1 // SPDX-License-Identifier: GPL-2.0+
3 * Compaq Hot Plug Controller Driver
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
11 * Send feedback to <greg@kroah.com>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pci.h>
22 #include <linux/pci_hotplug.h>
25 #include "cpqphp_nvram.h"
31 static u16 unused_IRQ
;
34 * detect_HRT_floating_pointer
36 * find the Hot Plug Resource Table in the specified region of memory.
39 static void __iomem
*detect_HRT_floating_pointer(void __iomem
*begin
, void __iomem
*end
)
43 u8 temp1
, temp2
, temp3
, temp4
;
46 endp
= (end
- sizeof(struct hrt
) + 1);
48 for (fp
= begin
; fp
<= endp
; fp
+= 16) {
49 temp1
= readb(fp
+ SIG0
);
50 temp2
= readb(fp
+ SIG1
);
51 temp3
= readb(fp
+ SIG2
);
52 temp4
= readb(fp
+ SIG3
);
65 dbg("Discovered Hotplug Resource Table at %p\n", fp
);
70 int cpqhp_configure_device(struct controller
*ctrl
, struct pci_func
*func
)
72 struct pci_bus
*child
;
75 pci_lock_rescan_remove();
77 if (func
->pci_dev
== NULL
)
78 func
->pci_dev
= pci_get_domain_bus_and_slot(0, func
->bus
,
79 PCI_DEVFN(func
->device
,
82 /* No pci device, we need to create it then */
83 if (func
->pci_dev
== NULL
) {
84 dbg("INFO: pci_dev still null\n");
86 num
= pci_scan_slot(ctrl
->pci_dev
->bus
, PCI_DEVFN(func
->device
, func
->function
));
88 pci_bus_add_devices(ctrl
->pci_dev
->bus
);
90 func
->pci_dev
= pci_get_domain_bus_and_slot(0, func
->bus
,
91 PCI_DEVFN(func
->device
,
93 if (func
->pci_dev
== NULL
) {
94 dbg("ERROR: pci_dev still null\n");
99 if (func
->pci_dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
100 pci_hp_add_bridge(func
->pci_dev
);
101 child
= func
->pci_dev
->subordinate
;
103 pci_bus_add_devices(child
);
106 pci_dev_put(func
->pci_dev
);
109 pci_unlock_rescan_remove();
114 int cpqhp_unconfigure_device(struct pci_func
*func
)
118 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__
, func
->bus
, func
->device
, func
->function
);
120 pci_lock_rescan_remove();
121 for (j
= 0; j
< 8 ; j
++) {
122 struct pci_dev
*temp
= pci_get_domain_bus_and_slot(0,
124 PCI_DEVFN(func
->device
,
128 pci_stop_and_remove_bus_device(temp
);
131 pci_unlock_rescan_remove();
135 static int PCI_RefinedAccessConfig(struct pci_bus
*bus
, unsigned int devfn
, u8 offset
, u32
*value
)
139 if (pci_bus_read_config_dword(bus
, devfn
, PCI_VENDOR_ID
, &vendID
) == -1)
141 if (vendID
== 0xffffffff)
143 return pci_bus_read_config_dword(bus
, devfn
, offset
, value
);
150 * @bus_num: bus number of PCI device
151 * @dev_num: device number of PCI device
152 * @slot: pointer to u8 where slot number will be returned
154 int cpqhp_set_irq(u8 bus_num
, u8 dev_num
, u8 int_pin
, u8 irq_num
)
158 if (cpqhp_legacy_mode
) {
159 struct pci_dev
*fakedev
;
160 struct pci_bus
*fakebus
;
163 fakedev
= kmalloc(sizeof(*fakedev
), GFP_KERNEL
);
164 fakebus
= kmalloc(sizeof(*fakebus
), GFP_KERNEL
);
165 if (!fakedev
|| !fakebus
) {
171 fakedev
->devfn
= dev_num
<< 3;
172 fakedev
->bus
= fakebus
;
173 fakebus
->number
= bus_num
;
174 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175 __func__
, dev_num
, bus_num
, int_pin
, irq_num
);
176 rc
= pcibios_set_irq_routing(fakedev
, int_pin
- 1, irq_num
);
179 dbg("%s: rc %d\n", __func__
, rc
);
183 /* set the Edge Level Control Register (ELCR) */
184 temp_word
= inb(0x4d0);
185 temp_word
|= inb(0x4d1) << 8;
187 temp_word
|= 0x01 << irq_num
;
189 /* This should only be for x86 as it sets the Edge Level
192 outb((u8
) (temp_word
& 0xFF), 0x4d0); outb((u8
) ((temp_word
&
193 0xFF00) >> 8), 0x4d1); rc
= 0; }
199 static int PCI_ScanBusForNonBridge(struct controller
*ctrl
, u8 bus_num
, u8
*dev_num
)
205 ctrl
->pci_bus
->number
= bus_num
;
207 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
