1 // SPDX-License-Identifier: GPL-2.0
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
21 #include <asm/msidef.h>
27 #define PCI_REG_VMCAP 0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG 0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
34 #define MB2_SHADOW_OFFSET 0x2000
35 #define MB2_SHADOW_SIZE 16
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
43 VMD_FEAT_HAS_MEMBAR_SHADOW
= (1 << 0),
46 * Device may provide root port configuration information which limits
49 VMD_FEAT_HAS_BUS_RESTRICTIONS
= (1 << 1),
53 * Lock for manipulating VMD IRQ lists.
55 static DEFINE_RAW_SPINLOCK(list_lock
);
58 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59 * @node: list item for parent traversal.
60 * @irq: back pointer to parent.
61 * @enabled: true if driver enabled IRQ
62 * @virq: the virtual IRQ value provided to the requesting driver.
64 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65 * a VMD IRQ using this structure.
68 struct list_head node
;
69 struct vmd_irq_list
*irq
;
75 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76 * @irq_list: the list of irq's the VMD one demuxes to.
77 * @srcu: SRCU struct for local synchronization.
78 * @count: number of child IRQs assigned to this vector; used to track
82 struct list_head irq_list
;
83 struct srcu_struct srcu
;
94 struct vmd_irq_list
*irqs
;
96 struct pci_sysdata sysdata
;
97 struct resource resources
[3];
98 struct irq_domain
*irq_domain
;
102 #ifdef CONFIG_X86_DEV_DMA_OPS
103 struct dma_map_ops dma_ops
;
104 struct dma_domain dma_domain
;
108 static inline struct vmd_dev
*vmd_from_bus(struct pci_bus
*bus
)
110 return container_of(bus
->sysdata
, struct vmd_dev
, sysdata
);
113 static inline unsigned int index_from_irqs(struct vmd_dev
*vmd
,
114 struct vmd_irq_list
*irqs
)
116 return irqs
- vmd
->irqs
;
120 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
121 * but the MSI entry for the hardware it's driving will be programmed with a
122 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
123 * domain into one of its own, and the VMD driver de-muxes these for the
124 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
125 * and irq_chip to set this up.
127 static void vmd_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
129 struct vmd_irq
*vmdirq
= data
->chip_data
;
130 struct vmd_irq_list
*irq
= vmdirq
->irq
;
131 struct vmd_dev
*vmd
= irq_data_get_irq_handler_data(data
);
133 msg
->address_hi
= MSI_ADDR_BASE_HI
;
134 msg
->address_lo
= MSI_ADDR_BASE_LO
|
135 MSI_ADDR_DEST_ID(index_from_irqs(vmd
, irq
));
140 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
142 static void vmd_irq_enable(struct irq_data
*data
)
144 struct vmd_irq
*vmdirq
= data
->chip_data
;
147 raw_spin_lock_irqsave(&list_lock
, flags
);
148 WARN_ON(vmdirq
->enabled
);
149 list_add_tail_rcu(&vmdirq
->node
, &vmdirq
->irq
->irq_list
);
150 vmdirq
->enabled
= true;
151 raw_spin_unlock_irqrestore(&list_lock
, flags
);
153 data
->chip
->irq_unmask(data
);
156 static void vmd_irq_disable(struct irq_data
*data
)
158 struct vmd_irq
*vmdirq
= data
->chip_data
;
161 data
->chip
->irq_mask(data
);
163 raw_spin_lock_irqsave(&list_lock
, flags
);
164 if (vmdirq
->enabled
) {
165 list_del_rcu(&vmdirq
->node
);
166 vmdirq
->enabled
= false;
168 raw_spin_unlock_irqrestore(&list_lock
, flags
);
172 * XXX: Stubbed until we develop acceptable way to not create conflicts with
173 * other devices sharing the same vector.
175 static int vmd_irq_set_affinity(struct irq_data
*data
,
176 const struct cpumask
*dest
, bool force
)
181 static struct irq_chip vmd_msi_controller
= {
183 .irq_enable
= vmd_irq_enable
,
184 .irq_disable
= vmd_irq_disable
,
185 .irq_compose_msi_msg
= vmd_compose_msi_msg
,
186 .irq_set_affinity
= vmd_irq_set_affinity
,
189 static irq_hw_number_t
vmd_get_hwirq(struct msi_domain_info
*info
,
190 msi_alloc_info_t
*arg
)
196 * XXX: We can be even smarter selecting the best IRQ once we solve the
199 static struct vmd_irq_list
*vmd_next_irq(struct vmd_dev
*vmd
, struct msi_desc
*desc
)
204 if (vmd
->msix_count
== 1)
205 return &vmd
->irqs
[0];
208 * White list for fast-interrupt handlers. All others will share the
209 * "slow" interrupt vector.
