2 * PTP 1588 clock support
4 * Copyright (C) 2010 OMICRON electronics GmbH
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <uapi/linux/sched/types.h>
33 #include "ptp_private.h"
35 #define PTP_MAX_ALARMS 4
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
42 static dev_t ptp_devt
;
43 static struct class *ptp_class
;
45 static DEFINE_IDA(ptp_clocks_map
);
47 /* time stamp event queue operations */
49 static inline int queue_free(struct timestamp_event_queue
*q
)
51 return PTP_MAX_TIMESTAMPS
- queue_cnt(q
) - 1;
54 static void enqueue_external_timestamp(struct timestamp_event_queue
*queue
,
55 struct ptp_clock_event
*src
)
57 struct ptp_extts_event
*dst
;
62 seconds
= div_u64_rem(src
->timestamp
, 1000000000, &remainder
);
64 spin_lock_irqsave(&queue
->lock
, flags
);
66 dst
= &queue
->buf
[queue
->tail
];
67 dst
->index
= src
->index
;
69 dst
->t
.nsec
= remainder
;
71 if (!queue_free(queue
))
72 queue
->head
= (queue
->head
+ 1) % PTP_MAX_TIMESTAMPS
;
74 queue
->tail
= (queue
->tail
+ 1) % PTP_MAX_TIMESTAMPS
;
76 spin_unlock_irqrestore(&queue
->lock
, flags
);
79 static s32
scaled_ppm_to_ppb(long ppm
)
82 * The 'freq' field in the 'struct timex' is in parts per
83 * million, but with a 16 bit binary fractional field.
85 * We want to calculate
87 * ppb = scaled_ppm * 1000 / 2^16
91 * ppb = scaled_ppm * 125 / 2^13
99 /* posix clock implementation */
101 static int ptp_clock_getres(struct posix_clock
*pc
, struct timespec64
*tp
)
108 static int ptp_clock_settime(struct posix_clock
*pc
, const struct timespec64
*tp
)
110 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
112 return ptp
->info
->settime64(ptp
->info
, tp
);
115 static int ptp_clock_gettime(struct posix_clock
*pc
, struct timespec64
*tp
)
117 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
120 err
= ptp
->info
->gettime64(ptp
->info
, tp
);
124 static int ptp_clock_adjtime(struct posix_clock
*pc
, struct timex
*tx
)
126 struct ptp_clock
*ptp
= container_of(pc
, struct ptp_clock
, clock
);
127 struct ptp_clock_info
*ops
;
128 int err
= -EOPNOTSUPP
;
132 if (tx
->modes
& ADJ_SETOFFSET
) {
133 struct timespec64 ts
;
137 ts
.tv_sec
= tx
->time
.tv_sec
;
138 ts
.tv_nsec
= tx
->time
.tv_usec
;
140 if (!(tx
->modes
& ADJ_NANO
))
143 if ((unsigned long) ts
.tv_nsec
>= NSEC_PER_SEC
)
146 kt
= timespec64_to_ktime(ts
);
147 delta
= ktime_to_ns(kt
);
148 err
= ops
->adjtime(ops
, delta
);
149 } else if (tx
->modes
& ADJ_FREQUENCY
) {
150 s32 ppb
= scaled_ppm_to_ppb(tx
->freq
);
151 if (ppb
> ops
->max_adj
|| ppb
< -ops
->max_adj
)
154 err
= ops
->adjfine(ops
, tx
->freq
);
156 err
= ops
->adjfreq(ops
, ppb
);
157 ptp
->dialed_frequency
= tx
->freq
;
158 } else if (tx
->modes
== 0) {
159 tx
->freq
= ptp
->dialed_frequency
;
166 static struct posix_clock_operations ptp_clock_ops
