
->message_type
.type
) {
2027 case PCI_BUS_RELATIONS
:
2029 bus_rel
= (struct pci_bus_relations
*)buffer
;
2031 offsetof(struct pci_bus_relations
, func
) +
2032 (sizeof(struct pci_function_description
) *
2033 (bus_rel
->device_count
))) {
2034 dev_err(&hbus
->hdev
->device
,
2035 "bus relations too small\n");
2039 hv_pci_devices_present(hbus
, bus_rel
);
2044 dev_message
= (struct pci_dev_incoming
*)buffer
;
2045 hpdev
= get_pcichild_wslot(hbus
,
2046 dev_message
->wslot
.slot
);
2048 hv_pci_eject_device(hpdev
);
2049 put_pcichild(hpdev
);
2054 dev_warn(&hbus
->hdev
->device
,
2055 "Unimplemented protocol message %x\n",
2056 new_message
->message_type
.type
);
2062 dev_err(&hbus
->hdev
->device
,
2063 "unhandled packet type %d, tid %llx len %d\n",
2064 desc
->type
, req_id
, bytes_recvd
);
2073 * hv_pci_protocol_negotiation() - Set up protocol
2074 * @hdev: VMBus's tracking struct for this root PCI bus
2076 * This driver is intended to support running on Windows 10
2077 * (server) and later versions. It will not run on earlier
2078 * versions, as they assume that many of the operations which
2079 * Linux needs accomplished with a spinlock held were done via
2080 * asynchronous messaging via VMBus. Windows 10 increases the
2081 * surface area of PCI emulation so that these actions can take
2082 * place by suspending a virtual processor for their duration.
2084 * This function negotiates the channel protocol version,
2085 * failing if the host doesn't support the necessary protocol
2088 static int hv_pci_protocol_negotiation(struct hv_device
*hdev
)
2090 struct pci_version_request
*version_req
;
2091 struct hv_pci_compl comp_pkt
;
2092 struct pci_packet
*pkt
;
2097 * Initiate the handshake with the host and negotiate
2098 * a version that the host can support. We start with the
2099 * highest version number and go down if the host cannot
2102 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*version_req
), GFP_KERNEL
);
2106 init_completion(&comp_pkt
.host_event
);
2107 pkt
->completion_func
= hv_pci_generic_compl
;
2108 pkt
->compl_ctxt
= &comp_pkt
;
2109 version_req
= (struct pci_version_request
*)&pkt
->message
;
2110 version_req
->message_type
.type
= PCI_QUERY_PROTOCOL_VERSION
;
2112 for (i
= 0; i
< ARRAY_SIZE(pci_protocol_versions
); i
++) {
2113 version_req
->protocol_version
= pci_protocol_versions
[i
];
2114 ret
= vmbus_sendpacket(hdev
->channel
, version_req
,
2115 sizeof(struct pci_version_request
),
2116 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2117 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2119 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2122 dev_err(&hdev
->device
,
2123 "PCI Pass-through VSP failed to request version: %d",
2128 if (comp_pkt
.completion_status
>= 0) {
2129 pci_protocol_version
= pci_protocol_versions
[i
];
2130 dev_info(&hdev
->device
,
2131 "PCI VMBus probing: Using version %#x\n",
2132 pci_protocol_version
);
2136 if (comp_pkt
.completion_status
!= STATUS_REVISION_MISMATCH
) {
2137 dev_err(&hdev
->device
,
2138 "PCI Pass-through VSP failed version request: %#x",
2139 comp_pkt
.completion_status
);
2144 reinit_completion(&comp_pkt
.host_event
);
2147 dev_err(&hdev
->device
,
2148 "PCI pass-through VSP failed to find supported version");
2157 * hv_pci_free_bridge_windows() - Release memory regions for the
2159 * @hbus: Root PCI bus, as understood by this driver
2161 static void hv_pci_free_bridge_windows(struct hv_pcibus_device
*hbus
)
2164 * Set the resources back to the way they looked when they
2165 * were allocated by setting IORESOURCE_BUSY again.