211 switch (msi_desc_to_pci_dev(desc
)->class) {
212 case PCI_CLASS_STORAGE_EXPRESS
:
215 return &vmd
->irqs
[0];
218 raw_spin_lock_irqsave(&list_lock
, flags
);
219 for (i
= 1; i
< vmd
->msix_count
; i
++)
220 if (vmd
->irqs
[i
].count
< vmd
->irqs
[best
].count
)
222 vmd
->irqs
[best
].count
++;
223 raw_spin_unlock_irqrestore(&list_lock
, flags
);
225 return &vmd
->irqs
[best
];
228 static int vmd_msi_init(struct irq_domain
*domain
, struct msi_domain_info
*info
,
229 unsigned int virq
, irq_hw_number_t hwirq
,
230 msi_alloc_info_t
*arg
)
232 struct msi_desc
*desc
= arg
->desc
;
233 struct vmd_dev
*vmd
= vmd_from_bus(msi_desc_to_pci_dev(desc
)->bus
);
234 struct vmd_irq
*vmdirq
= kzalloc(sizeof(*vmdirq
), GFP_KERNEL
);
235 unsigned int index
, vector
;
240 INIT_LIST_HEAD(&vmdirq
->node
);
241 vmdirq
->irq
= vmd_next_irq(vmd
, desc
);
243 index
= index_from_irqs(vmd
, vmdirq
->irq
);
244 vector
= pci_irq_vector(vmd
->dev
, index
);
246 irq_domain_set_info(domain
, virq
, vector
, info
->chip
, vmdirq
,
247 handle_untracked_irq
, vmd
, NULL
);
251 static void vmd_msi_free(struct irq_domain
*domain
,
252 struct msi_domain_info
*info
, unsigned int virq
)
254 struct vmd_irq
*vmdirq
= irq_get_chip_data(virq
);
257 synchronize_srcu(&vmdirq
->irq
->srcu
);
259 /* XXX: Potential optimization to rebalance */
260 raw_spin_lock_irqsave(&list_lock
, flags
);
261 vmdirq
->irq
->count
--;
262 raw_spin_unlock_irqrestore(&list_lock
, flags
);
267 static int vmd_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
268 int nvec
, msi_alloc_info_t
*arg
)
270 struct pci_dev
*pdev
= to_pci_dev(dev
);
271 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
273 if (nvec
> vmd
->msix_count
)
274 return vmd
->msix_count
;
276 memset(arg
, 0, sizeof(*arg
));
280 static void vmd_set_desc(msi_alloc_info_t
*arg
, struct msi_desc
*desc
)
285 static struct msi_domain_ops vmd_msi_domain_ops
= {
286 .get_hwirq
= vmd_get_hwirq
,
287 .msi_init
= vmd_msi_init
,
288 .msi_free
= vmd_msi_free
,
289 .msi_prepare
= vmd_msi_prepare
,
290 .set_desc
= vmd_set_desc
,
293 static struct msi_domain_info vmd_msi_domain_info
= {
294 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
| MSI_FLAG_USE_DEF_CHIP_OPS
|
296 .ops
= &vmd_msi_domain_ops
,
297 .chip
= &vmd_msi_controller
,
300 #ifdef CONFIG_X86_DEV_DMA_OPS
302 * VMD replaces the requester ID with its own. DMA mappings for devices in a
303 * VMD domain need to be mapped for the VMD, not the device requiring
306 static struct device
*to_vmd_dev(struct device
*dev
)
308 struct pci_dev
*pdev
= to_pci_dev(dev
);
309 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
311 return &vmd
->dev
->dev
;
314 static const struct dma_map_ops
*vmd_dma_ops(struct device
*dev
)
316 return get_dma_ops(to_vmd_dev(dev
));
319 static void *vmd_alloc(struct device
*dev
, size_t size
, dma_addr_t
*addr
,
320 gfp_t flag
, unsigned long attrs
)
322 return vmd_dma_ops(dev
)->alloc(to_vmd_dev(dev
), size
, addr
, flag
,
326 static void vmd_free(struct device
*dev
, size_t size
, void *vaddr
,
327 dma_addr_t addr
, unsigned long attrs
)
329 return vmd_dma_ops(dev
)->free(to_vmd_dev(dev
), size
, vaddr
, addr
,
333 static int vmd_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
334 void *cpu_addr
, dma_addr_t addr
, size_t size
,
337 return vmd_dma_ops(dev
)->mmap(to_vmd_dev(dev
), vma
, cpu_addr
, addr
,
341 static int vmd_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
