1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) STMicroelectronics 2016
5 * Author: Gerald Baeza <gerald.baeza@st.com>
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 * pwm-atmel.c from Bo Shen
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK 0xFF
20 #define MAX_BREAKINPUT 2
24 struct mutex lock
; /* protect pwm config/enable */
26 struct regmap
*regmap
;
28 bool have_complementary_output
;
29 u32 capture
[4] ____cacheline_aligned
; /* DMA'able buffer */
32 struct stm32_breakinput
{
38 static inline struct stm32_pwm
*to_stm32_pwm_dev(struct pwm_chip
*chip
)
40 return container_of(chip
, struct stm32_pwm
, chip
);
43 static u32
active_channels(struct stm32_pwm
*dev
)
47 regmap_read(dev
->regmap
, TIM_CCER
, &ccer
);
49 return ccer
& TIM_CCER_CCXE
;
52 static int write_ccrx(struct stm32_pwm
*dev
, int ch
, u32 value
)
56 return regmap_write(dev
->regmap
, TIM_CCR1
, value
);
58 return regmap_write(dev
->regmap
, TIM_CCR2
, value
);
60 return regmap_write(dev
->regmap
, TIM_CCR3
, value
);
62 return regmap_write(dev
->regmap
, TIM_CCR4
, value
);
67 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
68 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
69 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
70 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
73 * Capture using PWM input mode:
75 * TI[1, 2, 3 or 4]: ........._| |________|
82 * COUNTER: ______XXXXX . . . |_XXX
87 * CCR1/CCR3: tx..........t0...........t2
88 * CCR2/CCR4: tx..............t1.........
90 * DMA burst transfer: | |
92 * DMA buffer: { t0, tx } { t2, t1 }
95 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
96 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
97 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
98 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103 * - Duty cycle = t1 - t0
105 static int stm32_pwm_raw_capture(struct stm32_pwm
*priv
, struct pwm_device
*pwm
,
106 unsigned long tmo_ms
, u32
*raw_prd
,
109 struct device
*parent
= priv
->chip
.dev
->parent
;
110 enum stm32_timers_dmas dma_id
;
114 /* Ensure registers have been updated, enable counter and capture */
115 regmap_update_bits(priv
->regmap
, TIM_EGR
, TIM_EGR_UG
, TIM_EGR_UG
);
116 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, TIM_CR1_CEN
);
118 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
119 dma_id
= pwm
->hwpwm
< 2 ? STM32_TIMERS_DMA_CH1
: STM32_TIMERS_DMA_CH3
;
120 ccen
= pwm
->hwpwm
< 2 ? TIM_CCER_CC12E
: TIM_CCER_CC34E
;
121 ccr
= pwm
->hwpwm
< 2 ? TIM_CCR1
: TIM_CCR3
;
122 regmap_update_bits(priv
->regmap
, TIM_CCER
, ccen
, ccen
);
125 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
126 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
127 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
128 * or { CCR3, CCR4 }, { CCR3, CCR4 }
130 ret
= stm32_timers_dma_burst_read(parent
, priv
->capture
, dma_id
, ccr
, 2,
135 /* Period: t2 - t0 (take care of counter overflow) */
136 if (priv
->capture
[0] <= priv
->capture
[2])
137 *raw_prd
= priv
->capture
[2] - priv
->capture
[0];
139 *raw_prd
= priv
->max_arr
- priv
->capture
[0] + priv
->capture
[2];
141 /* Duty cycle capture requires at least two capture units */
142 if (pwm
->chip
->npwm
< 2)
144 else if (priv
->capture
[0] <= priv
->capture
[3])
145 *raw_dty
= priv
->capture
[3] - priv
->capture
[0];
147 *raw_dty
= priv
->max_arr
- priv
->capture
[0] + priv
->capture
[3];
149 if (*raw_dty
> *raw_prd
) {
151 * Race beetween PWM input and DMA: it may happen
152 * falling edge triggers new capture on TI2/4 before DMA
153 * had a chance to read CCR2/4. It means capture[1]
154 * contains period + duty_cycle. So, subtract period.