208 /* Scan for access first */
209 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
211 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
212 /* Yep we got one. Not a bridge ? */
213 if ((work
>> 8) != PCI_TO_PCI_BRIDGE_CLASS
) {
219 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
220 /* Scan for access first */
221 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
223 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
224 /* Yep we got one. bridge ? */
225 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
226 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(tdevice
, 0), PCI_SECONDARY_BUS
, &tbus
);
227 /* XXX: no recursion, wtf? */
228 dbg("Recurse on bus_num %d tdevice %d\n", tbus
, tdevice
);
237 static int PCI_GetBusDevHelper(struct controller
*ctrl
, u8
*bus_num
, u8
*dev_num
, u8 slot
, u8 nobridge
)
241 u8 tbus
, tdevice
, tslot
;
243 len
= cpqhp_routing_table_length();
244 for (loop
= 0; loop
< len
; ++loop
) {
245 tbus
= cpqhp_routing_table
->slots
[loop
].bus
;
246 tdevice
= cpqhp_routing_table
->slots
[loop
].devfn
;
247 tslot
= cpqhp_routing_table
->slots
[loop
].slot
;
252 ctrl
->pci_bus
->number
= tbus
;
253 pci_bus_read_config_dword(ctrl
->pci_bus
, *dev_num
, PCI_VENDOR_ID
, &work
);
254 if (!nobridge
|| (work
== 0xffffffff))
257 dbg("bus_num %d devfn %d\n", *bus_num
, *dev_num
);
258 pci_bus_read_config_dword(ctrl
->pci_bus
, *dev_num
, PCI_CLASS_REVISION
, &work
);
259 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work
>> 8, PCI_TO_PCI_BRIDGE_CLASS
);
261 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
262 pci_bus_read_config_byte(ctrl
->pci_bus
, *dev_num
, PCI_SECONDARY_BUS
, &tbus
);
263 dbg("Scan bus for Non Bridge: bus %d\n", tbus
);
264 if (PCI_ScanBusForNonBridge(ctrl
, tbus
, dev_num
) == 0) {
276 int cpqhp_get_bus_dev(struct controller
*ctrl
, u8
*bus_num
, u8
*dev_num
, u8 slot
)
278 /* plain (bridges allowed) */
279 return PCI_GetBusDevHelper(ctrl
, bus_num
, dev_num
, slot
, 0);
283 /* More PCI configuration routines; this time centered around hotplug
291 * Reads configuration for all slots in a PCI bus and saves info.
293 * Note: For non-hot plug buses, the slot # saved is the device #
295 * returns 0 if success
297 int cpqhp_save_config(struct controller
*ctrl
, int busnumber
, int is_hot_plug
)
304 struct pci_func
*new_slot
;
317 /* Decide which slots are supported */
321 * is_hot_plug is the slot mask
323 FirstSupported
= is_hot_plug
>> 4;
324 LastSupported
= FirstSupported
+ (is_hot_plug
& 0x0F) - 1;
327 LastSupported
= 0x1F;
330 /* Save PCI configuration space for all devices in supported slots */
331 ctrl
->pci_bus
->number
= busnumber
;
332 for (device
= FirstSupported
; device
<= LastSupported
; device
++) {
334 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_VENDOR_ID
, &ID
);
336 if (ID
== 0xFFFFFFFF) {
338 /* Setup slot structure with entry for empty
341 new_slot
= cpqhp_slot_create(busnumber
);
342 if (new_slot
== NULL
)
345 new_slot
->bus
= (u8
) busnumber
;
346 new_slot
->device
= (u8
) device
;
347 new_slot
->function
= 0;
348 new_slot
->is_a_board
= 0;
349 new_slot
->presence_save
= 0;
350 new_slot
->switch_save
= 0;
355 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), 0x0B, &class_code
);
359 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_HEADER_TYPE
, &header_type
);
363 /* If multi-function device, set max_functions to 8 */
364 if (header_type
& 0x80)
373 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
374 /* Recurse the subordinate bus
375 * get the subordinate bus number
377 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
381 sub_bus
= (int) secondary_bus
;
383 /* Save secondary bus cfg spc
384 * with this recursive call.
