Linux 4.19.133
[linux/fpc-iii.git] / drivers / perf / arm_spe_pmu.c
blob3623f6489f49634220f6cd3f93aaa00c2f7e0b5c
1 /*
2 * Perf support for the Statistical Profiling Extension, introduced as
3 * part of ARMv8.2.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 * Copyright (C) 2016 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
22 #define PMUNAME "arm_spe"
23 #define DRVNAME PMUNAME "_pmu"
24 #define pr_fmt(fmt) DRVNAME ": " fmt
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
49 #include <asm/mmu.h>
50 #include <asm/sysreg.h>
52 #define ARM_SPE_BUF_PAD_BYTE 0
54 struct arm_spe_pmu_buf {
55 int nr_pages;
56 bool snapshot;
57 void *base;
60 struct arm_spe_pmu {
61 struct pmu pmu;
62 struct platform_device *pdev;
63 cpumask_t supported_cpus;
64 struct hlist_node hotplug_node;
66 int irq; /* PPI */
68 u16 min_period;
69 u16 counter_sz;
71 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
75 #define SPE_PMU_FEAT_LDS (1UL << 4)
76 #define SPE_PMU_FEAT_ERND (1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
78 u64 features;
80 u16 max_record_sz;
81 u16 align;
82 struct perf_output_handle __percpu *handle;
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online;
93 enum arm_spe_pmu_buf_fault_action {
94 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
95 SPE_PMU_BUF_FAULT_ACT_FATAL,
96 SPE_PMU_BUF_FAULT_ACT_OK,
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities {
101 SPE_PMU_CAP_ARCH_INST = 0,
102 SPE_PMU_CAP_ERND,
103 SPE_PMU_CAP_FEAT_MAX,
104 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
105 SPE_PMU_CAP_MIN_IVAL,
108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
109 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
110 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
115 if (cap < SPE_PMU_CAP_FEAT_MAX)
116 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
118 switch (cap) {
119 case SPE_PMU_CAP_CNT_SZ:
120 return spe_pmu->counter_sz;
121 case SPE_PMU_CAP_MIN_IVAL:
122 return spe_pmu->min_period;
123 default:
124 WARN(1, "unknown cap %d\n", cap);
127 return 0;
130 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
131 struct device_attribute *attr,
132 char *buf)
134 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
135 struct dev_ext_attribute *ea =
136 container_of(attr, struct dev_ext_attribute, attr);
137 int cap = (long)ea->var;
139 return snprintf(buf, PAGE_SIZE, "%u\n",
140 arm_spe_pmu_cap_get(spe_pmu, cap));
143 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
144 &((struct dev_ext_attribute[]) { \
145 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
146 })[0].attr.attr
148 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
149 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
151 static struct attribute *arm_spe_pmu_cap_attr[] = {
152 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
153 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
154 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
155 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
156 NULL,
159 static struct attribute_group arm_spe_pmu_cap_group = {
160 .name = "caps",
161 .attrs = arm_spe_pmu_cap_attr,
164 /* User ABI */
165 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
166 #define ATTR_CFG_FLD_ts_enable_LO 0
167 #define ATTR_CFG_FLD_ts_enable_HI 0
168 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
169 #define ATTR_CFG_FLD_pa_enable_LO 1
170 #define ATTR_CFG_FLD_pa_enable_HI 1
171 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
172 #define ATTR_CFG_FLD_pct_enable_LO 2
173 #define ATTR_CFG_FLD_pct_enable_HI 2
174 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
175 #define ATTR_CFG_FLD_jitter_LO 16
176 #define ATTR_CFG_FLD_jitter_HI 16
177 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
178 #define ATTR_CFG_FLD_branch_filter_LO 32
179 #define ATTR_CFG_FLD_branch_filter_HI 32
180 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
181 #define ATTR_CFG_FLD_load_filter_LO 33
182 #define ATTR_CFG_FLD_load_filter_HI 33
183 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
184 #define ATTR_CFG_FLD_store_filter_LO 34
185 #define ATTR_CFG_FLD_store_filter_HI 34
187 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
188 #define ATTR_CFG_FLD_event_filter_LO 0
189 #define ATTR_CFG_FLD_event_filter_HI 63
191 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
192 #define ATTR_CFG_FLD_min_latency_LO 0
193 #define ATTR_CFG_FLD_min_latency_HI 11
195 /* Why does everything I do descend into this? */
196 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
197 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
199 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
200 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
202 #define GEN_PMU_FORMAT_ATTR(name) \
203 PMU_FORMAT_ATTR(name, \
204 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
205 ATTR_CFG_FLD_##name##_LO, \
206 ATTR_CFG_FLD_##name##_HI))