156 *raw_dty
-= *raw_prd
;
160 regmap_update_bits(priv
->regmap
, TIM_CCER
, ccen
, 0);
161 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, 0);
166 static int stm32_pwm_capture(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
167 struct pwm_capture
*result
, unsigned long tmo_ms
)
169 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
170 unsigned long long prd
, div
, dty
;
172 unsigned int psc
= 0, icpsc
, scale
;
173 u32 raw_prd
= 0, raw_dty
= 0;
176 mutex_lock(&priv
->lock
);
178 if (active_channels(priv
)) {
183 ret
= clk_enable(priv
->clk
);
185 dev_err(priv
->chip
.dev
, "failed to enable counter clock\n");
189 rate
= clk_get_rate(priv
->clk
);
195 /* prescaler: fit timeout window provided by upper layer */
196 div
= (unsigned long long)rate
* (unsigned long long)tmo_ms
;
197 do_div(div
, MSEC_PER_SEC
);
199 while ((div
> priv
->max_arr
) && (psc
< MAX_TIM_PSC
)) {
202 do_div(div
, psc
+ 1);
204 regmap_write(priv
->regmap
, TIM_ARR
, priv
->max_arr
);
205 regmap_write(priv
->regmap
, TIM_PSC
, psc
);
207 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
208 regmap_update_bits(priv
->regmap
,
209 pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
,
210 TIM_CCMR_CC1S
| TIM_CCMR_CC2S
, pwm
->hwpwm
& 0x1 ?
211 TIM_CCMR_CC1S_TI2
| TIM_CCMR_CC2S_TI2
:
212 TIM_CCMR_CC1S_TI1
| TIM_CCMR_CC2S_TI1
);
214 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
215 regmap_update_bits(priv
->regmap
, TIM_CCER
, pwm
->hwpwm
< 2 ?
216 TIM_CCER_CC12P
: TIM_CCER_CC34P
, pwm
->hwpwm
< 2 ?
217 TIM_CCER_CC2P
: TIM_CCER_CC4P
);
219 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
, &raw_dty
);
224 * Got a capture. Try to improve accuracy at high rates:
225 * - decrease counter clock prescaler, scale up to max rate.
226 * - use input prescaler, capture once every /2 /4 or /8 edges.
229 u32 max_arr
= priv
->max_arr
- 0x1000; /* arbitrary margin */
231 scale
= max_arr
/ min(max_arr
, raw_prd
);
233 scale
= priv
->max_arr
; /* bellow resolution, use max scale */
236 if (psc
&& scale
> 1) {
237 /* 2nd measure with new scale */
239 regmap_write(priv
->regmap
, TIM_PSC
, psc
);
240 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
,
246 /* Compute intermediate period not to exceed timeout at low rates */
247 prd
= (unsigned long long)raw_prd
* (psc
+ 1) * NSEC_PER_SEC
;
250 for (icpsc
= 0; icpsc
< MAX_TIM_ICPSC
; icpsc
++) {
251 /* input prescaler: also keep arbitrary margin */
252 if (raw_prd
>= (priv
->max_arr
- 0x1000) >> (icpsc
+ 1))
254 if (prd
>= (tmo_ms
* NSEC_PER_MSEC
) >> (icpsc
+ 2))
261 /* Last chance to improve period accuracy, using input prescaler */
262 regmap_update_bits(priv
->regmap
,
263 pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
,
264 TIM_CCMR_IC1PSC
| TIM_CCMR_IC2PSC
,
265 FIELD_PREP(TIM_CCMR_IC1PSC
, icpsc
) |
266 FIELD_PREP(TIM_CCMR_IC2PSC
, icpsc
));
268 ret
= stm32_pwm_raw_capture(priv
, pwm
, tmo_ms
, &raw_prd
, &raw_dty
);
272 if (raw_dty
>= (raw_prd
>> icpsc
)) {
274 * We may fall here using input prescaler, when input
275 * capture starts on high side (before falling edge).