386 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
389 ctrl
->pci_bus
->number
= busnumber
;
394 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
396 (new_slot
->function
!= (u8
) function
))
397 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
400 /* Setup slot structure. */
401 new_slot
= cpqhp_slot_create(busnumber
);
402 if (new_slot
== NULL
)
406 new_slot
->bus
= (u8
) busnumber
;
407 new_slot
->device
= (u8
) device
;
408 new_slot
->function
= (u8
) function
;
409 new_slot
->is_a_board
= 1;
410 new_slot
->switch_save
= 0x10;
411 /* In case of unsupported board */
412 new_slot
->status
= DevError
;
413 devfn
= (new_slot
->device
<< 3) | new_slot
->function
;
414 new_slot
->pci_dev
= pci_get_domain_bus_and_slot(0,
415 new_slot
->bus
, devfn
);
417 for (cloop
= 0; cloop
< 0x20; cloop
++) {
418 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), cloop
<< 2, (u32
*) &(new_slot
->config_space
[cloop
]));
423 pci_dev_put(new_slot
->pci_dev
);
429 /* this loop skips to the next present function
430 * reading in Class Code and Header type.
432 while ((function
< max_functions
) && (!stop_it
)) {
433 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_VENDOR_ID
, &ID
);
434 if (ID
== 0xFFFFFFFF) {
438 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), 0x0B, &class_code
);
442 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_HEADER_TYPE
, &header_type
);
449 } while (function
< max_functions
);
450 } /* End of FOR loop */
457 * cpqhp_save_slot_config
459 * Saves configuration info for all PCI devices in a given slot
460 * including subordinate buses.
462 * returns 0 if success
464 int cpqhp_save_slot_config(struct controller
*ctrl
, struct pci_func
*new_slot
)
479 ctrl
->pci_bus
->number
= new_slot
->bus
;
480 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_VENDOR_ID
, &ID
);
482 if (ID
== 0xFFFFFFFF)
485 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), 0x0B, &class_code
);
486 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_HEADER_TYPE
, &header_type
);
488 if (header_type
& 0x80) /* Multi-function device */
493 while (function
< max_functions
) {
494 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
495 /* Recurse the subordinate bus */
496 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
498 sub_bus
= (int) secondary_bus
;
500 /* Save the config headers for the secondary
503 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
506 ctrl
->pci_bus
->number
= new_slot
->bus
;
510 new_slot
->status
= 0;
512 for (cloop
= 0; cloop
< 0x20; cloop
++)
513 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), cloop
<< 2, (u32
*) &(new_slot
->config_space
[cloop
]));
519 /* this loop skips to the next present function
520 * reading in the Class Code and the Header type.
522 while ((function
< max_functions
) && (!stop_it
)) {
523 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_VENDOR_ID
, &ID
);
525 if (ID
== 0xFFFFFFFF)
528 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), 0x0B, &class_code
);
529 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_HEADER_TYPE
, &header_type
);
541 * cpqhp_save_base_addr_length
543 * Saves the length of all base address registers for the
544 * specified slot. this is for hot plug REPLACE
546 * returns 0 if success
548 int cpqhp_save_base_addr_length(struct controller
*ctrl
, struct pci_func
*func
)
558 struct pci_func
*next
;
560 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
563 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
565 while (func
!= NULL
) {
566 pci_bus
->number
= func
->bus
;
567 devfn
= PCI_DEVFN(func
->device
, func
->function
);
569 /* Check for Bridge */
570 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
572 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
573 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
575 sub_bus
= (int) secondary_bus
;
577 next
= cpqhp_slot_list
[sub_bus
];
579 while (next
!= NULL
) {
580 rc
= cpqhp_save_base_addr_length(ctrl
, next
);
586 pci_bus
->number
= func
->bus
;
588 /* FIXME: this loop is duplicated in the non-bridge
589 * case. The two could be rolled together Figure out
590 * IO and memory base lengths
592 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
593 temp_register
= 0xFFFFFFFF;
594 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
595 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
596 /* If this register is implemented */
600 * set base = amount of IO space
603 base
= base
& 0xFFFFFFFE;
609 base
= base
& 0xFFFFFFF0;
619 /* Save information in slot structure */
620 func
->base_length
[(cloop
- 0x10) >> 2] =
622 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
624 } /* End of base register loop */
626 } else if ((header_type
& 0x7F) == 0x00) {
627 /* Figure out IO and memory base lengths */
628 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
629 temp_register
= 0xFFFFFFFF;
630 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
631 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
633 /* If this register is implemented */
637 * base = amount of IO space
640 base
= base
& 0xFFFFFFFE;
646 * base = amount of memory
649 base
= base
& 0xFFFFFFF0;
659 /* Save information in slot structure */
660 func
->base_length
[(cloop
- 0x10) >> 2] = base
;
661 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
663 } /* End of base register loop */
665 } else { /* Some other unknown header type */
668 /* find the next device in this slot */
669 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
677 * cpqhp_save_used_resources
679 * Stores used resource information for existing boards. this is
680 * for boards that were in the system when this driver was loaded.