2168 if (hbus
->low_mmio_space
&& hbus
->low_mmio_res
) {
2169 hbus
->low_mmio_res
->flags
|= IORESOURCE_BUSY
;
2170 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2171 resource_size(hbus
->low_mmio_res
));
2174 if (hbus
->high_mmio_space
&& hbus
->high_mmio_res
) {
2175 hbus
->high_mmio_res
->flags
|= IORESOURCE_BUSY
;
2176 vmbus_free_mmio(hbus
->high_mmio_res
->start
,
2177 resource_size(hbus
->high_mmio_res
));
2182 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2184 * @hbus: Root PCI bus, as understood by this driver
2186 * This function calls vmbus_allocate_mmio(), which is itself a
2187 * bit of a compromise. Ideally, we might change the pnp layer
2188 * in the kernel such that it comprehends either PCI devices
2189 * which are "grandchildren of ACPI," with some intermediate bus
2190 * node (in this case, VMBus) or change it such that it
2191 * understands VMBus. The pnp layer, however, has been declared
2192 * deprecated, and not subject to change.
2194 * The workaround, implemented here, is to ask VMBus to allocate
2195 * MMIO space for this bus. VMBus itself knows which ranges are
2196 * appropriate by looking at its own ACPI objects. Then, after
2197 * these ranges are claimed, they're modified to look like they
2198 * would have looked if the ACPI and pnp code had allocated
2199 * bridge windows. These descriptors have to exist in this form
2200 * in order to satisfy the code which will get invoked when the
2201 * endpoint PCI function driver calls request_mem_region() or
2202 * request_mem_region_exclusive().
2204 * Return: 0 on success, -errno on failure
2206 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device
*hbus
)
2208 resource_size_t align
;
2211 if (hbus
->low_mmio_space
) {
2212 align
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
2213 ret
= vmbus_allocate_mmio(&hbus
->low_mmio_res
, hbus
->hdev
, 0,
2214 (u64
)(u32
)0xffffffff,
2215 hbus
->low_mmio_space
,
2218 dev_err(&hbus
->hdev
->device
,
2219 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2220 hbus
->low_mmio_space
);
2224 /* Modify this resource to become a bridge window. */
2225 hbus
->low_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2226 hbus
->low_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2227 pci_add_resource(&hbus
->resources_for_children
,
2228 hbus
->low_mmio_res
);
2231 if (hbus
->high_mmio_space
) {
2232 align
= 1ULL << (63 - __builtin_clzll(hbus
->high_mmio_space
));
2233 ret
= vmbus_allocate_mmio(&hbus
->high_mmio_res
, hbus
->hdev
,
2235 hbus
->high_mmio_space
, align
,
2238 dev_err(&hbus
->hdev
->device
,
2239 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2240 hbus
->high_mmio_space
);
2241 goto release_low_mmio
;
2244 /* Modify this resource to become a bridge window. */
2245 hbus
->high_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2246 hbus
->high_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2247 pci_add_resource(&hbus
->resources_for_children
,
2248 hbus
->high_mmio_res
);
2254 if (hbus
->low_mmio_res
) {
2255 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2256 resource_size(hbus
->low_mmio_res
));
2263 * hv_allocate_config_window() - Find MMIO space for PCI Config
2264 * @hbus: Root PCI bus, as understood by this driver
2266 * This function claims memory-mapped I/O space for accessing
2267 * configuration space for the functions on this bus.
2269 * Return: 0 on success, -errno on failure
2271 static int hv_allocate_config_window(struct hv_pcibus_device
*hbus
)
2276 * Set up a region of MMIO space to use for accessing configuration
2279 ret
= vmbus_allocate_mmio(&hbus
->mem_config
, hbus
->hdev
, 0, -1,
2280 PCI_CONFIG_MMIO_LENGTH
, 0x1000, false);
2285 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2286 * resource claims (those which cannot be overlapped) and the ranges
2287 * which are valid for the children of this bus, which are intended
2288 * to be overlapped by those children. Set the flag on this claim
2289 * meaning that this region can't be overlapped.