276 * Example with icpsc to capture on each 4 events:
278 * start 1st capture 2nd capture
280 * ___ _____ _____ _____ _____ ____
281 * TI1..4 |__| |__| |__| |__| |__|
283 * icpsc1/3: . 0 . 1 . 2 . 3 . 0
284 * icpsc2/4: 0 1 2 3 0
286 * CCR1/3 ......t0..............................t2
287 * CCR2/4 ..t1..............................t1'...
289 * Capture0: .<----------------------------->.
290 * Capture1: .<-------------------------->. .
292 * Period: .<------> . .
296 * - Period = Capture0 / icpsc
297 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
299 raw_dty
= (raw_prd
>> icpsc
) - (raw_prd
- raw_dty
);
303 prd
= (unsigned long long)raw_prd
* (psc
+ 1) * NSEC_PER_SEC
;
304 result
->period
= DIV_ROUND_UP_ULL(prd
, rate
<< icpsc
);
305 dty
= (unsigned long long)raw_dty
* (psc
+ 1) * NSEC_PER_SEC
;
306 result
->duty_cycle
= DIV_ROUND_UP_ULL(dty
, rate
);
308 regmap_write(priv
->regmap
, TIM_CCER
, 0);
309 regmap_write(priv
->regmap
, pwm
->hwpwm
< 2 ? TIM_CCMR1
: TIM_CCMR2
, 0);
310 regmap_write(priv
->regmap
, TIM_PSC
, 0);
312 clk_disable(priv
->clk
);
314 mutex_unlock(&priv
->lock
);
319 static int stm32_pwm_config(struct stm32_pwm
*priv
, int ch
,
320 int duty_ns
, int period_ns
)
322 unsigned long long prd
, div
, dty
;
323 unsigned int prescaler
= 0;
324 u32 ccmr
, mask
, shift
;
326 /* Period and prescaler values depends on clock rate */
327 div
= (unsigned long long)clk_get_rate(priv
->clk
) * period_ns
;
329 do_div(div
, NSEC_PER_SEC
);
332 while (div
> priv
->max_arr
) {
335 do_div(div
, prescaler
+ 1);
340 if (prescaler
> MAX_TIM_PSC
)
344 * All channels share the same prescaler and counter so when two
345 * channels are active at the same time we can't change them
347 if (active_channels(priv
) & ~(1 << ch
* 4)) {
350 regmap_read(priv
->regmap
, TIM_PSC
, &psc
);
351 regmap_read(priv
->regmap
, TIM_ARR
, &arr
);
353 if ((psc
!= prescaler
) || (arr
!= prd
- 1))
357 regmap_write(priv
->regmap
, TIM_PSC
, prescaler
);
358 regmap_write(priv
->regmap
, TIM_ARR
, prd
- 1);
359 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_ARPE
, TIM_CR1_ARPE
);
361 /* Calculate the duty cycles */
363 do_div(dty
, period_ns
);
365 write_ccrx(priv
, ch
, dty
);
367 /* Configure output mode */
368 shift
= (ch
& 0x1) * CCMR_CHANNEL_SHIFT
;
369 ccmr
= (TIM_CCMR_PE
| TIM_CCMR_M1
) << shift
;
370 mask
= CCMR_CHANNEL_MASK
<< shift
;
373 regmap_update_bits(priv
->regmap
, TIM_CCMR1
, mask
, ccmr
);
375 regmap_update_bits(priv
->regmap
, TIM_CCMR2
, mask
, ccmr
);
377 regmap_update_bits(priv
->regmap
, TIM_BDTR
,
378 TIM_BDTR_MOE
| TIM_BDTR_AOE
,
379 TIM_BDTR_MOE
| TIM_BDTR_AOE
);
384 static int stm32_pwm_set_polarity(struct stm32_pwm
*priv
, int ch
,
385 enum pwm_polarity polarity
)
389 mask
= TIM_CCER_CC1P
<< (ch
* 4);
390 if (priv
->have_complementary_output
)
391 mask
|= TIM_CCER_CC1NP
<< (ch
* 4);
393 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
,
394 polarity
== PWM_POLARITY_NORMAL
? 0 : mask
);
399 static int stm32_pwm_enable(struct stm32_pwm
*priv
, int ch
)
404 ret
= clk_enable(priv
->clk
);
409 mask
= TIM_CCER_CC1E
