Linux 4.19.133
[linux/fpc-iii.git] / drivers / rtc / rtc-imxdi.c
blob80931114c8997a93dddd55a857593ce301a3c4d4
1 /*
2 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2010 Orex Computed Radiography
4 */
6 /*
7 * The code contained herein is licensed under the GNU General Public
8 * License. You may obtain a copy of the GNU General Public License
9 * Version 2 or later at the following locations:
11 * http://www.opensource.org/licenses/gpl-license.html
12 * http://www.gnu.org/copyleft/gpl.html
15 /* based on rtc-mc13892.c */
18 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
19 * to implement a Linux RTC. Times and alarms are truncated to seconds.
20 * Since the RTC framework performs API locking via rtc->ops_lock the
21 * only simultaneous accesses we need to deal with is updating DryIce
22 * registers while servicing an alarm.
24 * Note that reading the DSR (DryIce Status Register) automatically clears
25 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
26 * LP (Low Power) domain and set the WCF upon completion. Writes to the
27 * DIER (DryIce Interrupt Enable Register) are the only exception. These
28 * occur at normal bus speeds and do not set WCF. Periodic interrupts are
29 * not supported by the hardware.
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/workqueue.h>
41 #include <linux/of.h>
43 /* DryIce Register Definitions */
45 #define DTCMR 0x00 /* Time Counter MSB Reg */
46 #define DTCLR 0x04 /* Time Counter LSB Reg */
48 #define DCAMR 0x08 /* Clock Alarm MSB Reg */
49 #define DCALR 0x0c /* Clock Alarm LSB Reg */
50 #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
52 #define DCR 0x10 /* Control Reg */
53 #define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
54 #define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
55 #define DCR_KSSL (1 << 27) /* Key-select soft lock */
56 #define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
57 #define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
58 #define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
59 #define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
60 #define DCR_FSHL (1 << 16) /* Failure state hard lock */
61 #define DCR_TCE (1 << 3) /* Time Counter Enable */
62 #define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
64 #define DSR 0x14 /* Status Reg */
65 #define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
66 #define DSR_ETBD (1 << 22) /* External tamper B detected */
67 #define DSR_ETAD (1 << 21) /* External tamper A detected */
68 #define DSR_EBD (1 << 20) /* External boot detected */
69 #define DSR_SAD (1 << 19) /* SCC alarm detected */
70 #define DSR_TTD (1 << 18) /* Temperature tamper detected */
71 #define DSR_CTD (1 << 17) /* Clock tamper detected */
72 #define DSR_VTD (1 << 16) /* Voltage tamper detected */
73 #define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
74 #define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
75 #define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
76 #define DSR_WEF (1 << 7) /* Write Error Flag */
77 #define DSR_CAF (1 << 4) /* Clock Alarm Flag */
78 #define DSR_MCO (1 << 3) /* monotonic counter overflow */
79 #define DSR_TCO (1 << 2) /* time counter overflow */
80 #define DSR_NVF (1 << 1) /* Non-Valid Flag */
81 #define DSR_SVF (1 << 0) /* Security Violation Flag */
83 #define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
84 #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
85 #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
86 #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
87 #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
88 #define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
90 #define DMCR 0x1c /* DryIce Monotonic Counter Reg */
92 #define DTCR 0x28 /* DryIce Tamper Configuration Reg */
93 #define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
94 #define DTCR_TOE (1 << 8) /* time overflow enabled */
95 #define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
96 #define DTCR_ETBE (1 << 6) /* external B tamper enabled */
97 #define DTCR_ETAE (1 << 5) /* external A tamper enabled */
98 #define DTCR_EBE (1 << 4) /* external boot tamper enabled */
99 #define DTCR_SAIE (1 << 3) /* SCC enabled */
100 #define DTCR_TTE (1 << 2) /* temperature tamper enabled */
101 #define DTCR_CTE (1 << 1) /* clock tamper enabled */
102 #define DTCR_VTE (1 << 0) /* voltage tamper enabled */
104 #define DGPR 0x3c /* DryIce General Purpose Reg */
107 * struct imxdi_dev - private imxdi rtc data
108 * @pdev: pionter to platform dev
109 * @rtc: pointer to rtc struct
110 * @ioaddr: IO registers pointer
111 * @clk: input reference clock
112 * @dsr: copy of the DSR register
113 * @irq_lock: interrupt enable register (DIER) lock
114 * @write_wait: registers write complete queue
115 * @write_mutex: serialize registers write
116 * @work: schedule alarm work
118 struct imxdi_dev {
119 struct platform_device *pdev;
120 struct rtc_device *rtc;
121 void __iomem *ioaddr;
122 struct clk *clk;
123 u32 dsr;
124 spinlock_t irq_lock;
125 wait_queue_head_t write_wait;
126 struct mutex write_mutex;
127 struct work_struct work;
130 /* Some background:
132 * The DryIce unit is a complex security/tamper monitor device. To be able do
133 * its job in a useful manner it runs a bigger statemachine to bring it into
134 * security/tamper failure state and once again to bring it out of this state.