208 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
209 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
211 #define ATTR_CFG_GET_FLD(attr, name) \
212 _ATTR_CFG_GET_FLD(attr, \
213 ATTR_CFG_FLD_##name##_CFG, \
214 ATTR_CFG_FLD_##name##_LO, \
215 ATTR_CFG_FLD_##name##_HI)
217 GEN_PMU_FORMAT_ATTR(ts_enable);
218 GEN_PMU_FORMAT_ATTR(pa_enable);
219 GEN_PMU_FORMAT_ATTR(pct_enable);
220 GEN_PMU_FORMAT_ATTR(jitter);
221 GEN_PMU_FORMAT_ATTR(branch_filter);
222 GEN_PMU_FORMAT_ATTR(load_filter);
223 GEN_PMU_FORMAT_ATTR(store_filter);
224 GEN_PMU_FORMAT_ATTR(event_filter);
225 GEN_PMU_FORMAT_ATTR(min_latency);
227 static struct attribute *arm_spe_pmu_formats_attr[] = {
228 &format_attr_ts_enable.attr,
229 &format_attr_pa_enable.attr,
230 &format_attr_pct_enable.attr,
231 &format_attr_jitter.attr,
232 &format_attr_branch_filter.attr,
233 &format_attr_load_filter.attr,
234 &format_attr_store_filter.attr,
235 &format_attr_event_filter.attr,
236 &format_attr_min_latency.attr,
237 NULL,
240 static struct attribute_group arm_spe_pmu_format_group = {
241 .name = "format",
242 .attrs = arm_spe_pmu_formats_attr,
245 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
246 struct device_attribute *attr,
247 char *buf)
249 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
251 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
253 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
255 static struct attribute *arm_spe_pmu_attrs[] = {
256 &dev_attr_cpumask.attr,
257 NULL,
260 static struct attribute_group arm_spe_pmu_group = {
261 .attrs = arm_spe_pmu_attrs,
264 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
265 &arm_spe_pmu_group,
266 &arm_spe_pmu_cap_group,
267 &arm_spe_pmu_format_group,
268 NULL,
271 /* Convert between user ABI and register values */
272 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
274 struct perf_event_attr *attr = &event->attr;
275 u64 reg = 0;
277 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
278 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
279 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
281 if (!attr->exclude_user)
282 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
284 if (!attr->exclude_kernel)
285 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
287 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
288 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
290 return reg;
293 static void arm_spe_event_sanitise_period(struct perf_event *event)
295 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
296 u64 period = event->hw.sample_period;
297 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
298 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
300 if (period < spe_pmu->min_period)
301 period = spe_pmu->min_period;
302 else if (period > max_period)
303 period = max_period;
304 else
305 period &= max_period;
307 event->hw.sample_period = period;
310 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
312 struct perf_event_attr *attr = &event->attr;
313 u64 reg = 0;
315 arm_spe_event_sanitise_period(event);
317 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
318 reg |= event->hw.sample_period;
320 return reg;
323 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
325 struct perf_event_attr *attr = &event->attr;
326 u64 reg = 0;
328 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
329 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
330 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
332 if (reg)
333 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
335 if (ATTR_CFG_GET_FLD(attr, event_filter))
336 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
338 if (ATTR_CFG_GET_FLD(attr, min_latency))
339 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
341 return reg;
344 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
346 struct perf_event_attr *attr = &event->attr;
347 return ATTR_CFG_GET_FLD(attr, event_filter);
350 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
352 struct perf_event_attr *attr = &event->attr;
353 return ATTR_CFG_GET_FLD(attr, min_latency)
354 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
357 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
359 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360 u64 head = PERF_IDX2OFF(handle->head, buf);
362 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
363 if (!buf->snapshot)
364 perf_aux_output_skip(handle, len);
367 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
369 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
370 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
371 u64 head = PERF_IDX2OFF(handle->head, buf);
372 u64 limit = buf->nr_pages * PAGE_SIZE;
375 * The trace format isn't parseable in reverse, so clamp
376 * the limit to half of the buffer size in snapshot mode
377 * so that the worst case is half a buffer of records, as
378 * opposed to a single record.