681 * this function is for hot plug ADD
683 * returns 0 if success
685 int cpqhp_save_used_resources(struct controller
*ctrl
, struct pci_func
*func
)
701 struct pci_resource
*mem_node
;
702 struct pci_resource
*p_mem_node
;
703 struct pci_resource
*io_node
;
704 struct pci_resource
*bus_node
;
705 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
708 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
710 while ((func
!= NULL
) && func
->is_a_board
) {
711 pci_bus
->number
= func
->bus
;
712 devfn
= PCI_DEVFN(func
->device
, func
->function
);
714 /* Save the command register */
715 pci_bus_read_config_word(pci_bus
, devfn
, PCI_COMMAND
, &save_command
);
719 pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
721 /* Check for Bridge */
722 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
724 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
725 /* Clear Bridge Control Register */
727 pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
728 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
729 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, &temp_byte
);
731 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
735 bus_node
->base
= secondary_bus
;
736 bus_node
->length
= temp_byte
- secondary_bus
+ 1;
738 bus_node
->next
= func
->bus_head
;
739 func
->bus_head
= bus_node
;
741 /* Save IO base and Limit registers */
742 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, &b_base
);
743 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, &b_length
);
745 if ((b_base
<= b_length
) && (save_command
& 0x01)) {
746 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
750 io_node
->base
= (b_base
& 0xF0) << 8;
751 io_node
->length
= (b_length
- b_base
+ 0x10) << 8;
753 io_node
->next
= func
->io_head
;
754 func
->io_head
= io_node
;
757 /* Save memory base and Limit registers */
758 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, &w_base
);
759 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, &w_length
);
761 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
762 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
766 mem_node
->base
= w_base
<< 16;
767 mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
769 mem_node
->next
= func
->mem_head
;
770 func
->mem_head
= mem_node
;
773 /* Save prefetchable memory base and Limit registers */
774 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, &w_base
);
775 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, &w_length
);
777 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
778 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
782 p_mem_node
->base
= w_base
<< 16;
783 p_mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
785 p_mem_node
->next
= func
->p_mem_head
;
786 func
->p_mem_head
= p_mem_node
;
788 /* Figure out IO and memory base lengths */
789 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
790 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &save_base
);
792 temp_register
= 0xFFFFFFFF;
793 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
794 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
796 temp_register
= base
;
798 /* If this register is implemented */
800 if (((base
& 0x03L
) == 0x01)
801 && (save_command
& 0x01)) {
803 * set temp_register = amount
804 * of IO space requested
806 temp_register
= base
& 0xFFFFFFFE;
807 temp_register
= (~temp_register
) + 1;
809 io_node
= kmalloc(sizeof(*io_node
),
815 save_base
& (~0x03L
);
816 io_node
->length
= temp_register
;
818 io_node
->next
= func
->io_head
;
819 func
->io_head
= io_node
;
821 if (((base
& 0x0BL
) == 0x08)
822 && (save_command
& 0x02)) {
823 /* prefetchable memory base */
824 temp_register
= base
& 0xFFFFFFF0;
825 temp_register
= (~temp_register
) + 1;