2292 hbus
->mem_config
->flags
|= IORESOURCE_BUSY
;
2297 static void hv_free_config_window(struct hv_pcibus_device
*hbus
)
2299 vmbus_free_mmio(hbus
->mem_config
->start
, PCI_CONFIG_MMIO_LENGTH
);
2303 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2304 * @hdev: VMBus's tracking struct for this root PCI bus
2306 * Return: 0 on success, -errno on failure
2308 static int hv_pci_enter_d0(struct hv_device
*hdev
)
2310 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2311 struct pci_bus_d0_entry
*d0_entry
;
2312 struct hv_pci_compl comp_pkt
;
2313 struct pci_packet
*pkt
;
2317 * Tell the host that the bus is ready to use, and moved into the
2318 * powered-on state. This includes telling the host which region
2319 * of memory-mapped I/O space has been chosen for configuration space
2322 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*d0_entry
), GFP_KERNEL
);
2326 init_completion(&comp_pkt
.host_event
);
2327 pkt
->completion_func
= hv_pci_generic_compl
;
2328 pkt
->compl_ctxt
= &comp_pkt
;
2329 d0_entry
= (struct pci_bus_d0_entry
*)&pkt
->message
;
2330 d0_entry
->message_type
.type
= PCI_BUS_D0ENTRY
;
2331 d0_entry
->mmio_base
= hbus
->mem_config
->start
;
2333 ret
= vmbus_sendpacket(hdev
->channel
, d0_entry
, sizeof(*d0_entry
),
2334 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2335 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2337 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2342 if (comp_pkt
.completion_status
< 0) {
2343 dev_err(&hdev
->device
,
2344 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2345 comp_pkt
.completion_status
);
2358 * hv_pci_query_relations() - Ask host to send list of child
2360 * @hdev: VMBus's tracking struct for this root PCI bus
2362 * Return: 0 on success, -errno on failure
2364 static int hv_pci_query_relations(struct hv_device
*hdev
)
2366 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2367 struct pci_message message
;
2368 struct completion comp
;
2371 /* Ask the host to send along the list of child devices */
2372 init_completion(&comp
);
2373 if (cmpxchg(&hbus
->survey_event
, NULL
, &comp
))
2376 memset(&message
, 0, sizeof(message
));
2377 message
.type
= PCI_QUERY_BUS_RELATIONS
;
2379 ret
= vmbus_sendpacket(hdev
->channel
, &message
, sizeof(message
),
2380 0, VM_PKT_DATA_INBAND
, 0);
2382 ret
= wait_for_response(hdev
, &comp
);
2388 * hv_send_resources_allocated() - Report local resource choices
2389 * @hdev: VMBus's tracking struct for this root PCI bus
2391 * The host OS is expecting to be sent a request as a message
2392 * which contains all the resources that the device will use.
2393 * The response contains those same resources, "translated"
2394 * which is to say, the values which should be used by the
2395 * hardware, when it delivers an interrupt. (MMIO resources are
2396 * used in local terms.) This is nice for Windows, and lines up
2397 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2398 * is deeply expecting to scan an emulated PCI configuration
2399 * space. So this message is sent here only to drive the state
2400 * machine on the host forward.
2402 * Return: 0 on success, -errno on failure
2404 static int hv_send_resources_allocated(struct hv_device
*hdev
)
2406 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2407 struct pci_resources_assigned
*res_assigned
;
2408 struct pci_resources_assigned2
*res_assigned2
;
2409 struct hv_pci_compl comp_pkt
;
2410 struct hv_pci_dev
*hpdev
;
2411 struct pci_packet
*pkt
;
2416 size_res
= (pci_protocol_version
< PCI_PROTOCOL_VERSION_1_2
)
2417 ? sizeof(*res_assigned
) : sizeof(*res_assigned2
);
2419 pkt
= kmalloc(sizeof(*pkt
) + size_res
, GFP_KERNEL
);
2425 for (wslot
= 0; wslot
< 256; wslot
++) {
2426 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2430 memset(pkt
, 0, sizeof(*pkt
) + size_res
);
2431 init_completion(&comp_pkt
.host_event
);
2432 pkt
->completion_func
= hv_pci_generic_compl
;
2433 pkt
->compl_ctxt
= &comp_pkt
;
2435 if (pci_protocol_version
< PCI_PROTOCOL_VERSION_1_2
) {
2437 (struct pci_resources_assigned
*)&pkt
->message
;
2438 res_assigned
->message_type
.type
=
2439 PCI_RESOURCES_ASSIGNED
;
2440 res_assigned
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2443 (struct pci_resources_assigned2
*)&pkt
->message
;
2444 res_assigned2
->message_type
.type
=
2445 PCI_RESOURCES_ASSIGNED2
;
2446 res_assigned2
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2448 put_pcichild(hpdev
);
2450 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
->message
,
2451 size_res
, (unsigned long)pkt
,
2453 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2455 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2459 if (comp_pkt