380 if (head < limit >> 1)
381 limit >>= 1;
384 * If we're within max_record_sz of the limit, we must
385 * pad, move the head index and recompute the limit.
387 if (limit - head < spe_pmu->max_record_sz) {
388 arm_spe_pmu_pad_buf(handle, limit - head);
389 handle->head = PERF_IDX2OFF(limit, buf);
390 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
393 return limit;
396 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
398 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
399 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
400 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
401 u64 limit = bufsize;
402 u64 head, tail, wakeup;
405 * The head can be misaligned for two reasons:
407 * 1. The hardware left PMBPTR pointing to the first byte after
408 * a record when generating a buffer management event.
410 * 2. We used perf_aux_output_skip to consume handle->size bytes
411 * and CIRC_SPACE was used to compute the size, which always
412 * leaves one entry free.
414 * Deal with this by padding to the next alignment boundary and
415 * moving the head index. If we run out of buffer space, we'll
416 * reduce handle->size to zero and end up reporting truncation.
418 head = PERF_IDX2OFF(handle->head, buf);
419 if (!IS_ALIGNED(head, spe_pmu->align)) {
420 unsigned long delta = roundup(head, spe_pmu->align) - head;
422 delta = min(delta, handle->size);
423 arm_spe_pmu_pad_buf(handle, delta);
424 head = PERF_IDX2OFF(handle->head, buf);
427 /* If we've run out of free space, then nothing more to do */
428 if (!handle->size)
429 goto no_space;
431 /* Compute the tail and wakeup indices now that we've aligned head */
432 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
433 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
436 * Avoid clobbering unconsumed data. We know we have space, so
437 * if we see head == tail we know that the buffer is empty. If
438 * head > tail, then there's nothing to clobber prior to
439 * wrapping.
441 if (head < tail)
442 limit = round_down(tail, PAGE_SIZE);
445 * Wakeup may be arbitrarily far into the future. If it's not in
446 * the current generation, either we'll wrap before hitting it,
447 * or it's in the past and has been handled already.
449 * If there's a wakeup before we wrap, arrange to be woken up by
450 * the page boundary following it. Keep the tail boundary if
451 * that's lower.
453 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
454 limit = min(limit, round_up(wakeup, PAGE_SIZE));
456 if (limit > head)
457 return limit;
459 arm_spe_pmu_pad_buf(handle, handle->size);
460 no_space:
461 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
462 perf_aux_output_end(handle, 0);
463 return 0;
466 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
468 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
469 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
470 u64 limit = __arm_spe_pmu_next_off(handle);
471 u64 head = PERF_IDX2OFF(handle->head, buf);
474 * If the head has come too close to the end of the buffer,
475 * then pad to the end and recompute the limit.
