Linux 4.19.133
[linux/fpc-iii.git] / drivers / scsi / aacraid / aachba.c
blob6e356325d8d98a120aa93ceb5c12d5898880ba14
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 * Module Name:
27 * aachba.c
29 * Abstract: Contains Interfaces to manage IOs.
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
45 #include <asm/unaligned.h>
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
52 #include "aacraid.h"
54 /* values for inqd_pdt: Peripheral device type in plain English */
55 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
56 #define INQD_PDT_PROC 0x03 /* Processor device */
57 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
58 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
59 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
60 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
62 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
63 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
66 * Sense codes
69 #define SENCODE_NO_SENSE 0x00
70 #define SENCODE_END_OF_DATA 0x00
71 #define SENCODE_BECOMING_READY 0x04
72 #define SENCODE_INIT_CMD_REQUIRED 0x04
73 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
74 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
75 #define SENCODE_INVALID_COMMAND 0x20
76 #define SENCODE_LBA_OUT_OF_RANGE 0x21
77 #define SENCODE_INVALID_CDB_FIELD 0x24
78 #define SENCODE_LUN_NOT_SUPPORTED 0x25
79 #define SENCODE_INVALID_PARAM_FIELD 0x26
80 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
81 #define SENCODE_PARAM_VALUE_INVALID 0x26
82 #define SENCODE_RESET_OCCURRED 0x29
83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
84 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
86 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
87 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
88 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
89 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
90 #define SENCODE_OVERLAPPED_COMMAND 0x4E
93 * Additional sense codes
96 #define ASENCODE_NO_SENSE 0x00
97 #define ASENCODE_END_OF_DATA 0x05
98 #define ASENCODE_BECOMING_READY 0x01
99 #define ASENCODE_INIT_CMD_REQUIRED 0x02
100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
101 #define ASENCODE_INVALID_COMMAND 0x00
102 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
103 #define ASENCODE_INVALID_CDB_FIELD 0x00
104 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
105 #define ASENCODE_INVALID_PARAM_FIELD 0x00
106 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
107 #define ASENCODE_PARAM_VALUE_INVALID 0x02
108 #define ASENCODE_RESET_OCCURRED 0x00
109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
110 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
112 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
113 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
114 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
115 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
116 #define ASENCODE_OVERLAPPED_COMMAND 0x00
118 #define BYTE0(x) (unsigned char)(x)
119 #define BYTE1(x) (unsigned char)((x) >> 8)
120 #define BYTE2(x) (unsigned char)((x) >> 16)
121 #define BYTE3(x) (unsigned char)((x) >> 24)
123 /* MODE_SENSE data format */
124 typedef struct {
125 struct {
126 u8 data_length;
127 u8 med_type;
128 u8 dev_par;
129 u8 bd_length;
130 } __attribute__((packed)) hd;
131 struct {
132 u8 dens_code;
133 u8 block_count[3];
134 u8 reserved;
135 u8 block_length[3];
136 } __attribute__((packed)) bd;
137 u8 mpc_buf[3];
138 } __attribute__((packed)) aac_modep_data;
140 /* MODE_SENSE_10 data format */
141 typedef struct {
142 struct {
143 u8 data_length[2];
144 u8 med_type;
145 u8 dev_par;
146 u8 rsrvd[2];
147 u8 bd_length[2];
148 } __attribute__((packed)) hd;
149 struct {
150 u8 dens_code;
151 u8 block_count[3];
152 u8 reserved;
153 u8 block_length[3];
154 } __attribute__((packed)) bd;
155 u8 mpc_buf[3];
156 } __attribute__((packed)) aac_modep10_data;
158 /*------------------------------------------------------------------------------
159 * S T R U C T S / T Y P E D E F S
160 *----------------------------------------------------------------------------*/
161 /* SCSI inquiry data */
162 struct inquiry_data {
163 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
164 u8 inqd_dtq; /* RMB | Device Type Qualifier */
165 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
166 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
167 u8 inqd_len; /* Additional length (n-4) */
168 u8 inqd_pad1[2];/* Reserved - must be zero */
169 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
170 u8 inqd_vid[8]; /* Vendor ID */
171 u8 inqd_pid[16];/* Product ID */
172 u8 inqd_prl[4]; /* Product Revision Level */
175 /* Added for VPD 0x83 */
176 struct tvpd_id_descriptor_type_1 {
177 u8 codeset:4; /* VPD_CODE_SET */
178 u8 reserved:4;
179 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
180 u8 reserved2:4;
181 u8 reserved3;
182 u8 identifierlength;
183 u8 venid[8];
184 u8 productid[16];
185 u8 serialnumber[8]; /* SN in ASCII */
189 struct tvpd_id_descriptor_type_2 {
190 u8 codeset:4; /* VPD_CODE_SET */
191 u8 reserved:4;
192 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
193 u8 reserved2:4;
194 u8 reserved3;
195 u8 identifierlength;
196 struct teu64id {
197 u32 Serial;
198 /* The serial number supposed to be 40 bits,
199 * bit we only support 32, so make the last byte zero. */
200 u8 reserved;
201 u8 venid[3];
202 } eu64id;
206 struct tvpd_id_descriptor_type_3 {
207 u8 codeset : 4; /* VPD_CODE_SET */
208 u8 reserved : 4;
209 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
210 u8 reserved2 : 4;
211 u8 reserved3;
212 u8 identifierlength;
213 u8 Identifier[16];
216 struct tvpd_page83 {
217 u8 DeviceType:5;
218 u8 DeviceTypeQualifier:3;
219 u8 PageCode;
220 u8 reserved;
221 u8 PageLength;
222 struct tvpd_id_descriptor_type_1 type1;
223 struct tvpd_id_descriptor_type_2 type2;
224 struct tvpd_id_descriptor_type_3 type3;
228 * M O D U L E G L O B A L S
231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
235 struct aac_raw_io2 *rio2, int sg_max);
236 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
237 struct aac_hba_cmd_req *hbacmd,
238 int sg_max, u64 sg_address);
239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
240 int pages, int nseg, int nseg_new);
241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
243 #ifdef AAC_DETAILED_STATUS_INFO
244 static char *aac_get_status_string(u32 status);
245 #endif
248 * Non dasd selection is handled entirely in aachba now
251 static int nondasd = -1;
252 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
253 static int dacmode = -1;
254 int aac_msi;
255 int aac_commit = -1;
256 int startup_timeout = 180;
257 int aif_timeout = 120;
258 int aac_sync_mode; /* Only Sync. transfer - disabled */
259 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
263 " 0=off, 1=on");
264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
266 " 0=off, 1=on");
267 module_param(nondasd, int, S_IRUGO|S_IWUSR);
268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
269 " 0=off, 1=on");
270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
272 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
273 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
274 "\tbit 2 - Disable only if Battery is protecting Cache");
275 module_param(dacmode, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
277 " 0=off, 1=on");
278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
280 " adapter for foreign arrays.\n"
281 "This is typically needed in systems that do not have a BIOS."
282 " 0=off, 1=on");
283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
284 MODULE_PARM_DESC(msi, "IRQ handling."
285 " 0=PIC(default), 1=MSI, 2=MSI-X)");
286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
288 " adapter to have it's kernel up and\n"
289 "running. This is typically adjusted for large systems that do not"
290 " have a BIOS.");
291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
293 " applications to pick up AIFs before\n"
294 "deregistering them. This is typically adjusted for heavily burdened"
295 " systems.");
297 int aac_fib_dump;
298 module_param(aac_fib_dump, int, 0644);
299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
301 int numacb = -1;
302 module_param(numacb, int, S_IRUGO|S_IWUSR);
303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
304 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
305 " to use suggestion from Firmware.");
307 int acbsize = -1;
308 module_param(acbsize, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
310 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
311 " suggestion from Firmware.");
313 int update_interval = 30 * 60;
314 module_param(update_interval, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
316 " updates issued to adapter.");
318 int check_interval = 60;
319 module_param(check_interval, int, S_IRUGO|S_IWUSR);
320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
321 " checks.");
323 int aac_check_reset = 1;
324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
326 " adapter. a value of -1 forces the reset to adapters programmed to"
327 " ignore it.");
329 int expose_physicals = -1;
330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
332 " -1=protect 0=off, 1=on");
334 int aac_reset_devices;
335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
338 int aac_wwn = 1;
339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
341 "\t0 - Disable\n"
342 "\t1 - Array Meta Data Signature (default)\n"
343 "\t2 - Adapter Serial Number");
346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
347 struct fib *fibptr) {
348 struct scsi_device *device;
350 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
351 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
352 aac_fib_complete(fibptr);
353 return 0;
355 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
356 device = scsicmd->device;
357 if (unlikely(!device)) {
358 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
359 aac_fib_complete(fibptr);
360 return 0;
362 return 1;
366 * aac_get_config_status - check the adapter configuration
367 * @common: adapter to query
369 * Query config status, and commit the configuration if needed.
371 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
373 int status = 0;
374 struct fib * fibptr;
376 if (!(fibptr = aac_fib_alloc(dev)))
377 return -ENOMEM;
379 aac_fib_init(fibptr);
381 struct aac_get_config_status *dinfo;
382 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
384 dinfo->command = cpu_to_le32(VM_ContainerConfig);
385 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
386 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
389 status = aac_fib_send(ContainerCommand,
390 fibptr,
391 sizeof (struct aac_get_config_status),
392 FsaNormal,
393 1, 1,
394 NULL, NULL);
395 if (status < 0) {
396 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
397 } else {
398 struct aac_get_config_status_resp *reply
399 = (struct aac_get_config_status_resp *) fib_data(fibptr);
400 dprintk((KERN_WARNING
401 "aac_get_config_status: response=%d status=%d action=%d\n",
402 le32_to_cpu(reply->response),
403 le32_to_cpu(reply->status),
404 le32_to_cpu(reply->data.action)));
405 if ((le32_to_cpu(reply->response) != ST_OK) ||
406 (le32_to_cpu(reply->status) != CT_OK) ||
407 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
408 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
409 status = -EINVAL;
412 /* Do not set XferState to zero unless receives a response from F/W */
413 if (status >= 0)
414 aac_fib_complete(fibptr);
416 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
417 if (status >= 0) {
418 if ((aac_commit == 1) || commit_flag) {
419 struct aac_commit_config * dinfo;
420 aac_fib_init(fibptr);
421 dinfo = (struct aac_commit_config *) fib_data(fibptr);
423 dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
426 status = aac_fib_send(ContainerCommand,
427 fibptr,
428 sizeof (struct aac_commit_config),
429 FsaNormal,
430 1, 1,
431 NULL, NULL);
432 /* Do not set XferState to zero unless
433 * receives a response from F/W */
434 if (status >= 0)
435 aac_fib_complete(fibptr);
436 } else if (aac_commit == 0) {
437 printk(KERN_WARNING
438 "aac_get_config_status: Foreign device configurations are being ignored\n");
441 /* FIB should be freed only after getting the response from the F/W */
442 if (status != -ERESTARTSYS)
443 aac_fib_free(fibptr);
444 return status;
447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
449 char inq_data;
450 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
451 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
452 inq_data &= 0xdf;
453 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
458 * aac_get_containers - list containers
459 * @common: adapter to probe
461 * Make a list of all containers on this controller
463 int aac_get_containers(struct aac_dev *dev)
465 struct fsa_dev_info *fsa_dev_ptr;
466 u32 index;
467 int status = 0;
468 struct fib * fibptr;
469 struct aac_get_container_count *dinfo;
470 struct aac_get_container_count_resp *dresp;
471 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
473 if (!(fibptr = aac_fib_alloc(dev)))
474 return -ENOMEM;
476 aac_fib_init(fibptr);
477 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
478 dinfo->command = cpu_to_le32(VM_ContainerConfig);
479 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
481 status = aac_fib_send(ContainerCommand,
482 fibptr,
483 sizeof (struct aac_get_container_count),
484 FsaNormal,
485 1, 1,
486 NULL, NULL);
487 if (status >= 0) {
488 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
489 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
490 if (fibptr->dev->supplement_adapter_info.supported_options2 &
491 AAC_OPTION_SUPPORTED_240_VOLUMES) {
492 maximum_num_containers =
493 le32_to_cpu(dresp->MaxSimpleVolumes);
495 aac_fib_complete(fibptr);
497 /* FIB should be freed only after getting the response from the F/W */
498 if (status != -ERESTARTSYS)
499 aac_fib_free(fibptr);
501 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
502 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
503 if (dev->fsa_dev == NULL ||
504 dev->maximum_num_containers != maximum_num_containers) {
506 fsa_dev_ptr = dev->fsa_dev;
508 dev->fsa_dev = kcalloc(maximum_num_containers,
509 sizeof(*fsa_dev_ptr), GFP_KERNEL);
511 kfree(fsa_dev_ptr);
512 fsa_dev_ptr = NULL;
515 if (!dev->fsa_dev)
516 return -ENOMEM;
518 dev->maximum_num_containers = maximum_num_containers;
520 for (index = 0; index < dev->maximum_num_containers; index++) {
521 dev->fsa_dev[index].devname[0] = '\0';
522 dev->fsa_dev[index].valid = 0;
524 status = aac_probe_container(dev, index);
526 if (status < 0) {
527 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
528 break;
531 return status;
534 static void get_container_name_callback(void *context, struct fib * fibptr)
536 struct aac_get_name_resp * get_name_reply;
537 struct scsi_cmnd * scsicmd;
539 scsicmd = (struct scsi_cmnd *) context;
541 if (!aac_valid_context(scsicmd, fibptr))
542 return;
544 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
545 BUG_ON(fibptr == NULL);
547 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
548 /* Failure is irrelevant, using default value instead */
549 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
550 && (get_name_reply->data[0] != '\0')) {
551 char *sp = get_name_reply->data;
552 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
554 sp[data_size - 1] = '\0';
555 while (*sp == ' ')
556 ++sp;
557 if (*sp) {
558 struct inquiry_data inq;
559 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
560 int count = sizeof(d);
561 char *dp = d;
562 do {
563 *dp++ = (*sp) ? *sp++ : ' ';
564 } while (--count > 0);
566 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
567 memcpy(inq.inqd_pid, d, sizeof(d));
568 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
572 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
574 aac_fib_complete(fibptr);
575 scsicmd->scsi_done(scsicmd);
579 * aac_get_container_name - get container name, none blocking.