342 void *cpu_addr
, dma_addr_t addr
, size_t size
,
345 return vmd_dma_ops(dev
)->get_sgtable(to_vmd_dev(dev
), sgt
, cpu_addr
,
349 static dma_addr_t
vmd_map_page(struct device
*dev
, struct page
*page
,
350 unsigned long offset
, size_t size
,
351 enum dma_data_direction dir
,
354 return vmd_dma_ops(dev
)->map_page(to_vmd_dev(dev
), page
, offset
, size
,
358 static void vmd_unmap_page(struct device
*dev
, dma_addr_t addr
, size_t size
,
359 enum dma_data_direction dir
, unsigned long attrs
)
361 vmd_dma_ops(dev
)->unmap_page(to_vmd_dev(dev
), addr
, size
, dir
, attrs
);
364 static int vmd_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
365 enum dma_data_direction dir
, unsigned long attrs
)
367 return vmd_dma_ops(dev
)->map_sg(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
370 static void vmd_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
371 enum dma_data_direction dir
, unsigned long attrs
)
373 vmd_dma_ops(dev
)->unmap_sg(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
376 static void vmd_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
,
377 size_t size
, enum dma_data_direction dir
)
379 vmd_dma_ops(dev
)->sync_single_for_cpu(to_vmd_dev(dev
), addr
, size
, dir
);
382 static void vmd_sync_single_for_device(struct device
*dev
, dma_addr_t addr
,
383 size_t size
, enum dma_data_direction dir
)
385 vmd_dma_ops(dev
)->sync_single_for_device(to_vmd_dev(dev
), addr
, size
,
389 static void vmd_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
390 int nents
, enum dma_data_direction dir
)
392 vmd_dma_ops(dev
)->sync_sg_for_cpu(to_vmd_dev(dev
), sg
, nents
, dir
);
395 static void vmd_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
396 int nents
, enum dma_data_direction dir
)
398 vmd_dma_ops(dev
)->sync_sg_for_device(to_vmd_dev(dev
), sg
, nents
, dir
);
401 static int vmd_mapping_error(struct device
*dev
, dma_addr_t addr
)
403 return vmd_dma_ops(dev
)->mapping_error(to_vmd_dev(dev
), addr
);
406 static int vmd_dma_supported(struct device
*dev
, u64 mask
)
408 return vmd_dma_ops(dev
)->dma_supported(to_vmd_dev(dev
), mask
);
411 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
412 static u64
vmd_get_required_mask(struct device
*dev
)
414 return vmd_dma_ops(dev
)->get_required_mask(to_vmd_dev(dev
));
418 static void vmd_teardown_dma_ops(struct vmd_dev
*vmd
)
420 struct dma_domain
*domain
= &vmd
->dma_domain
;
422 if (get_dma_ops(&vmd
->dev
->dev
))
423 del_dma_domain(domain
);
426 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
429 dest->fn = vmd_##fn; \
432 static void vmd_setup_dma_ops(struct vmd_dev
*vmd
)
434 const struct dma_map_ops
*source
= get_dma_ops(&vmd
->dev
->dev
);
435 struct dma_map_ops
*dest
= &vmd
->dma_ops
;
436 struct dma_domain
*domain
= &vmd
->dma_domain
;
438 domain
->domain_nr
= vmd
->sysdata
.domain
;
439 domain
->dma_ops
= dest
;
443 ASSIGN_VMD_DMA_OPS(source
, dest
, alloc
);
444 ASSIGN_VMD_DMA_OPS(source
, dest
, free
);
445 ASSIGN_VMD_DMA_OPS(source
, dest
, mmap
);
446 ASSIGN_VMD_DMA_OPS(source
, dest
, get_sgtable
);
447 ASSIGN_VMD_DMA_OPS(source
, dest
, map_page
);
448 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_page
);
449 ASSIGN_VMD_DMA_OPS(source
, dest
, map_sg
);
450 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_sg
);
451 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_cpu
);
452 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_device