477 if (limit && (limit - head < spe_pmu->max_record_sz)) {
478 arm_spe_pmu_pad_buf(handle, limit - head);
479 limit = __arm_spe_pmu_next_off(handle);
482 return limit;
485 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
486 struct perf_event *event)
488 u64 base, limit;
489 struct arm_spe_pmu_buf *buf;
491 /* Start a new aux session */
492 buf = perf_aux_output_begin(handle, event);
493 if (!buf) {
494 event->hw.state |= PERF_HES_STOPPED;
496 * We still need to clear the limit pointer, since the
497 * profiler might only be disabled by virtue of a fault.
499 limit = 0;
500 goto out_write_limit;
503 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
504 : arm_spe_pmu_next_off(handle);
505 if (limit)
506 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
508 limit += (u64)buf->base;
509 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
510 write_sysreg_s(base, SYS_PMBPTR_EL1);
512 out_write_limit:
513 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
516 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
518 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
519 u64 offset, size;
521 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
522 size = offset - PERF_IDX2OFF(handle->head, buf);
524 if (buf->snapshot)
525 handle->head = offset;
527 perf_aux_output_end(handle, size);
530 static void arm_spe_pmu_disable_and_drain_local(void)
532 /* Disable profiling at EL0 and EL1 */
533 write_sysreg_s(0, SYS_PMSCR_EL1);
534 isb();
536 /* Drain any buffered data */
537 psb_csync();
538 dsb(nsh);
540 /* Disable the profiling buffer */
541 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
542 isb();
545 /* IRQ handling */
546 static enum arm_spe_pmu_buf_fault_action
547 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
549 const char *err_str;
550 u64 pmbsr;
551 enum arm_spe_pmu_buf_fault_action ret;
554 * Ensure new profiling data is visible to the CPU and any external
555 * aborts have been resolved.
557 psb_csync();
558 dsb(nsh);
560 /* Ensure hardware updates to PMBPTR_EL1 are visible */
561 isb();
563 /* Service required? */
564 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
565 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
566 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
569 * If we've lost data, disable profiling and also set the PARTIAL
570 * flag to indicate that the last record is corrupted.
572 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
573 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
574 PERF_AUX_FLAG_PARTIAL);
576 /* Report collisions to userspace so that it can up the period */
577 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
578 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
580 /* We only expect buffer management events */
581 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
582 case SYS_PMBSR_EL1_EC_BUF:
583 /* Handled below */
584 break;
585 case SYS_PMBSR_EL1_EC_FAULT_S1:
586 case SYS_PMBSR_EL1_EC_FAULT_S2:
587 err_str = "Unexpected buffer fault";
588 goto out_err;
589 default:
590 err_str = "Unknown error code";
591 goto out_err;
594 /* Buffer management event */
595 switch (pmbsr &
596 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
597 case SYS_PMBSR_EL1_BUF_BSC_FULL:
598 ret = SPE_PMU_BUF_FAULT_ACT_OK;
599 goto out_stop;
600 default:
601 err_str = "Unknown buffer status code";
604 out_err:
605 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
606 err_str, smp_processor_id(), pmbsr,
607 read_sysreg_s(SYS_PMBPTR_EL1),
608 read_sysreg_s(SYS_PMBLIMITR_EL1));
609 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
611 out_stop:
612 arm_spe_perf_aux_output_end(handle);
613 return ret;
616 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
618 struct perf_output_handle *handle = dev;
619 struct perf_event *event = handle->event;
620 enum arm_spe_pmu_buf_fault_action act;
622 if (!perf_get_aux(handle))
623 return IRQ_NONE;
625 act = arm_spe_pmu_buf_get_fault_act(handle);
626 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
627 return IRQ_NONE;
630 * Ensure perf callbacks have completed, which may disable the
631 * profiling buffer in response to a TRUNCATION flag.
633 irq_work_run();
635 switch (act) {
636 case SPE_PMU_BUF_FAULT_ACT_FATAL:
638 * If a fatal exception occurred then leaving the profiling
639 * buffer enabled is a recipe waiting to happen. Since
640 * fatal faults don't always imply truncation, make sure
641 * that the profiling buffer is disabled explicitly before
642 * clearing the syndrome register.