581 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
583 int status;
584 int data_size;
585 struct aac_get_name *dinfo;
586 struct fib * cmd_fibcontext;
587 struct aac_dev * dev;
589 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
591 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
593 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
595 aac_fib_init(cmd_fibcontext);
596 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
597 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
599 dinfo->command = cpu_to_le32(VM_ContainerConfig);
600 dinfo->type = cpu_to_le32(CT_READ_NAME);
601 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
602 dinfo->count = cpu_to_le32(data_size - 1);
604 status = aac_fib_send(ContainerCommand,
605 cmd_fibcontext,
606 sizeof(struct aac_get_name_resp),
607 FsaNormal,
608 0, 1,
609 (fib_callback)get_container_name_callback,
610 (void *) scsicmd);
613 * Check that the command queued to the controller
615 if (status == -EINPROGRESS)
616 return 0;
618 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
619 aac_fib_complete(cmd_fibcontext);
620 return -1;
623 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
625 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
627 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
628 return aac_scsi_cmd(scsicmd);
630 scsicmd->result = DID_NO_CONNECT << 16;
631 scsicmd->scsi_done(scsicmd);
632 return 0;
635 static void _aac_probe_container2(void * context, struct fib * fibptr)
637 struct fsa_dev_info *fsa_dev_ptr;
638 int (*callback)(struct scsi_cmnd *);
639 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
640 int i;
643 if (!aac_valid_context(scsicmd, fibptr))
644 return;
646 scsicmd->SCp.Status = 0;
647 fsa_dev_ptr = fibptr->dev->fsa_dev;
648 if (fsa_dev_ptr) {
649 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
650 __le32 sup_options2;
652 fsa_dev_ptr += scmd_id(scsicmd);
653 sup_options2 =
654 fibptr->dev->supplement_adapter_info.supported_options2;
656 if ((le32_to_cpu(dresp->status) == ST_OK) &&
657 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
658 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
659 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
660 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
661 fsa_dev_ptr->block_size = 0x200;
662 } else {
663 fsa_dev_ptr->block_size =
664 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
666 for (i = 0; i < 16; i++)
667 fsa_dev_ptr->identifier[i] =
668 dresp->mnt[0].fileinfo.bdevinfo
669 .identifier[i];
670 fsa_dev_ptr->valid = 1;
671 /* sense_key holds the current state of the spin-up */
672 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
673 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
674 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
675 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
676 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
677 fsa_dev_ptr->size
678 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
679 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
680 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
682 if ((fsa_dev_ptr->valid & 1) == 0)
683 fsa_dev_ptr->valid = 0;
684 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
686 aac_fib_complete(fibptr);
687 aac_fib_free(fibptr);
688 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
689 scsicmd->SCp.ptr = NULL;
690 (*callback)(scsicmd);
691 return;
694 static void _aac_probe_container1(void * context, struct fib * fibptr)
696 struct scsi_cmnd * scsicmd;
697 struct aac_mount * dresp;
698 struct aac_query_mount *dinfo;
699 int status;
701 dresp = (struct aac_mount *) fib_data(fibptr);
702 if (!aac_supports_2T(fibptr->dev)) {
703 dresp->mnt[0].capacityhigh = 0;
704 if ((le32_to_cpu(dresp->status) == ST_OK) &&
705 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
706 _aac_probe_container2(context, fibptr);
707 return;
710 scsicmd = (struct scsi_cmnd *) context;
712 if (!aac_valid_context(scsicmd, fibptr))
713 return;
715 aac_fib_init(fibptr);
717 dinfo = (struct aac_query_mount *)fib_data(fibptr);
719 if (fibptr->dev->supplement_adapter_info.supported_options2 &
720 AAC_OPTION_VARIABLE_BLOCK_SIZE)
721 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
722 else
723 dinfo->command = cpu_to_le32(VM_NameServe64);
725 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
726 dinfo->type = cpu_to_le32(FT_FILESYS);
727 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
729 status = aac_fib_send(ContainerCommand,
730 fibptr,
731 sizeof(struct aac_query_mount),
732 FsaNormal,
733 0, 1,
734 _aac_probe_container2,
735 (void *) scsicmd);
737 * Check that the command queued to the controller
739 if (status < 0 && status != -EINPROGRESS) {
740 /* Inherit results from VM_NameServe, if any */
741 dresp->status = cpu_to_le32(ST_OK);
742 _aac_probe_container2(context, fibptr);
746 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
748 struct fib * fibptr;
749 int status = -ENOMEM;
751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 struct aac_query_mount *dinfo;
754 aac_fib_init(fibptr);
756 dinfo = (struct aac_query_mount *)fib_data(fibptr);
758 if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 else
762 dinfo->command = cpu_to_le32(VM_NameServe);
764 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 dinfo->type = cpu_to_le32(FT_FILESYS);
766 scsicmd->SCp.ptr = (char *)callback;
767 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
769 status = aac_fib_send(ContainerCommand,
770 fibptr,
771 sizeof(struct aac_query_mount),
772 FsaNormal,
773 0, 1,
774 _aac_probe_container1,
775 (void *) scsicmd);
777 * Check that the command queued to the controller
779 if (status == -EINPROGRESS)
780 return 0;
782 if (status < 0) {
783 scsicmd->SCp.ptr = NULL;
784 aac_fib_complete(fibptr);
785 aac_fib_free(fibptr);
788 if (status < 0) {
789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 if (fsa_dev_ptr) {
791 fsa_dev_ptr += scmd_id(scsicmd);
792 if ((fsa_dev_ptr->valid & 1) == 0) {
793 fsa_dev_ptr->valid = 0;
794 return (*callback)(scsicmd);
798 return status;
802 * aac_probe_container - query a logical volume
803 * @dev: device to query
804 * @cid: container identifier
806 * Queries the controller about the given volume. The volume information
807 * is updated in the struct fsa_dev_info structure rather than returned.
809 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
811 scsicmd->device = NULL;
812 return 0;
815 int aac_probe_container(struct aac_dev *dev, int cid)
817 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
818 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
819 int status;
821 if (!scsicmd || !scsidev) {
822 kfree(scsicmd);
823 kfree(scsidev);
824 return -ENOMEM;
826 scsicmd->list.next = NULL;
827 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
829 scsicmd->device = scsidev;
830 scsidev->sdev_state = 0;
831 scsidev->id = cid;
832 scsidev->host = dev->scsi_host_ptr;
834 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
835 while (scsicmd->device == scsidev)
836 schedule();
837 kfree(scsidev);
838 status = scsicmd->SCp.Status;
839 kfree(scsicmd);
840 return status;
843 /* Local Structure to set SCSI inquiry data strings */
844 struct scsi_inq {
845 char vid[8]; /* Vendor ID */
846 char pid[16]; /* Product ID */
847 char prl[4]; /* Product Revision Level */
851 * InqStrCopy - string merge
852 * @a: string to copy from
853 * @b: string to copy to
855 * Copy a String from one location to another
856 * without copying \0
859 static void inqstrcpy(char *a, char *b)
862 while (*a != (char)0)
863 *b++ = *a++;
866 static char *container_types[] = {
867 "None",
868 "Volume",
869 "Mirror",
870 "Stripe",
871 "RAID5",
872 "SSRW",
873 "SSRO",
874 "Morph",
875 "Legacy",
876 "RAID4",
877 "RAID10",
878 "RAID00",
879 "V-MIRRORS",
880 "PSEUDO R4",
881 "RAID50",
882 "RAID5D",
883 "RAID5D0",
884 "RAID1E",
885 "RAID6",
886 "RAID60",
887 "Unknown"
890 char * get_container_type(unsigned tindex)
892 if (tindex >= ARRAY_SIZE(container_types))
893 tindex = ARRAY_SIZE(container_types) - 1;
894 return container_types[tindex];
897 /* Function: setinqstr
899 * Arguments: [1] pointer to void [1] int
901 * Purpose: Sets SCSI inquiry data strings for vendor, product
902 * and revision level. Allows strings to be set in platform dependent
903 * files instead of in OS dependent driver source.
906 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
908 struct scsi_inq *str;
909 struct aac_supplement_adapter_info *sup_adap_info;
911 sup_adap_info = &dev->supplement_adapter_info;
912 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
913 memset(str, ' ', sizeof(*str));
915 if (sup_adap_info->adapter_type_text[0]) {
916 int c;
917 char *cp;
918 char *cname = kmemdup(sup_adap_info->adapter_type_text,
919 sizeof(sup_adap_info->adapter_type_text),
920 GFP_ATOMIC);
921 if (!cname)
922 return;
924 cp = cname;
925 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
926 inqstrcpy("SMC", str->vid);
927 else {
928 c = sizeof(str->vid);
929 while (*cp && *cp != ' ' && --c)
930 ++cp;
931 c = *cp;
932 *cp = '\0';
933 inqstrcpy(cname, str->vid);
934 *cp = c;
935 while (*cp && *cp != ' ')
936 ++cp;
938 while (*cp == ' ')
939 ++cp;
940 /* last six chars reserved for vol type */
941 if (strlen(cp) > sizeof(str->pid))
942 cp[sizeof(str->pid)] = '\0';
943 inqstrcpy (cp, str->pid);
945 kfree(cname);
946 } else {
947 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
949 inqstrcpy (mp->vname, str->vid);
950 /* last six chars reserved for vol type */
951 inqstrcpy (mp->model, str->pid);
954 if (tindex < ARRAY_SIZE(container_types)){
955 char *findit = str->pid;
957 for ( ; *findit != ' '; findit++); /* walk till we find a space */
958 /* RAID is superfluous in the context of a RAID device */
959 if (memcmp(findit-4, "RAID", 4) == 0)
960 *(findit -= 4) = ' ';
961 if (((findit - str->pid) + strlen(container_types[tindex]))
962 < (sizeof(str->pid) + sizeof(str->prl)))
963 inqstrcpy (container_types[tindex], findit + 1);
965 inqstrcpy ("V1.0", str->prl);
968 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
969 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
971 int container;
973 vpdpage83data->type3.codeset = 1;
974 vpdpage83data->type3.identifiertype = 3;
975 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
976 - 4;
978 for (container = 0; container < dev->maximum_num_containers;
979 container++) {
981 if (scmd_id(scsicmd) == container) {
982 memcpy(vpdpage83data->type3.Identifier,
983 dev->fsa_dev[container].identifier,
984 16);
985 break;
990 static void get_container_serial_callback(void *context, struct fib * fibptr)
992 struct aac_get_serial_resp * get_serial_reply;
993 struct scsi_cmnd * scsicmd;
995 BUG_ON(fibptr == NULL);
997 scsicmd = (struct scsi_cmnd *) context;
998 if (!aac_valid_context(scsicmd, fibptr))
999 return;
1001 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1002 /* Failure is irrelevant, using default value instead */
1003 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1004 /*Check to see if it's for VPD 0x83 or 0x80 */
1005 if (scsicmd->cmnd[2] == 0x83) {
1006 /* vpd page 0x83 - Device Identification Page */
1007 struct aac_dev *dev;
1008 int i;
1009 struct tvpd_page83 vpdpage83data;
1011 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1013 memset(((u8 *)&vpdpage83data), 0,
1014 sizeof(vpdpage83data));
1016 /* DIRECT_ACCESS_DEVIC */
1017 vpdpage83data.DeviceType = 0;
1018 /* DEVICE_CONNECTED */
1019 vpdpage83data.DeviceTypeQualifier = 0;
1020 /* VPD_DEVICE_IDENTIFIERS */
1021 vpdpage83data.PageCode = 0x83;
1022 vpdpage83data.reserved = 0;
1023 vpdpage83data.PageLength =
1024 sizeof(vpdpage83data.type1) +
1025 sizeof(vpdpage83data.type2);
1027 /* VPD 83 Type 3 is not supported for ARC */
1028 if (dev->sa_firmware)
1029 vpdpage83data.PageLength +=
1030 sizeof(vpdpage83data.type3);
1032 /* T10 Vendor Identifier Field Format */
1033 /* VpdcodesetAscii */
1034 vpdpage83data.type1.codeset = 2;
1035 /* VpdIdentifierTypeVendorId */
1036 vpdpage83data.type1.identifiertype = 1;
1037 vpdpage83data.type1.identifierlength =
1038 sizeof(vpdpage83data.type1) - 4;
1040 /* "ADAPTEC " for adaptec */
1041 memcpy(vpdpage83data.type1.venid,
1042 "ADAPTEC ",
1043 sizeof(vpdpage83data.type1.venid));
1044 memcpy(vpdpage83data.type1.productid,
1045 "ARRAY ",
1046 sizeof(
1047 vpdpage83data.type1.productid));
1049 /* Convert to ascii based serial number.