);
453 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_cpu
);
454 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_device
);
455 ASSIGN_VMD_DMA_OPS(source
, dest
, mapping_error
);
456 ASSIGN_VMD_DMA_OPS(source
, dest
, dma_supported
);
457 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
458 ASSIGN_VMD_DMA_OPS(source
, dest
, get_required_mask
);
460 add_dma_domain(domain
);
462 #undef ASSIGN_VMD_DMA_OPS
464 static void vmd_teardown_dma_ops(struct vmd_dev
*vmd
) {}
465 static void vmd_setup_dma_ops(struct vmd_dev
*vmd
) {}
468 static char __iomem
*vmd_cfg_addr(struct vmd_dev
*vmd
, struct pci_bus
*bus
,
469 unsigned int devfn
, int reg
, int len
)
471 char __iomem
*addr
= vmd
->cfgbar
+
472 ((bus
->number
- vmd
->busn_start
) << 20) +
475 if ((addr
- vmd
->cfgbar
) + len
>=
476 resource_size(&vmd
->dev
->resource
[VMD_CFGBAR
]))
483 * CPU may deadlock if config space is not serialized on some versions of this
484 * hardware, so all config space access is done under a spinlock.
486 static int vmd_pci_read(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
489 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
490 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
497 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
500 *value
= readb(addr
);
503 *value
= readw(addr
);
506 *value
= readl(addr
);
512 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
517 * VMD h/w converts non-posted config writes to posted memory writes. The
518 * read-back in this function forces the completion so it returns only after
519 * the config space was written, as expected.
521 static int vmd_pci_write(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
524 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
525 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
532 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
550 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
554 static struct pci_ops vmd_ops
= {
555 .read
= vmd_pci_read
,
556 .write
= vmd_pci_write
,
559 static void vmd_attach_resources(struct vmd_dev
*vmd
)
561 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= &vmd
->resources
[1];
562 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= &vmd
->resources
[2];
565 static void vmd_detach_resources(struct vmd_dev
*vmd
)
567 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= NULL
;
568 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= NULL
;
572 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
573 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
574 * 16 bits are the PCI Segment Group (domain) number. Other bits are
575 * currently reserved.
577 static int vmd_find_free_domain(void)
580 struct pci_bus
*bus
= NULL
;
582 while ((bus
= pci_find_next_bus(bus
)) != NULL
)
583 domain
= max_t(int, domain
, pci_domain_nr(bus
));
587 static int vmd_enable_domain(struct vmd_dev
*vmd
, unsigned long features
)
589 struct pci_sysdata
*sd
= &vmd
->sysdata
;
590 struct fwnode_handle
*fn
;
591 struct resource
*res
;
594 LIST_HEAD(resources
);
595 resource_size_t offset
[2] = {0};
596 resource_size_t membar2_offset
= 0x2000;
599 * Shadow registers may exist in certain VMD device ids which allow
600 * guests to correctly assign host physical addresses to the root ports
601 * and child devices. These registers will either return the host value
602 * or 0, depending on an enable bit in the VMD device.