827 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
832 p_mem_node
->base
= save_base
& (~0x0FL
);
833 p_mem_node
->length
= temp_register
;
835 p_mem_node
->next
= func
->p_mem_head
;
836 func
->p_mem_head
= p_mem_node
;
838 if (((base
& 0x0BL
) == 0x00)
839 && (save_command
& 0x02)) {
840 /* prefetchable memory base */
841 temp_register
= base
& 0xFFFFFFF0;
842 temp_register
= (~temp_register
) + 1;
844 mem_node
= kmalloc(sizeof(*mem_node
),
849 mem_node
->base
= save_base
& (~0x0FL
);
850 mem_node
->length
= temp_register
;
852 mem_node
->next
= func
->mem_head
;
853 func
->mem_head
= mem_node
;
857 } /* End of base register loop */
858 /* Standard header */
859 } else if ((header_type
& 0x7F) == 0x00) {
860 /* Figure out IO and memory base lengths */
861 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
862 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &save_base
);
864 temp_register
= 0xFFFFFFFF;
865 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
866 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
868 temp_register
= base
;
870 /* If this register is implemented */
872 if (((base
& 0x03L
) == 0x01)
873 && (save_command
& 0x01)) {
875 * set temp_register = amount
876 * of IO space requested
878 temp_register
= base
& 0xFFFFFFFE;
879 temp_register
= (~temp_register
) + 1;
881 io_node
= kmalloc(sizeof(*io_node
),
886 io_node
->base
= save_base
& (~0x01L
);
887 io_node
->length
= temp_register
;
889 io_node
->next
= func
->io_head
;
890 func
->io_head
= io_node
;
892 if (((base
& 0x0BL
) == 0x08)
893 && (save_command
& 0x02)) {
894 /* prefetchable memory base */
895 temp_register
= base
& 0xFFFFFFF0;
896 temp_register
= (~temp_register
) + 1;
898 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
903 p_mem_node
->base
= save_base
& (~0x0FL
);
904 p_mem_node
->length
= temp_register
;
906 p_mem_node
->next
= func
->p_mem_head
;
907 func
->p_mem_head
= p_mem_node
;
909 if (((base
& 0x0BL
) == 0x00)
910 && (save_command
& 0x02)) {
911 /* prefetchable memory base */
912 temp_register
= base
& 0xFFFFFFF0;
913 temp_register
= (~temp_register
) + 1;
915 mem_node
= kmalloc(sizeof(*mem_node
),
920 mem_node
->base
= save_base
& (~0x0FL
);
921 mem_node
->length
= temp_register
;
923 mem_node
->next
= func
->mem_head
;
924 func
->mem_head
= mem_node
;
928 } /* End of base register loop */
931 /* find the next device in this slot */
932 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
940 * cpqhp_configure_board
942 * Copies saved configuration information to one slot.
943 * this is called recursively for bridge devices.
944 * this is for hot plug REPLACE!
946 * returns 0 if success
948 int cpqhp_configure_board(struct controller
*ctrl
, struct pci_func
*func
)
954 struct pci_func
*next
;
958 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
961 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
963 while (func
!= NULL
) {
964 pci_bus
->number
= func
->bus
;
965 devfn
= PCI_DEVFN(func
->device
, func
->function
);
967 /* Start at the top of config space so that the control
968 * registers are programmed last
970 for (cloop
= 0x3C; cloop
> 0; cloop
-= 4)
971 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, func
->config_space
[cloop
>> 2]);
973 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
975 /* If this is a bridge device, restore subordinate devices */
976 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
977 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
979 sub_bus
= (int) secondary_bus
;
981 next
= cpqhp_slot_list
[sub_bus
];
983 while (next
!= NULL
) {
984 rc
= cpqhp_configure_board(ctrl
, next
);
992 /* Check all the base Address Registers to make sure
993 * they are the same. If not, the board is different.