644 arm_spe_pmu_disable_and_drain_local();
645 break;
646 case SPE_PMU_BUF_FAULT_ACT_OK:
648 * We handled the fault (the buffer was full), so resume
649 * profiling as long as we didn't detect truncation.
650 * PMBPTR might be misaligned, but we'll burn that bridge
651 * when we get to it.
653 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
654 arm_spe_perf_aux_output_begin(handle, event);
655 isb();
657 break;
658 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
659 /* We've seen you before, but GCC has the memory of a sieve. */
660 break;
663 /* The buffer pointers are now sane, so resume profiling. */
664 write_sysreg_s(0, SYS_PMBSR_EL1);
665 return IRQ_HANDLED;
668 /* Perf callbacks */
669 static int arm_spe_pmu_event_init(struct perf_event *event)
671 u64 reg;
672 struct perf_event_attr *attr = &event->attr;
673 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
675 /* This is, of course, deeply driver-specific */
676 if (attr->type != event->pmu->type)
677 return -ENOENT;
679 if (event->cpu >= 0 &&
680 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
681 return -ENOENT;
683 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
684 return -EOPNOTSUPP;
686 if (attr->exclude_idle)
687 return -EOPNOTSUPP;
690 * Feedback-directed frequency throttling doesn't work when we
691 * have a buffer of samples. We'd need to manually count the
692 * samples in the buffer when it fills up and adjust the event
693 * count to reflect that. Instead, just force the user to specify
694 * a sample period.
696 if (attr->freq)
697 return -EINVAL;
699 reg = arm_spe_event_to_pmsfcr(event);
700 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
701 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
702 return -EOPNOTSUPP;
704 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
705 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
706 return -EOPNOTSUPP;
708 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
709 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
710 return -EOPNOTSUPP;
712 reg = arm_spe_event_to_pmscr(event);
713 if (!capable(CAP_SYS_ADMIN) &&
714 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
715 BIT(SYS_PMSCR_EL1_CX_SHIFT) |
716 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
717 return -EACCES;
719 return 0;
722 static void arm_spe_pmu_start(struct perf_event *event, int flags)
724 u64 reg;
725 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
726 struct hw_perf_event *hwc = &event->hw;
727 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
729 hwc->state = 0;
730 arm_spe_perf_aux_output_begin(handle, event);
731 if (hwc->state)
732 return;
734 reg = arm_spe_event_to_pmsfcr(event);
735 write_sysreg_s(reg, SYS_PMSFCR_EL1);
737 reg = arm_spe_event_to_pmsevfr(event);
738 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
740 reg = arm_spe_event_to_pmslatfr(event);
741 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
743 if (flags & PERF_EF_RELOAD) {
744 reg = arm_spe_event_to_pmsirr(event);
745 write_sysreg_s(reg, SYS_PMSIRR_EL1);
746 isb();
747 reg = local64_read(&hwc->period_left);
748 write_sysreg_s(reg, SYS_PMSICR_EL1);
751 reg = arm_spe_event_to_pmscr(event);
752 isb();
753 write_sysreg_s(reg, SYS_PMSCR_EL1);
756 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
758 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759 struct hw_perf_event *hwc = &event->hw;
760 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
762 /* If we're already stopped, then nothing to do */
763 if (hwc->state & PERF_HES_STOPPED)
764 return;
766 /* Stop all trace generation */
767 arm_spe_pmu_disable_and_drain_local();
769 if (flags & PERF_EF_UPDATE) {
771 * If there's a fault pending then ensure we contain it
772 * to this buffer, since we might be on the context-switch
773 * path.
775 if (perf_get_aux(handle)) {
776 enum arm_spe_pmu_buf_fault_action act;
778 act = arm_spe_pmu_buf_get_fault_act(handle);
779 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
780 arm_spe_perf_aux_output_end(handle);
781 else
782 write_sysreg_s(0, SYS_PMBSR_EL1);
786 * This may also contain ECOUNT, but nobody else should
787 * be looking at period_left, since we forbid frequency
788 * based sampling.