604 if (features
& VMD_FEAT_HAS_MEMBAR_SHADOW
) {
608 membar2_offset
= MB2_SHADOW_OFFSET
+ MB2_SHADOW_SIZE
;
609 ret
= pci_read_config_dword(vmd
->dev
, PCI_REG_VMLOCK
, &vmlock
);
610 if (ret
|| vmlock
== ~0)
613 if (MB2_SHADOW_EN(vmlock
)) {
614 void __iomem
*membar2
;
616 membar2
= pci_iomap(vmd
->dev
, VMD_MEMBAR2
, 0);
619 offset
[0] = vmd
->dev
->resource
[VMD_MEMBAR1
].start
-
620 (readq(membar2
+ MB2_SHADOW_OFFSET
) &
621 PCI_BASE_ADDRESS_MEM_MASK
);
622 offset
[1] = vmd
->dev
->resource
[VMD_MEMBAR2
].start
-
623 (readq(membar2
+ MB2_SHADOW_OFFSET
+ 8) &
624 PCI_BASE_ADDRESS_MEM_MASK
);
625 pci_iounmap(vmd
->dev
, membar2
);
630 * Certain VMD devices may have a root port configuration option which
631 * limits the bus range to between 0-127 or 128-255
633 if (features
& VMD_FEAT_HAS_BUS_RESTRICTIONS
) {
636 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCAP
, &vmcap
);
637 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCONFIG
, &vmconfig
);
638 if (BUS_RESTRICT_CAP(vmcap
) &&
639 (BUS_RESTRICT_CFG(vmconfig
) == 0x1))
640 vmd
->busn_start
= 128;
643 res
= &vmd
->dev
->resource
[VMD_CFGBAR
];
644 vmd
->resources
[0] = (struct resource
) {
645 .name
= "VMD CFGBAR",
646 .start
= vmd
->busn_start
,
647 .end
= vmd
->busn_start
+ (resource_size(res
) >> 20) - 1,
648 .flags
= IORESOURCE_BUS
| IORESOURCE_PCI_FIXED
,
652 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
653 * put 32-bit resources in the window.
655 * There's no hardware reason why a 64-bit window *couldn't*
656 * contain a 32-bit resource, but pbus_size_mem() computes the
657 * bridge window size assuming a 64-bit window will contain no
658 * 32-bit resources. __pci_assign_resource() enforces that
659 * artificial restriction to make sure everything will fit.
661 * The only way we could use a 64-bit non-prefechable MEMBAR is
662 * if its address is <4GB so that we can convert it to a 32-bit
663 * resource. To be visible to the host OS, all VMD endpoints must
664 * be initially configured by platform BIOS, which includes setting
665 * up these resources. We can assume the device is configured
666 * according to the platform needs.
668 res
= &vmd
->dev
->resource
[VMD_MEMBAR1
];
669 upper_bits
= upper_32_bits(res
->end
);
670 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
672 flags
&= ~IORESOURCE_MEM_64
;
673 vmd
->resources
[1] = (struct resource
) {
674 .name
= "VMD MEMBAR1",
681 res
= &vmd
->dev
->resource
[VMD_MEMBAR2
];
682 upper_bits
= upper_32_bits(res
->end
);
683 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
685 flags
&= ~IORESOURCE_MEM_64
;
686 vmd
->resources
[2] = (struct resource
) {
687 .name
= "VMD MEMBAR2",
688 .start
= res
->start
+ membar2_offset
,
694 sd
->vmd_domain
= true;
695 sd
->domain
= vmd_find_free_domain();
699 sd
->node
= pcibus_to_node(vmd
->dev
->bus
);
701 fn
= irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd
->sysdata
.domain
);
705 vmd
->irq_domain
= pci_msi_create_irq_domain(fn
, &vmd_msi_domain_info
,
707 irq_domain_free_fwnode(fn
);
708 if (!vmd
->irq_domain
)
711 pci_add_resource(&resources
, &vmd
->resources
[0]);
712 pci_add_resource_offset(&resources
, &vmd
->resources
[1], offset
[0]);
713 pci_add_resource_offset(&resources
, &vmd
->resources
[2], offset
[1]);
715 vmd
->bus
= pci_create_root_bus(&vmd
->dev
->dev
, vmd
->busn_start
,
716 &vmd_ops
, sd
, &resources
);
718 pci_free_resource_list(&resources
);
719 irq_domain_remove(vmd
->irq_domain
);
723 vmd_attach_resources(vmd
);
724 vmd_setup_dma_ops(vmd
);
725 dev_set_msi_domain(&vmd
->bus
->dev
, vmd
->irq_domain
);
726 pci_rescan_bus(vmd