.completion_status
< 0) {
2461 dev_err(&hdev
->device
,
2462 "resource allocated returned 0x%x",
2463 comp_pkt
.completion_status
);
2473 * hv_send_resources_released() - Report local resources
2475 * @hdev: VMBus's tracking struct for this root PCI bus
2477 * Return: 0 on success, -errno on failure
2479 static int hv_send_resources_released(struct hv_device
*hdev
)
2481 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2482 struct pci_child_message pkt
;
2483 struct hv_pci_dev
*hpdev
;
2487 for (wslot
= 0; wslot
< 256; wslot
++) {
2488 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2492 memset(&pkt
, 0, sizeof(pkt
));
2493 pkt
.message_type
.type
= PCI_RESOURCES_RELEASED
;
2494 pkt
.wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2496 put_pcichild(hpdev
);
2498 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
, sizeof(pkt
), 0,
2499 VM_PKT_DATA_INBAND
, 0);
2507 static void get_hvpcibus(struct hv_pcibus_device
*hbus
)
2509 refcount_inc(&hbus
->remove_lock
);
2512 static void put_hvpcibus(struct hv_pcibus_device
*hbus
)
2514 if (refcount_dec_and_test(&hbus
->remove_lock
))
2515 complete(&hbus
->remove_event
);
2519 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2520 * @hdev: VMBus's tracking struct for this root PCI bus
2521 * @dev_id: Identifies the device itself
2523 * Return: 0 on success, -errno on failure
2525 static int hv_pci_probe(struct hv_device
*hdev
,
2526 const struct hv_vmbus_device_id
*dev_id
)
2528 struct hv_pcibus_device
*hbus
;
2532 * hv_pcibus_device contains the hypercall arguments for retargeting in
2533 * hv_irq_unmask(). Those must not cross a page boundary.
2535 BUILD_BUG_ON(sizeof(*hbus
) > PAGE_SIZE
);
2537 hbus
= (struct hv_pcibus_device
*)get_zeroed_page(GFP_KERNEL
);
2540 hbus
->state
= hv_pcibus_init
;
2543 * The PCI bus "domain" is what is called "segment" in ACPI and
2544 * other specs. Pull it from the instance ID, to get something
2545 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2546 * do the same thing for consistency. Note that, since this code
2547 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2548 * that (1) the only domain in use for something that looks like
2549 * a physical PCI bus (which is actually emulated by the
2550 * hypervisor) is domain 0 and (2) there will be no overlap
2551 * between domains derived from these instance IDs in the same
2554 hbus
->sysdata
.domain
= hdev
->dev_instance
.b
[9] |
2555 hdev
->dev_instance
.b
[8] << 8;
2558 refcount_set(&hbus
->remove_lock
, 1);
2559 INIT_LIST_HEAD(&hbus
->children
);
2560 INIT_LIST_HEAD(&hbus
->dr_list
);
2561 INIT_LIST_HEAD(&hbus
->resources_for_children
);
2562 spin_lock_init(&hbus
->config_lock
);
2563 spin_lock_init(&hbus
->device_list_lock
);
2564 spin_lock_init(&hbus
->retarget_msi_interrupt_lock
);
2565 init_completion(&hbus
->remove_event
);
2566 hbus
->wq
= alloc_ordered_workqueue("hv_pci_%x", 0,
2567 hbus
->sysdata
.domain
);
2573 ret
= vmbus_open(hdev
->channel
, pci_ring_size
, pci_ring_size
, NULL
, 0,
2574 hv_pci_onchannelcallback
, hbus
);
2578 hv_set_drvdata(hdev
, hbus
);
2580 ret
= hv_pci_protocol_negotiation(hdev
);
2584 ret
= hv_allocate_config_window(hbus
);
2588 hbus
->cfg_addr
= ioremap(hbus
->mem_config
->start
,
2589 PCI_CONFIG_MMIO_LENGTH
);
2590 if (!hbus
->cfg_addr
) {
2591 dev_err(&hdev
->device
,
2592 "Unable to map a virtual address for config space\n");
2597 hbus
->sysdata
.fwnode
= irq_domain_alloc_fwnode(hbus
);
2598 if (!hbus
->sysdata
.fwnode
) {
2603 ret
= hv_pcie_init_irq_domain(hbus
);
2607 ret
= hv_pci_query_relations(hdev
);
2609 goto free_irq_domain
;
2611 ret
= hv_pci_enter_d0(hdev
);
2613 goto free_irq_domain
;
2615 ret
= hv_pci_allocate_bridge_windows(hbus
);
2617 goto free_irq_domain
;
2619 ret
= hv_send_resources_allocated(hdev
);
2623 prepopulate_bars(hbus
);
2625 hbus
->state
= hv_pcibus_probed
;
2627 ret
= create_root_hv_pci_bus(hbus
);
2634 hv_pci_free_bridge_windows(hbus
);
2636 irq_domain_remove(hbus
->irq_domain
);
2638 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
2640 iounmap(hbus
->cfg_addr
);
2642 hv_free_config_window(hbus
);
2644 vmbus_close(hdev
->channel
);
2646 destroy_workqueue(hbus
->wq
);
2648 free_page((unsigned long)hbus
);
2652 static void hv_pci_bus_exit(struct hv_device
*hdev
)
2654 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2656 struct pci_packet teardown_packet
;
2657 u8 buffer
[sizeof(struct pci_message
)];
2659 struct pci_bus_relations relations
;
2660 struct hv_pci_compl comp_pkt
;
2664 * After the host sends the RESCIND_CHANNEL message, it doesn't
2665 * access the per-channel ringbuffer any longer.