996 for (cloop
= 16; cloop
< 40; cloop
+= 4) {
997 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &temp
);
999 if (temp
!= func
->config_space
[cloop
>> 2]) {
1000 dbg("Config space compare failure!!! offset = %x\n", cloop
);
1001 dbg("bus = %x, device = %x, function = %x\n", func
->bus
, func
->device
, func
->function
);
1002 dbg("temp = %x, config space = %x\n\n", temp
, func
->config_space
[cloop
>> 2]);
1008 func
->configured
= 1;
1010 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1018 * cpqhp_valid_replace
1020 * this function checks to see if a board is the same as the
1021 * one it is replacing. this check will detect if the device's
1022 * vendor or device id's are the same
1024 * returns 0 if the board is the same nonzero otherwise
1026 int cpqhp_valid_replace(struct controller
*ctrl
, struct pci_func
*func
)
1032 u32 temp_register
= 0;
1035 struct pci_func
*next
;
1037 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
1040 if (!func
->is_a_board
)
1041 return(ADD_NOT_SUPPORTED
);
1043 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1045 while (func
!= NULL
) {
1046 pci_bus
->number
= func
->bus
;
1047 devfn
= PCI_DEVFN(func
->device
, func
->function
);
1049 pci_bus_read_config_dword(pci_bus
, devfn
, PCI_VENDOR_ID
, &temp_register
);
1051 /* No adapter present */
1052 if (temp_register
== 0xFFFFFFFF)
1053 return(NO_ADAPTER_PRESENT
);
1055 if (temp_register
!= func
->config_space
[0])
1056 return(ADAPTER_NOT_SAME
);
1058 /* Check for same revision number and class code */
1059 pci_bus_read_config_dword(pci_bus
, devfn
, PCI_CLASS_REVISION
, &temp_register
);
1061 /* Adapter not the same */
1062 if (temp_register
!= func
->config_space
[0x08 >> 2])
1063 return(ADAPTER_NOT_SAME
);
1065 /* Check for Bridge */
1066 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
1068 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
1069 /* In order to continue checking, we must program the
1070 * bus registers in the bridge to respond to accesses
1071 * for its subordinate bus(es)
1074 temp_register
= func
->config_space
[0x18 >> 2];
1075 pci_bus_write_config_dword(pci_bus
, devfn
, PCI_PRIMARY_BUS
, temp_register
);
1077 secondary_bus
= (temp_register
>> 8) & 0xFF;
1079 next
= cpqhp_slot_list
[secondary_bus
];
1081 while (next
!= NULL
) {
1082 rc
= cpqhp_valid_replace(ctrl
, next
);
1090 /* Check to see if it is a standard config header */
1091 else if ((header_type
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
1092 /* Check subsystem vendor and ID */
1093 pci_bus_read_config_dword(pci_bus
, devfn
, PCI_SUBSYSTEM_VENDOR_ID
, &temp_register
);
1095 if (temp_register
!= func
->config_space
[0x2C >> 2]) {
1096 /* If it's a SMART-2 and the register isn't
1097 * filled in, ignore the difference because
1098 * they just have an old rev of the firmware
1100 if (!((func
->config_space
[0] == 0xAE100E11)
1101 && (temp_register
== 0x00L
)))
1102 return(ADAPTER_NOT_SAME
);
1104 /* Figure out IO and memory base lengths */
1105 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
1106 temp_register
= 0xFFFFFFFF;
1107 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
1108 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
1110 /* If this register is implemented */
1114 * set base = amount of IO
1117 base
= base
& 0xFFFFFFFE;
1123 base
= base
& 0xFFFFFFF0;
1133 /* Check information in slot structure */
1134 if (func
->base_length
[(cloop
- 0x10) >> 2] != base
)
1135 return(ADAPTER_NOT_SAME
);
1137 if (func
->base_type
[(cloop
- 0x10) >> 2] != type
)
1138 return(ADAPTER_NOT_SAME
);
1140 } /* End of base register loop */
1142 } /* End of (type 0 config space) else */
1144 /* this is not a type 0 or 1 config space header so
1145 * we don't know how to do it
1147 return(DEVICE_TYPE_NOT_SUPPORTED
);
1150 /* Get the next function */
1151 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1160 * cpqhp_find_available_resources
1162 * Finds available memory, IO, and IRQ resources for programming
1163 * devices which may be added to the system
1164 * this function is for hot plug ADD!
1166 * returns 0 if success
1168 int cpqhp_find_available_resources(struct controller
*ctrl