1050 * The LSB is the the end.
1052 for (i = 0; i < 8; i++) {
1053 u8 temp =
1054 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1055 if (temp > 0x9) {
1056 vpdpage83data.type1.serialnumber[i] =
1057 'A' + (temp - 0xA);
1058 } else {
1059 vpdpage83data.type1.serialnumber[i] =
1060 '0' + temp;
1064 /* VpdCodeSetBinary */
1065 vpdpage83data.type2.codeset = 1;
1066 /* VpdidentifiertypeEUI64 */
1067 vpdpage83data.type2.identifiertype = 2;
1068 vpdpage83data.type2.identifierlength =
1069 sizeof(vpdpage83data.type2) - 4;
1071 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1072 vpdpage83data.type2.eu64id.venid[1] = 0;
1073 vpdpage83data.type2.eu64id.venid[2] = 0;
1075 vpdpage83data.type2.eu64id.Serial =
1076 get_serial_reply->uid;
1077 vpdpage83data.type2.eu64id.reserved = 0;
1080 * VpdIdentifierTypeFCPHName
1081 * VPD 0x83 Type 3 not supported for ARC
1083 if (dev->sa_firmware) {
1084 build_vpd83_type3(&vpdpage83data,
1085 dev, scsicmd);
1088 /* Move the inquiry data to the response buffer. */
1089 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1090 sizeof(vpdpage83data));
1091 } else {
1092 /* It must be for VPD 0x80 */
1093 char sp[13];
1094 /* EVPD bit set */
1095 sp[0] = INQD_PDT_DA;
1096 sp[1] = scsicmd->cmnd[2];
1097 sp[2] = 0;
1098 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1099 le32_to_cpu(get_serial_reply->uid));
1100 scsi_sg_copy_from_buffer(scsicmd, sp,
1101 sizeof(sp));
1105 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1107 aac_fib_complete(fibptr);
1108 scsicmd->scsi_done(scsicmd);
1112 * aac_get_container_serial - get container serial, none blocking.
1114 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1116 int status;
1117 struct aac_get_serial *dinfo;
1118 struct fib * cmd_fibcontext;
1119 struct aac_dev * dev;
1121 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1123 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1125 aac_fib_init(cmd_fibcontext);
1126 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1128 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1129 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1130 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1131 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1133 status = aac_fib_send(ContainerCommand,
1134 cmd_fibcontext,
1135 sizeof(struct aac_get_serial_resp),
1136 FsaNormal,
1137 0, 1,
1138 (fib_callback) get_container_serial_callback,
1139 (void *) scsicmd);
1142 * Check that the command queued to the controller
1144 if (status == -EINPROGRESS)
1145 return 0;
1147 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1148 aac_fib_complete(cmd_fibcontext);
1149 return -1;
1152 /* Function: setinqserial
1154 * Arguments: [1] pointer to void [1] int
1156 * Purpose: Sets SCSI Unit Serial number.
1157 * This is a fake. We should read a proper
1158 * serial number from the container. <SuSE>But
1159 * without docs it's quite hard to do it :-)
1160 * So this will have to do in the meantime.</SuSE>
1163 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1166 * This breaks array migration.
1168 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1169 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1172 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1173 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1175 u8 *sense_buf = (u8 *)sense_data;
1176 /* Sense data valid, err code 70h */
1177 sense_buf[0] = 0x70; /* No info field */
1178 sense_buf[1] = 0; /* Segment number, always zero */
1180 sense_buf[2] = sense_key; /* Sense key */
1182 sense_buf[12] = sense_code; /* Additional sense code */
1183 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1185 if (sense_key == ILLEGAL_REQUEST) {
1186 sense_buf[7] = 10; /* Additional sense length */
1188 sense_buf[15] = bit_pointer;
1189 /* Illegal parameter is in the parameter block */
1190 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1191 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1192 /* Illegal parameter is in the CDB block */
1193 sense_buf[16] = field_pointer >> 8; /* MSB */
1194 sense_buf[17] = field_pointer; /* LSB */
1195 } else
1196 sense_buf[7] = 6; /* Additional sense length */
1199 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1201 if (lba & 0xffffffff00000000LL) {
1202 int cid = scmd_id(cmd);
1203 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1204 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1205 SAM_STAT_CHECK_CONDITION;
1206 set_sense(&dev->fsa_dev[cid].sense_data,
1207 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1208 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1209 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1210 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1211 SCSI_SENSE_BUFFERSIZE));
1212 cmd->scsi_done(cmd);
1213 return 1;
1215 return 0;
1218 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1220 return 0;
1223 static void io_callback(void *context, struct fib * fibptr);
1225 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1227 struct aac_dev *dev = fib->dev;
1228 u16 fibsize, command;
1229 long ret;
1231 aac_fib_init(fib);
1232 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1233 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1234 !dev->sync_mode) {
1235 struct aac_raw_io2 *readcmd2;
1236 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1237 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1238 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1239 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1240 readcmd2->byteCount = cpu_to_le32(count *
1241 dev->fsa_dev[scmd_id(cmd)].block_size);
1242 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1243 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1244 ret = aac_build_sgraw2(cmd, readcmd2,
1245 dev->scsi_host_ptr->sg_tablesize);
1246 if (ret < 0)
1247 return ret;
1248 command = ContainerRawIo2;
1249 fibsize = sizeof(struct aac_raw_io2) +
1250 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1251 } else {
1252 struct aac_raw_io *readcmd;
1253 readcmd = (struct aac_raw_io *) fib_data(fib);
1254 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1255 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1256 readcmd->count = cpu_to_le32(count *
1257 dev->fsa_dev[scmd_id(cmd)].block_size);
1258 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1259 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1260 readcmd->bpTotal = 0;
1261 readcmd->bpComplete = 0;
1262 ret = aac_build_sgraw(cmd, &readcmd->sg);
1263 if (ret < 0)
1264 return ret;
1265 command = ContainerRawIo;
1266 fibsize = sizeof(struct aac_raw_io) +
1267 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1270 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1272 * Now send the Fib to the adapter
1274 return aac_fib_send(command,
1275 fib,
1276 fibsize,
1277 FsaNormal,
1278 0, 1,
1279 (fib_callback) io_callback,
1280 (void *) cmd);
1283 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1285 u16 fibsize;
1286 struct aac_read64 *readcmd;
1287 long ret;
1289 aac_fib_init(fib);
1290 readcmd = (struct aac_read64 *) fib_data(fib);
1291 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1292 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1293 readcmd->sector_count = cpu_to_le16(count);
1294 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1295 readcmd->pad = 0;
1296 readcmd->flags = 0;
1298 ret = aac_build_sg64(cmd, &readcmd->sg);
1299 if (ret < 0)
1300 return ret;
1301 fibsize = sizeof(struct aac_read64) +
1302 ((le32_to_cpu(readcmd->sg.count) - 1) *
1303 sizeof (struct sgentry64));
1304 BUG_ON (fibsize > (fib->dev->max_fib_size -
1305 sizeof(struct aac_fibhdr)));
1307 * Now send the Fib to the adapter
1309 return aac_fib_send(ContainerCommand64,
1310 fib,
1311 fibsize,
1312 FsaNormal,
1313 0, 1,
1314 (fib_callback) io_callback,
1315 (void *) cmd);
1318 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1320 u16 fibsize;
1321 struct aac_read *readcmd;
1322 struct aac_dev *dev = fib->dev;
1323 long ret;
1325 aac_fib_init(fib);
1326 readcmd = (struct aac_read *) fib_data(fib);
1327 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1328 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1329 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1330 readcmd->count = cpu_to_le32(count *
1331 dev->fsa_dev[scmd_id(cmd)].block_size);
1333 ret = aac_build_sg(cmd, &readcmd->sg);
1334 if (ret < 0)
1335 return ret;
1336 fibsize = sizeof(struct aac_read) +
1337 ((le32_to_cpu(readcmd->sg.count) - 1) *
1338 sizeof (struct sgentry));
1339 BUG_ON (fibsize > (fib->dev->max_fib_size -
1340 sizeof(struct aac_fibhdr)));
1342 * Now send the Fib to the adapter
1344 return aac_fib_send(ContainerCommand,
1345 fib,
1346 fibsize,
1347 FsaNormal,
1348 0, 1,
1349 (fib_callback) io_callback,
1350 (void *) cmd);
1353 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1355 struct aac_dev *dev = fib->dev;
1356 u16 fibsize, command;
1357 long ret;
1359 aac_fib_init(fib);
1360 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1361 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1362 !dev->sync_mode) {
1363 struct aac_raw_io2 *writecmd2;
1364 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1365 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1366 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1367 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1368 writecmd2->byteCount = cpu_to_le32(count *
1369 dev->fsa_dev[scmd_id(cmd)].block_size);
1370 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1371 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1372 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1373 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1374 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1375 ret = aac_build_sgraw2(cmd, writecmd2,
1376 dev->scsi_host_ptr->sg_tablesize);
1377 if (ret < 0)
1378 return ret;
1379 command = ContainerRawIo2;
1380 fibsize = sizeof(struct aac_raw_io2) +
1381 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1382 } else {
1383 struct aac_raw_io *writecmd;
1384 writecmd = (struct aac_raw_io *) fib_data(fib);
1385 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1386 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1387 writecmd->count = cpu_to_le32(count *
1388 dev->fsa_dev[scmd_id(cmd)].block_size);
1389 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1390 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1391 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1392 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1393 cpu_to_le16(RIO_TYPE_WRITE);
1394 writecmd->bpTotal = 0;
1395 writecmd->bpComplete = 0;
1396 ret = aac_build_sgraw(cmd, &writecmd->sg);
1397 if (ret < 0)
1398 return ret;
1399 command = ContainerRawIo;
1400 fibsize = sizeof(struct aac_raw_io) +
1401 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1404 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1406 * Now send the Fib to the adapter
1408 return aac_fib_send(command,
1409 fib,
1410 fibsize,
1411 FsaNormal,
1412 0, 1,
1413 (fib_callback) io_callback,
1414 (void *) cmd);
1417 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1419 u16 fibsize;
1420 struct aac_write64 *writecmd;
1421 long ret;
1423 aac_fib_init(fib);
1424 writecmd = (struct aac_write64 *) fib_data(fib);
1425 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1426 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1427 writecmd->sector_count = cpu_to_le16(count);
1428 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1429 writecmd->pad = 0;
1430 writecmd->flags = 0;
1432 ret = aac_build_sg64(cmd, &writecmd->sg);
1433 if (ret < 0)
1434 return ret;
1435 fibsize = sizeof(struct aac_write64) +
1436 ((le32_to_cpu(writecmd->sg.count) - 1) *
1437 sizeof (struct sgentry64));
1438 BUG_ON (fibsize > (fib->dev->max_fib_size -
1439 sizeof(struct aac_fibhdr)));
1441 * Now send the Fib to the adapter
1443 return aac_fib_send(ContainerCommand64,
1444 fib,
1445 fibsize,
1446 FsaNormal,
1447 0, 1,
1448 (fib_callback) io_callback,
1449 (void *) cmd);
1452 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1454 u16 fibsize;
1455 struct aac_write *writecmd;
1456 struct aac_dev *dev = fib->dev;
1457 long ret;
1459 aac_fib_init(fib);
1460 writecmd = (struct aac_write *) fib_data(fib);
1461 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1462 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1463 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1464 writecmd->count = cpu_to_le32(count *
1465 dev->fsa_dev[scmd_id(cmd)].block_size);
1466 writecmd->sg.count = cpu_to_le32(1);
1467 /* ->stable is not used - it did mean which type of write */
1469 ret = aac_build_sg(cmd, &writecmd->sg);
1470 if (ret < 0)
1471 return ret;
1472 fibsize = sizeof(struct aac_write) +
1473 ((le32_to_cpu(writecmd->sg.count) - 1) *
1474 sizeof (struct sgentry));
1475 BUG_ON (fibsize > (fib->dev->max_fib_size -
1476 sizeof(struct aac_fibhdr)));
1478 * Now send the Fib to the adapter
1480 return aac_fib_send(ContainerCommand,
1481 fib,
1482 fibsize,
1483 FsaNormal,
1484 0, 1,
1485 (fib_callback) io_callback,
1486 (void *) cmd);
1489 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1491 struct aac_srb * srbcmd;
1492 u32 flag;
1493 u32 timeout;
1495 aac_fib_init(fib);
1496 switch(cmd->sc_data_direction){
1497 case DMA_TO_DEVICE:
1498 flag = SRB_DataOut;
1499 break;
1500 case DMA_BIDIRECTIONAL:
1501 flag = SRB_DataIn | SRB_DataOut;
1502 break;
1503 case DMA_FROM_DEVICE:
1504 flag = SRB_DataIn;
1505 break;
1506 case DMA_NONE:
1507 default: /* shuts up some versions of gcc */
1508 flag = SRB_NoDataXfer;
1509 break;
1512 srbcmd = (struct aac_srb*) fib_data(fib);
1513 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1514 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1515 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1516 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1517 srbcmd->flags = cpu_to_le32(flag);
1518 timeout = cmd->request->timeout/HZ;
1519 if (timeout == 0)
1520 timeout = 1;
1521 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1522 srbcmd->retry_limit = 0; /* Obsolete parameter */
1523 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1524 return srbcmd;
1527 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1528 struct scsi_cmnd *cmd)
1530 struct aac_hba_cmd_req *hbacmd;
1531 struct aac_dev *dev;
1532 int bus, target;
1533 u64 address;
1535 dev = (struct aac_dev *)cmd->device->host->hostdata;
1537 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1538 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1539 /* iu_type is a parameter of aac_hba_send */
1540 switch (cmd->sc_data_direction) {
1541 case DMA_TO_DEVICE:
1542 hbacmd->byte1 = 2;
1543 break;
1544 case DMA_FROM_DEVICE:
1545 case DMA_BIDIRECTIONAL:
1546 hbacmd->byte1 = 1;
1547 break;
1548 case DMA_NONE:
1549 default:
1550 break;
1552 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1554 bus = aac_logical_to_phys(scmd_channel(cmd));
1555 target = scmd_id(cmd);
1556 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1558 /* we fill in reply_qid later in aac_src_deliver_message */
1559 /* we fill in iu_type, request_id later in aac_hba_send */
1560 /* we fill in emb_data_desc_count later in aac_build_sghba */
1562 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1563 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1565 address = (u64)fib->hw_error_pa;
1566 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1567 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1568 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1570 return hbacmd;
1573 static void aac_srb_callback(void *context, struct fib * fibptr);
1575 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1577 u16 fibsize;
1578 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1579 long ret;
1581 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1582 if (ret < 0)
1583 return ret;
1584 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1586 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1587 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1589 * Build Scatter/Gather list
1591 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1592 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1593 sizeof (struct sgentry64));