<< (ch
* 4);
410 if (priv
->have_complementary_output
)
411 mask
|= TIM_CCER_CC1NE
<< (ch
* 4);
413 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
, mask
);
415 /* Make sure that registers are updated */
416 regmap_update_bits(priv
->regmap
, TIM_EGR
, TIM_EGR_UG
, TIM_EGR_UG
);
418 /* Enable controller */
419 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, TIM_CR1_CEN
);
424 static void stm32_pwm_disable(struct stm32_pwm
*priv
, int ch
)
428 /* Disable channel */
429 mask
= TIM_CCER_CC1E
<< (ch
* 4);
430 if (priv
->have_complementary_output
)
431 mask
|= TIM_CCER_CC1NE
<< (ch
* 4);
433 regmap_update_bits(priv
->regmap
, TIM_CCER
, mask
, 0);
435 /* When all channels are disabled, we can disable the controller */
436 if (!active_channels(priv
))
437 regmap_update_bits(priv
->regmap
, TIM_CR1
, TIM_CR1_CEN
, 0);
439 clk_disable(priv
->clk
);
442 static int stm32_pwm_apply(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
443 struct pwm_state
*state
)
446 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
449 enabled
= pwm
->state
.enabled
;
451 if (enabled
&& !state
->enabled
) {
452 stm32_pwm_disable(priv
, pwm
->hwpwm
);
456 if (state
->polarity
!= pwm
->state
.polarity
)
457 stm32_pwm_set_polarity(priv
, pwm
->hwpwm
, state
->polarity
);
459 ret
= stm32_pwm_config(priv
, pwm
->hwpwm
,
460 state
->duty_cycle
, state
->period
);
464 if (!enabled
&& state
->enabled
)
465 ret
= stm32_pwm_enable(priv
, pwm
->hwpwm
);
470 static int stm32_pwm_apply_locked(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
471 struct pwm_state
*state
)
473 struct stm32_pwm
*priv
= to_stm32_pwm_dev(chip
);
476 /* protect common prescaler for all active channels */
477 mutex_lock(&priv
->lock
);
478 ret
= stm32_pwm_apply(chip
, pwm
, state
);
479 mutex_unlock(&priv
->lock
);
484 static const struct pwm_ops stm32pwm_ops
= {
485 .owner
= THIS_MODULE
,
486 .apply
= stm32_pwm_apply_locked
,
487 .capture
= IS_ENABLED(CONFIG_DMA_ENGINE
) ? stm32_pwm_capture
: NULL
,
490 static int stm32_pwm_set_breakinput(struct stm32_pwm
*priv
,
491 int index
, int level
, int filter
)
493 u32 bke
= (index
== 0) ? TIM_BDTR_BKE
: TIM_BDTR_BK2E
;
494 int shift
= (index
== 0) ? TIM_BDTR_BKF_SHIFT
: TIM_BDTR_BK2F_SHIFT
;
495 u32 mask
= (index
== 0) ? TIM_BDTR_BKE
| TIM_BDTR_BKP
| TIM_BDTR_BKF
496 : TIM_BDTR_BK2E
| TIM_BDTR_BK2P
| TIM_BDTR_BK2F
;
500 * The both bits could be set since only one will be wrote
504 bdtr
|= TIM_BDTR_BKP
| TIM_BDTR_BK2P
;
506 bdtr
|= (filter
& TIM_BDTR_BKF_MASK
) << shift
;
508 regmap_update_bits(priv
->regmap
, TIM_BDTR
, mask
, bdtr
);
510 regmap_read(priv
->regmap
, TIM_BDTR
, &bdtr
);
512 return (bdtr
& bke
) ? 0 : -EINVAL
;
515 static int stm32_pwm_apply_breakinputs(struct stm32_pwm
*priv
,
516 struct device_node
*np
)
518 struct stm32_breakinput breakinput
[MAX_BREAKINPUT
];
519 int nb
, ret
, i
, array_size
;
521 nb
= of_property_count_elems_of_size(np
, "st,breakinput",
522 sizeof(struct stm32_breakinput
));
525 * Because "st,breakinput" parameter is optional do not make probe
526 * failed if it doesn't exist.