790 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
791 hwc->state |= PERF_HES_UPTODATE;
794 hwc->state |= PERF_HES_STOPPED;
797 static int arm_spe_pmu_add(struct perf_event *event, int flags)
799 int ret = 0;
800 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
801 struct hw_perf_event *hwc = &event->hw;
802 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
804 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
805 return -ENOENT;
807 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
809 if (flags & PERF_EF_START) {
810 arm_spe_pmu_start(event, PERF_EF_RELOAD);
811 if (hwc->state & PERF_HES_STOPPED)
812 ret = -EINVAL;
815 return ret;
818 static void arm_spe_pmu_del(struct perf_event *event, int flags)
820 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823 static void arm_spe_pmu_read(struct perf_event *event)
827 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
828 int nr_pages, bool snapshot)
830 int i, cpu = event->cpu;
831 struct page **pglist;
832 struct arm_spe_pmu_buf *buf;
834 /* We need at least two pages for this to work. */
835 if (nr_pages < 2)
836 return NULL;
839 * We require an even number of pages for snapshot mode, so that
840 * we can effectively treat the buffer as consisting of two equal
841 * parts and give userspace a fighting chance of getting some
842 * useful data out of it.
844 if (!nr_pages || (snapshot && (nr_pages & 1)))
845 return NULL;
847 if (cpu == -1)
848 cpu = raw_smp_processor_id();
850 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
851 if (!buf)
852 return NULL;
854 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
855 if (!pglist)
856 goto out_free_buf;
858 for (i = 0; i < nr_pages; ++i) {
859 struct page *page = virt_to_page(pages[i]);
861 if (PagePrivate(page)) {
862 pr_warn("unexpected high-order page for auxbuf!");
863 goto out_free_pglist;
866 pglist[i] = virt_to_page(pages[i]);
869 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
870 if (!buf->base)
871 goto out_free_pglist;
873 buf->nr_pages = nr_pages;
874 buf->snapshot = snapshot;
876 kfree(pglist);
877 return buf;
879 out_free_pglist:
880 kfree(pglist);
881 out_free_buf:
882 kfree(buf);
883 return NULL;
886 static void arm_spe_pmu_free_aux(void *aux)
888 struct arm_spe_pmu_buf *buf = aux;
890 vunmap(buf->base);
891 kfree(buf);
894 /* Initialisation and teardown functions */
895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
897 static atomic_t pmu_idx = ATOMIC_INIT(-1);
899 int idx;
900 char *name;
901 struct device *dev = &spe_pmu->pdev->dev;
903 spe_pmu->pmu = (struct pmu) {
904 .module = THIS_MODULE,
905 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
906 .attr_groups = arm_spe_pmu_attr_groups,
908 * We hitch a ride on the software context here, so that
909 * we can support per-task profiling (which is not possible
910 * with the invalid context as it doesn't get sched callbacks).
911 * This requires that userspace either uses a dummy event for
912 * perf_event_open, since the aux buffer is not setup until
913 * a subsequent mmap, or creates the profiling event in a
914 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915 * once the buffer has been created.