2667 if (hdev
->channel
->rescind
)
2670 /* Delete any children which might still exist. */
2671 memset(&relations
, 0, sizeof(relations
));
2672 hv_pci_devices_present(hbus
, &relations
);
2674 ret
= hv_send_resources_released(hdev
);
2676 dev_err(&hdev
->device
,
2677 "Couldn't send resources released packet(s)\n");
2679 memset(&pkt
.teardown_packet
, 0, sizeof(pkt
.teardown_packet
));
2680 init_completion(&comp_pkt
.host_event
);
2681 pkt
.teardown_packet
.completion_func
= hv_pci_generic_compl
;
2682 pkt
.teardown_packet
.compl_ctxt
= &comp_pkt
;
2683 pkt
.teardown_packet
.message
[0].type
= PCI_BUS_D0EXIT
;
2685 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
.teardown_packet
.message
,
2686 sizeof(struct pci_message
),
2687 (unsigned long)&pkt
.teardown_packet
,
2689 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2691 wait_for_completion_timeout(&comp_pkt
.host_event
, 10 * HZ
);
2695 * hv_pci_remove() - Remove routine for this VMBus channel
2696 * @hdev: VMBus's tracking struct for this root PCI bus
2698 * Return: 0 on success, -errno on failure
2700 static int hv_pci_remove(struct hv_device
*hdev
)
2702 struct hv_pcibus_device
*hbus
;
2704 hbus
= hv_get_drvdata(hdev
);
2705 if (hbus
->state
== hv_pcibus_installed
) {
2706 /* Remove the bus from PCI's point of view. */
2707 pci_lock_rescan_remove();
2708 pci_stop_root_bus(hbus
->pci_bus
);
2709 hv_pci_remove_slots(hbus
);
2710 pci_remove_root_bus(hbus
->pci_bus
);
2711 pci_unlock_rescan_remove();
2712 hbus
->state
= hv_pcibus_removed
;
2715 hv_pci_bus_exit(hdev
);
2717 vmbus_close(hdev
->channel
);
2719 iounmap(hbus
->cfg_addr
);
2720 hv_free_config_window(hbus
);
2721 pci_free_resource_list(&hbus
->resources_for_children
);
2722 hv_pci_free_bridge_windows(hbus
);
2723 irq_domain_remove(hbus
->irq_domain
);
2724 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
2726 wait_for_completion(&hbus
->remove_event
);
2727 destroy_workqueue(hbus
->wq
);
2728 free_page((unsigned long)hbus
);
2732 static const struct hv_vmbus_device_id hv_pci_id_table
[] = {
2733 /* PCI Pass-through Class ID */
2734 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2739 MODULE_DEVICE_TABLE(vmbus
, hv_pci_id_table
);
2741 static struct hv_driver hv_pci_drv
= {
2743 .id_table
= hv_pci_id_table
,
2744 .probe
= hv_pci_probe
,
2745 .remove
= hv_pci_remove
,
2748 static void __exit
exit_hv_pci_drv(void)
2750 vmbus_driver_unregister(&hv_pci_drv
);
2753 static int __init
init_hv_pci_drv(void)
2755 return vmbus_driver_register(&hv_pci_drv
);
2758 module_init(init_hv_pci_drv
);
2759 module_exit(exit_hv_pci_drv
);
2761 MODULE_DESCRIPTION("Hyper-V PCI");
2762 MODULE_LICENSE("GPL v2");