Linux 4.19.133
[linux/fpc-iii.git] / drivers / pci / controller / pci-hyperv.c
blob5c2849846641590d4fdb78f25c3165e30ffc6983
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
68 #define CPU_AFFINITY_ALL -1ULL
71 * Supported protocol versions in the order of probing - highest go
72 * first.
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 PCI_PROTOCOL_VERSION_1_2,
76 PCI_PROTOCOL_VERSION_1_1,
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
82 static enum pci_protocol_version_t pci_protocol_version;
84 #define PCI_CONFIG_MMIO_LENGTH 0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
90 #define STATUS_REVISION_MISMATCH 0xC0000059
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
96 * Message Types
99 enum pci_message_type {
101 * Version 1.1
103 PCI_MESSAGE_BASE = 0x42490000,
104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
127 PCI_MESSAGE_MAXIMUM
131 * Structures defining the virtual PCI Express protocol.
134 union pci_version {
135 struct {
136 u16 minor_version;
137 u16 major_version;
138 } parts;
139 u32 version;
140 } __packed;
143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144 * which is all this driver does. This representation is the one used in
145 * Windows, which is what is expected when sending this back and forth with
146 * the Hyper-V parent partition.
148 union win_slot_encoding {
149 struct {
150 u32 dev:5;
151 u32 func:3;
152 u32 reserved:24;
153 } bits;
154 u32 slot;
155 } __packed;
158 * Pretty much as defined in the PCI Specifications.
160 struct pci_function_description {
161 u16 v_id; /* vendor ID */
162 u16 d_id; /* device ID */
163 u8 rev;
164 u8 prog_intf;
165 u8 subclass;
166 u8 base_class;
167 u32 subsystem_id;
168 union win_slot_encoding win_slot;
169 u32 ser; /* serial number */
170 } __packed;
173 * struct hv_msi_desc
174 * @vector: IDT entry
175 * @delivery_mode: As defined in Intel's Programmer's
176 * Reference Manual, Volume 3, Chapter 8.
177 * @vector_count: Number of contiguous entries in the
178 * Interrupt Descriptor Table that are
179 * occupied by this Message-Signaled
180 * Interrupt. For "MSI", as first defined
181 * in PCI 2.2, this can be between 1 and
182 * 32. For "MSI-X," as first defined in PCI
183 * 3.0, this must be 1, as each MSI-X table
184 * entry would have its own descriptor.
185 * @reserved: Empty space
186 * @cpu_mask: All the target virtual processors.
188 struct hv_msi_desc {
189 u8 vector;
190 u8 delivery_mode;
191 u16 vector_count;
192 u32 reserved;
193 u64 cpu_mask;
194 } __packed;
197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
198 * @vector: IDT entry
199 * @delivery_mode: As defined in Intel's Programmer's
200 * Reference Manual, Volume 3, Chapter 8.
201 * @vector_count: Number of contiguous entries in the
202 * Interrupt Descriptor Table that are
203 * occupied by this Message-Signaled
204 * Interrupt. For "MSI", as first defined
205 * in PCI 2.2, this can be between 1 and
206 * 32. For "MSI-X," as first defined in PCI
207 * 3.0, this must be 1, as each MSI-X table
208 * entry would have its own descriptor.
209 * @processor_count: number of bits enabled in array.
210 * @processor_array: All the target virtual processors.
212 struct hv_msi_desc2 {
213 u8 vector;
214 u8 delivery_mode;
215 u16 vector_count;
216 u16 processor_count;
217 u16 processor_array[32];
218 } __packed;
221 * struct tran_int_desc
222 * @reserved: unused, padding
223 * @vector_count: same as in hv_msi_desc
224 * @data: This is the "data payload" value that is
225 * written by the device when it generates
226 * a message-signaled interrupt, either MSI
227 * or MSI-X.
228 * @address: This is the address to which the data
229 * payload is written on interrupt
230 * generation.
232 struct tran_int_desc {
233 u16 reserved;
234 u16 vector_count;
235 u32 data;
236 u64 address;
237 } __packed;
240 * A generic message format for virtual PCI.
241 * Specific message formats are defined later in the file.
244 struct pci_message {
245 u32 type;
246 } __packed;
248 struct pci_child_message {
249 struct pci_message message_type;
250 union win_slot_encoding wslot;
251 } __packed;
253 struct pci_incoming_message {
254 struct vmpacket_descriptor hdr;
255 struct pci_message message_type;
256 } __packed;
258 struct pci_response {
259 struct vmpacket_descriptor hdr;
260 s32 status; /* negative values are failures */
261 } __packed;
263 struct pci_packet {
264 void (*completion_func)(void *context, struct pci_response *resp,
265 int resp_packet_size);
266 void *compl_ctxt;
268 struct pci_message message[0];
272 * Specific message types supporting the PCI protocol.
276 * Version negotiation message. Sent from the guest to the host.
277 * The guest is free to try different versions until the host
278 * accepts the version.
280 * pci_version: The protocol version requested.
281 * is_last_attempt: If TRUE, this is the last version guest will request.
282 * reservedz: Reserved field, set to zero.
285 struct pci_version_request {
286 struct pci_message message_type;
287 u32 protocol_version;
288 } __packed;
291 * Bus D0 Entry. This is sent from the guest to the host when the virtual
292 * bus (PCI Express port) is ready for action.
295 struct pci_bus_d0_entry {
296 struct pci_message message_type;
297 u32 reserved;
298 u64 mmio_base;
299 } __packed;
301 struct pci_bus_relations {
302 struct pci_incoming_message incoming;
303 u32 device_count;
304 struct pci_function_description func[0];
305 } __packed;
307 struct pci_q_res_req_response {
308 struct vmpacket_descriptor hdr;
309 s32 status; /* negative values are failures */
310 u32 probed_bar[6];
311 } __packed;
313 struct pci_set_power {
314 struct pci_message message_type;
315 union win_slot_encoding wslot;
316 u32 power_state; /* In Windows terms */
317 u32 reserved;
318 } __packed;
320 struct pci_set_power_response {
321 struct vmpacket_descriptor hdr;
322 s32 status; /* negative values are failures */
323 union win_slot_encoding wslot;
324 u32 resultant_state; /* In Windows terms */
325 u32 reserved;
326 } __packed;
328 struct pci_resources_assigned {
329 struct pci_message message_type;
330 union win_slot_encoding wslot;
331 u8 memory_range[0x14][6]; /* not used here */
332 u32 msi_descriptors;
333 u32 reserved[4];
334 } __packed;
336 struct pci_resources_assigned2 {
337 struct pci_message message_type;
338 union win_slot_encoding wslot;
339 u8 memory_range[0x14][6]; /* not used here */
340 u32 msi_descriptor_count;
341 u8 reserved[70];
342 } __packed;
344 struct pci_create_interrupt {
345 struct pci_message message_type;
346 union win_slot_encoding wslot;
347 struct hv_msi_desc int_desc;
348 } __packed;
350 struct pci_create_int_response {
351 struct pci_response response;
352 u32 reserved;
353 struct tran_int_desc int_desc;
354 } __packed;
356 struct pci_create_interrupt2 {
357 struct pci_message message_type;
358 union win_slot_encoding wslot;
359 struct hv_msi_desc2 int_desc;
360 } __packed;
362 struct pci_delete_interrupt {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct tran_int_desc int_desc;
366 } __packed;
368 struct pci_dev_incoming {
369 struct pci_incoming_message incoming;
370 union win_slot_encoding wslot;
371 } __packed;
373 struct pci_eject_response {
374 struct pci_message message_type;
375 union win_slot_encoding wslot;
376 u32 status;
377 } __packed;
379 static int pci_ring_size = (4 * PAGE_SIZE);
382 * Definitions or interrupt steering hypercall.
384 #define HV_PARTITION_ID_SELF ((u64)-1)
385 #define HVCALL_RETARGET_INTERRUPT 0x7e
387 struct hv_interrupt_entry {
388 u32 source; /* 1 for MSI(-X) */
389 u32 reserved1;
390 u32 address;
391 u32 data;
394 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
396 struct hv_vp_set {
397 u64 format; /* 0 (HvGenericSetSparse4k) */
398 u64 valid_banks;
399 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
403 * flags for hv_device_interrupt_target.flags
405 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
406 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
408 struct hv_device_interrupt_target {
409 u32 vector;
410 u32 flags;
411 union {
412 u64 vp_mask;
413 struct hv_vp_set vp_set;
417 struct retarget_msi_interrupt {
418 u64 partition_id; /* use "self" */
419 u64 device_id;
420 struct hv_interrupt_entry int_entry;
421 u64 reserved2;
422 struct hv_device_interrupt_target int_target;
423 } __packed;
426 * Driver specific state.