917 .task_ctx_nr = perf_sw_context,
918 .event_init = arm_spe_pmu_event_init,
919 .add = arm_spe_pmu_add,
920 .del = arm_spe_pmu_del,
921 .start = arm_spe_pmu_start,
922 .stop = arm_spe_pmu_stop,
923 .read = arm_spe_pmu_read,
924 .setup_aux = arm_spe_pmu_setup_aux,
925 .free_aux = arm_spe_pmu_free_aux,
928 idx = atomic_inc_return(&pmu_idx);
929 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
930 if (!name) {
931 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
932 return -ENOMEM;
935 return perf_pmu_register(&spe_pmu->pmu, name, -1);
938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
940 perf_pmu_unregister(&spe_pmu->pmu);
943 static void __arm_spe_pmu_dev_probe(void *info)
945 int fld;
946 u64 reg;
947 struct arm_spe_pmu *spe_pmu = info;
948 struct device *dev = &spe_pmu->pdev->dev;
950 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
951 ID_AA64DFR0_PMSVER_SHIFT);
952 if (!fld) {
953 dev_err(dev,
954 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
955 fld, smp_processor_id());
956 return;
959 /* Read PMBIDR first to determine whether or not we have access */
960 reg = read_sysreg_s(SYS_PMBIDR_EL1);
961 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
962 dev_err(dev,
963 "profiling buffer owned by higher exception level\n");
964 return;
967 /* Minimum alignment. If it's out-of-range, then fail the probe */
968 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
969 spe_pmu->align = 1 << fld;
970 if (spe_pmu->align > SZ_2K) {
971 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
972 fld, smp_processor_id());
973 return;
976 /* It's now safe to read PMSIDR and figure out what we've got */
977 reg = read_sysreg_s(SYS_PMSIDR_EL1);
978 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
979 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
981 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
982 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
984 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
985 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
987 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
988 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
990 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
991 spe_pmu->features |= SPE_PMU_FEAT_LDS;
993 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
994 spe_pmu->features |= SPE_PMU_FEAT_ERND;
996 /* This field has a spaced out encoding, so just use a look-up */
997 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
998 switch (fld) {
999 case 0:
1000 spe_pmu->min_period = 256;
1001 break;
1002 case 2:
1003 spe_pmu->min_period = 512;
1004 break;
1005 case 3:
1006 spe_pmu->min_period = 768;
1007 break;
1008 case 4:
1009 spe_pmu->min_period = 1024;
1010 break;
1011 case 5:
1012 spe_pmu->min_period = 1536;
1013 break;
1014 case 6:
1015 spe_pmu->min_period = 2048;
1016 break;
1017 case 7:
1018 spe_pmu->min_period = 3072;
1019 break;
1020 default:
1021 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1022 fld);
1023 /* Fallthrough */
1024 case 8:
1025 spe_pmu->min_period = 4096;
1028 /* Maximum record size. If it's out-of-range, then fail the probe */
1029 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1030 spe_pmu->max_record_sz = 1 << fld;
1031 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1032 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1033 fld, smp_processor_id());
1034 return;
1037 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1038 switch (fld) {
1039 default:
1040 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1041 fld);
1042 /* Fallthrough */
1043 case 2:
1044 spe_pmu->counter_sz = 12;
1047 dev_info(dev,
1048 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1049 cpumask_pr_args(&spe_pmu->supported_cpus),
1050 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1052 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1053 return;
1056 static void __arm_spe_pmu_reset_local(void)
1059 * This is probably overkill, as we have no idea where we're
1060 * draining any buffered data to...
1062 arm_spe_pmu_disable_and_drain_local();
1064 /* Reset the buffer base pointer */
1065 write_sysreg_s(0, SYS_PMBPTR_EL1);
1066 isb();
1068 /* Clear any pending management interrupts */
1069 write_sysreg_s(0, SYS_PMBSR_EL1);
1070 isb();
1073 static void __arm_spe_pmu_setup_one(void *info)
1075 struct arm_spe_pmu *spe_pmu = info;
1077 __arm_spe_pmu_reset_local();
1078 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1081 static void __arm_spe_pmu_stop_one(void *info)
1083 struct arm_spe_pmu *spe_pmu = info;
1085 disable_percpu_irq(spe_pmu->irq);
1086 __arm_spe_pmu_reset_local();
1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1091 struct arm_spe_pmu *spe_pmu;
1093 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1094 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1095 return 0;
1097 __arm_spe_pmu_setup_one(spe_pmu);
1098 return 0;
1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1103 struct arm_spe_pmu *spe_pmu;
1105 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1106 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1107 return 0;
1109 __arm_spe_pmu_stop_one(spe_pmu);
1110 return 0;
1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1115 int ret;
1116 cpumask_t *mask = &spe_pmu->supported_cpus;
1118 /* Make sure we probe the hardware on a relevant CPU */
1119 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1120 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1121 return -ENXIO;
1123 /* Request our PPIs (note that the IRQ is still disabled) */
1124 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1125 spe_pmu->handle);
1126 if (ret)
1127 return ret;
1130 * Register our hotplug notifier now so we don't miss any events.