= {
167 .owner
= THIS_MODULE
,
168 .clock_adjtime
= ptp_clock_adjtime
,
169 .clock_gettime
= ptp_clock_gettime
,
170 .clock_getres
= ptp_clock_getres
,
171 .clock_settime
= ptp_clock_settime
,
178 static void ptp_clock_release(struct device
*dev
)
180 struct ptp_clock
*ptp
= container_of(dev
, struct ptp_clock
, dev
);
182 ptp_cleanup_pin_groups(ptp
);
183 mutex_destroy(&ptp
->tsevq_mux
);
184 mutex_destroy(&ptp
->pincfg_mux
);
185 ida_simple_remove(&ptp_clocks_map
, ptp
->index
);
189 static void ptp_aux_kworker(struct kthread_work
*work
)
191 struct ptp_clock
*ptp
= container_of(work
, struct ptp_clock
,
193 struct ptp_clock_info
*info
= ptp
->info
;
196 delay
= info
->do_aux_work(info
);
199 kthread_queue_delayed_work(ptp
->kworker
, &ptp
->aux_work
, delay
);
202 /* public interface */
204 struct ptp_clock
*ptp_clock_register(struct ptp_clock_info
*info
,
205 struct device
*parent
)
207 struct ptp_clock
*ptp
;
208 int err
= 0, index
, major
= MAJOR(ptp_devt
);
210 if (info
->n_alarm
> PTP_MAX_ALARMS
)
211 return ERR_PTR(-EINVAL
);
213 /* Initialize a clock structure. */
215 ptp
= kzalloc(sizeof(struct ptp_clock
), GFP_KERNEL
);
219 index
= ida_simple_get(&ptp_clocks_map
, 0, MINORMASK
+ 1, GFP_KERNEL
);
225 ptp
->clock
.ops
= ptp_clock_ops
;
227 ptp
->devid
= MKDEV(major
, index
);
229 spin_lock_init(&ptp
->tsevq
.lock
);
230 mutex_init(&ptp
->tsevq_mux
);
231 mutex_init(&ptp
->pincfg_mux
);
232 init_waitqueue_head(&ptp
->tsev_wq
);
234 if (ptp
->info
->do_aux_work
) {
235 char *worker_name
= kasprintf(GFP_KERNEL
, "ptp%d", ptp
->index
);
237 kthread_init_delayed_work(&ptp
->aux_work
, ptp_aux_kworker
);
238 ptp
->kworker
= kthread_create_worker(0, worker_name
?
239 worker_name
: info
->name
);
241 if (IS_ERR(ptp
->kworker
)) {
242 err
= PTR_ERR(ptp
->kworker
);
243 pr_err("failed to create ptp aux_worker %d\n", err
);
248 err
= ptp_populate_pin_groups(ptp
);
252 /* Register a new PPS source. */
254 struct pps_source_info pps
;
255 memset(&pps
, 0, sizeof(pps
));
256 snprintf(pps
.name
, PPS_MAX_NAME_LEN
, "ptp%d", index
);
257 pps
.mode
= PTP_PPS_MODE
;
258 pps
.owner
= info
->owner
;
259 ptp
->pps_source
= pps_register_source(&pps
, PTP_PPS_DEFAULTS
);
260 if (!ptp
->pps_source
) {
262 pr_err("failed to register pps source\n");
267 /* Initialize a new device of our class in our clock structure. */
268 device_initialize(&ptp
->dev
);
269 ptp
->dev
.devt
= ptp
->devid
;
270 ptp
->dev
.class = ptp_class
;
271 ptp
->dev
.parent
= parent
;
272 ptp
->dev
.groups
= ptp
->pin_attr_groups
;
273 ptp
->dev
.release
= ptp_clock_release
;
274 dev_set_drvdata(&ptp
->dev
, ptp
);
275 dev_set_name(&ptp
->dev
, "ptp%d", ptp
->index
);
277 /* Create a posix clock and link it to the device. */
278 err
= posix_clock_register(&ptp