429 enum hv_pcibus_state {
430 hv_pcibus_init = 0,
431 hv_pcibus_probed,
432 hv_pcibus_installed,
433 hv_pcibus_removed,
434 hv_pcibus_maximum
437 struct hv_pcibus_device {
438 struct pci_sysdata sysdata;
439 enum hv_pcibus_state state;
440 refcount_t remove_lock;
441 struct hv_device *hdev;
442 resource_size_t low_mmio_space;
443 resource_size_t high_mmio_space;
444 struct resource *mem_config;
445 struct resource *low_mmio_res;
446 struct resource *high_mmio_res;
447 struct completion *survey_event;
448 struct completion remove_event;
449 struct pci_bus *pci_bus;
450 spinlock_t config_lock; /* Avoid two threads writing index page */
451 spinlock_t device_list_lock; /* Protect lists below */
452 void __iomem *cfg_addr;
454 struct list_head resources_for_children;
456 struct list_head children;
457 struct list_head dr_list;
459 struct msi_domain_info msi_info;
460 struct msi_controller msi_chip;
461 struct irq_domain *irq_domain;
463 /* hypercall arg, must not cross page boundary */
464 struct retarget_msi_interrupt retarget_msi_interrupt_params;
466 spinlock_t retarget_msi_interrupt_lock;
468 struct workqueue_struct *wq;
472 * Tracks "Device Relations" messages from the host, which must be both
473 * processed in order and deferred so that they don't run in the context
474 * of the incoming packet callback.
476 struct hv_dr_work {
477 struct work_struct wrk;
478 struct hv_pcibus_device *bus;
481 struct hv_dr_state {
482 struct list_head list_entry;
483 u32 device_count;
484 struct pci_function_description func[0];
487 enum hv_pcichild_state {
488 hv_pcichild_init = 0,
489 hv_pcichild_requirements,
490 hv_pcichild_resourced,
491 hv_pcichild_ejecting,
492 hv_pcichild_maximum
495 struct hv_pci_dev {
496 /* List protected by pci_rescan_remove_lock */
497 struct list_head list_entry;
498 refcount_t refs;
499 enum hv_pcichild_state state;
500 struct pci_slot *pci_slot;
501 struct pci_function_description desc;
502 bool reported_missing;
503 struct hv_pcibus_device *hbus;
504 struct work_struct wrk;
507 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
508 * read it back, for each of the BAR offsets within config space.
510 u32 probed_bar[6];
513 struct hv_pci_compl {
514 struct completion host_event;
515 s32 completion_status;
518 static void hv_pci_onchannelcallback(void *context);
521 * hv_pci_generic_compl() - Invoked for a completion packet
522 * @context: Set up by the sender of the packet.
523 * @resp: The response packet
524 * @resp_packet_size: Size in bytes of the packet
526 * This function is used to trigger an event and report status
527 * for any message for which the completion packet contains a
528 * status and nothing else.
530 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
531 int resp_packet_size)
533 struct hv_pci_compl *comp_pkt = context;
535 if (resp_packet_size >= offsetofend(struct pci_response, status))
536 comp_pkt->completion_status = resp->status;
537 else
538 comp_pkt->completion_status = -1;
540 complete(&comp_pkt->host_event);
543 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
544 u32 wslot);
546 static void get_pcichild(struct hv_pci_dev *hpdev)
548 refcount_inc(&hpdev->refs);
551 static void put_pcichild(struct hv_pci_dev *hpdev)
553 if (refcount_dec_and_test(&hpdev->refs))
554 kfree(hpdev);
557 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
558 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
561 * There is no good way to get notified from vmbus_onoffer_rescind(),
562 * so let's use polling here, since this is not a hot path.
564 static int wait_for_response(struct hv_device *hdev,
565 struct completion *comp)
567 while (true) {
568 if (hdev->channel->rescind) {
569 dev_warn_once(&hdev->device, "The device is gone.\n");
570 return -ENODEV;
573 if (wait_for_completion_timeout(comp, HZ / 10))
574 break;
577 return 0;
581 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
582 * @devfn: The Linux representation of PCI slot
584 * Windows uses a slightly different representation of PCI slot.
586 * Return: The Windows representation
588 static u32 devfn_to_wslot(int devfn)
590 union win_slot_encoding wslot;
592 wslot.slot = 0;
593 wslot.bits.dev = PCI_SLOT(devfn);
594 wslot.bits.func = PCI_FUNC(devfn);
596 return wslot.slot;
600 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
601 * @wslot: The Windows representation of PCI slot
603 * Windows uses a slightly different representation of PCI slot.
605 * Return: The Linux representation
607 static int wslot_to_devfn(u32 wslot)
609 union win_slot_encoding slot_no;
611 slot_no.slot = wslot;
612 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
616 * PCI Configuration Space for these root PCI buses is implemented as a pair
617 * of pages in memory-mapped I/O space. Writing to the first page chooses
618 * the PCI function being written or read. Once the first page has been
619 * written to, the following page maps in the entire configuration space of
620 * the function.
624 * _hv_pcifront_read_config() - Internal PCI config read
625 * @hpdev: The PCI driver's representation of the device
626 * @where: Offset within config space
627 * @size: Size of the transfer
628 * @val: Pointer to the buffer receiving the data
630 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
631 int size, u32 *val)
633 unsigned long flags;
634 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
637 * If the attempt is to read the IDs or the ROM BAR, simulate that.
639 if (where + size <= PCI_COMMAND) {
640 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
641 } else if (where >= PCI_CLASS_REVISION && where + size <=
642 PCI_CACHE_LINE_SIZE) {
643 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
644 PCI_CLASS_REVISION, size);
645 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
646 PCI_ROM_ADDRESS) {
647 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
648 PCI_SUBSYSTEM_VENDOR_ID, size);
649 } else if (where >= PCI_ROM_ADDRESS && where + size <=
650 PCI_CAPABILITY_LIST) {
651 /* ROM BARs are unimplemented */
652 *val = 0;
653 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
654 PCI_INTERRUPT_PIN) {
656 * Interrupt Line and Interrupt PIN are hard-wired to zero
657 * because this front-end only supports message-signaled
658 * interrupts.
660 *val = 0;
661 } else if (where + size <= CFG_PAGE_SIZE) {
662 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
663 /* Choose the function to be read. (See comment above) */
664 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
665 /* Make sure the function was chosen before we start reading. */
666 mb();
667 /* Read from that function's config space. */
668 switch (size) {
669 case 1:
670 *val = readb(addr);
671 break;
672 case 2:
673 *val = readw(addr);
674 break;
675 default:
676 *val = readl(addr);
677 break;
680 * Make sure the read was done before we release the spinlock
681 * allowing consecutive reads/writes.
683 mb();
684 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
685 } else {
686 dev_err(&hpdev->hbus->hdev->device,
687 "Attempt to read beyond a function's config space.\n");
691 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
693 u16 ret;
694 unsigned long flags;
695 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
696 PCI_VENDOR_ID;
698 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
700 /* Choose the function to be read. (See comment above) */
701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
702 /* Make sure the function was chosen before we start reading. */
703 mb();
704 /* Read from that function's config space. */
705 ret = readw(addr);
707 * mb() is not required here, because the spin_unlock_irqrestore()
708 * is a barrier.
711 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
713 return ret;
717 * _hv_pcifront_write_config() - Internal PCI config write
718 * @hpdev: The PCI driver's representation of the device
719 * @where: Offset within config space
720 * @size: Size of the transfer
721 * @val: The data being transferred
723 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
724 int size, u32 val)
726 unsigned long flags;
727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
729 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
730 where + size <= PCI_CAPABILITY_LIST) {
731 /* SSIDs and ROM BARs are read-only */
732 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
733 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
734 /* Choose the function to be written. (See comment above) */
735 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
736 /* Make sure the function was chosen before we start writing. */
737 wmb();
738 /* Write to that function's config space. */
739 switch (size) {
740 case 1:
741 writeb(val, addr);
742 break;
743 case 2:
744 writew(val, addr);
745 break;
746 default:
747 writel(val, addr);
748 break;
751 * Make sure the write was done before we release the spinlock
752 * allowing consecutive reads/writes.
754 mb();
755 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
756 } else {
757 dev_err(&hpdev->hbus->hdev->device,
758 "Attempt to write beyond a function's config space.\n");
763 * hv_pcifront_read_config() - Read configuration space
764 * @bus: PCI Bus structure
765 * @devfn: Device/function
766 * @where: Offset from base
767 * @size: Byte/word/dword
768 * @val: Value to be read
770 * Return: PCIBIOS_SUCCESSFUL on success
771 * PCIBIOS_DEVICE_NOT_FOUND on failure
773 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
774 int where, int size, u32 *val)
776 struct hv_pcibus_device *hbus =
777 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
778 struct hv_pci_dev *hpdev;
780 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
781 if (!hpdev)
782 return PCIBIOS_DEVICE_NOT_FOUND;
784 _hv_pcifront_read_config(hpdev, where, size, val);
786 put_pcichild(hpdev);
787 return PCIBIOS_SUCCESSFUL;
791 * hv_pcifront_write_config() - Write configuration space
792 * @bus: PCI Bus structure
793 * @devfn: Device/function
794 * @where: Offset from base
795 * @size: Byte/word/dword
796 * @val: Value to be written to device
798 * Return: PCIBIOS_SUCCESSFUL on success
799 * PCIBIOS_DEVICE_NOT_FOUND on failure
801 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
802 int where, int size, u32 val)
804 struct hv_pcibus_device *hbus =
805 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
806 struct hv_pci_dev *hpdev;
808 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
809 if (!hpdev)
810 return PCIBIOS_DEVICE_NOT_FOUND;
812 _hv_pcifront_write_config(hpdev, where, size, val);
814 put_pcichild(hpdev);
815 return PCIBIOS_SUCCESSFUL;
818 /* PCIe operations */
819 static struct pci_ops hv_pcifront_ops = {
820 .read = hv_pcifront_read_config,
821 .write = hv_pcifront_write_config,
824 /* Interrupt management hooks */
825 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
826 struct tran_int_desc *int_desc)
828 struct pci_delete_interrupt *int_pkt;
829 struct {
830 struct pci_packet pkt;
831 u8 buffer[sizeof(struct pci_delete_interrupt)];
832 } ctxt;
834 memset(&ctxt, 0, sizeof(ctxt));
835 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
836 int_pkt->message_type.type =
837 PCI_DELETE_INTERRUPT_MESSAGE;
838 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
839 int_pkt->int_desc = *int_desc;
840 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
841 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
842 kfree(int_desc);
846 * hv_msi_free() - Free the MSI.