136 * This unit can be in one of three states:
138 * - "NON-VALID STATE"
139 * always after the battery power was removed
140 * - "FAILURE STATE"
141 * if one of the enabled security events has happened
142 * - "VALID STATE"
143 * if the unit works as expected
145 * Everything stops when the unit enters the failure state including the RTC
146 * counter (to be able to detect the time the security event happened).
148 * The following events (when enabled) let the DryIce unit enter the failure
149 * state:
151 * - wire-mesh-tamper detect
152 * - external tamper B detect
153 * - external tamper A detect
154 * - temperature tamper detect
155 * - clock tamper detect
156 * - voltage tamper detect
157 * - RTC counter overflow
158 * - monotonic counter overflow
159 * - external boot
161 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
162 * can only detect this state. In this case the unit is completely locked and
163 * must force a second "SYSTEM POR" to bring the DryIce into the
164 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
165 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
166 * a battery power cycle is required.
168 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
169 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
170 * task, we bring back this unit into life.
174 * Do a write into the unit without interrupt support.
175 * We do not need to check the WEF here, because the only reason this kind of
176 * write error can happen is if we write to the unit twice within the 122 us
177 * interval. This cannot happen, since we are using this function only while
178 * setting up the unit.
180 static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
181 unsigned reg)
183 /* do the register write */
184 writel(val, imxdi->ioaddr + reg);
187 * now it takes four 32,768 kHz clock cycles to take
188 * the change into effect = 122 us
190 usleep_range(130, 200);
193 static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr)
195 u32 dtcr;
197 dtcr = readl(imxdi->ioaddr + DTCR);
199 dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
200 /* the following flags force a transition into the "FAILURE STATE" */
201 if (dsr & DSR_VTD)
202 dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
203 dtcr & DTCR_VTE ? "" : "Spurious ");
205 if (dsr & DSR_CTD)
206 dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
207 dtcr & DTCR_CTE ? "" : "Spurious ");
209 if (dsr & DSR_TTD)
210 dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
211 dtcr & DTCR_TTE ? "" : "Spurious ");
213 if (dsr & DSR_SAD)
214 dev_emerg(&imxdi->pdev->dev,
215 "%sSecure Controller Alarm Event\n",
216 dtcr & DTCR_SAIE ? "" : "Spurious ");
218 if (dsr & DSR_EBD)
219 dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
220 dtcr & DTCR_EBE ? "" : "Spurious ");
222 if (dsr & DSR_ETAD)
223 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
224 dtcr & DTCR_ETAE ? "" : "Spurious ");
226 if (dsr & DSR_ETBD)
227 dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
228 dtcr & DTCR_ETBE ? "" : "Spurious ");
230 if (dsr & DSR_WTD)
231 dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
232 dtcr & DTCR_WTE ? "" : "Spurious ");
234 if (dsr & DSR_MCO)
235 dev_emerg(&imxdi->pdev->dev,
236 "%sMonotonic-counter Overflow Event\n",
237 dtcr & DTCR_MOE ? "" : "Spurious ");
239 if (dsr & DSR_TCO)
240 dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
241 dtcr & DTCR_TOE ? "" : "Spurious ");