1594 BUG_ON (fibsize > (fib->dev->max_fib_size -
1595 sizeof(struct aac_fibhdr)));
1598 * Now send the Fib to the adapter
1600 return aac_fib_send(ScsiPortCommand64, fib,
1601 fibsize, FsaNormal, 0, 1,
1602 (fib_callback) aac_srb_callback,
1603 (void *) cmd);
1606 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1608 u16 fibsize;
1609 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1610 long ret;
1612 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1613 if (ret < 0)
1614 return ret;
1615 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1617 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1618 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1620 * Build Scatter/Gather list
1622 fibsize = sizeof (struct aac_srb) +
1623 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1624 sizeof (struct sgentry));
1625 BUG_ON (fibsize > (fib->dev->max_fib_size -
1626 sizeof(struct aac_fibhdr)));
1629 * Now send the Fib to the adapter
1631 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1632 (fib_callback) aac_srb_callback, (void *) cmd);
1635 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1637 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1638 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1639 return FAILED;
1640 return aac_scsi_32(fib, cmd);
1643 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1645 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1646 struct aac_dev *dev;
1647 long ret;
1649 dev = (struct aac_dev *)cmd->device->host->hostdata;
1651 ret = aac_build_sghba(cmd, hbacmd,
1652 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1653 if (ret < 0)
1654 return ret;
1657 * Now send the HBA command to the adapter
1659 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1660 sizeof(struct aac_hba_sgl);
1662 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1663 (fib_callback) aac_hba_callback,
1664 (void *) cmd);
1667 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1668 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1670 struct fib *fibptr;
1671 dma_addr_t addr;
1672 int rcode;
1673 int fibsize;
1674 struct aac_srb *srb;
1675 struct aac_srb_reply *srb_reply;
1676 struct sgmap64 *sg64;
1677 u32 vbus;
1678 u32 vid;
1680 if (!dev->sa_firmware)
1681 return 0;
1683 /* allocate FIB */
1684 fibptr = aac_fib_alloc(dev);
1685 if (!fibptr)
1686 return -ENOMEM;
1688 aac_fib_init(fibptr);
1689 fibptr->hw_fib_va->header.XferState &=
1690 ~cpu_to_le32(FastResponseCapable);
1692 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1693 sizeof(struct sgentry64);
1695 /* allocate DMA buffer for response */
1696 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1697 DMA_BIDIRECTIONAL);
1698 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1699 rcode = -ENOMEM;
1700 goto fib_error;
1703 srb = fib_data(fibptr);
1704 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1706 vbus = (u32)le16_to_cpu(
1707 dev->supplement_adapter_info.virt_device_bus);
1708 vid = (u32)le16_to_cpu(
1709 dev->supplement_adapter_info.virt_device_target);
1711 /* set the common request fields */
1712 srb->channel = cpu_to_le32(vbus);
1713 srb->id = cpu_to_le32(vid);
1714 srb->lun = 0;
1715 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1716 srb->timeout = 0;
1717 srb->retry_limit = 0;
1718 srb->cdb_size = cpu_to_le32(16);
1719 srb->count = cpu_to_le32(xfer_len);
1721 sg64 = (struct sgmap64 *)&srb->sg;
1722 sg64->count = cpu_to_le32(1);
1723 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1724 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1725 sg64->sg[0].count = cpu_to_le32(xfer_len);
1728 * Copy the updated data for other dumping or other usage if needed
1730 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1732 /* issue request to the controller */
1733 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1734 1, 1, NULL, NULL);
1736 if (rcode == -ERESTARTSYS)
1737 rcode = -ERESTART;
1739 if (unlikely(rcode < 0))
1740 goto bmic_error;
1742 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1743 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1745 bmic_error:
1746 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1747 fib_error:
1748 aac_fib_complete(fibptr);
1749 aac_fib_free(fibptr);
1750 return rcode;
1753 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1756 struct aac_ciss_identify_pd *identify_resp;
1758 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1759 return;
1761 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1762 if (identify_resp == NULL) {
1763 dev->hba_map[bus][target].qd_limit = 32;
1764 return;
1767 if (identify_resp->current_queue_depth_limit <= 0 ||
1768 identify_resp->current_queue_depth_limit > 255)
1769 dev->hba_map[bus][target].qd_limit = 32;
1770 else
1771 dev->hba_map[bus][target].qd_limit =
1772 identify_resp->current_queue_depth_limit;
1775 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1776 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1778 int rcode = -ENOMEM;
1779 int datasize;
1780 struct aac_srb_unit srbu;
1781 struct aac_srb *srbcmd;
1782 struct aac_ciss_identify_pd *identify_reply;
1784 datasize = sizeof(struct aac_ciss_identify_pd);
1785 identify_reply = kmalloc(datasize, GFP_KERNEL);
1786 if (!identify_reply)
1787 goto out;
1789 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1791 srbcmd = &srbu.srb;
1792 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1793 srbcmd->cdb[0] = 0x26;
1794 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1795 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1797 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1798 if (unlikely(rcode < 0))
1799 goto mem_free_all;
1801 *identify_resp = identify_reply;
1803 out:
1804 return rcode;
1805 mem_free_all:
1806 kfree(identify_reply);
1807 goto out;
1810 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1812 kfree(dev->safw_phys_luns);
1813 dev->safw_phys_luns = NULL;
1817 * aac_get_safw_ciss_luns() Process topology change
1818 * @dev: aac_dev structure
1820 * Execute a CISS REPORT PHYS LUNS and process the results into
1821 * the current hba_map.
1823 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1825 int rcode = -ENOMEM;
1826 int datasize;
1827 struct aac_srb *srbcmd;
1828 struct aac_srb_unit srbu;
1829 struct aac_ciss_phys_luns_resp *phys_luns;
1831 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1832 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1833 phys_luns = kmalloc(datasize, GFP_KERNEL);
1834 if (phys_luns == NULL)
1835 goto out;
1837 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1839 srbcmd = &srbu.srb;
1840 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1841 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1842 srbcmd->cdb[1] = 2; /* extended reporting */
1843 srbcmd->cdb[8] = (u8)(datasize >> 8);
1844 srbcmd->cdb[9] = (u8)(datasize);
1846 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1847 if (unlikely(rcode < 0))
1848 goto mem_free_all;
1850 if (phys_luns->resp_flag != 2) {
1851 rcode = -ENOMSG;
1852 goto mem_free_all;
1855 dev->safw_phys_luns = phys_luns;
1857 out:
1858 return rcode;
1859 mem_free_all:
1860 kfree(phys_luns);
1861 goto out;
1864 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1866 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1869 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1871 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1874 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1876 return dev->safw_phys_luns->lun[lun].level2[0];
1879 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1881 return dev->safw_phys_luns->lun[lun].bus >> 6;
1884 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1886 return dev->safw_phys_luns->lun[lun].node_ident[9];
1889 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1891 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1894 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1896 return dev->safw_phys_luns->lun[lun].node_ident[8];
1899 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1900 int bus, int target)
1902 kfree(dev->hba_map[bus][target].safw_identify_resp);
1903 dev->hba_map[bus][target].safw_identify_resp = NULL;
1906 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1907 int lun_count)
1909 int luns;
1910 int i;
1911 u32 bus;
1912 u32 target;
1914 luns = aac_get_safw_phys_lun_count(dev);
1916 if (luns < lun_count)
1917 lun_count = luns;
1918 else if (lun_count < 0)
1919 lun_count = luns;
1921 for (i = 0; i < lun_count; i++) {
1922 bus = aac_get_safw_phys_bus(dev, i);
1923 target = aac_get_safw_phys_target(dev, i);
1925 aac_free_safw_identify_resp(dev, bus, target);
1929 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1931 int i;
1932 int rcode = 0;
1933 u32 lun_count;
1934 u32 bus;
1935 u32 target;
1936 struct aac_ciss_identify_pd *identify_resp = NULL;
1938 lun_count = aac_get_safw_phys_lun_count(dev);
1940 for (i = 0; i < lun_count; ++i) {
1942 bus = aac_get_safw_phys_bus(dev, i);
1943 target = aac_get_safw_phys_target(dev, i);
1945 rcode = aac_issue_safw_bmic_identify(dev,
1946 &identify_resp, bus, target);
1948 if (unlikely(rcode < 0))
1949 goto free_identify_resp;
1951 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1954 out:
1955 return rcode;
1956 free_identify_resp:
1957 aac_free_safw_all_identify_resp(dev, i);
1958 goto out;
1962 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1963 * @dev: aac_dev structure
1964 * @phys_luns: FW information from report phys luns
1965 * @rescan: Indicates scan type
1967 * Update our hba map with the information gathered from the FW
1969 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1971 /* ok and extended reporting */
1972 u32 lun_count, nexus;
1973 u32 i, bus, target;
1974 u8 expose_flag, attribs;
1976 lun_count = aac_get_safw_phys_lun_count(dev);
1978 dev->scan_counter++;
1980 for (i = 0; i < lun_count; ++i) {
1982 bus = aac_get_safw_phys_bus(dev, i);
1983 target = aac_get_safw_phys_target(dev, i);
1984 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1985 attribs = aac_get_safw_phys_attribs(dev, i);
1986 nexus = aac_get_safw_phys_nexus(dev, i);
1988 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1989 continue;
1991 if (expose_flag != 0) {
1992 dev->hba_map[bus][target].devtype =
1993 AAC_DEVTYPE_RAID_MEMBER;
1994 continue;
1997 if (nexus != 0 && (attribs & 8)) {
1998 dev->hba_map[bus][target].devtype =
1999 AAC_DEVTYPE_NATIVE_RAW;
2000 dev->hba_map[bus][target].rmw_nexus =
2001 nexus;
2002 } else
2003 dev->hba_map[bus][target].devtype =
2004 AAC_DEVTYPE_ARC_RAW;
2006 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2008 aac_set_safw_target_qd(dev, bus, target);
2012 static int aac_setup_safw_targets(struct aac_dev *dev)
2014 int rcode = 0;
2016 rcode = aac_get_containers(dev);
2017 if (unlikely(rcode < 0))
2018 goto out;
2020 rcode = aac_get_safw_ciss_luns(dev);
2021 if (unlikely(rcode < 0))
2022 goto out;
2024 rcode = aac_get_safw_attr_all_targets(dev);
2025 if (unlikely(rcode < 0))
2026 goto free_ciss_luns;
2028 aac_set_safw_attr_all_targets(dev);
2030 aac_free_safw_all_identify_resp(dev, -1);
2031 free_ciss_luns:
2032 aac_free_safw_ciss_luns(dev);
2033 out:
2034 return rcode;
2037 int aac_setup_safw_adapter(struct aac_dev *dev)
2039 return aac_setup_safw_targets(dev);
2042 int aac_get_adapter_info(struct aac_dev* dev)
2044 struct fib* fibptr;
2045 int rcode;
2046 u32 tmp, bus, target;
2047 struct aac_adapter_info *info;
2048 struct aac_bus_info *command;
2049 struct aac_bus_info_response *bus_info;
2051 if (!(fibptr = aac_fib_alloc(dev)))
2052 return -ENOMEM;
2054 aac_fib_init(fibptr);
2055 info = (struct aac_adapter_info *) fib_data(fibptr);
2056 memset(info,0,sizeof(*info));
2058 rcode = aac_fib_send(RequestAdapterInfo,
2059 fibptr,
2060 sizeof(*info),
2061 FsaNormal,
2062 -1, 1, /* First `interrupt' command uses special wait */
2063 NULL,
2064 NULL);
2066 if (rcode < 0) {
2067 /* FIB should be freed only after
2068 * getting the response from the F/W */
2069 if (rcode != -ERESTARTSYS) {
2070 aac_fib_complete(fibptr);
2071 aac_fib_free(fibptr);
2073 return rcode;
2075 memcpy(&dev->adapter_info, info, sizeof(*info));
2077 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2078 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2079 struct aac_supplement_adapter_info * sinfo;
2081 aac_fib_init(fibptr);
2083 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2085 memset(sinfo,0,sizeof(*sinfo));
2087 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2088 fibptr,
2089 sizeof(*sinfo),
2090 FsaNormal,
2091 1, 1,
2092 NULL,
2093 NULL);
2095 if (rcode >= 0)
2096 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2097 if (rcode == -ERESTARTSYS) {
2098 fibptr = aac_fib_alloc(dev);
2099 if (!fibptr)
2100 return -ENOMEM;
2105 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2106 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2107 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2108 dev->hba_map[bus][target].devtype = 0;
2109 dev->hba_map[bus][target].qd_limit = 0;
2114 * GetBusInfo
2117 aac_fib_init(fibptr);
2119 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2121 memset(bus_info, 0, sizeof(*bus_info));
2123 command = (struct aac_bus_info *)bus_info;
2125 command->Command = cpu_to_le32(VM_Ioctl);
2126 command->ObjType = cpu_to_le32(FT_DRIVE);
2127 command->MethodId = cpu_to_le32(1);
2128 command->CtlCmd = cpu_to_le32(GetBusInfo);
2130 rcode = aac_fib_send(ContainerCommand,
2131 fibptr,
2132 sizeof (*bus_info),
2133 FsaNormal,
2134 1, 1,
2135 NULL, NULL);
2137 /* reasoned default */
2138 dev->maximum_num_physicals = 16;
2139 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2140 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2141 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2144 if (!dev->in_reset) {
2145 char buffer[16];
2146 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2147 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2148 dev->name,
2149 dev->id,
2150 tmp>>24,
2151 (tmp>>16)&0xff,
2152 tmp&0xff,
2153 le32_to_cpu(dev->adapter_info.kernelbuild),
2154 (int)sizeof(dev->supplement_adapter_info.build_date),
2155 dev->supplement_adapter_info.build_date);
2156 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2157 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2158 dev->name, dev->id,
2159 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2160 le32_to_cpu(dev->adapter_info.monitorbuild));
2161 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2162 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2163 dev->name, dev->id,
2164 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2165 le32_to_cpu(dev->adapter_info.biosbuild));
2166 buffer[0] = '\0';
2167 if (aac_get_serial_number(
2168 shost_to_class(dev->scsi_host_ptr), buffer))
2169 printk(KERN_INFO "%s%d: serial %s",
2170 dev->name, dev->id, buffer);
2171 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2172 printk(KERN_INFO "%s%d: TSID %.*s\n",
2173 dev->name, dev->id,
2174 (int)sizeof(dev->supplement_adapter_info
2175 .vpd_info.tsid),
2176 dev->supplement_adapter_info.vpd_info.tsid);
2178 if (!aac_check_reset || ((aac_check_reset == 1) &&
2179 (dev->supplement_adapter_info.supported_options2 &
2180 AAC_OPTION_IGNORE_RESET))) {
2181 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2182 dev->name, dev->id);
2186 dev->cache_protected = 0;
2187 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2188 AAC_FEATURE_JBOD) != 0);
2189 dev->nondasd_support = 0;
2190 dev->raid_scsi_mode = 0;
2191 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2192 dev->nondasd_support = 1;
2195 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2196 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2197 * force nondasd support on. If we decide to allow the non-dasd flag
2198 * additional changes changes will have to be made to support
2199 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2200 * changed to support the new dev->raid_scsi_mode flag instead of
2201 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2202 * function aac_detect will have to be modified where it sets up the
2203 * max number of channels based on the aac->nondasd_support flag only.