->clock
, &ptp
->dev
);
280 pr_err("failed to create posix clock\n");
288 pps_unregister_source(ptp
->pps_source
);
290 ptp_cleanup_pin_groups(ptp
);
293 kthread_destroy_worker(ptp
->kworker
);
295 mutex_destroy(&ptp
->tsevq_mux
);
296 mutex_destroy(&ptp
->pincfg_mux
);
297 ida_simple_remove(&ptp_clocks_map
, index
);
303 EXPORT_SYMBOL(ptp_clock_register
);
305 int ptp_clock_unregister(struct ptp_clock
*ptp
)
308 wake_up_interruptible(&ptp
->tsev_wq
);
311 kthread_cancel_delayed_work_sync(&ptp
->aux_work
);
312 kthread_destroy_worker(ptp
->kworker
);
315 /* Release the clock's resources. */
317 pps_unregister_source(ptp
->pps_source
);
319 posix_clock_unregister(&ptp
->clock
);
323 EXPORT_SYMBOL(ptp_clock_unregister
);
325 void ptp_clock_event(struct ptp_clock
*ptp
, struct ptp_clock_event
*event
)
327 struct pps_event_time evt
;
329 switch (event
->type
) {
331 case PTP_CLOCK_ALARM
:
334 case PTP_CLOCK_EXTTS
:
335 enqueue_external_timestamp(&ptp
->tsevq
, event
);
336 wake_up_interruptible(&ptp
->tsev_wq
);
341 pps_event(ptp
->pps_source
, &evt
, PTP_PPS_EVENT
, NULL
);
344 case PTP_CLOCK_PPSUSR
:
345 pps_event(ptp
->pps_source
, &event
->pps_times
,
346 PTP_PPS_EVENT
, NULL
);
350 EXPORT_SYMBOL(ptp_clock_event
);
352 int ptp_clock_index(struct ptp_clock
*ptp
)
356 EXPORT_SYMBOL(ptp_clock_index
);
358 int ptp_find_pin(struct ptp_clock
*ptp
,
359 enum ptp_pin_function func
, unsigned int chan
)
361 struct ptp_pin_desc
*pin
= NULL
;
364 mutex_lock(&ptp
->pincfg_mux
);
365 for (i
= 0; i
< ptp
->info
->n_pins
; i
++) {
366 if (ptp
->info
->pin_config
[i
].func
== func
&&
367 ptp
->info
->pin_config
[i
].chan
== chan
) {
368 pin
= &ptp
->info
->pin_config
[i
];
372 mutex_unlock(&ptp
->pincfg_mux
);
376 EXPORT_SYMBOL(ptp_find_pin
);
378 int ptp_schedule_worker(struct ptp_clock
*ptp
, unsigned long delay
)
380 return kthread_mod_delayed_work(ptp
->kworker
, &ptp
->aux_work
, delay
);
382 EXPORT_SYMBOL(ptp_schedule_worker
);
384 /* module operations */
386 static void __exit
ptp_exit(void)
388 class_destroy(ptp_class
);
389 unregister_chrdev_region(ptp_devt
, MINORMASK
+ 1);
390 ida_destroy(&ptp_clocks_map
);
393 static int __init
ptp_init(void)
397 ptp_class
= class_create(THIS_MODULE
, "ptp");
398 if (IS_ERR(ptp_class
)) {
399 pr_err("ptp: failed to allocate class\n");
400 return PTR_ERR(ptp_class
);
403 err
= alloc_chrdev_region(&ptp_devt
, 0, MINORMASK
+ 1, "ptp");
405 pr_err("ptp: failed to allocate device region\n");
409 ptp_class
->dev_groups
= ptp_groups
;
410 pr_info("PTP clock support registered\n");
414 class_destroy(ptp_class
);
418 subsys_initcall(ptp_init
);
419 module_exit(ptp_exit
);
421 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
422 MODULE_DESCRIPTION("PTP clocks support");
423 MODULE_LICENSE("GPL");