847 * @domain: The interrupt domain pointer
848 * @info: Extra MSI-related context
849 * @irq: Identifies the IRQ.
851 * The Hyper-V parent partition and hypervisor are tracking the
852 * messages that are in use, keeping the interrupt redirection
853 * table up to date. This callback sends a message that frees
854 * the IRT entry and related tracking nonsense.
856 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
857 unsigned int irq)
859 struct hv_pcibus_device *hbus;
860 struct hv_pci_dev *hpdev;
861 struct pci_dev *pdev;
862 struct tran_int_desc *int_desc;
863 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
864 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
866 pdev = msi_desc_to_pci_dev(msi);
867 hbus = info->data;
868 int_desc = irq_data_get_irq_chip_data(irq_data);
869 if (!int_desc)
870 return;
872 irq_data->chip_data = NULL;
873 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
874 if (!hpdev) {
875 kfree(int_desc);
876 return;
879 hv_int_desc_free(hpdev, int_desc);
880 put_pcichild(hpdev);
883 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
884 bool force)
886 struct irq_data *parent = data->parent_data;
888 return parent->chip->irq_set_affinity(parent, dest, force);
891 static void hv_irq_mask(struct irq_data *data)
893 pci_msi_mask_irq(data);
897 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
898 * affinity.
899 * @data: Describes the IRQ
901 * Build new a destination for the MSI and make a hypercall to
902 * update the Interrupt Redirection Table. "Device Logical ID"
903 * is built out of this PCI bus's instance GUID and the function
904 * number of the device.
906 static void hv_irq_unmask(struct irq_data *data)
908 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
909 struct irq_cfg *cfg = irqd_cfg(data);
910 struct retarget_msi_interrupt *params;
911 struct hv_pcibus_device *hbus;
912 struct cpumask *dest;
913 struct pci_bus *pbus;
914 struct pci_dev *pdev;
915 unsigned long flags;
916 u32 var_size = 0;
917 int cpu_vmbus;
918 int cpu;
919 u64 res;
921 dest = irq_data_get_effective_affinity_mask(data);
922 pdev = msi_desc_to_pci_dev(msi_desc);
923 pbus = pdev->bus;
924 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
926 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
928 params = &hbus->retarget_msi_interrupt_params;
929 memset(params, 0, sizeof(*params));
930 params->partition_id = HV_PARTITION_ID_SELF;
931 params->int_entry.source = 1; /* MSI(-X) */
932 params->int_entry.address = msi_desc->msg.address_lo;
933 params->int_entry.data = msi_desc->msg.data;
934 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
935 (hbus->hdev->dev_instance.b[4] << 16) |
936 (hbus->hdev->dev_instance.b[7] << 8) |
937 (hbus->hdev->dev_instance.b[6] & 0xf8) |
938 PCI_FUNC(pdev->devfn);
939 params->int_target.vector = cfg->vector;
942 * Honoring apic->irq_delivery_mode set to dest_Fixed by
943 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
944 * spurious interrupt storm. Not doing so does not seem to have a
945 * negative effect (yet?).
948 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
950 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
951 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
952 * with >64 VP support.
953 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
954 * is not sufficient for this hypercall.
956 params->int_target.flags |=
957 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
958 params->int_target.vp_set.valid_banks =
959 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
962 * var-sized hypercall, var-size starts after vp_mask (thus
963 * vp_set.format does not count, but vp_set.valid_banks does).
965 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
967 for_each_cpu_and(cpu, dest, cpu_online_mask) {
968 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
970 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
971 dev_err(&hbus->hdev->device,
972 "too high CPU %d", cpu_vmbus);
973 res = 1;
974 goto exit_unlock;
977 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
978 (1ULL << (cpu_vmbus & 63));
980 } else {
981 for_each_cpu_and(cpu, dest, cpu_online_mask) {
982 params->int_target.vp_mask |=
983 (1ULL << hv_cpu_number_to_vp_number(cpu));
987 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
988 params, NULL);
990 exit_unlock:
991 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
993 if (res) {
994 dev_err(&hbus->hdev->device,
995 "%s() failed: %#llx", __func__, res);
996 return;
999 pci_msi_unmask_irq(data);
1002 struct compose_comp_ctxt {
1003 struct hv_pci_compl comp_pkt;
1004 struct tran_int_desc int_desc;
1007 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1008 int resp_packet_size)
1010 struct compose_comp_ctxt *comp_pkt = context;
1011 struct pci_create_int_response *int_resp =
1012 (struct pci_create_int_response *)resp;
1014 comp_pkt->comp_pkt.completion_status = resp->status;
1015 comp_pkt->int_desc = int_resp->int_desc;
1016 complete(&comp_pkt->comp_pkt.host_event);
1019 static u32 hv_compose_msi_req_v1(
1020 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1021 u32 slot, u8 vector)
1023 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1024 int_pkt->wslot.slot = slot;
1025 int_pkt->int_desc.vector = vector;
1026 int_pkt->int_desc.vector_count = 1;
1027 int_pkt->int_desc.delivery_mode = dest_Fixed;
1030 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1031 * hv_irq_unmask().
1033 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1035 return sizeof(*int_pkt);
1038 static u32 hv_compose_msi_req_v2(
1039 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1040 u32 slot, u8 vector)
1042 int cpu;
1044 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1045 int_pkt->wslot.slot = slot;
1046 int_pkt->int_desc.vector = vector;
1047 int_pkt->int_desc.vector_count = 1;
1048 int_pkt->int_desc.delivery_mode = dest_Fixed;
1051 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1052 * by subsequent retarget in hv_irq_unmask().
1054 cpu = cpumask_first_and(affinity, cpu_online_mask);
1055 int_pkt->int_desc.processor_array[0] =
1056 hv_cpu_number_to_vp_number(cpu);
1057 int_pkt->int_desc.processor_count = 1;
1059 return sizeof(*int_pkt);
1063 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1064 * @data: Everything about this MSI
1065 * @msg: Buffer that is filled in by this function
1067 * This function unpacks the IRQ looking for target CPU set, IDT
1068 * vector and mode and sends a message to the parent partition
1069 * asking for a mapping for that tuple in this partition. The
1070 * response supplies a data value and address to which that data
1071 * should be written to trigger that interrupt.
1073 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1075 struct irq_cfg *cfg = irqd_cfg(data);
1076 struct hv_pcibus_device *hbus;
1077 struct hv_pci_dev *hpdev;
1078 struct pci_bus *pbus;
1079 struct pci_dev *pdev;
1080 struct cpumask *dest;
1081 unsigned long flags;
1082 struct compose_comp_ctxt comp;
1083 struct tran_int_desc *int_desc;
1084 struct {
1085 struct pci_packet pci_pkt;
1086 union {
1087 struct pci_create_interrupt v1;
1088 struct pci_create_interrupt2 v2;
1089 } int_pkts;
1090 } __packed ctxt;
1092 u32 size;
1093 int ret;
1095 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1096 dest = irq_data_get_effective_affinity_mask(data);
1097 pbus = pdev->bus;
1098 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1100 if (!hpdev)
1101 goto return_null_message;
1103 /* Free any previous message that might have already been composed. */
1104 if (data->chip_data) {
1105 int_desc = data->chip_data;
1106 data->chip_data = NULL;
1107 hv_int_desc_free(hpdev, int_desc);
1110 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1111 if (!int_desc)
1112 goto drop_reference;
1114 memset(&ctxt, 0, sizeof(ctxt));
1115 init_completion(&comp.comp_pkt.host_event);
1116 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1117 ctxt.pci_pkt.compl_ctxt = &comp;
1119 switch (pci_protocol_version) {
1120 case PCI_PROTOCOL_VERSION_1_1:
1121 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1122 dest,
1123 hpdev->desc.win_slot.slot,
1124 cfg->vector);
1125 break;
1127 case PCI_PROTOCOL_VERSION_1_2:
1128 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1129 dest,
1130 hpdev->desc.win_slot.slot,
1131 cfg->vector);
1132 break;
1134 default:
1135 /* As we only negotiate protocol versions known to this driver,
1136 * this path should never hit. However, this is it not a hot
1137 * path so we print a message to aid future updates.