531 if (nb
> MAX_BREAKINPUT
)
534 array_size
= nb
* sizeof(struct stm32_breakinput
) / sizeof(u32
);
535 ret
= of_property_read_u32_array(np
, "st,breakinput",
536 (u32
*)breakinput
, array_size
);
540 for (i
= 0; i
< nb
&& !ret
; i
++) {
541 ret
= stm32_pwm_set_breakinput(priv
,
544 breakinput
[i
].filter
);
550 static void stm32_pwm_detect_complementary(struct stm32_pwm
*priv
)
555 * If complementary bit doesn't exist writing 1 will have no
556 * effect so we can detect it.
558 regmap_update_bits(priv
->regmap
,
559 TIM_CCER
, TIM_CCER_CC1NE
, TIM_CCER_CC1NE
);
560 regmap_read(priv
->regmap
, TIM_CCER
, &ccer
);
561 regmap_update_bits(priv
->regmap
, TIM_CCER
, TIM_CCER_CC1NE
, 0);
563 priv
->have_complementary_output
= (ccer
!= 0);
566 static int stm32_pwm_detect_channels(struct stm32_pwm
*priv
)
572 * If channels enable bits don't exist writing 1 will have no
573 * effect so we can detect and count them.
575 regmap_update_bits(priv
->regmap
,
576 TIM_CCER
, TIM_CCER_CCXE
, TIM_CCER_CCXE
);
577 regmap_read(priv
->regmap
, TIM_CCER
, &ccer
);
578 regmap_update_bits(priv
->regmap
, TIM_CCER
, TIM_CCER_CCXE
, 0);
580 if (ccer
& TIM_CCER_CC1E
)
583 if (ccer
& TIM_CCER_CC2E
)
586 if (ccer
& TIM_CCER_CC3E
)
589 if (ccer
& TIM_CCER_CC4E
)
595 static int stm32_pwm_probe(struct platform_device
*pdev
)
597 struct device
*dev
= &pdev
->dev
;
598 struct device_node
*np
= dev
->of_node
;
599 struct stm32_timers
*ddata
= dev_get_drvdata(pdev
->dev
.parent
);
600 struct stm32_pwm
*priv
;
603 priv
= devm_kzalloc(dev
, sizeof(*priv
), GFP_KERNEL
);
607 mutex_init(&priv
->lock
);
608 priv
->regmap
= ddata
->regmap
;
609 priv
->clk
= ddata
->clk
;
610 priv
->max_arr
= ddata
->max_arr
;
612 if (!priv
->regmap
|| !priv
->clk
)
615 ret
= stm32_pwm_apply_breakinputs(priv
, np
);
619 stm32_pwm_detect_complementary(priv
);
621 priv
->chip
.base
= -1;
622 priv
->chip
.dev
= dev
;
623 priv
->chip
.ops
= &stm32pwm_ops
;
624 priv
->chip
.npwm
= stm32_pwm_detect_channels(priv
);
626 ret
= pwmchip_add(&priv
->chip
);
630 platform_set_drvdata(pdev
, priv
);
635 static int stm32_pwm_remove(struct platform_device
*pdev
)
637 struct stm32_pwm
*priv
= platform_get_drvdata(pdev
);
640 for (i
= 0; i
< priv
->chip
.npwm
; i
++)
641 pwm_disable(&priv
->chip
.pwms
[i
]);
643 pwmchip_remove(&priv
->chip
);
648 static const struct of_device_id stm32_pwm_of_match
[] = {
649 { .compatible
= "st,stm32-pwm", },
652 MODULE_DEVICE_TABLE(of
, stm32_pwm_of_match
);
654 static struct platform_driver stm32_pwm_driver
= {
655 .probe
= stm32_pwm_probe
,
656 .remove
= stm32_pwm_remove
,
659 .of_match_table
= stm32_pwm_of_match
,
662 module_platform_driver(stm32_pwm_driver
);
664 MODULE_ALIAS("platform:stm32-pwm");
665 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
666 MODULE_LICENSE("GPL v2");