2205 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2206 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2207 dev->nondasd_support = 1;
2208 dev->raid_scsi_mode = 1;
2210 if (dev->raid_scsi_mode != 0)
2211 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2212 dev->name, dev->id);
2214 if (nondasd != -1)
2215 dev->nondasd_support = (nondasd!=0);
2216 if (dev->nondasd_support && !dev->in_reset)
2217 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2219 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2220 dev->needs_dac = 1;
2221 dev->dac_support = 0;
2222 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2223 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2224 if (!dev->in_reset)
2225 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2226 dev->name, dev->id);
2227 dev->dac_support = 1;
2230 if(dacmode != -1) {
2231 dev->dac_support = (dacmode!=0);
2234 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2235 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2236 & AAC_QUIRK_SCSI_32)) {
2237 dev->nondasd_support = 0;
2238 dev->jbod = 0;
2239 expose_physicals = 0;
2242 if (dev->dac_support) {
2243 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2244 if (!dev->in_reset)
2245 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2246 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2247 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2248 dev->dac_support = 0;
2249 } else {
2250 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2251 rcode = -ENOMEM;
2255 * Deal with configuring for the individualized limits of each packet
2256 * interface.
2258 dev->a_ops.adapter_scsi = (dev->dac_support)
2259 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2260 ? aac_scsi_32_64
2261 : aac_scsi_64)
2262 : aac_scsi_32;
2263 if (dev->raw_io_interface) {
2264 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2265 ? aac_bounds_64
2266 : aac_bounds_32;
2267 dev->a_ops.adapter_read = aac_read_raw_io;
2268 dev->a_ops.adapter_write = aac_write_raw_io;
2269 } else {
2270 dev->a_ops.adapter_bounds = aac_bounds_32;
2271 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2272 sizeof(struct aac_fibhdr) -
2273 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2274 sizeof(struct sgentry);
2275 if (dev->dac_support) {
2276 dev->a_ops.adapter_read = aac_read_block64;
2277 dev->a_ops.adapter_write = aac_write_block64;
2279 * 38 scatter gather elements
2281 dev->scsi_host_ptr->sg_tablesize =
2282 (dev->max_fib_size -
2283 sizeof(struct aac_fibhdr) -
2284 sizeof(struct aac_write64) +
2285 sizeof(struct sgentry64)) /
2286 sizeof(struct sgentry64);
2287 } else {
2288 dev->a_ops.adapter_read = aac_read_block;
2289 dev->a_ops.adapter_write = aac_write_block;
2291 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2292 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2294 * Worst case size that could cause sg overflow when
2295 * we break up SG elements that are larger than 64KB.
2296 * Would be nice if we could tell the SCSI layer what
2297 * the maximum SG element size can be. Worst case is
2298 * (sg_tablesize-1) 4KB elements with one 64KB
2299 * element.
2300 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2302 dev->scsi_host_ptr->max_sectors =
2303 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2306 if (!dev->sync_mode && dev->sa_firmware &&
2307 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2308 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2309 HBA_MAX_SG_SEPARATE;
2311 /* FIB should be freed only after getting the response from the F/W */
2312 if (rcode != -ERESTARTSYS) {
2313 aac_fib_complete(fibptr);
2314 aac_fib_free(fibptr);
2317 return rcode;
2321 static void io_callback(void *context, struct fib * fibptr)
2323 struct aac_dev *dev;
2324 struct aac_read_reply *readreply;
2325 struct scsi_cmnd *scsicmd;
2326 u32 cid;
2328 scsicmd = (struct scsi_cmnd *) context;
2330 if (!aac_valid_context(scsicmd, fibptr))
2331 return;
2333 dev = fibptr->dev;
2334 cid = scmd_id(scsicmd);
2336 if (nblank(dprintk(x))) {
2337 u64 lba;
2338 switch (scsicmd->cmnd[0]) {
2339 case WRITE_6:
2340 case READ_6:
2341 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2342 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2343 break;
2344 case WRITE_16:
2345 case READ_16:
2346 lba = ((u64)scsicmd->cmnd[2] << 56) |
2347 ((u64)scsicmd->cmnd[3] << 48) |
2348 ((u64)scsicmd->cmnd[4] << 40) |
2349 ((u64)scsicmd->cmnd[5] << 32) |
2350 ((u64)scsicmd->cmnd[6] << 24) |
2351 (scsicmd->cmnd[7] << 16) |
2352 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2353 break;
2354 case WRITE_12:
2355 case READ_12:
2356 lba = ((u64)scsicmd->cmnd[2] << 24) |
2357 (scsicmd->cmnd[3] << 16) |
2358 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2359 break;
2360 default:
2361 lba = ((u64)scsicmd->cmnd[2] << 24) |
2362 (scsicmd->cmnd[3] << 16) |
2363 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2364 break;
2366 printk(KERN_DEBUG
2367 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2368 smp_processor_id(), (unsigned long long)lba, jiffies);
2371 BUG_ON(fibptr == NULL);
2373 scsi_dma_unmap(scsicmd);
2375 readreply = (struct aac_read_reply *)fib_data(fibptr);
2376 switch (le32_to_cpu(readreply->status)) {
2377 case ST_OK:
2378 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2379 SAM_STAT_GOOD;
2380 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2381 break;
2382 case ST_NOT_READY:
2383 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2384 SAM_STAT_CHECK_CONDITION;
2385 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2386 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2387 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2388 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2389 SCSI_SENSE_BUFFERSIZE));
2390 break;
2391 case ST_MEDERR:
2392 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2393 SAM_STAT_CHECK_CONDITION;
2394 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2395 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2396 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2397 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2398 SCSI_SENSE_BUFFERSIZE));
2399 break;
2400 default:
2401 #ifdef AAC_DETAILED_STATUS_INFO
2402 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2403 le32_to_cpu(readreply->status));
2404 #endif
2405 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2406 SAM_STAT_CHECK_CONDITION;
2407 set_sense(&dev->fsa_dev[cid].sense_data,
2408 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2409 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2410 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2411 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2412 SCSI_SENSE_BUFFERSIZE));
2413 break;
2415 aac_fib_complete(fibptr);
2417 scsicmd->scsi_done(scsicmd);
2420 static int aac_read(struct scsi_cmnd * scsicmd)
2422 u64 lba;
2423 u32 count;
2424 int status;
2425 struct aac_dev *dev;
2426 struct fib * cmd_fibcontext;
2427 int cid;
2429 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2431 * Get block address and transfer length
2433 switch (scsicmd->cmnd[0]) {
2434 case READ_6:
2435 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2437 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2438 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2439 count = scsicmd->cmnd[4];
2441 if (count == 0)
2442 count = 256;
2443 break;
2444 case READ_16:
2445 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2447 lba = ((u64)scsicmd->cmnd[2] << 56) |
2448 ((u64)scsicmd->cmnd[3] << 48) |
2449 ((u64)scsicmd->cmnd[4] << 40) |
2450 ((u64)scsicmd->cmnd[5] << 32) |
2451 ((u64)scsicmd->cmnd[6] << 24) |
2452 (scsicmd->cmnd[7] << 16) |
2453 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2454 count = (scsicmd->cmnd[10] << 24) |
2455 (scsicmd->cmnd[11] << 16) |
2456 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2457 break;
2458 case READ_12:
2459 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2461 lba = ((u64)scsicmd->cmnd[2] << 24) |
2462 (scsicmd->cmnd[3] << 16) |
2463 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2464 count = (scsicmd->cmnd[6] << 24) |
2465 (scsicmd->cmnd[7] << 16) |
2466 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2467 break;
2468 default:
2469 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2471 lba = ((u64)scsicmd->cmnd[2] << 24) |
2472 (scsicmd->cmnd[3] << 16) |
2473 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2474 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2475 break;
2478 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2479 cid = scmd_id(scsicmd);
2480 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2481 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2482 SAM_STAT_CHECK_CONDITION;
2483 set_sense(&dev->fsa_dev[cid].sense_data,
2484 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2485 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2486 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2487 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2488 SCSI_SENSE_BUFFERSIZE));
2489 scsicmd->scsi_done(scsicmd);
2490 return 1;
2493 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2494 smp_processor_id(), (unsigned long long)lba, jiffies));
2495 if (aac_adapter_bounds(dev,scsicmd,lba))
2496 return 0;
2498 * Alocate and initialize a Fib
2500 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2501 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2502 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2505 * Check that the command queued to the controller
2507 if (status == -EINPROGRESS)
2508 return 0;
2510 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2512 * For some reason, the Fib didn't queue, return QUEUE_FULL
2514 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2515 scsicmd->scsi_done(scsicmd);
2516 aac_fib_complete(cmd_fibcontext);
2517 aac_fib_free(cmd_fibcontext);
2518 return 0;
2521 static int aac_write(struct scsi_cmnd * scsicmd)
2523 u64 lba;
2524 u32 count;
2525 int fua;
2526 int status;
2527 struct aac_dev *dev;
2528 struct fib * cmd_fibcontext;
2529 int cid;
2531 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2533 * Get block address and transfer length
2535 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2537 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2538 count = scsicmd->cmnd[4];
2539 if (count == 0)
2540 count = 256;
2541 fua = 0;
2542 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2543 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2545 lba = ((u64)scsicmd->cmnd[2] << 56) |
2546 ((u64)scsicmd->cmnd[3] << 48) |
2547 ((u64)scsicmd->cmnd[4] << 40) |
2548 ((u64)scsicmd->cmnd[5] << 32) |
2549 ((u64)scsicmd->cmnd[6] << 24) |
2550 (scsicmd->cmnd[7] << 16) |
2551 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2552 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2553 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2554 fua = scsicmd->cmnd[1] & 0x8;
2555 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2556 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2558 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2559 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2560 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2561 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2562 fua = scsicmd->cmnd[1] & 0x8;
2563 } else {
2564 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2565 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2566 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2567 fua = scsicmd->cmnd[1] & 0x8;
2570 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2571 cid = scmd_id(scsicmd);
2572 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2573 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2574 SAM_STAT_CHECK_CONDITION;
2575 set_sense(&dev->fsa_dev[cid].sense_data,
2576 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2577 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2578 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2579 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2580 SCSI_SENSE_BUFFERSIZE));
2581 scsicmd->scsi_done(scsicmd);
2582 return 1;
2585 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2586 smp_processor_id(), (unsigned long long)lba, jiffies));
2587 if (aac_adapter_bounds(dev,scsicmd,lba))
2588 return 0;
2590 * Allocate and initialize a Fib then setup a BlockWrite command
2592 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2593 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2594 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2597 * Check that the command queued to the controller
2599 if (status == -EINPROGRESS)
2600 return 0;
2602 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2604 * For some reason, the Fib didn't queue, return QUEUE_FULL
2606 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2607 scsicmd->scsi_done(scsicmd);
2609 aac_fib_complete(cmd_fibcontext);
2610 aac_fib_free(cmd_fibcontext);
2611 return 0;
2614 static void synchronize_callback(void *context, struct fib *fibptr)
2616 struct aac_synchronize_reply *synchronizereply;
2617 struct scsi_cmnd *cmd;
2619 cmd = context;
2621 if (!aac_valid_context(cmd, fibptr))
2622 return;
2624 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2625 smp_processor_id(), jiffies));
2626 BUG_ON(fibptr == NULL);
2629 synchronizereply = fib_data(fibptr);
2630 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2631 cmd->result = DID_OK << 16 |
2632 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2633 else {
2634 struct scsi_device *sdev = cmd->device;
2635 struct aac_dev *dev = fibptr->dev;
2636 u32 cid = sdev_id(sdev);
2637 printk(KERN_WARNING
2638 "synchronize_callback: synchronize failed, status = %d\n",
2639 le32_to_cpu(synchronizereply->status));
2640 cmd->result = DID_OK << 16 |
2641 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2642 set_sense(&dev->fsa_dev[cid].sense_data,
2643 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2644 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2645 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2646 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2647 SCSI_SENSE_BUFFERSIZE));
2650 aac_fib_complete(fibptr);
2651 aac_fib_free(fibptr);
2652 cmd->scsi_done(cmd);
2655 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2657 int status;
2658 struct fib *cmd_fibcontext;
2659 struct aac_synchronize *synchronizecmd;
2660 struct scsi_cmnd *cmd;
2661 struct scsi_device *sdev = scsicmd->device;
2662 int active = 0;
2663 struct aac_dev *aac;
2664 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2665 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2666 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2667 unsigned long flags;
2670 * Wait for all outstanding queued commands to complete to this
2671 * specific target (block).