1131 * This will enable the IRQ for any supported CPUs that are already
1132 * up.
1134 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1135 &spe_pmu->hotplug_node);
1136 if (ret)
1137 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1139 return ret;
1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1144 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1145 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1148 /* Driver and device probing */
1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1151 struct platform_device *pdev = spe_pmu->pdev;
1152 int irq = platform_get_irq(pdev, 0);
1154 if (irq < 0) {
1155 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1156 return -ENXIO;
1159 if (!irq_is_percpu(irq)) {
1160 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1161 return -EINVAL;
1164 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1165 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1166 return -EINVAL;
1169 spe_pmu->irq = irq;
1170 return 0;
1173 static const struct of_device_id arm_spe_pmu_of_match[] = {
1174 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1175 { /* Sentinel */ },
1178 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1180 int ret;
1181 struct arm_spe_pmu *spe_pmu;
1182 struct device *dev = &pdev->dev;
1185 * If kernelspace is unmapped when running at EL0, then the SPE
1186 * buffer will fault and prematurely terminate the AUX session.
1188 if (arm64_kernel_unmapped_at_el0()) {
1189 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1190 return -EPERM;
1193 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1194 if (!spe_pmu) {
1195 dev_err(dev, "failed to allocate spe_pmu\n");
1196 return -ENOMEM;
1199 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1200 if (!spe_pmu->handle)
1201 return -ENOMEM;
1203 spe_pmu->pdev = pdev;
1204 platform_set_drvdata(pdev, spe_pmu);
1206 ret = arm_spe_pmu_irq_probe(spe_pmu);
1207 if (ret)
1208 goto out_free_handle;
1210 ret = arm_spe_pmu_dev_init(spe_pmu);
1211 if (ret)
1212 goto out_free_handle;
1214 ret = arm_spe_pmu_perf_init(spe_pmu);
1215 if (ret)
1216 goto out_teardown_dev;
1218 return 0;
1220 out_teardown_dev:
1221 arm_spe_pmu_dev_teardown(spe_pmu);
1222 out_free_handle:
1223 free_percpu(spe_pmu->handle);
1224 return ret;
1227 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1229 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1231 arm_spe_pmu_perf_destroy(spe_pmu);
1232 arm_spe_pmu_dev_teardown(spe_pmu);
1233 free_percpu(spe_pmu->handle);
1234 return 0;
1237 static struct platform_driver arm_spe_pmu_driver = {
1238 .driver = {
1239 .name = DRVNAME,
1240 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1242 .probe = arm_spe_pmu_device_dt_probe,
1243 .remove = arm_spe_pmu_device_remove,
1246 static int __init arm_spe_pmu_init(void)
1248 int ret;
1250 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1251 arm_spe_pmu_cpu_startup,
1252 arm_spe_pmu_cpu_teardown);
1253 if (ret < 0)
1254 return ret;
1255 arm_spe_pmu_online = ret;
1257 ret = platform_driver_register(&arm_spe_pmu_driver);
1258 if (ret)
1259 cpuhp_remove_multi_state(arm_spe_pmu_online);
1261 return ret;
1264 static void __exit arm_spe_pmu_exit(void)
1266 platform_driver_unregister(&arm_spe_pmu_driver);
1267 cpuhp_remove_multi_state(arm_spe_pmu_online);
1270 module_init(arm_spe_pmu_init);
1271 module_exit(arm_spe_pmu_exit);
1273 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1274 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1275 MODULE_LICENSE("GPL v2");