1139 dev_err(&hbus->hdev->device,
1140 "Unexpected vPCI protocol, update driver.");
1141 goto free_int_desc;
1144 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1145 size, (unsigned long)&ctxt.pci_pkt,
1146 VM_PKT_DATA_INBAND,
1147 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1148 if (ret) {
1149 dev_err(&hbus->hdev->device,
1150 "Sending request for interrupt failed: 0x%x",
1151 comp.comp_pkt.completion_status);
1152 goto free_int_desc;
1156 * Since this function is called with IRQ locks held, can't
1157 * do normal wait for completion; instead poll.
1159 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1160 /* 0xFFFF means an invalid PCI VENDOR ID. */
1161 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1162 dev_err_once(&hbus->hdev->device,
1163 "the device has gone\n");
1164 goto free_int_desc;
1168 * When the higher level interrupt code calls us with
1169 * interrupt disabled, we must poll the channel by calling
1170 * the channel callback directly when channel->target_cpu is
1171 * the current CPU. When the higher level interrupt code
1172 * calls us with interrupt enabled, let's add the
1173 * local_irq_save()/restore() to avoid race:
1174 * hv_pci_onchannelcallback() can also run in tasklet.
1176 local_irq_save(flags);
1178 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1179 hv_pci_onchannelcallback(hbus);
1181 local_irq_restore(flags);
1183 if (hpdev->state == hv_pcichild_ejecting) {
1184 dev_err_once(&hbus->hdev->device,
1185 "the device is being ejected\n");
1186 goto free_int_desc;
1189 udelay(100);
1192 if (comp.comp_pkt.completion_status < 0) {
1193 dev_err(&hbus->hdev->device,
1194 "Request for interrupt failed: 0x%x",
1195 comp.comp_pkt.completion_status);
1196 goto free_int_desc;
1200 * Record the assignment so that this can be unwound later. Using
1201 * irq_set_chip_data() here would be appropriate, but the lock it takes
1202 * is already held.
1204 *int_desc = comp.int_desc;
1205 data->chip_data = int_desc;
1207 /* Pass up the result. */
1208 msg->address_hi = comp.int_desc.address >> 32;
1209 msg->address_lo = comp.int_desc.address & 0xffffffff;
1210 msg->data = comp.int_desc.data;
1212 put_pcichild(hpdev);
1213 return;
1215 free_int_desc:
1216 kfree(int_desc);
1217 drop_reference:
1218 put_pcichild(hpdev);
1219 return_null_message:
1220 msg->address_hi = 0;
1221 msg->address_lo = 0;
1222 msg->data = 0;
1225 /* HW Interrupt Chip Descriptor */
1226 static struct irq_chip hv_msi_irq_chip = {
1227 .name = "Hyper-V PCIe MSI",
1228 .irq_compose_msi_msg = hv_compose_msi_msg,
1229 .irq_set_affinity = hv_set_affinity,
1230 .irq_ack = irq_chip_ack_parent,
1231 .irq_mask = hv_irq_mask,
1232 .irq_unmask = hv_irq_unmask,
1235 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1236 msi_alloc_info_t *arg)
1238 return arg->msi_hwirq;
1241 static struct msi_domain_ops hv_msi_ops = {
1242 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1243 .msi_prepare = pci_msi_prepare,
1244 .set_desc = pci_msi_set_desc,
1245 .msi_free = hv_msi_free,
1249 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1250 * @hbus: The root PCI bus
1252 * This function creates an IRQ domain which will be used for
1253 * interrupts from devices that have been passed through. These
1254 * devices only support MSI and MSI-X, not line-based interrupts
1255 * or simulations of line-based interrupts through PCIe's
1256 * fabric-layer messages. Because interrupts are remapped, we
1257 * can support multi-message MSI here.
1259 * Return: '0' on success and error value on failure
1261 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1263 hbus->msi_info.chip = &hv_msi_irq_chip;
1264 hbus->msi_info.ops = &hv_msi_ops;
1265 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1266 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1267 MSI_FLAG_PCI_MSIX);
1268 hbus->msi_info.handler = handle_edge_irq;
1269 hbus->msi_info.handler_name = "edge";
1270 hbus->msi_info.data = hbus;
1271 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1272 &hbus->msi_info,
1273 x86_vector_domain);
1274 if (!hbus->irq_domain) {
1275 dev_err(&hbus->hdev->device,
1276 "Failed to build an MSI IRQ domain\n");
1277 return -ENODEV;
1280 return 0;
1284 * get_bar_size() - Get the address space consumed by a BAR
1285 * @bar_val: Value that a BAR returned after -1 was written
1286 * to it.
1288 * This function returns the size of the BAR, rounded up to 1
1289 * page. It has to be rounded up because the hypervisor's page
1290 * table entry that maps the BAR into the VM can't specify an
1291 * offset within a page. The invariant is that the hypervisor
1292 * must place any BARs of smaller than page length at the
1293 * beginning of a page.
1295 * Return: Size in bytes of the consumed MMIO space.
1297 static u64 get_bar_size(u64 bar_val)
1299 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1300 PAGE_SIZE);
1304 * survey_child_resources() - Total all MMIO requirements
1305 * @hbus: Root PCI bus, as understood by this driver
1307 static void survey_child_resources(struct hv_pcibus_device *hbus)
1309 struct hv_pci_dev *hpdev;
1310 resource_size_t bar_size = 0;
1311 unsigned long flags;
1312 struct completion *event;
1313 u64 bar_val;
1314 int i;
1316 /* If nobody is waiting on the answer, don't compute it. */
1317 event = xchg(&hbus->survey_event, NULL);
1318 if (!event)
1319 return;
1321 /* If the answer has already been computed, go with it. */
1322 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1323 complete(event);
1324 return;
1327 spin_lock_irqsave(&hbus->device_list_lock, flags);
1330 * Due to an interesting quirk of the PCI spec, all memory regions
1331 * for a child device are a power of 2 in size and aligned in memory,
1332 * so it's sufficient to just add them up without tracking alignment.
1334 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1335 for (i = 0; i < 6; i++) {
1336 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1337 dev_err(&hbus->hdev->device,
1338 "There's an I/O BAR in this list!\n");
1340 if (hpdev->probed_bar[i] != 0) {
1342 * A probed BAR has all the upper bits set that
1343 * can be changed.
1346 bar_val = hpdev->probed_bar[i];
1347 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1348 bar_val |=
1349 ((u64)hpdev->probed_bar[++i] << 32);
1350 else
1351 bar_val |= 0xffffffff00000000ULL;
1353 bar_size = get_bar_size(bar_val);
1355 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1356 hbus->high_mmio_space += bar_size;
1357 else
1358 hbus->low_mmio_space += bar_size;
1363 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1364 complete(event);
1368 * prepopulate_bars() - Fill in BARs with defaults
1369 * @hbus: Root PCI bus, as understood by this driver
1371 * The core PCI driver code seems much, much happier if the BARs
1372 * for a device have values upon first scan. So fill them in.
1373 * The algorithm below works down from large sizes to small,
1374 * attempting to pack the assignments optimally. The assumption,
1375 * enforced in other parts of the code, is that the beginning of
1376 * the memory-mapped I/O space will be aligned on the largest
1377 * BAR size.
1379 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1381 resource_size_t high_size = 0;
1382 resource_size_t low_size = 0;
1383 resource_size_t high_base = 0;
1384 resource_size_t low_base = 0;
1385 resource_size_t bar_size;
1386 struct hv_pci_dev *hpdev;
1387 unsigned long flags;
1388 u64 bar_val;
1389 u32 command;
1390 bool high;
1391 int i;
1393 if (hbus->low_mmio_space) {
1394 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1395 low_base = hbus->low_mmio_res->start;
1398 if (hbus->high_mmio_space) {
1399 high_size = 1ULL <<
1400 (63 - __builtin_clzll(hbus->high_mmio_space));
1401 high_base = hbus->high_mmio_res->start;
1404 spin_lock_irqsave(&hbus->device_list_lock, flags);
1406 /* Pick addresses for the BARs. */
1407 do {
1408 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1409 for (i = 0; i < 6; i++) {
1410 bar_val = hpdev->probed_bar[i];
1411 if (bar_val == 0)
1412 continue;
1413 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1414 if (high) {
1415 bar_val |=
1416 ((u64)hpdev->probed_bar[i + 1]
1417 << 32);
1418 } else {
1419 bar_val |= 0xffffffffULL << 32;
1421 bar_size = get_bar_size(bar_val);
1422 if (high) {
1423 if (high_size != bar_size) {
1424 i++;
1425 continue;
1427 _hv_pcifront_write_config(hpdev,
1428 PCI_BASE_ADDRESS_0 + (4 * i),
1430 (u32)(high_base & 0xffffff00));
1431 i++;
1432 _hv_pcifront_write_config(hpdev,
1433 PCI_BASE_ADDRESS_0 + (4 * i),
1434 4, (u32)(high_base >> 32));
1435 high_base += bar_size;
1436 } else {
1437 if (low_size != bar_size)
1438 continue;
1439 _hv_pcifront_write_config(hpdev,
1440 PCI_BASE_ADDRESS_0 + (4 * i),
1442 (u32)(low_base & 0xffffff00));
1443 low_base += bar_size;
1446 if (high_size <= 1 && low_size <= 1) {
1447 /* Set the memory enable bit. */
1448 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1449 &command);
1450 command |= PCI_COMMAND_MEMORY;
1451 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1452 command);
1453 break;
1457 high_size >>= 1;
1458 low_size >>= 1;
1459 } while (high_size || low_size);
1461 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1465 * Assign entries in sysfs pci slot directory.