2673 spin_lock_irqsave(&sdev->list_lock, flags);
2674 list_for_each_entry(cmd, &sdev->cmd_list, list)
2675 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2676 u64 cmnd_lba;
2677 u32 cmnd_count;
2679 if (cmd->cmnd[0] == WRITE_6) {
2680 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2681 (cmd->cmnd[2] << 8) |
2682 cmd->cmnd[3];
2683 cmnd_count = cmd->cmnd[4];
2684 if (cmnd_count == 0)
2685 cmnd_count = 256;
2686 } else if (cmd->cmnd[0] == WRITE_16) {
2687 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2688 ((u64)cmd->cmnd[3] << 48) |
2689 ((u64)cmd->cmnd[4] << 40) |
2690 ((u64)cmd->cmnd[5] << 32) |
2691 ((u64)cmd->cmnd[6] << 24) |
2692 (cmd->cmnd[7] << 16) |
2693 (cmd->cmnd[8] << 8) |
2694 cmd->cmnd[9];
2695 cmnd_count = (cmd->cmnd[10] << 24) |
2696 (cmd->cmnd[11] << 16) |
2697 (cmd->cmnd[12] << 8) |
2698 cmd->cmnd[13];
2699 } else if (cmd->cmnd[0] == WRITE_12) {
2700 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2701 (cmd->cmnd[3] << 16) |
2702 (cmd->cmnd[4] << 8) |
2703 cmd->cmnd[5];
2704 cmnd_count = (cmd->cmnd[6] << 24) |
2705 (cmd->cmnd[7] << 16) |
2706 (cmd->cmnd[8] << 8) |
2707 cmd->cmnd[9];
2708 } else if (cmd->cmnd[0] == WRITE_10) {
2709 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2710 (cmd->cmnd[3] << 16) |
2711 (cmd->cmnd[4] << 8) |
2712 cmd->cmnd[5];
2713 cmnd_count = (cmd->cmnd[7] << 8) |
2714 cmd->cmnd[8];
2715 } else
2716 continue;
2717 if (((cmnd_lba + cmnd_count) < lba) ||
2718 (count && ((lba + count) < cmnd_lba)))
2719 continue;
2720 ++active;
2721 break;
2724 spin_unlock_irqrestore(&sdev->list_lock, flags);
2727 * Yield the processor (requeue for later)
2729 if (active)
2730 return SCSI_MLQUEUE_DEVICE_BUSY;
2732 aac = (struct aac_dev *)sdev->host->hostdata;
2733 if (aac->in_reset)
2734 return SCSI_MLQUEUE_HOST_BUSY;
2737 * Allocate and initialize a Fib
2739 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2740 return SCSI_MLQUEUE_HOST_BUSY;
2742 aac_fib_init(cmd_fibcontext);
2744 synchronizecmd = fib_data(cmd_fibcontext);
2745 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2746 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2747 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2748 synchronizecmd->count =
2749 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2750 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2753 * Now send the Fib to the adapter
2755 status = aac_fib_send(ContainerCommand,
2756 cmd_fibcontext,
2757 sizeof(struct aac_synchronize),
2758 FsaNormal,
2759 0, 1,
2760 (fib_callback)synchronize_callback,
2761 (void *)scsicmd);
2764 * Check that the command queued to the controller
2766 if (status == -EINPROGRESS)
2767 return 0;
2769 printk(KERN_WARNING
2770 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2771 aac_fib_complete(cmd_fibcontext);
2772 aac_fib_free(cmd_fibcontext);
2773 return SCSI_MLQUEUE_HOST_BUSY;
2776 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2778 struct scsi_cmnd *scsicmd = context;
2780 if (!aac_valid_context(scsicmd, fibptr))
2781 return;
2783 BUG_ON(fibptr == NULL);
2785 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2787 aac_fib_complete(fibptr);
2788 aac_fib_free(fibptr);
2789 scsicmd->scsi_done(scsicmd);
2792 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2794 int status;
2795 struct fib *cmd_fibcontext;
2796 struct aac_power_management *pmcmd;
2797 struct scsi_device *sdev = scsicmd->device;
2798 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2800 if (!(aac->supplement_adapter_info.supported_options2 &
2801 AAC_OPTION_POWER_MANAGEMENT)) {
2802 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2803 SAM_STAT_GOOD;
2804 scsicmd->scsi_done(scsicmd);
2805 return 0;
2808 if (aac->in_reset)
2809 return SCSI_MLQUEUE_HOST_BUSY;
2812 * Allocate and initialize a Fib
2814 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2816 aac_fib_init(cmd_fibcontext);
2818 pmcmd = fib_data(cmd_fibcontext);
2819 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2820 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2821 /* Eject bit ignored, not relevant */
2822 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2823 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2824 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2825 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2826 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2827 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2830 * Now send the Fib to the adapter
2832 status = aac_fib_send(ContainerCommand,
2833 cmd_fibcontext,
2834 sizeof(struct aac_power_management),
2835 FsaNormal,
2836 0, 1,
2837 (fib_callback)aac_start_stop_callback,
2838 (void *)scsicmd);
2841 * Check that the command queued to the controller
2843 if (status == -EINPROGRESS)
2844 return 0;
2846 aac_fib_complete(cmd_fibcontext);
2847 aac_fib_free(cmd_fibcontext);
2848 return SCSI_MLQUEUE_HOST_BUSY;
2852 * aac_scsi_cmd() - Process SCSI command
2853 * @scsicmd: SCSI command block
2855 * Emulate a SCSI command and queue the required request for the
2856 * aacraid firmware.
2859 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2861 u32 cid, bus;
2862 struct Scsi_Host *host = scsicmd->device->host;
2863 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2864 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2866 if (fsa_dev_ptr == NULL)
2867 return -1;
2869 * If the bus, id or lun is out of range, return fail
2870 * Test does not apply to ID 16, the pseudo id for the controller
2871 * itself.
2873 cid = scmd_id(scsicmd);
2874 if (cid != host->this_id) {
2875 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2876 if((cid >= dev->maximum_num_containers) ||
2877 (scsicmd->device->lun != 0)) {
2878 scsicmd->result = DID_NO_CONNECT << 16;
2879 goto scsi_done_ret;
2883 * If the target container doesn't exist, it may have
2884 * been newly created
2886 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2887 (fsa_dev_ptr[cid].sense_data.sense_key ==
2888 NOT_READY)) {
2889 switch (scsicmd->cmnd[0]) {
2890 case SERVICE_ACTION_IN_16:
2891 if (!(dev->raw_io_interface) ||
2892 !(dev->raw_io_64) ||
2893 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2894 break;
2895 case INQUIRY:
2896 case READ_CAPACITY:
2897 case TEST_UNIT_READY:
2898 if (dev->in_reset)
2899 return -1;
2900 return _aac_probe_container(scsicmd,
2901 aac_probe_container_callback2);
2902 default:
2903 break;
2906 } else { /* check for physical non-dasd devices */
2907 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2909 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2910 dev->hba_map[bus][cid].devtype
2911 == AAC_DEVTYPE_NATIVE_RAW) {
2912 if (dev->in_reset)
2913 return -1;
2914 return aac_send_hba_fib(scsicmd);
2915 } else if (dev->nondasd_support || expose_physicals ||
2916 dev->jbod) {
2917 if (dev->in_reset)
2918 return -1;
2919 return aac_send_srb_fib(scsicmd);
2920 } else {
2921 scsicmd->result = DID_NO_CONNECT << 16;
2922 goto scsi_done_ret;
2927 * else Command for the controller itself
2929 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2930 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2932 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2933 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2934 set_sense(&dev->fsa_dev[cid].sense_data,
2935 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2936 ASENCODE_INVALID_COMMAND, 0, 0);
2937 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2938 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2939 SCSI_SENSE_BUFFERSIZE));
2940 goto scsi_done_ret;
2943 switch (scsicmd->cmnd[0]) {
2944 case READ_6:
2945 case READ_10:
2946 case READ_12:
2947 case READ_16:
2948 if (dev->in_reset)
2949 return -1;
2950 return aac_read(scsicmd);
2952 case WRITE_6:
2953 case WRITE_10:
2954 case WRITE_12:
2955 case WRITE_16:
2956 if (dev->in_reset)
2957 return -1;
2958 return aac_write(scsicmd);
2960 case SYNCHRONIZE_CACHE:
2961 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2962 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2963 SAM_STAT_GOOD;
2964 break;
2966 /* Issue FIB to tell Firmware to flush it's cache */
2967 if ((aac_cache & 6) != 2)
2968 return aac_synchronize(scsicmd);
2969 case INQUIRY:
2971 struct inquiry_data inq_data;
2973 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2974 memset(&inq_data, 0, sizeof (struct inquiry_data));
2976 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2977 char *arr = (char *)&inq_data;
2979 /* EVPD bit set */
2980 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2981 INQD_PDT_PROC : INQD_PDT_DA;
2982 if (scsicmd->cmnd[2] == 0) {
2983 /* supported vital product data pages */
2984 arr[3] = 3;
2985 arr[4] = 0x0;
2986 arr[5] = 0x80;
2987 arr[6] = 0x83;
2988 arr[1] = scsicmd->cmnd[2];
2989 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2990 sizeof(inq_data));
2991 scsicmd->result = DID_OK << 16 |
2992 COMMAND_COMPLETE << 8 |
2993 SAM_STAT_GOOD;
2994 } else if (scsicmd->cmnd[2] == 0x80) {
2995 /* unit serial number page */
2996 arr[3] = setinqserial(dev, &arr[4],
2997 scmd_id(scsicmd));
2998 arr[1] = scsicmd->cmnd[2];
2999 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3000 sizeof(inq_data));
3001 if (aac_wwn != 2)
3002 return aac_get_container_serial(
3003 scsicmd);
3004 scsicmd->result = DID_OK << 16 |
3005 COMMAND_COMPLETE << 8 |
3006 SAM_STAT_GOOD;
3007 } else if (scsicmd->cmnd[2] == 0x83) {
3008 /* vpd page 0x83 - Device Identification Page */
3009 char *sno = (char *)&inq_data;
3010 sno[3] = setinqserial(dev, &sno[4],
3011 scmd_id(scsicmd));
3012 if (aac_wwn != 2)
3013 return aac_get_container_serial(
3014 scsicmd);
3015 scsicmd->result = DID_OK << 16 |
3016 COMMAND_COMPLETE << 8 |
3017 SAM_STAT_GOOD;
3018 } else {
3019 /* vpd page not implemented */
3020 scsicmd->result = DID_OK << 16 |
3021 COMMAND_COMPLETE << 8 |
3022 SAM_STAT_CHECK_CONDITION;
3023 set_sense(&dev->fsa_dev[cid].sense_data,
3024 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3025 ASENCODE_NO_SENSE, 7, 2);
3026 memcpy(scsicmd->sense_buffer,
3027 &dev->fsa_dev[cid].sense_data,
3028 min_t(size_t,
3029 sizeof(dev->fsa_dev[cid].sense_data),
3030 SCSI_SENSE_BUFFERSIZE));
3032 break;
3034 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
3035 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3036 inq_data.inqd_len = 31;
3037 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
3038 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
3040 * Set the Vendor, Product, and Revision Level
3041 * see: <vendor>.c i.e. aac.c
3043 if (cid == host->this_id) {
3044 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3045 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
3046 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3047 sizeof(inq_data));
3048 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3049 SAM_STAT_GOOD;
3050 break;
3052 if (dev->in_reset)
3053 return -1;
3054 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3055 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
3056 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3057 return aac_get_container_name(scsicmd);
3059 case SERVICE_ACTION_IN_16:
3060 if (!(dev->raw_io_interface) ||
3061 !(dev->raw_io_64) ||
3062 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3063 break;