, void __iomem
*rom_start
)
1173 void __iomem
*one_slot
;
1174 void __iomem
*rom_resource_table
;
1175 struct pci_func
*func
= NULL
;
1178 struct pci_resource
*mem_node
;
1179 struct pci_resource
*p_mem_node
;
1180 struct pci_resource
*io_node
;
1181 struct pci_resource
*bus_node
;
1183 rom_resource_table
= detect_HRT_floating_pointer(rom_start
, rom_start
+0xffff);
1184 dbg("rom_resource_table = %p\n", rom_resource_table
);
1186 if (rom_resource_table
== NULL
)
1189 /* Sum all resources and setup resource maps */
1190 unused_IRQ
= readl(rom_resource_table
+ UNUSED_IRQ
);
1191 dbg("unused_IRQ = %x\n", unused_IRQ
);
1194 while (unused_IRQ
) {
1195 if (unused_IRQ
& 1) {
1196 cpqhp_disk_irq
= temp
;
1199 unused_IRQ
= unused_IRQ
>> 1;
1203 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq
);
1204 unused_IRQ
= unused_IRQ
>> 1;
1207 while (unused_IRQ
) {
1208 if (unused_IRQ
& 1) {
1209 cpqhp_nic_irq
= temp
;
1212 unused_IRQ
= unused_IRQ
>> 1;
1216 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq
);
1217 unused_IRQ
= readl(rom_resource_table
+ PCIIRQ
);
1222 cpqhp_nic_irq
= ctrl
->cfgspc_irq
;
1224 if (!cpqhp_disk_irq
)
1225 cpqhp_disk_irq
= ctrl
->cfgspc_irq
;
1227 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq
, cpqhp_nic_irq
);
1229 rc
= compaq_nvram_load(rom_start
, ctrl
);
1233 one_slot
= rom_resource_table
+ sizeof(struct hrt
);
1235 i
= readb(rom_resource_table
+ NUMBER_OF_ENTRIES
);
1236 dbg("number_of_entries = %d\n", i
);
1238 if (!readb(one_slot
+ SECONDARY_BUS
))
1241 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1243 while (i
&& readb(one_slot
+ SECONDARY_BUS
)) {
1244 u8 dev_func
= readb(one_slot
+ DEV_FUNC
);
1245 u8 primary_bus
= readb(one_slot
+ PRIMARY_BUS
);
1246 u8 secondary_bus
= readb(one_slot
+ SECONDARY_BUS
);
1247 u8 max_bus
= readb(one_slot
+ MAX_BUS
);
1248 u16 io_base
= readw(one_slot
+ IO_BASE
);
1249 u16 io_length
= readw(one_slot
+ IO_LENGTH
);
1250 u16 mem_base
= readw(one_slot
+ MEM_BASE
);
1251 u16 mem_length
= readw(one_slot
+ MEM_LENGTH
);
1252 u16 pre_mem_base
= readw(one_slot
+ PRE_MEM_BASE
);
1253 u16 pre_mem_length
= readw(one_slot
+ PRE_MEM_LENGTH
);
1255 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1256 dev_func
, io_base
, io_length
, mem_base
, mem_length
, pre_mem_base
, pre_mem_length
,
1257 primary_bus
, secondary_bus
, max_bus
);
1259 /* If this entry isn't for our controller's bus, ignore it */
1260 if (primary_bus
!= ctrl
->bus
) {
1262 one_slot
+= sizeof(struct slot_rt
);
1265 /* find out if this entry is for an occupied slot */
1266 ctrl
->pci_bus
->number
= primary_bus
;
1267 pci_bus_read_config_dword(ctrl
->pci_bus
, dev_func
, PCI_VENDOR_ID
, &temp_dword
);
1268 dbg("temp_D_word = %x\n", temp_dword
);
1270 if (temp_dword
!= 0xFFFFFFFF) {
1272 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, 0);
1274 while (func
&& (func
->function
!= (dev_func
& 0x07))) {
1275 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func
, primary_bus
, dev_func
>> 3, index
);
1276 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, index
++);
1279 /* If we can't find a match, skip this table entry */
1282 one_slot
+= sizeof(struct slot_rt
);
1285 /* this may not work and shouldn't be used */
1286 if (secondary_bus
!= primary_bus
)
1298 /* If we've got a valid IO base, use it */
1300 temp_dword
= io_base
+ io_length
;
1302 if ((io_base
) && (temp_dword
< 0x10000)) {
1303 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
1307 io_node
->base
= io_base
;
1308 io_node
->length
= io_length
;
1310 dbg("found io_node(base, length) = %x, %x\n",
1311 io_node
->base
, io_node
->length
);
1312 dbg("populated slot =%d \n", populated_slot
);
1313 if (!populated_slot
) {
1314 io_node
->next
= ctrl
->io_head
;
1315 ctrl
->io_head
= io_node
;
1317 io_node
->next
= func
->io_head
;
1318 func
->io_head
= io_node
;
1322 /* If we've got a valid memory base, use it */
1323 temp_dword
= mem_base
+ mem_length
;
1324 if ((mem_base
) && (temp_dword
< 0x10000)) {
1325 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
1329 mem_node
->base
= mem_base
<< 16;
1331 mem_node
->length
= mem_length
<< 16;
1333 dbg("found mem_node(base, length) = %x, %x\n",