1467 * Note that this function does not need to lock the children list
1468 * because it is called from pci_devices_present_work which
1469 * is serialized with hv_eject_device_work because they are on the
1470 * same ordered workqueue. Therefore hbus->children list will not change
1471 * even when pci_create_slot sleeps.
1473 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1475 struct hv_pci_dev *hpdev;
1476 char name[SLOT_NAME_SIZE];
1477 int slot_nr;
1479 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1480 if (hpdev->pci_slot)
1481 continue;
1483 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1484 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1485 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1486 name, NULL);
1487 if (IS_ERR(hpdev->pci_slot)) {
1488 pr_warn("pci_create slot %s failed\n", name);
1489 hpdev->pci_slot = NULL;
1495 * Remove entries in sysfs pci slot directory.
1497 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1499 struct hv_pci_dev *hpdev;
1501 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1502 if (!hpdev->pci_slot)
1503 continue;
1504 pci_destroy_slot(hpdev->pci_slot);
1505 hpdev->pci_slot = NULL;
1510 * create_root_hv_pci_bus() - Expose a new root PCI bus
1511 * @hbus: Root PCI bus, as understood by this driver
1513 * Return: 0 on success, -errno on failure
1515 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1517 /* Register the device */
1518 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1519 0, /* bus number is always zero */
1520 &hv_pcifront_ops,
1521 &hbus->sysdata,
1522 &hbus->resources_for_children);
1523 if (!hbus->pci_bus)
1524 return -ENODEV;
1526 hbus->pci_bus->msi = &hbus->msi_chip;
1527 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1529 pci_lock_rescan_remove();
1530 pci_scan_child_bus(hbus->pci_bus);
1531 pci_bus_assign_resources(hbus->pci_bus);
1532 hv_pci_assign_slots(hbus);
1533 pci_bus_add_devices(hbus->pci_bus);
1534 pci_unlock_rescan_remove();
1535 hbus->state = hv_pcibus_installed;
1536 return 0;
1539 struct q_res_req_compl {
1540 struct completion host_event;
1541 struct hv_pci_dev *hpdev;
1545 * q_resource_requirements() - Query Resource Requirements
1546 * @context: The completion context.
1547 * @resp: The response that came from the host.
1548 * @resp_packet_size: The size in bytes of resp.
1550 * This function is invoked on completion of a Query Resource
1551 * Requirements packet.
1553 static void q_resource_requirements(void *context, struct pci_response *resp,
1554 int resp_packet_size)
1556 struct q_res_req_compl *completion = context;
1557 struct pci_q_res_req_response *q_res_req =
1558 (struct pci_q_res_req_response *)resp;
1559 int i;
1561 if (resp->status < 0) {
1562 dev_err(&completion->hpdev->hbus->hdev->device,
1563 "query resource requirements failed: %x\n",
1564 resp->status);
1565 } else {
1566 for (i = 0; i < 6; i++) {
1567 completion->hpdev->probed_bar[i] =
1568 q_res_req->probed_bar[i];
1572 complete(&completion->host_event);
1576 * new_pcichild_device() - Create a new child device
1577 * @hbus: The internal struct tracking this root PCI bus.
1578 * @desc: The information supplied so far from the host
1579 * about the device.
1581 * This function creates the tracking structure for a new child
1582 * device and kicks off the process of figuring out what it is.
1584 * Return: Pointer to the new tracking struct
1586 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1587 struct pci_function_description *desc)
1589 struct hv_pci_dev *hpdev;
1590 struct pci_child_message *res_req;
1591 struct q_res_req_compl comp_pkt;
1592 struct {
1593 struct pci_packet init_packet;
1594 u8 buffer[sizeof(struct pci_child_message)];
1595 } pkt;
1596 unsigned long flags;
1597 int ret;
1599 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1600 if (!hpdev)
1601 return NULL;
1603 hpdev->hbus = hbus;
1605 memset(&pkt, 0, sizeof(pkt));
1606 init_completion(&comp_pkt.host_event);
1607 comp_pkt.hpdev = hpdev;
1608 pkt.init_packet.compl_ctxt = &comp_pkt;
1609 pkt.init_packet.completion_func = q_resource_requirements;
1610 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1611 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1612 res_req->wslot.slot = desc->win_slot.slot;
1614 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1615 sizeof(struct pci_child_message),
1616 (unsigned long)&pkt.init_packet,
1617 VM_PKT_DATA_INBAND,
1618 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1619 if (ret)
1620 goto error;
1622 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1623 goto error;
1625 hpdev->desc = *desc;
1626 refcount_set(&hpdev->refs, 1);
1627 get_pcichild(hpdev);
1628 spin_lock_irqsave(&hbus->device_list_lock, flags);
1630 list_add_tail(&hpdev->list_entry, &hbus->children);
1631 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1632 return hpdev;
1634 error:
1635 kfree(hpdev);
1636 return NULL;
1640 * get_pcichild_wslot() - Find device from slot
1641 * @hbus: Root PCI bus, as understood by this driver
1642 * @wslot: Location on the bus
1644 * This function looks up a PCI device and returns the internal
1645 * representation of it. It acquires a reference on it, so that
1646 * the device won't be deleted while somebody is using it. The
1647 * caller is responsible for calling put_pcichild() to release
1648 * this reference.
1650 * Return: Internal representation of a PCI device
1652 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1653 u32 wslot)
1655 unsigned long flags;
1656 struct hv_pci_dev *iter, *hpdev = NULL;
1658 spin_lock_irqsave(&hbus->device_list_lock, flags);
1659 list_for_each_entry(iter, &hbus->children, list_entry) {
1660 if (iter->desc.win_slot.slot == wslot) {
1661 hpdev = iter;
1662 get_pcichild(hpdev);
1663 break;
1666 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1668 return hpdev;
1672 * pci_devices_present_work() - Handle new list of child devices
1673 * @work: Work struct embedded in struct hv_dr_work
1675 * "Bus Relations" is the Windows term for "children of this
1676 * bus." The terminology is preserved here for people trying to
1677 * debug the interaction between Hyper-V and Linux. This
1678 * function is called when the parent partition reports a list
1679 * of functions that should be observed under this PCI Express
1680 * port (bus).
1682 * This function updates the list, and must tolerate being
1683 * called multiple times with the same information. The typical
1684 * number of child devices is one, with very atypical cases
1685 * involving three or four, so the algorithms used here can be
1686 * simple and inefficient.
1688 * It must also treat the omission of a previously observed device as
1689 * notification that the device no longer exists.
1691 * Note that this function is serialized with hv_eject_device_work(),
1692 * because both are pushed to the ordered workqueue hbus->wq.
1694 static void pci_devices_present_work(struct work_struct *work)
1696 u32 child_no;
1697 bool found;
1698 struct pci_function_description *new_desc;
1699 struct hv_pci_dev *hpdev;
1700 struct hv_pcibus_device *hbus;
1701 struct list_head removed;
1702 struct hv_dr_work *dr_wrk;
1703 struct hv_dr_state *dr = NULL;
1704 unsigned long flags;
1706 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1707 hbus = dr_wrk->bus;
1708 kfree(dr_wrk);
1710 INIT_LIST_HEAD(&removed);
1712 /* Pull this off the queue and process it if it was the last one. */
1713 spin_lock_irqsave(&hbus->device_list_lock, flags);
1714 while (!list_empty(&hbus->dr_list)) {
1715 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1716 list_entry);
1717 list_del(&dr->list_entry);
1719 /* Throw this away if the list still has stuff in it. */
1720 if (!list_empty(&hbus->dr_list)) {
1721 kfree(dr);
1722 continue;
1725 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1727 if (!dr) {
1728 put_hvpcibus(hbus);
1729 return;
1732 /* First, mark all existing children as reported missing. */
1733 spin_lock_irqsave(&hbus->device_list_lock, flags);
1734 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1735 hpdev->reported_missing = true;
1737 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1739 /* Next, add back any reported devices. */
1740 for (child_no = 0; child_no < dr->device_count; child_no++) {
1741 found = false;
1742 new_desc = &dr->func[child_no];
1744 spin_lock_irqsave(&hbus->device_list_lock, flags);
1745 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1746 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1747 (hpdev->desc.v_id == new_desc->v_id) &&
1748 (hpdev->desc.d_id == new_desc->d_id) &&
1749 (hpdev->desc.ser == new_desc->ser)) {
1750 hpdev->reported_missing = false;
1751 found = true;
1754 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1756 if (!found) {
1757 hpdev = new_pcichild_device(hbus, new_desc);
1758 if (!hpdev)
1759 dev_err(&hbus->hdev->device,
1760 "couldn't record a child device.\n");
1764 /* Move missing children to a list on the stack. */
1765 spin_lock_irqsave(&hbus->device_list_lock, flags);
1766 do {
1767 found = false;
1768 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1769 if (hpdev->reported_missing) {
1770 found = true;
1771 put_pcichild(hpdev);
1772 list_move_tail(&hpdev->list_entry, &removed);
1773 break;
1776 } while (found);
1777 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1779 /* Delete everything that should no longer exist. */
1780 while (!list_empty(&removed)) {
1781 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1782 list_entry);
1783 list_del(&hpdev->list_entry);
1785 if (hpdev->pci_slot)
1786 pci_destroy_slot(hpdev->pci_slot);
1788 put_pcichild(hpdev);
1791 switch (hbus->state) {
1792 case hv_pcibus_installed:
1794 * Tell the core to rescan bus
1795 * because there may have been changes.