244 static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
245 const char *power_supply)
247 dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
248 power_supply);
251 static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
253 u32 dcr;
255 dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
257 /* report the cause */
258 di_report_tamper_info(imxdi, dsr);
260 dcr = readl(imxdi->ioaddr + DCR);
262 if (dcr & DCR_FSHL) {
263 /* we are out of luck */
264 di_what_is_to_be_done(imxdi, "battery");
265 return -ENODEV;
268 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
269 * into the "NON-VALID STATE" + "FAILURE STATE"
271 di_what_is_to_be_done(imxdi, "main");
273 return -ENODEV;
276 static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
278 /* initialize alarm */
279 di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
280 di_write_busy_wait(imxdi, 0, DCALR);
282 /* clear alarm flag */
283 if (dsr & DSR_CAF)
284 di_write_busy_wait(imxdi, DSR_CAF, DSR);
286 return 0;
289 static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
291 u32 dcr, sec;
294 * lets disable all sources which can force the DryIce unit into
295 * the "FAILURE STATE" for now
297 di_write_busy_wait(imxdi, 0x00000000, DTCR);
298 /* and lets protect them at runtime from any change */
299 di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
301 sec = readl(imxdi->ioaddr + DTCMR);
302 if (sec != 0)
303 dev_warn(&imxdi->pdev->dev,
304 "The security violation has happened at %u seconds\n",
305 sec);
307 * the timer cannot be set/modified if
308 * - the TCHL or TCSL bit is set in DCR
310 dcr = readl(imxdi->ioaddr + DCR);
311 if (!(dcr & DCR_TCE)) {
312 if (dcr & DCR_TCHL) {
313 /* we are out of luck */
314 di_what_is_to_be_done(imxdi, "battery");
315 return -ENODEV;
317 if (dcr & DCR_TCSL) {
318 di_what_is_to_be_done(imxdi, "main");
319 return -ENODEV;
323 * - the timer counter stops/is stopped if
324 * - its overflow flag is set (TCO in DSR)
325 * -> clear overflow bit to make it count again
326 * - NVF is set in DSR
327 * -> clear non-valid bit to make it count again
328 * - its TCE (DCR) is cleared
329 * -> set TCE to make it count
330 * - it was never set before
331 * -> write a time into it (required again if the NVF was set)
333 /* state handled */
334 di_write_busy_wait(imxdi, DSR_NVF, DSR);
335 /* clear overflow flag */
336 di_write_busy_wait(imxdi, DSR_TCO, DSR);
337 /* enable the counter */
338 di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
339 /* set and trigger it to make it count */
340 di_write_busy_wait(imxdi, sec, DTCMR);
342 /* now prepare for the valid state */
343 return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
346 static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
348 u32 dcr;
351 * now we must first remove the tamper sources in order to get the
352 * device out of the "FAILURE STATE"
353 * To disable any of the following sources we need to modify the DTCR
355 if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
356 DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
357 dcr = __raw_readl(imxdi->ioaddr + DCR);
358 if (dcr & DCR_TDCHL) {
360 * the tamper register is locked. We cannot disable the
361 * tamper detection. The TDCHL can only be reset by a
362 * DRYICE POR, but we cannot force a DRYICE POR in
363 * softwere because we are still in "FAILURE STATE".
364 * We need a DRYICE POR via battery power cycling....
367 * out of luck!