1334 mem_node
->base
, mem_node
->length
);
1335 dbg("populated slot =%d \n", populated_slot
);
1336 if (!populated_slot
) {
1337 mem_node
->next
= ctrl
->mem_head
;
1338 ctrl
->mem_head
= mem_node
;
1340 mem_node
->next
= func
->mem_head
;
1341 func
->mem_head
= mem_node
;
1345 /* If we've got a valid prefetchable memory base, and
1346 * the base + length isn't greater than 0xFFFF
1348 temp_dword
= pre_mem_base
+ pre_mem_length
;
1349 if ((pre_mem_base
) && (temp_dword
< 0x10000)) {
1350 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
1354 p_mem_node
->base
= pre_mem_base
<< 16;
1356 p_mem_node
->length
= pre_mem_length
<< 16;
1357 dbg("found p_mem_node(base, length) = %x, %x\n",
1358 p_mem_node
->base
, p_mem_node
->length
);
1359 dbg("populated slot =%d \n", populated_slot
);
1361 if (!populated_slot
) {
1362 p_mem_node
->next
= ctrl
->p_mem_head
;
1363 ctrl
->p_mem_head
= p_mem_node
;
1365 p_mem_node
->next
= func
->p_mem_head
;
1366 func
->p_mem_head
= p_mem_node
;
1370 /* If we've got a valid bus number, use it
1371 * The second condition is to ignore bus numbers on
1372 * populated slots that don't have PCI-PCI bridges
1374 if (secondary_bus
&& (secondary_bus
!= primary_bus
)) {
1375 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
1379 bus_node
->base
= secondary_bus
;
1380 bus_node
->length
= max_bus
- secondary_bus
+ 1;
1381 dbg("found bus_node(base, length) = %x, %x\n",
1382 bus_node
->base
, bus_node
->length
);
1383 dbg("populated slot =%d \n", populated_slot
);
1384 if (!populated_slot
) {
1385 bus_node
->next
= ctrl
->bus_head
;
1386 ctrl
->bus_head
= bus_node
;
1388 bus_node
->next
= func
->bus_head
;
1389 func
->bus_head
= bus_node
;
1394 one_slot
+= sizeof(struct slot_rt
);
1397 /* If all of the following fail, we don't have any resources for
1401 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1402 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1403 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1404 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1411 * cpqhp_return_board_resources
1413 * this routine returns all resources allocated to a board to
1414 * the available pool.
1416 * returns 0 if success
1418 int cpqhp_return_board_resources(struct pci_func
*func
, struct resource_lists
*resources
)
1421 struct pci_resource
*node
;
1422 struct pci_resource
*t_node
;
1423 dbg("%s\n", __func__
);
1428 node
= func
->io_head
;
1429 func
->io_head
= NULL
;
1431 t_node
= node
->next
;
1432 return_resource(&(resources
->io_head
), node
);
1436 node
= func
->mem_head
;
1437 func
->mem_head
= NULL
;
1439 t_node
= node
->next
;
1440 return_resource(&(resources
->mem_head
), node
);
1444 node
= func
->p_mem_head
;
1445 func
->p_mem_head
= NULL
;
1447 t_node
= node
->next
;
1448 return_resource(&(resources
->p_mem_head
), node
);
1452 node
= func
->bus_head
;
1453 func
->bus_head
= NULL
;
1455 t_node
= node
->next
;
1456 return_resource(&(resources
->bus_head
), node
);
1460 rc
|= cpqhp_resource_sort_and_combine(&(resources
->mem_head
));
1461 rc
|= cpqhp_resource_sort_and_combine(&(resources
->p_mem_head
));
1462 rc
|= cpqhp_resource_sort_and_combine(&(resources
->io_head
));
1463 rc
|= cpqhp_resource_sort_and_combine(&(resources
->bus_head
));
1470 * cpqhp_destroy_resource_list
1472 * Puts node back in the resource list pointed to by head
1474 void cpqhp_destroy_resource_list(struct resource_lists
*resources
)
1476 struct pci_resource
*res
, *tres
;
1478 res
= resources
->io_head
;
1479 resources
->io_head
= NULL
;
1487 res
= resources
->mem_head
;
1488 resources
->mem_head
= NULL
;
1496 res
= resources
->p_mem_head
;
1497 resources
->p_mem_head
= NULL
;
1505 res
= resources
->bus_head
;
1506 resources
->bus_head
= NULL
;
1517 * cpqhp_destroy_board_resources
1519 * Puts node back in the resource list pointed to by head
1521 void cpqhp_destroy_board_resources(struct pci_func
*func
)
1523 struct pci_resource
*res
, *tres
;
1525 res
= func
->io_head
;
1526 func
->io_head
= NULL
;
1534 res
= func
->mem_head
;
1535 func
->mem_head
= NULL
;
1543 res
= func
->p_mem_head
;
1544 func
->p_mem_head
= NULL
;
1552 res
= func
->bus_head
;
1553 func
->bus_head
= NULL
;