1797 pci_lock_rescan_remove();
1798 pci_scan_child_bus(hbus->pci_bus);
1799 hv_pci_assign_slots(hbus);
1800 pci_unlock_rescan_remove();
1801 break;
1803 case hv_pcibus_init:
1804 case hv_pcibus_probed:
1805 survey_child_resources(hbus);
1806 break;
1808 default:
1809 break;
1812 put_hvpcibus(hbus);
1813 kfree(dr);
1817 * hv_pci_devices_present() - Handles list of new children
1818 * @hbus: Root PCI bus, as understood by this driver
1819 * @relations: Packet from host listing children
1821 * This function is invoked whenever a new list of devices for
1822 * this bus appears.
1824 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1825 struct pci_bus_relations *relations)
1827 struct hv_dr_state *dr;
1828 struct hv_dr_work *dr_wrk;
1829 unsigned long flags;
1830 bool pending_dr;
1832 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1833 if (!dr_wrk)
1834 return;
1836 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1837 (sizeof(struct pci_function_description) *
1838 (relations->device_count)), GFP_NOWAIT);
1839 if (!dr) {
1840 kfree(dr_wrk);
1841 return;
1844 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1845 dr_wrk->bus = hbus;
1846 dr->device_count = relations->device_count;
1847 if (dr->device_count != 0) {
1848 memcpy(dr->func, relations->func,
1849 sizeof(struct pci_function_description) *
1850 dr->device_count);
1853 spin_lock_irqsave(&hbus->device_list_lock, flags);
1855 * If pending_dr is true, we have already queued a work,
1856 * which will see the new dr. Otherwise, we need to
1857 * queue a new work.
1859 pending_dr = !list_empty(&hbus->dr_list);
1860 list_add_tail(&dr->list_entry, &hbus->dr_list);
1861 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1863 if (pending_dr) {
1864 kfree(dr_wrk);
1865 } else {
1866 get_hvpcibus(hbus);
1867 queue_work(hbus->wq, &dr_wrk->wrk);
1872 * hv_eject_device_work() - Asynchronously handles ejection
1873 * @work: Work struct embedded in internal device struct
1875 * This function handles ejecting a device. Windows will
1876 * attempt to gracefully eject a device, waiting 60 seconds to
1877 * hear back from the guest OS that this completed successfully.
1878 * If this timer expires, the device will be forcibly removed.
1880 static void hv_eject_device_work(struct work_struct *work)
1882 struct pci_eject_response *ejct_pkt;
1883 struct hv_pcibus_device *hbus;
1884 struct hv_pci_dev *hpdev;
1885 struct pci_dev *pdev;
1886 unsigned long flags;
1887 int wslot;
1888 struct {
1889 struct pci_packet pkt;
1890 u8 buffer[sizeof(struct pci_eject_response)];
1891 } ctxt;
1893 hpdev = container_of(work, struct hv_pci_dev, wrk);
1894 hbus = hpdev->hbus;
1896 WARN_ON(hpdev->state != hv_pcichild_ejecting);
1899 * Ejection can come before or after the PCI bus has been set up, so
1900 * attempt to find it and tear down the bus state, if it exists. This
1901 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1902 * because hbus->pci_bus may not exist yet.
1904 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1905 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
1906 if (pdev) {
1907 pci_lock_rescan_remove();
1908 pci_stop_and_remove_bus_device(pdev);
1909 pci_dev_put(pdev);
1910 pci_unlock_rescan_remove();
1913 spin_lock_irqsave(&hbus->device_list_lock, flags);
1914 list_del(&hpdev->list_entry);
1915 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1917 if (hpdev->pci_slot)
1918 pci_destroy_slot(hpdev->pci_slot);
1920 memset(&ctxt, 0, sizeof(ctxt));
1921 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1922 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1923 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1924 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
1925 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1926 VM_PKT_DATA_INBAND, 0);
1928 /* For the get_pcichild() in hv_pci_eject_device() */
1929 put_pcichild(hpdev);
1930 /* For the two refs got in new_pcichild_device() */
1931 put_pcichild(hpdev);
1932 put_pcichild(hpdev);
1933 /* hpdev has been freed. Do not use it any more. */
1935 put_hvpcibus(hbus);
1939 * hv_pci_eject_device() - Handles device ejection
1940 * @hpdev: Internal device tracking struct
1942 * This function is invoked when an ejection packet arrives. It
1943 * just schedules work so that we don't re-enter the packet
1944 * delivery code handling the ejection.
1946 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1948 hpdev->state = hv_pcichild_ejecting;
1949 get_pcichild(hpdev);
1950 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1951 get_hvpcibus(hpdev->hbus);
1952 queue_work(hpdev->hbus->wq, &hpdev->wrk);
1956 * hv_pci_onchannelcallback() - Handles incoming packets
1957 * @context: Internal bus tracking struct
1959 * This function is invoked whenever the host sends a packet to
1960 * this channel (which is private to this root PCI bus).
1962 static void hv_pci_onchannelcallback(void *context)
1964 const int packet_size = 0x100;
1965 int ret;
1966 struct hv_pcibus_device *hbus = context;
1967 u32 bytes_recvd;
1968 u64 req_id;
1969 struct vmpacket_descriptor *desc;
1970 unsigned char *buffer;
1971 int bufferlen = packet_size;
1972 struct pci_packet *comp_packet;
1973 struct pci_response *response;
1974 struct pci_incoming_message *new_message;
1975 struct pci_bus_relations *bus_rel;
1976 struct pci_dev_incoming *dev_message;
1977 struct hv_pci_dev *hpdev;
1979 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1980 if (!buffer)
1981 return;
1983 while (1) {
1984 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1985 bufferlen, &bytes_recvd, &req_id);
1987 if (ret == -ENOBUFS) {
1988 kfree(buffer);
1989 /* Handle large packet */
1990 bufferlen = bytes_recvd;
1991 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1992 if (!buffer)
1993 return;
1994 continue;
1997 /* Zero length indicates there are no more packets. */
1998 if (ret || !bytes_recvd)
1999 break;
2002 * All incoming packets must be at least as large as a
2003 * response.
2005 if (bytes_recvd <= sizeof(struct pci_response))
2006 continue;
2007 desc = (struct vmpacket_descriptor *)buffer;
2009 switch (desc->type) {
2010 case VM_PKT_COMP:
2013 * The host is trusted, and thus it's safe to interpret
2014 * this transaction ID as a pointer.
2016 comp_packet = (struct pci_packet *)req_id;
2017 response = (struct pci_response *)buffer;
2018 comp_packet->completion_func(comp_packet->compl_ctxt,
2019 response,
2020 bytes_recvd);
2021 break;
2023 case VM_PKT_DATA_INBAND:
2025 new_message = (struct pci_incoming_message *)buffer;
2026 switch (new_message->message_type.type) {
2027 case PCI_BUS_RELATIONS:
2029 bus_rel = (struct pci_bus_relations *)buffer;
2030 if (bytes_recvd <
2031 offsetof(struct pci_bus_relations, func) +
2032 (sizeof(struct pci_function_description) *
2033 (bus_rel->device_count))) {
2034 dev_err(&hbus->hdev->device,
2035 "bus relations too small\n");
2036 break;
2039 hv_pci_devices_present(hbus, bus_rel);
2040 break;
2042 case PCI_EJECT:
2044 dev_message = (struct pci_dev_incoming *)buffer;
2045 hpdev = get_pcichild_wslot(hbus,
2046 dev_message->wslot.slot);
2047 if (hpdev) {
2048 hv_pci_eject_device(hpdev);
2049 put_pcichild(hpdev);
2051 break;
2053 default:
2054 dev_warn(&hbus->hdev->device,
2055 "Unimplemented protocol message %x\n",
2056 new_message->message_type.type);
2057 break;
2059 break;
2061 default:
2062 dev_err(&hbus->hdev->device,
2063 "unhandled packet type %d, tid %llx len %d\n",
2064 desc->type, req_id, bytes_recvd);
2065 break;
2069 kfree(buffer);
2073 * hv_pci_protocol_negotiation() - Set up protocol
2074 * @hdev: VMBus's tracking struct for this root PCI bus
2076 * This driver is intended to support running on Windows 10
2077 * (server) and later versions. It will not run on earlier
2078 * versions, as they assume that many of the operations which
2079 * Linux needs accomplished with a spinlock held were done via
2080 * asynchronous messaging via VMBus. Windows 10 increases the
2081 * surface area of PCI emulation so that these actions can take
2082 * place by suspending a virtual processor for their duration.
2084 * This function negotiates the channel protocol version,
2085 * failing if the host doesn't support the necessary protocol
2086 * level.