368 * we cannot disable them without a DRYICE POR
370 di_what_is_to_be_done(imxdi, "battery");
371 return -ENODEV;
373 if (dcr & DCR_TDCSL) {
374 /* a soft lock can be removed by a SYSTEM POR */
375 di_what_is_to_be_done(imxdi, "main");
376 return -ENODEV;
380 /* disable all sources */
381 di_write_busy_wait(imxdi, 0x00000000, DTCR);
383 /* clear the status bits now */
384 di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
385 DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
386 DSR_MCO | DSR_TCO), DSR);
388 dsr = readl(imxdi->ioaddr + DSR);
389 if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
390 DSR_WCF | DSR_WEF)) != 0)
391 dev_warn(&imxdi->pdev->dev,
392 "There are still some sources of pain in DSR: %08x!\n",
393 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
394 DSR_WCF | DSR_WEF));
397 * now we are trying to clear the "Security-violation flag" to
398 * get the DryIce out of this state
400 di_write_busy_wait(imxdi, DSR_SVF, DSR);
402 /* success? */
403 dsr = readl(imxdi->ioaddr + DSR);
404 if (dsr & DSR_SVF) {
405 dev_crit(&imxdi->pdev->dev,
406 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
407 /* last resort */
408 di_what_is_to_be_done(imxdi, "battery");
409 return -ENODEV;
413 * now we have left the "FAILURE STATE" and ending up in the
414 * "NON-VALID STATE" time to recover everything
416 return di_handle_invalid_state(imxdi, dsr);
419 static int di_handle_state(struct imxdi_dev *imxdi)
421 int rc;
422 u32 dsr;
424 dsr = readl(imxdi->ioaddr + DSR);
426 switch (dsr & (DSR_NVF | DSR_SVF)) {
427 case DSR_NVF:
428 dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
429 rc = di_handle_invalid_state(imxdi, dsr);
430 break;
431 case DSR_SVF:
432 dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
433 rc = di_handle_failure_state(imxdi, dsr);
434 break;
435 case DSR_NVF | DSR_SVF:
436 dev_warn(&imxdi->pdev->dev,
437 "Failure+Invalid stated unit detected\n");
438 rc = di_handle_invalid_and_failure_state(imxdi, dsr);
439 break;
440 default:
441 dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
442 rc = di_handle_valid_state(imxdi, dsr);
445 return rc;
449 * enable a dryice interrupt
451 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
453 unsigned long flags;
455 spin_lock_irqsave(&imxdi->irq_lock, flags);
456 writel(readl(imxdi->ioaddr + DIER) | intr,
457 imxdi->ioaddr + DIER);
458 spin_unlock_irqrestore(&imxdi->irq_lock, flags);
462 * disable a dryice interrupt
464 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
466 unsigned long flags;
468 spin_lock_irqsave(&imxdi->irq_lock, flags);
469 writel(readl(imxdi->ioaddr + DIER) & ~intr,
470 imxdi->ioaddr + DIER);
471 spin_unlock_irqrestore(&imxdi->irq_lock, flags);
475 * This function attempts to clear the dryice write-error flag.
477 * A dryice write error is similar to a bus fault and should not occur in
478 * normal operation. Clearing the flag requires another write, so the root
479 * cause of the problem may need to be fixed before the flag can be cleared.
481 static void clear_write_error(struct imxdi_dev *imxdi)
483 int cnt;
485 dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
487 /* clear the write error flag */
488 writel(DSR_WEF, imxdi->ioaddr + DSR);
490 /* wait for it to take effect */
491 for (cnt = 0; cnt < 1000; cnt++) {
492 if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
493 return;
494 udelay(10);
496 dev_err(&imxdi->pdev->dev,
497 "ERROR: Cannot clear write-error flag!\n");
501 * Write a dryice register and wait until it completes.
503 * This function uses interrupts to determine when the
504 * write has completed.
506 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
508 int ret;
509 int rc = 0;
511 /* serialize register writes */
512 mutex_lock(&imxdi->write_mutex);
514 /* enable the write-complete interrupt */
515 di_int_enable(imxdi, DIER_WCIE);
517 imxdi->dsr = 0;
519 /* do the register write */
520 writel(val, imxdi->ioaddr + reg);
522 /* wait for the write to finish */
523 ret = wait_event_interruptible_timeout(imxdi->write_wait,
524 imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
525 if (ret < 0) {
526 rc = ret;
527 goto out;
528 } else if (ret == 0) {
529 dev_warn(&imxdi->pdev->dev,
530 "Write-wait timeout "
531 "val = 0x%08x reg = 0x%08x\n", val, reg);
534 /* check for write error */
535 if (imxdi->dsr & DSR_WEF) {
536 clear_write_error(imxdi);
537 rc = -EIO;
540 out:
541 mutex_unlock(&imxdi->write_mutex);
543 return rc;
547 * read the seconds portion of the current time from the dryice time counter
549 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
551 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
552 unsigned long now;
554 now = readl(imxdi->ioaddr + DTCMR);
555 rtc_time_to_tm(now, tm);
557 return 0;
561 * set the seconds portion of dryice time counter and clear the
562 * fractional part.