3065 u64 capacity;
3066 char cp[13];
3067 unsigned int alloc_len;
3069 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3070 capacity = fsa_dev_ptr[cid].size - 1;
3071 cp[0] = (capacity >> 56) & 0xff;
3072 cp[1] = (capacity >> 48) & 0xff;
3073 cp[2] = (capacity >> 40) & 0xff;
3074 cp[3] = (capacity >> 32) & 0xff;
3075 cp[4] = (capacity >> 24) & 0xff;
3076 cp[5] = (capacity >> 16) & 0xff;
3077 cp[6] = (capacity >> 8) & 0xff;
3078 cp[7] = (capacity >> 0) & 0xff;
3079 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3080 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3081 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3082 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3083 cp[12] = 0;
3085 alloc_len = ((scsicmd->cmnd[10] << 24)
3086 + (scsicmd->cmnd[11] << 16)
3087 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3089 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3090 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3091 if (alloc_len < scsi_bufflen(scsicmd))
3092 scsi_set_resid(scsicmd,
3093 scsi_bufflen(scsicmd) - alloc_len);
3095 /* Do not cache partition table for arrays */
3096 scsicmd->device->removable = 1;
3098 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3099 SAM_STAT_GOOD;
3100 break;
3103 case READ_CAPACITY:
3105 u32 capacity;
3106 char cp[8];
3108 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3109 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3110 capacity = fsa_dev_ptr[cid].size - 1;
3111 else
3112 capacity = (u32)-1;
3114 cp[0] = (capacity >> 24) & 0xff;
3115 cp[1] = (capacity >> 16) & 0xff;
3116 cp[2] = (capacity >> 8) & 0xff;
3117 cp[3] = (capacity >> 0) & 0xff;
3118 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3119 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3120 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3121 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3122 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3123 /* Do not cache partition table for arrays */
3124 scsicmd->device->removable = 1;
3125 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3126 SAM_STAT_GOOD;
3127 break;
3130 case MODE_SENSE:
3132 int mode_buf_length = 4;
3133 u32 capacity;
3134 aac_modep_data mpd;
3136 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3137 capacity = fsa_dev_ptr[cid].size - 1;
3138 else
3139 capacity = (u32)-1;
3141 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3142 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3144 /* Mode data length */
3145 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3146 /* Medium type - default */
3147 mpd.hd.med_type = 0;
3148 /* Device-specific param,
3149 bit 8: 0/1 = write enabled/protected
3150 bit 4: 0/1 = FUA enabled */
3151 mpd.hd.dev_par = 0;
3153 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3154 mpd.hd.dev_par = 0x10;
3155 if (scsicmd->cmnd[1] & 0x8)
3156 mpd.hd.bd_length = 0; /* Block descriptor length */
3157 else {
3158 mpd.hd.bd_length = sizeof(mpd.bd);
3159 mpd.hd.data_length += mpd.hd.bd_length;
3160 mpd.bd.block_length[0] =
3161 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3162 mpd.bd.block_length[1] =
3163 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3164 mpd.bd.block_length[2] =
3165 fsa_dev_ptr[cid].block_size & 0xff;
3167 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3168 if (scsicmd->cmnd[2] == 0x1C) {
3169 /* page length */
3170 mpd.mpc_buf[1] = 0xa;
3171 /* Mode data length */
3172 mpd.hd.data_length = 23;
3173 } else {
3174 /* Mode data length */
3175 mpd.hd.data_length = 15;
3178 if (capacity > 0xffffff) {
3179 mpd.bd.block_count[0] = 0xff;
3180 mpd.bd.block_count[1] = 0xff;
3181 mpd.bd.block_count[2] = 0xff;
3182 } else {
3183 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3184 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3185 mpd.bd.block_count[2] = capacity & 0xff;
3188 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3189 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3190 mpd.hd.data_length += 3;
3191 mpd.mpc_buf[0] = 8;
3192 mpd.mpc_buf[1] = 1;
3193 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3194 ? 0 : 0x04; /* WCE */
3195 mode_buf_length = sizeof(mpd);
3198 if (mode_buf_length > scsicmd->cmnd[4])
3199 mode_buf_length = scsicmd->cmnd[4];
3200 else
3201 mode_buf_length = sizeof(mpd);
3202 scsi_sg_copy_from_buffer(scsicmd,
3203 (char *)&mpd,
3204 mode_buf_length);
3205 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3206 SAM_STAT_GOOD;
3207 break;
3209 case MODE_SENSE_10:
3211 u32 capacity;
3212 int mode_buf_length = 8;
3213 aac_modep10_data mpd10;
3215 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3216 capacity = fsa_dev_ptr[cid].size - 1;
3217 else
3218 capacity = (u32)-1;
3220 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3221 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3222 /* Mode data length (MSB) */
3223 mpd10.hd.data_length[0] = 0;
3224 /* Mode data length (LSB) */
3225 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3226 /* Medium type - default */
3227 mpd10.hd.med_type = 0;
3228 /* Device-specific param,
3229 bit 8: 0/1 = write enabled/protected
3230 bit 4: 0/1 = FUA enabled */
3231 mpd10.hd.dev_par = 0;
3233 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3234 mpd10.hd.dev_par = 0x10;
3235 mpd10.hd.rsrvd[0] = 0; /* reserved */
3236 mpd10.hd.rsrvd[1] = 0; /* reserved */
3237 if (scsicmd->cmnd[1] & 0x8) {
3238 /* Block descriptor length (MSB) */
3239 mpd10.hd.bd_length[0] = 0;
3240 /* Block descriptor length (LSB) */
3241 mpd10.hd.bd_length[1] = 0;
3242 } else {
3243 mpd10.hd.bd_length[0] = 0;
3244 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3246 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3248 mpd10.bd.block_length[0] =
3249 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3250 mpd10.bd.block_length[1] =
3251 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3252 mpd10.bd.block_length[2] =
3253 fsa_dev_ptr[cid].block_size & 0xff;
3255 if (capacity > 0xffffff) {
3256 mpd10.bd.block_count[0] = 0xff;
3257 mpd10.bd.block_count[1] = 0xff;
3258 mpd10.bd.block_count[2] = 0xff;
3259 } else {
3260 mpd10.bd.block_count[0] =
3261 (capacity >> 16) & 0xff;
3262 mpd10.bd.block_count[1] =
3263 (capacity >> 8) & 0xff;
3264 mpd10.bd.block_count[2] =
3265 capacity & 0xff;
3268 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3269 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3270 mpd10.hd.data_length[1] += 3;
3271 mpd10.mpc_buf[0] = 8;
3272 mpd10.mpc_buf[1] = 1;
3273 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3274 ? 0 : 0x04; /* WCE */
3275 mode_buf_length = sizeof(mpd10);
3276 if (mode_buf_length > scsicmd->cmnd[8])
3277 mode_buf_length = scsicmd->cmnd[8];
3279 scsi_sg_copy_from_buffer(scsicmd,
3280 (char *)&mpd10,
3281 mode_buf_length);
3283 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3284 SAM_STAT_GOOD;
3285 break;
3287 case REQUEST_SENSE:
3288 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3289 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3290 sizeof(struct sense_data));
3291 memset(&dev->fsa_dev[cid].sense_data, 0,
3292 sizeof(struct sense_data));
3293 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3294 SAM_STAT_GOOD;
3295 break;
3297 case ALLOW_MEDIUM_REMOVAL:
3298 dprintk((KERN_DEBUG "LOCK command.\n"));
3299 if (scsicmd->cmnd[4])
3300 fsa_dev_ptr[cid].locked = 1;
3301 else
3302 fsa_dev_ptr[cid].locked = 0;
3304 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3305 SAM_STAT_GOOD;
3306 break;
3308 * These commands are all No-Ops
3310 case TEST_UNIT_READY:
3311 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3312 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3313 SAM_STAT_CHECK_CONDITION;
3314 set_sense(&dev->fsa_dev[cid].sense_data,
3315 NOT_READY, SENCODE_BECOMING_READY,
3316 ASENCODE_BECOMING_READY, 0, 0);
3317 memcpy(scsicmd->sense_buffer,
3318 &dev->fsa_dev[cid].sense_data,
3319 min_t(size_t,
3320 sizeof(dev->fsa_dev[cid].sense_data),
3321 SCSI_SENSE_BUFFERSIZE));
3322 break;
3324 case RESERVE:
3325 case RELEASE:
3326 case REZERO_UNIT:
3327 case REASSIGN_BLOCKS:
3328 case SEEK_10:
3329 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3330 SAM_STAT_GOOD;
3331 break;
3333 case START_STOP:
3334 return aac_start_stop(scsicmd);
3336 /* FALLTHRU */
3337 default:
3339 * Unhandled commands
3341 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3342 scsicmd->cmnd[0]));
3343 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3344 SAM_STAT_CHECK_CONDITION;
3345 set_sense(&dev->fsa_dev[cid].sense_data,
3346 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3347 ASENCODE_INVALID_COMMAND, 0, 0);
3348 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3349 min_t(size_t,
3350 sizeof(dev->fsa_dev[cid].sense_data),
3351 SCSI_SENSE_BUFFERSIZE));
3354 scsi_done_ret:
3356 scsicmd->scsi_done(scsicmd);
3357 return 0;
3360 static int query_disk(struct aac_dev *dev, void __user *arg)
3362 struct aac_query_disk qd;
3363 struct fsa_dev_info *fsa_dev_ptr;
3365 fsa_dev_ptr = dev->fsa_dev;
3366 if (!fsa_dev_ptr)
3367 return -EBUSY;
3368 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3369 return -EFAULT;
3370 if (qd.cnum == -1) {
3371 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3372 return -EINVAL;
3373 qd.cnum = qd.id;
3374 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3375 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3376 return -EINVAL;
3377 qd.instance = dev->scsi_host_ptr->host_no;
3378 qd.bus = 0;
3379 qd.id = CONTAINER_TO_ID(qd.cnum);
3380 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3382 else return -EINVAL;
3384 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3385 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3386 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3388 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3389 qd.unmapped = 1;
3390 else
3391 qd.unmapped = 0;
3393 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3394 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3396 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3397 return -EFAULT;
3398 return 0;
3401 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3403 struct aac_delete_disk dd;
3404 struct fsa_dev_info *fsa_dev_ptr;
3406 fsa_dev_ptr = dev->fsa_dev;
3407 if (!fsa_dev_ptr)
3408 return -EBUSY;
3410 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3411 return -EFAULT;
3413 if (dd.cnum >= dev->maximum_num_containers)
3414 return -EINVAL;
3416 * Mark this container as being deleted.
3418 fsa_dev_ptr[dd.cnum].deleted = 1;
3420 * Mark the container as no longer valid
3422 fsa_dev_ptr[dd.cnum].valid = 0;
3423 return 0;
3426 static int delete_disk(struct aac_dev *dev, void __user *arg)
3428 struct aac_delete_disk dd;
3429 struct fsa_dev_info *fsa_dev_ptr;
3431 fsa_dev_ptr = dev->fsa_dev;
3432 if (!fsa_dev_ptr)
3433 return -EBUSY;
3435 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3436 return -EFAULT;
3438 if (dd.cnum >= dev->maximum_num_containers)
3439 return -EINVAL;
3441 * If the container is locked, it can not be deleted by the API.
3443 if (fsa_dev_ptr[dd.cnum].locked)
3444 return -EBUSY;
3445 else {
3447 * Mark the container as no longer being valid.