->bus
);
728 WARN(sysfs_create_link(&vmd
->dev
->dev
.kobj
, &vmd
->bus
->dev
.kobj
,
729 "domain"), "Can't create symlink to domain\n");
733 static irqreturn_t
vmd_irq(int irq
, void *data
)
735 struct vmd_irq_list
*irqs
= data
;
736 struct vmd_irq
*vmdirq
;
739 idx
= srcu_read_lock(&irqs
->srcu
);
740 list_for_each_entry_rcu(vmdirq
, &irqs
->irq_list
, node
)
741 generic_handle_irq(vmdirq
->virq
);
742 srcu_read_unlock(&irqs
->srcu
, idx
);
747 static int vmd_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
752 if (resource_size(&dev
->resource
[VMD_CFGBAR
]) < (1 << 20))
755 vmd
= devm_kzalloc(&dev
->dev
, sizeof(*vmd
), GFP_KERNEL
);
760 err
= pcim_enable_device(dev
);
764 vmd
->cfgbar
= pcim_iomap(dev
, VMD_CFGBAR
, 0);
769 if (dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(64)) &&
770 dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(32)))
773 vmd
->msix_count
= pci_msix_vec_count(dev
);
774 if (vmd
->msix_count
< 0)
777 vmd
->msix_count
= pci_alloc_irq_vectors(dev
, 1, vmd
->msix_count
,
779 if (vmd
->msix_count
< 0)
780 return vmd
->msix_count
;
782 vmd
->irqs
= devm_kcalloc(&dev
->dev
, vmd
->msix_count
, sizeof(*vmd
->irqs
),
787 for (i
= 0; i
< vmd
->msix_count
; i
++) {
788 err
= init_srcu_struct(&vmd
->irqs
[i
].srcu
);
792 INIT_LIST_HEAD(&vmd
->irqs
[i
].irq_list
);
793 err
= devm_request_irq(&dev
->dev
, pci_irq_vector(dev
, i
),
794 vmd_irq
, IRQF_NO_THREAD
,
795 "vmd", &vmd
->irqs
[i
]);
800 spin_lock_init(&vmd
->cfg_lock
);
801 pci_set_drvdata(dev
, vmd
);
802 err
= vmd_enable_domain(vmd
, (unsigned long) id
->driver_data
);
806 dev_info(&vmd
->dev
->dev
, "Bound to PCI domain %04x\n",
807 vmd
->sysdata
.domain
);
811 static void vmd_cleanup_srcu(struct vmd_dev
*vmd
)
815 for (i
= 0; i
< vmd
->msix_count
; i
++)
816 cleanup_srcu_struct(&vmd
->irqs
[i
].srcu
);
819 static void vmd_remove(struct pci_dev
*dev
)
821 struct vmd_dev
*vmd
= pci_get_drvdata(dev
);
823 sysfs_remove_link(&vmd
->dev
->dev
.kobj
, "domain");
824 pci_stop_root_bus(vmd
->bus
);
825 pci_remove_root_bus(vmd
->bus
);
826 vmd_cleanup_srcu(vmd
);
827 vmd_teardown_dma_ops(vmd
);
828 vmd_detach_resources(vmd
);
829 irq_domain_remove(vmd
->irq_domain
);
832 #ifdef CONFIG_PM_SLEEP
833 static int vmd_suspend(struct device
*dev
)
835 struct pci_dev
*pdev
= to_pci_dev(dev
);
836 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
839 for (i
= 0; i
< vmd
->msix_count
; i
++)
840 devm_free_irq(dev
, pci_irq_vector(pdev
, i
), &vmd
->irqs
[i
]);
842 pci_save_state(pdev
);
846 static int vmd_resume(struct device
*dev
)
848 struct pci_dev
*pdev
= to_pci_dev(dev
);
849 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
852 for (i
= 0; i
< vmd
->msix_count
; i
++) {
853 err
= devm_request_irq(dev
, pci_irq_vector(pdev
, i
),
854 vmd_irq
, IRQF_NO_THREAD
,
855 "vmd", &vmd
->irqs
[i
]);
860 pci_restore_state(pdev
);
864 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops
, vmd_suspend
, vmd_resume
);
866 static const struct pci_device_id vmd_ids
[] = {
867 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_201D
),},
868 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_28C0
),
869 .driver_data
= VMD_FEAT_HAS_MEMBAR_SHADOW
|
870 VMD_FEAT_HAS_BUS_RESTRICTIONS
,},
871 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_9A0B
),
872 .driver_data
= VMD_FEAT_HAS_BUS_RESTRICTIONS
,},
875 MODULE_DEVICE_TABLE(pci
, vmd_ids
);
877 static struct pci_driver vmd_drv
= {
881 .remove
= vmd_remove
,
883 .pm
= &vmd_dev_pm_ops
,
886 module_pci_driver(vmd_drv
);
888 MODULE_AUTHOR("Intel Corporation");
889 MODULE_LICENSE("GPL v2");
890 MODULE_VERSION("0.6");