564 static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
566 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
567 u32 dcr, dsr;
568 int rc;
570 dcr = readl(imxdi->ioaddr + DCR);
571 dsr = readl(imxdi->ioaddr + DSR);
573 if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
574 if (dcr & DCR_TCHL) {
575 /* we are even more out of luck */
576 di_what_is_to_be_done(imxdi, "battery");
577 return -EPERM;
579 if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
580 /* we are out of luck for now */
581 di_what_is_to_be_done(imxdi, "main");
582 return -EPERM;
586 /* zero the fractional part first */
587 rc = di_write_wait(imxdi, 0, DTCLR);
588 if (rc != 0)
589 return rc;
591 rc = di_write_wait(imxdi, secs, DTCMR);
592 if (rc != 0)
593 return rc;
595 return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
598 static int dryice_rtc_alarm_irq_enable(struct device *dev,
599 unsigned int enabled)
601 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
603 if (enabled)
604 di_int_enable(imxdi, DIER_CAIE);
605 else
606 di_int_disable(imxdi, DIER_CAIE);
608 return 0;
612 * read the seconds portion of the alarm register.
613 * the fractional part of the alarm register is always zero.
615 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
617 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
618 u32 dcamr;
620 dcamr = readl(imxdi->ioaddr + DCAMR);
621 rtc_time_to_tm(dcamr, &alarm->time);
623 /* alarm is enabled if the interrupt is enabled */
624 alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
626 /* don't allow the DSR read to mess up DSR_WCF */
627 mutex_lock(&imxdi->write_mutex);
629 /* alarm is pending if the alarm flag is set */
630 alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
632 mutex_unlock(&imxdi->write_mutex);
634 return 0;
638 * set the seconds portion of dryice alarm register
640 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
642 struct imxdi_dev *imxdi = dev_get_drvdata(dev);
643 unsigned long now;
644 unsigned long alarm_time;
645 int rc;
647 rc = rtc_tm_to_time(&alarm->time, &alarm_time);
648 if (rc)
649 return rc;
651 /* don't allow setting alarm in the past */
652 now = readl(imxdi->ioaddr + DTCMR);
653 if (alarm_time < now)
654 return -EINVAL;
656 /* write the new alarm time */
657 rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
658 if (rc)
659 return rc;
661 if (alarm->enabled)
662 di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */
663 else
664 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
666 return 0;
669 static const struct rtc_class_ops dryice_rtc_ops = {
670 .read_time = dryice_rtc_read_time,
671 .set_mmss = dryice_rtc_set_mmss,
672 .alarm_irq_enable = dryice_rtc_alarm_irq_enable,
673 .read_alarm = dryice_rtc_read_alarm,
674 .set_alarm = dryice_rtc_set_alarm,
678 * interrupt handler for dryice "normal" and security violation interrupt
680 static irqreturn_t dryice_irq(int irq, void *dev_id)
682 struct imxdi_dev *imxdi = dev_id;
683 u32 dsr, dier;
684 irqreturn_t rc = IRQ_NONE;
686 dier = readl(imxdi->ioaddr + DIER);
687 dsr = readl(imxdi->ioaddr + DSR);
689 /* handle the security violation event */
690 if (dier & DIER_SVIE) {
691 if (dsr & DSR_SVF) {
693 * Disable the interrupt when this kind of event has
694 * happened.
695 * There cannot be more than one event of this type,
696 * because it needs a complex state change
697 * including a main power cycle to get again out of
698 * this state.
700 di_int_disable(imxdi, DIER_SVIE);
701 /* report the violation */
702 di_report_tamper_info(imxdi, dsr);
703 rc = IRQ_HANDLED;
707 /* handle write complete and write error cases */
708 if (dier & DIER_WCIE) {
709 /*If the write wait queue is empty then there is no pending
710 operations. It means the interrupt is for DryIce -Security.