2088 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2090 struct pci_version_request *version_req;
2091 struct hv_pci_compl comp_pkt;
2092 struct pci_packet *pkt;
2093 int ret;
2094 int i;
2097 * Initiate the handshake with the host and negotiate
2098 * a version that the host can support. We start with the
2099 * highest version number and go down if the host cannot
2100 * support it.
2102 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2103 if (!pkt)
2104 return -ENOMEM;
2106 init_completion(&comp_pkt.host_event);
2107 pkt->completion_func = hv_pci_generic_compl;
2108 pkt->compl_ctxt = &comp_pkt;
2109 version_req = (struct pci_version_request *)&pkt->message;
2110 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2112 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2113 version_req->protocol_version = pci_protocol_versions[i];
2114 ret = vmbus_sendpacket(hdev->channel, version_req,
2115 sizeof(struct pci_version_request),
2116 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2117 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2118 if (!ret)
2119 ret = wait_for_response(hdev, &comp_pkt.host_event);
2121 if (ret) {
2122 dev_err(&hdev->device,
2123 "PCI Pass-through VSP failed to request version: %d",
2124 ret);
2125 goto exit;
2128 if (comp_pkt.completion_status >= 0) {
2129 pci_protocol_version = pci_protocol_versions[i];
2130 dev_info(&hdev->device,
2131 "PCI VMBus probing: Using version %#x\n",
2132 pci_protocol_version);
2133 goto exit;
2136 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2137 dev_err(&hdev->device,
2138 "PCI Pass-through VSP failed version request: %#x",
2139 comp_pkt.completion_status);
2140 ret = -EPROTO;
2141 goto exit;
2144 reinit_completion(&comp_pkt.host_event);
2147 dev_err(&hdev->device,
2148 "PCI pass-through VSP failed to find supported version");
2149 ret = -EPROTO;
2151 exit:
2152 kfree(pkt);
2153 return ret;
2157 * hv_pci_free_bridge_windows() - Release memory regions for the
2158 * bus
2159 * @hbus: Root PCI bus, as understood by this driver
2161 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2164 * Set the resources back to the way they looked when they
2165 * were allocated by setting IORESOURCE_BUSY again.
2168 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2169 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2170 vmbus_free_mmio(hbus->low_mmio_res->start,
2171 resource_size(hbus->low_mmio_res));
2174 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2175 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2176 vmbus_free_mmio(hbus->high_mmio_res->start,
2177 resource_size(hbus->high_mmio_res));
2182 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2183 * for the bus
2184 * @hbus: Root PCI bus, as understood by this driver
2186 * This function calls vmbus_allocate_mmio(), which is itself a
2187 * bit of a compromise. Ideally, we might change the pnp layer
2188 * in the kernel such that it comprehends either PCI devices
2189 * which are "grandchildren of ACPI," with some intermediate bus
2190 * node (in this case, VMBus) or change it such that it
2191 * understands VMBus. The pnp layer, however, has been declared
2192 * deprecated, and not subject to change.
2194 * The workaround, implemented here, is to ask VMBus to allocate
2195 * MMIO space for this bus. VMBus itself knows which ranges are
2196 * appropriate by looking at its own ACPI objects. Then, after
2197 * these ranges are claimed, they're modified to look like they
2198 * would have looked if the ACPI and pnp code had allocated
2199 * bridge windows. These descriptors have to exist in this form
2200 * in order to satisfy the code which will get invoked when the
2201 * endpoint PCI function driver calls request_mem_region() or
2202 * request_mem_region_exclusive().
2204 * Return: 0 on success, -errno on failure
2206 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2208 resource_size_t align;
2209 int ret;
2211 if (hbus->low_mmio_space) {
2212 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2213 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2214 (u64)(u32)0xffffffff,
2215 hbus->low_mmio_space,
2216 align, false);
2217 if (ret) {
2218 dev_err(&hbus->hdev->device,
2219 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2220 hbus->low_mmio_space);
2221 return ret;
2224 /* Modify this resource to become a bridge window. */
2225 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2226 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2227 pci_add_resource(&hbus->resources_for_children,
2228 hbus->low_mmio_res);
2231 if (hbus->high_mmio_space) {
2232 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2233 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2234 0x100000000, -1,
2235 hbus->high_mmio_space, align,
2236 false);
2237 if (ret) {
2238 dev_err(&hbus->hdev->device,
2239 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2240 hbus->high_mmio_space);
2241 goto release_low_mmio;
2244 /* Modify this resource to become a bridge window. */
2245 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2246 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2247 pci_add_resource(&hbus->resources_for_children,
2248 hbus->high_mmio_res);
2251 return 0;
2253 release_low_mmio:
2254 if (hbus->low_mmio_res) {
2255 vmbus_free_mmio(hbus->low_mmio_res->start,
2256 resource_size(hbus->low_mmio_res));
2259 return ret;
2263 * hv_allocate_config_window() - Find MMIO space for PCI Config
2264 * @hbus: Root PCI bus, as understood by this driver
2266 * This function claims memory-mapped I/O space for accessing
2267 * configuration space for the functions on this bus.
2269 * Return: 0 on success, -errno on failure
2271 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2273 int ret;
2276 * Set up a region of MMIO space to use for accessing configuration
2277 * space.
2279 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2280 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2281 if (ret)
2282 return ret;
2285 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2286 * resource claims (those which cannot be overlapped) and the ranges
2287 * which are valid for the children of this bus, which are intended
2288 * to be overlapped by those children. Set the flag on this claim
2289 * meaning that this region can't be overlapped.
2292 hbus->mem_config->flags |= IORESOURCE_BUSY;
2294 return 0;
2297 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2299 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2303 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2304 * @hdev: VMBus's tracking struct for this root PCI bus
2306 * Return: 0 on success, -errno on failure
2308 static int hv_pci_enter_d0(struct hv_device *hdev)
2310 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2311 struct pci_bus_d0_entry *d0_entry;
2312 struct hv_pci_compl comp_pkt;
2313 struct pci_packet *pkt;
2314 int ret;
2317 * Tell the host that the bus is ready to use, and moved into the
2318 * powered-on state. This includes telling the host which region
2319 * of memory-mapped I/O space has been chosen for configuration space
2320 * access.
2322 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2323 if (!pkt)
2324 return -ENOMEM;
2326 init_completion(&comp_pkt.host_event);
2327 pkt->completion_func = hv_pci_generic_compl;
2328 pkt->compl_ctxt = &comp_pkt;
2329 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2330 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2331 d0_entry->mmio_base = hbus->mem_config->start;
2333 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2334 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2335 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2336 if (!ret)
2337 ret = wait_for_response(hdev, &comp_pkt.host_event);
2339 if (ret)
2340 goto exit;
2342 if (comp_pkt.completion_status < 0) {
2343 dev_err(&hdev->device,
2344 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2345 comp_pkt.completion_status);
2346 ret = -EPROTO;
2347 goto exit;
2350 ret = 0;
2352 exit:
2353 kfree(pkt);
2354 return ret;
2358 * hv_pci_query_relations() - Ask host to send list of child
2359 * devices
2360 * @hdev: VMBus's tracking struct for this root PCI bus
2362 * Return: 0 on success, -errno on failure
2364 static int hv_pci_query_relations(struct hv_device *hdev)
2366 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2367 struct pci_message message;
2368 struct completion comp;
2369 int ret;
2371 /* Ask the host to send along the list of child devices */
2372 init_completion(&comp);
2373 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2374 return -ENOTEMPTY;
2376 memset(&message, 0, sizeof(message));
2377 message.type = PCI_QUERY_BUS_RELATIONS;
2379 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2380 0, VM_PKT_DATA_INBAND, 0);
2381 if (!ret)
2382 ret = wait_for_response(hdev, &comp);
2384 return ret;
2388 * hv_send_resources_allocated() - Report local resource choices
2389 * @hdev: VMBus's tracking struct for this root PCI bus
2391 * The host OS is expecting to be sent a request as a message
2392 * which contains all the resources that the device will use.
2393 * The response contains those same resources, "translated"
2394 * which is to say, the values which should be used by the
2395 * hardware, when it delivers an interrupt. (MMIO resources are
2396 * used in local terms.) This is nice for Windows, and lines up
2397 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2398 * is deeply expecting to scan an emulated PCI configuration
2399 * space. So this message is sent here only to drive the state
2400 * machine on the host forward.