711 IRQ must be returned as none.*/
712 if (list_empty_careful(&imxdi->write_wait.head))
713 return rc;
715 /* DSR_WCF clears itself on DSR read */
716 if (dsr & (DSR_WCF | DSR_WEF)) {
717 /* mask the interrupt */
718 di_int_disable(imxdi, DIER_WCIE);
720 /* save the dsr value for the wait queue */
721 imxdi->dsr |= dsr;
723 wake_up_interruptible(&imxdi->write_wait);
724 rc = IRQ_HANDLED;
728 /* handle the alarm case */
729 if (dier & DIER_CAIE) {
730 /* DSR_WCF clears itself on DSR read */
731 if (dsr & DSR_CAF) {
732 /* mask the interrupt */
733 di_int_disable(imxdi, DIER_CAIE);
735 /* finish alarm in user context */
736 schedule_work(&imxdi->work);
737 rc = IRQ_HANDLED;
740 return rc;
744 * post the alarm event from user context so it can sleep
745 * on the write completion.
747 static void dryice_work(struct work_struct *work)
749 struct imxdi_dev *imxdi = container_of(work,
750 struct imxdi_dev, work);
752 /* dismiss the interrupt (ignore error) */
753 di_write_wait(imxdi, DSR_CAF, DSR);
755 /* pass the alarm event to the rtc framework. */
756 rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
760 * probe for dryice rtc device
762 static int __init dryice_rtc_probe(struct platform_device *pdev)
764 struct resource *res;
765 struct imxdi_dev *imxdi;
766 int norm_irq, sec_irq;
767 int rc;
769 imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
770 if (!imxdi)
771 return -ENOMEM;
773 imxdi->pdev = pdev;
775 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
776 imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
777 if (IS_ERR(imxdi->ioaddr))
778 return PTR_ERR(imxdi->ioaddr);
780 spin_lock_init(&imxdi->irq_lock);
782 norm_irq = platform_get_irq(pdev, 0);
783 if (norm_irq < 0)
784 return norm_irq;
786 /* the 2nd irq is the security violation irq
787 * make this optional, don't break the device tree ABI
789 sec_irq = platform_get_irq(pdev, 1);
790 if (sec_irq <= 0)
791 sec_irq = IRQ_NOTCONNECTED;
793 init_waitqueue_head(&imxdi->write_wait);
795 INIT_WORK(&imxdi->work, dryice_work);
797 mutex_init(&imxdi->write_mutex);
799 imxdi->clk = devm_clk_get(&pdev->dev, NULL);
800 if (IS_ERR(imxdi->clk))
801 return PTR_ERR(imxdi->clk);
802 rc = clk_prepare_enable(imxdi->clk);
803 if (rc)
804 return rc;
807 * Initialize dryice hardware
810 /* mask all interrupts */
811 writel(0, imxdi->ioaddr + DIER);
813 rc = di_handle_state(imxdi);
814 if (rc != 0)
815 goto err;
817 rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
818 IRQF_SHARED, pdev->name, imxdi);
819 if (rc) {
820 dev_warn(&pdev->dev, "interrupt not available.\n");
821 goto err;
824 rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
825 IRQF_SHARED, pdev->name, imxdi);
826 if (rc) {
827 dev_warn(&pdev->dev, "security violation interrupt not available.\n");
828 /* this is not an error, see above */
831 platform_set_drvdata(pdev, imxdi);
832 imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
833 &dryice_rtc_ops, THIS_MODULE);
834 if (IS_ERR(imxdi->rtc)) {
835 rc = PTR_ERR(imxdi->rtc);
836 goto err;
839 return 0;
841 err:
842 clk_disable_unprepare(imxdi->clk);
844 return rc;
847 static int __exit dryice_rtc_remove(struct platform_device *pdev)
849 struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
851 flush_work(&imxdi->work);
853 /* mask all interrupts */
854 writel(0, imxdi->ioaddr + DIER);
856 clk_disable_unprepare(imxdi->clk);
858 return 0;
861 #ifdef CONFIG_OF
862 static const struct of_device_id dryice_dt_ids[] = {
863 { .compatible = "fsl,imx25-rtc" },
864 { /* sentinel */ }
867 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
868 #endif
870 static struct platform_driver dryice_rtc_driver = {
871 .driver = {
872 .name = "imxdi_rtc",
873 .of_match_table = of_match_ptr(dryice_dt_ids),
875 .remove = __exit_p(dryice_rtc_remove),
878 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
880 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
881 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
882 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
883 MODULE_LICENSE("GPL");