2402 * Return: 0 on success, -errno on failure
2404 static int hv_send_resources_allocated(struct hv_device *hdev)
2406 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2407 struct pci_resources_assigned *res_assigned;
2408 struct pci_resources_assigned2 *res_assigned2;
2409 struct hv_pci_compl comp_pkt;
2410 struct hv_pci_dev *hpdev;
2411 struct pci_packet *pkt;
2412 size_t size_res;
2413 u32 wslot;
2414 int ret;
2416 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2417 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2419 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2420 if (!pkt)
2421 return -ENOMEM;
2423 ret = 0;
2425 for (wslot = 0; wslot < 256; wslot++) {
2426 hpdev = get_pcichild_wslot(hbus, wslot);
2427 if (!hpdev)
2428 continue;
2430 memset(pkt, 0, sizeof(*pkt) + size_res);
2431 init_completion(&comp_pkt.host_event);
2432 pkt->completion_func = hv_pci_generic_compl;
2433 pkt->compl_ctxt = &comp_pkt;
2435 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2436 res_assigned =
2437 (struct pci_resources_assigned *)&pkt->message;
2438 res_assigned->message_type.type =
2439 PCI_RESOURCES_ASSIGNED;
2440 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2441 } else {
2442 res_assigned2 =
2443 (struct pci_resources_assigned2 *)&pkt->message;
2444 res_assigned2->message_type.type =
2445 PCI_RESOURCES_ASSIGNED2;
2446 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2448 put_pcichild(hpdev);
2450 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2451 size_res, (unsigned long)pkt,
2452 VM_PKT_DATA_INBAND,
2453 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2454 if (!ret)
2455 ret = wait_for_response(hdev, &comp_pkt.host_event);
2456 if (ret)
2457 break;
2459 if (comp_pkt.completion_status < 0) {
2460 ret = -EPROTO;
2461 dev_err(&hdev->device,
2462 "resource allocated returned 0x%x",
2463 comp_pkt.completion_status);
2464 break;
2468 kfree(pkt);
2469 return ret;
2473 * hv_send_resources_released() - Report local resources
2474 * released
2475 * @hdev: VMBus's tracking struct for this root PCI bus
2477 * Return: 0 on success, -errno on failure
2479 static int hv_send_resources_released(struct hv_device *hdev)
2481 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2482 struct pci_child_message pkt;
2483 struct hv_pci_dev *hpdev;
2484 u32 wslot;
2485 int ret;
2487 for (wslot = 0; wslot < 256; wslot++) {
2488 hpdev = get_pcichild_wslot(hbus, wslot);
2489 if (!hpdev)
2490 continue;
2492 memset(&pkt, 0, sizeof(pkt));
2493 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2494 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2496 put_pcichild(hpdev);
2498 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2499 VM_PKT_DATA_INBAND, 0);
2500 if (ret)
2501 return ret;
2504 return 0;
2507 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2509 refcount_inc(&hbus->remove_lock);
2512 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2514 if (refcount_dec_and_test(&hbus->remove_lock))
2515 complete(&hbus->remove_event);
2519 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2520 * @hdev: VMBus's tracking struct for this root PCI bus
2521 * @dev_id: Identifies the device itself
2523 * Return: 0 on success, -errno on failure
2525 static int hv_pci_probe(struct hv_device *hdev,
2526 const struct hv_vmbus_device_id *dev_id)
2528 struct hv_pcibus_device *hbus;
2529 int ret;
2532 * hv_pcibus_device contains the hypercall arguments for retargeting in
2533 * hv_irq_unmask(). Those must not cross a page boundary.
2535 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2537 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2538 if (!hbus)
2539 return -ENOMEM;
2540 hbus->state = hv_pcibus_init;
2543 * The PCI bus "domain" is what is called "segment" in ACPI and
2544 * other specs. Pull it from the instance ID, to get something
2545 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2546 * do the same thing for consistency. Note that, since this code
2547 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2548 * that (1) the only domain in use for something that looks like
2549 * a physical PCI bus (which is actually emulated by the
2550 * hypervisor) is domain 0 and (2) there will be no overlap
2551 * between domains derived from these instance IDs in the same
2552 * VM.
2554 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2555 hdev->dev_instance.b[8] << 8;
2557 hbus->hdev = hdev;
2558 refcount_set(&hbus->remove_lock, 1);
2559 INIT_LIST_HEAD(&hbus->children);
2560 INIT_LIST_HEAD(&hbus->dr_list);
2561 INIT_LIST_HEAD(&hbus->resources_for_children);
2562 spin_lock_init(&hbus->config_lock);
2563 spin_lock_init(&hbus->device_list_lock);
2564 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2565 init_completion(&hbus->remove_event);
2566 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2567 hbus->sysdata.domain);
2568 if (!hbus->wq) {
2569 ret = -ENOMEM;
2570 goto free_bus;
2573 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2574 hv_pci_onchannelcallback, hbus);
2575 if (ret)
2576 goto destroy_wq;
2578 hv_set_drvdata(hdev, hbus);
2580 ret = hv_pci_protocol_negotiation(hdev);
2581 if (ret)
2582 goto close;
2584 ret = hv_allocate_config_window(hbus);
2585 if (ret)
2586 goto close;
2588 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2589 PCI_CONFIG_MMIO_LENGTH);
2590 if (!hbus->cfg_addr) {
2591 dev_err(&hdev->device,
2592 "Unable to map a virtual address for config space\n");
2593 ret = -ENOMEM;
2594 goto free_config;
2597 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2598 if (!hbus->sysdata.fwnode) {
2599 ret = -ENOMEM;
2600 goto unmap;
2603 ret = hv_pcie_init_irq_domain(hbus);
2604 if (ret)
2605 goto free_fwnode;
2607 ret = hv_pci_query_relations(hdev);
2608 if (ret)
2609 goto free_irq_domain;
2611 ret = hv_pci_enter_d0(hdev);
2612 if (ret)
2613 goto free_irq_domain;
2615 ret = hv_pci_allocate_bridge_windows(hbus);
2616 if (ret)
2617 goto free_irq_domain;
2619 ret = hv_send_resources_allocated(hdev);
2620 if (ret)
2621 goto free_windows;
2623 prepopulate_bars(hbus);
2625 hbus->state = hv_pcibus_probed;
2627 ret = create_root_hv_pci_bus(hbus);
2628 if (ret)
2629 goto free_windows;
2631 return 0;
2633 free_windows:
2634 hv_pci_free_bridge_windows(hbus);
2635 free_irq_domain:
2636 irq_domain_remove(hbus->irq_domain);
2637 free_fwnode:
2638 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2639 unmap:
2640 iounmap(hbus->cfg_addr);
2641 free_config:
2642 hv_free_config_window(hbus);
2643 close:
2644 vmbus_close(hdev->channel);
2645 destroy_wq:
2646 destroy_workqueue(hbus->wq);
2647 free_bus:
2648 free_page((unsigned long)hbus);
2649 return ret;
2652 static void hv_pci_bus_exit(struct hv_device *hdev)
2654 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2655 struct {
2656 struct pci_packet teardown_packet;
2657 u8 buffer[sizeof(struct pci_message)];
2658 } pkt;
2659 struct pci_bus_relations relations;
2660 struct hv_pci_compl comp_pkt;
2661 int ret;
2664 * After the host sends the RESCIND_CHANNEL message, it doesn't
2665 * access the per-channel ringbuffer any longer.
2667 if (hdev->channel->rescind)
2668 return;
2670 /* Delete any children which might still exist. */
2671 memset(&relations, 0, sizeof(relations));
2672 hv_pci_devices_present(hbus, &relations);
2674 ret = hv_send_resources_released(hdev);
2675 if (ret)
2676 dev_err(&hdev->device,
2677 "Couldn't send resources released packet(s)\n");
2679 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2680 init_completion(&comp_pkt.host_event);
2681 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2682 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2683 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2685 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2686 sizeof(struct pci_message),
2687 (unsigned long)&pkt.teardown_packet,
2688 VM_PKT_DATA_INBAND,
2689 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2690 if (!ret)
2691 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2695 * hv_pci_remove() - Remove routine for this VMBus channel
2696 * @hdev: VMBus's tracking struct for this root PCI bus
2698 * Return: 0 on success, -errno on failure
2700 static int hv_pci_remove(struct hv_device *hdev)
2702 struct hv_pcibus_device *hbus;
2704 hbus = hv_get_drvdata(hdev);
2705 if (hbus->state == hv_pcibus_installed) {
2706 /* Remove the bus from PCI's point of view. */
2707 pci_lock_rescan_remove();
2708 pci_stop_root_bus(hbus->pci_bus);
2709 hv_pci_remove_slots(hbus);
2710 pci_remove_root_bus(hbus->pci_bus);
2711 pci_unlock_rescan_remove();
2712 hbus->state = hv_pcibus_removed;
2715 hv_pci_bus_exit(hdev);
2717 vmbus_close(hdev->channel);
2719 iounmap(hbus->cfg_addr);
2720 hv_free_config_window(hbus);
2721 pci_free_resource_list(&hbus->resources_for_children);
2722 hv_pci_free_bridge_windows(hbus);
2723 irq_domain_remove(hbus->irq_domain);
2724 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2725 put_hvpcibus(hbus);
2726 wait_for_completion(&hbus->remove_event);
2727 destroy_workqueue(hbus->wq);
2728 free_page((unsigned long)hbus);
2729 return 0;
2732 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2733 /* PCI Pass-through Class ID */
2734 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2735 { HV_PCIE_GUID, },
2736 { },
2739 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2741 static struct hv_driver hv_pci_drv = {
2742 .name = "hv_pci",
2743 .id_table = hv_pci_id_table,
2744 .probe = hv_pci_probe,
2745 .remove = hv_pci_remove,
2748 static void __exit exit_hv_pci_drv(void)
2750 vmbus_driver_unregister(&hv_pci_drv);
2753 static int __init init_hv_pci_drv(void)
2755 return vmbus_driver_register(&hv_pci_drv);
2758 module_init(init_hv_pci_drv);
2759 module_exit(exit_hv_pci_drv);
2761 MODULE_DESCRIPTION("Hyper-V PCI");
2762 MODULE_LICENSE("GPL v2");