3449 fsa_dev_ptr[dd.cnum].valid = 0;
3450 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3451 return 0;
3455 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3457 switch (cmd) {
3458 case FSACTL_QUERY_DISK:
3459 return query_disk(dev, arg);
3460 case FSACTL_DELETE_DISK:
3461 return delete_disk(dev, arg);
3462 case FSACTL_FORCE_DELETE_DISK:
3463 return force_delete_disk(dev, arg);
3464 case FSACTL_GET_CONTAINERS:
3465 return aac_get_containers(dev);
3466 default:
3467 return -ENOTTY;
3473 * aac_srb_callback
3474 * @context: the context set in the fib - here it is scsi cmd
3475 * @fibptr: pointer to the fib
3477 * Handles the completion of a scsi command to a non dasd device
3481 static void aac_srb_callback(void *context, struct fib * fibptr)
3483 struct aac_dev *dev;
3484 struct aac_srb_reply *srbreply;
3485 struct scsi_cmnd *scsicmd;
3487 scsicmd = (struct scsi_cmnd *) context;
3489 if (!aac_valid_context(scsicmd, fibptr))
3490 return;
3492 BUG_ON(fibptr == NULL);
3494 dev = fibptr->dev;
3496 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3498 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3500 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3501 /* fast response */
3502 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3503 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3504 } else {
3506 * Calculate resid for sg
3508 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3509 - le32_to_cpu(srbreply->data_xfer_length));
3513 scsi_dma_unmap(scsicmd);
3515 /* expose physical device if expose_physicald flag is on */
3516 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3517 && expose_physicals > 0)
3518 aac_expose_phy_device(scsicmd);
3521 * First check the fib status
3524 if (le32_to_cpu(srbreply->status) != ST_OK) {
3525 int len;
3527 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3528 le32_to_cpu(srbreply->status));
3529 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3530 SCSI_SENSE_BUFFERSIZE);
3531 scsicmd->result = DID_ERROR << 16
3532 | COMMAND_COMPLETE << 8
3533 | SAM_STAT_CHECK_CONDITION;
3534 memcpy(scsicmd->sense_buffer,
3535 srbreply->sense_data, len);
3539 * Next check the srb status
3541 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3542 case SRB_STATUS_ERROR_RECOVERY:
3543 case SRB_STATUS_PENDING:
3544 case SRB_STATUS_SUCCESS:
3545 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3546 break;
3547 case SRB_STATUS_DATA_OVERRUN:
3548 switch (scsicmd->cmnd[0]) {
3549 case READ_6:
3550 case WRITE_6:
3551 case READ_10:
3552 case WRITE_10:
3553 case READ_12:
3554 case WRITE_12:
3555 case READ_16:
3556 case WRITE_16:
3557 if (le32_to_cpu(srbreply->data_xfer_length)
3558 < scsicmd->underflow)
3559 pr_warn("aacraid: SCSI CMD underflow\n");
3560 else
3561 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3562 scsicmd->result = DID_ERROR << 16
3563 | COMMAND_COMPLETE << 8;
3564 break;
3565 case INQUIRY:
3566 scsicmd->result = DID_OK << 16
3567 | COMMAND_COMPLETE << 8;
3568 break;
3569 default:
3570 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3571 break;
3573 break;
3574 case SRB_STATUS_ABORTED:
3575 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3576 break;
3577 case SRB_STATUS_ABORT_FAILED:
3579 * Not sure about this one - but assuming the
3580 * hba was trying to abort for some reason
3582 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3583 break;
3584 case SRB_STATUS_PARITY_ERROR:
3585 scsicmd->result = DID_PARITY << 16
3586 | MSG_PARITY_ERROR << 8;
3587 break;
3588 case SRB_STATUS_NO_DEVICE:
3589 case SRB_STATUS_INVALID_PATH_ID:
3590 case SRB_STATUS_INVALID_TARGET_ID:
3591 case SRB_STATUS_INVALID_LUN:
3592 case SRB_STATUS_SELECTION_TIMEOUT:
3593 scsicmd->result = DID_NO_CONNECT << 16
3594 | COMMAND_COMPLETE << 8;
3595 break;
3597 case SRB_STATUS_COMMAND_TIMEOUT:
3598 case SRB_STATUS_TIMEOUT:
3599 scsicmd->result = DID_TIME_OUT << 16
3600 | COMMAND_COMPLETE << 8;
3601 break;
3603 case SRB_STATUS_BUSY:
3604 scsicmd->result = DID_BUS_BUSY << 16
3605 | COMMAND_COMPLETE << 8;
3606 break;
3608 case SRB_STATUS_BUS_RESET:
3609 scsicmd->result = DID_RESET << 16
3610 | COMMAND_COMPLETE << 8;
3611 break;
3613 case SRB_STATUS_MESSAGE_REJECTED:
3614 scsicmd->result = DID_ERROR << 16
3615 | MESSAGE_REJECT << 8;
3616 break;
3617 case SRB_STATUS_REQUEST_FLUSHED:
3618 case SRB_STATUS_ERROR:
3619 case SRB_STATUS_INVALID_REQUEST:
3620 case SRB_STATUS_REQUEST_SENSE_FAILED:
3621 case SRB_STATUS_NO_HBA:
3622 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3623 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3624 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3625 case SRB_STATUS_DELAYED_RETRY:
3626 case SRB_STATUS_BAD_FUNCTION:
3627 case SRB_STATUS_NOT_STARTED:
3628 case SRB_STATUS_NOT_IN_USE:
3629 case SRB_STATUS_FORCE_ABORT:
3630 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3631 default:
3632 #ifdef AAC_DETAILED_STATUS_INFO
3633 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3634 le32_to_cpu(srbreply->srb_status) & 0x3F,
3635 aac_get_status_string(
3636 le32_to_cpu(srbreply->srb_status) & 0x3F),
3637 scsicmd->cmnd[0],
3638 le32_to_cpu(srbreply->scsi_status));
3639 #endif
3641 * When the CC bit is SET by the host in ATA pass thru CDB,
3642 * driver is supposed to return DID_OK
3644 * When the CC bit is RESET by the host, driver should
3645 * return DID_ERROR
3647 if ((scsicmd->cmnd[0] == ATA_12)
3648 || (scsicmd->cmnd[0] == ATA_16)) {
3650 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3651 scsicmd->result = DID_OK << 16
3652 | COMMAND_COMPLETE << 8;
3653 break;
3654 } else {
3655 scsicmd->result = DID_ERROR << 16
3656 | COMMAND_COMPLETE << 8;
3657 break;
3659 } else {
3660 scsicmd->result = DID_ERROR << 16
3661 | COMMAND_COMPLETE << 8;
3662 break;
3665 if (le32_to_cpu(srbreply->scsi_status)
3666 == SAM_STAT_CHECK_CONDITION) {
3667 int len;
3669 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3670 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3671 SCSI_SENSE_BUFFERSIZE);
3672 #ifdef AAC_DETAILED_STATUS_INFO
3673 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3674 le32_to_cpu(srbreply->status), len);
3675 #endif
3676 memcpy(scsicmd->sense_buffer,
3677 srbreply->sense_data, len);
3681 * OR in the scsi status (already shifted up a bit)
3683 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3685 aac_fib_complete(fibptr);
3686 scsicmd->scsi_done(scsicmd);
3689 static void hba_resp_task_complete(struct aac_dev *dev,
3690 struct scsi_cmnd *scsicmd,
3691 struct aac_hba_resp *err) {
3693 scsicmd->result = err->status;
3694 /* set residual count */
3695 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3697 switch (err->status) {
3698 case SAM_STAT_GOOD:
3699 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3700 break;
3701 case SAM_STAT_CHECK_CONDITION:
3703 int len;
3705 len = min_t(u8, err->sense_response_data_len,
3706 SCSI_SENSE_BUFFERSIZE);
3707 if (len)
3708 memcpy(scsicmd->sense_buffer,
3709 err->sense_response_buf, len);
3710 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3711 break;
3713 case SAM_STAT_BUSY:
3714 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3715 break;
3716 case SAM_STAT_TASK_ABORTED:
3717 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3718 break;
3719 case SAM_STAT_RESERVATION_CONFLICT:
3720 case SAM_STAT_TASK_SET_FULL:
3721 default:
3722 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3723 break;
3727 static void hba_resp_task_failure(struct aac_dev *dev,
3728 struct scsi_cmnd *scsicmd,
3729 struct aac_hba_resp *err)
3731 switch (err->status) {
3732 case HBA_RESP_STAT_HBAMODE_DISABLED:
3734 u32 bus, cid;
3736 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3737 cid = scmd_id(scsicmd);
3738 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3739 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3740 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3742 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3743 break;
3745 case HBA_RESP_STAT_IO_ERROR:
3746 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3747 scsicmd->result = DID_OK << 16 |
3748 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3749 break;
3750 case HBA_RESP_STAT_IO_ABORTED:
3751 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3752 break;
3753 case HBA_RESP_STAT_INVALID_DEVICE:
3754 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3755 break;
3756 case HBA_RESP_STAT_UNDERRUN:
3757 /* UNDERRUN is OK */
3758 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3759 break;
3760 case HBA_RESP_STAT_OVERRUN:
3761 default:
3762 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3763 break;
3769 * aac_hba_callback
3770 * @context: the context set in the fib - here it is scsi cmd
3771 * @fibptr: pointer to the fib
3773 * Handles the completion of a native HBA scsi command
3776 void aac_hba_callback(void *context, struct fib *fibptr)
3778 struct aac_dev *dev;
3779 struct scsi_cmnd *scsicmd;
3781 struct aac_hba_resp *err =
3782 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3784 scsicmd = (struct scsi_cmnd *) context;
3786 if (!aac_valid_context(scsicmd, fibptr))
3787 return;
3789 WARN_ON(fibptr == NULL);
3790 dev = fibptr->dev;
3792 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3793 scsi_dma_unmap(scsicmd);
3795 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3796 /* fast response */
3797 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3798 goto out;
3801 switch (err->service_response) {
3802 case HBA_RESP_SVCRES_TASK_COMPLETE:
3803 hba_resp_task_complete(dev, scsicmd, err);
3804 break;
3805 case HBA_RESP_SVCRES_FAILURE:
3806 hba_resp_task_failure(dev, scsicmd, err);
3807 break;
3808 case HBA_RESP_SVCRES_TMF_REJECTED:
3809 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3810 break;
3811 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3812 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3813 break;
3814 case HBA_RESP_SVCRES_TMF_COMPLETE:
3815 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3816 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3817 break;
3818 default:
3819 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3820 break;
3823 out:
3824 aac_fib_complete(fibptr);
3826 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3827 scsicmd->SCp.sent_command = 1;
3828 else
3829 scsicmd->scsi_done(scsicmd);
3834 * aac_send_srb_fib
3835 * @scsicmd: the scsi command block
3837 * This routine will form a FIB and fill in the aac_srb from the
3838 * scsicmd passed in.
3841 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3843 struct fib* cmd_fibcontext;
3844 struct aac_dev* dev;
3845 int status;
3847 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3848 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3849 scsicmd->device->lun > 7) {
3850 scsicmd->result = DID_NO_CONNECT << 16;
3851 scsicmd->scsi_done(scsicmd);
3852 return 0;
3856 * Allocate and initialize a Fib then setup a BlockWrite command
3858 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3859 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3860 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3863 * Check that the command queued to the controller
3865 if (status == -EINPROGRESS)
3866 return 0;
3868 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3869 aac_fib_complete(cmd_fibcontext);
3870 aac_fib_free(cmd_fibcontext);
3872 return -1;
3877 * aac_send_hba_fib
3878 * @scsicmd: the scsi command block
3880 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3881 * scsicmd passed in.
3883 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3885 struct fib *cmd_fibcontext;
3886 struct aac_dev *dev;
3887 int status;
3889 dev = shost_priv(scsicmd->device->host);
3890 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3891 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3892 scsicmd->result = DID_NO_CONNECT << 16;
3893 scsicmd->scsi_done(scsicmd);
3894 return 0;
3898 * Allocate and initialize a Fib then setup a BlockWrite command
3900 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3901 if (!cmd_fibcontext)
3902 return -1;
3904 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3905 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3908 * Check that the command queued to the controller
3910 if (status == -EINPROGRESS)
3911 return 0;
3913 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3914 status);
3915 aac_fib_complete(cmd_fibcontext);
3916 aac_fib_free(cmd_fibcontext);
3918 return -1;
3922 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3924 struct aac_dev *dev;
3925 unsigned long byte_count = 0;
3926 int nseg;
3927 struct scatterlist *sg;
3928 int i;
3930 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3931 // Get rid of old data
3932 psg->count = 0;
3933 psg->sg[0].addr = 0;
3934 psg->sg[0].count = 0;
3936 nseg = scsi_dma_map(scsicmd);
3937 if (nseg <= 0)
3938 return nseg;
3940 psg->count = cpu_to_le32(nseg);
3942 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3943 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3944 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3945 byte_count += sg_dma_len(sg);
3947 /* hba wants the size to be exact */
3948 if (byte_count > scsi_bufflen(scsicmd)) {
3949 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3950 (byte_count - scsi_bufflen(scsicmd));
3951 psg->sg[i-1].count = cpu_to_le32(temp);
3952 byte_count = scsi_bufflen(scsicmd);
3954 /* Check for command underflow */
3955 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3956 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3957 byte_count, scsicmd->underflow);
3960 return byte_count;
3964 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3966 struct aac_dev *dev;
3967 unsigned long byte_count = 0;
3968 u64 addr;
3969 int nseg;
3970 struct scatterlist *sg;
3971 int i;
3973 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3974 // Get rid of old data
3975 psg->count = 0;
3976 psg->sg[0].addr[0] = 0;
3977 psg->sg[0].addr[1] = 0;
3978 psg->sg[0].count = 0;
3980 nseg = scsi_dma_map(scsicmd);
3981 if (nseg <= 0)
3982 return nseg;
3984 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3985 int count = sg_dma_len(sg);
3986 addr = sg_dma_address(sg);
3987 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3988 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3989 psg->sg[i].count = cpu_to_le32(count);
3990 byte_count += count;
3992 psg->count = cpu_to_le32(nseg);
3993 /* hba wants the size to be exact */
3994 if (byte_count > scsi_bufflen(scsicmd)) {
3995 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3996 (byte_count - scsi_bufflen(scsicmd));
3997 psg->sg[i-1].count = cpu_to_le32(temp);
3998 byte_count = scsi_bufflen(scsicmd);
4000 /* Check for command underflow */
4001 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4002 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4003 byte_count, scsicmd->underflow);
4006 return byte_count;
4009 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
4011 unsigned long byte_count = 0;
4012 int nseg;
4013 struct scatterlist *sg;
4014 int i;
4016 // Get rid of old data
4017 psg->count = 0;
4018 psg->sg[0].next = 0;
4019 psg->sg[0].prev = 0;
4020 psg->sg[0].addr[0] = 0;
4021 psg->sg[0].addr[1] = 0;
4022 psg->sg[0].count = 0;
4023 psg->sg[0].flags = 0;
4025 nseg = scsi_dma_map(scsicmd);
4026 if (nseg <= 0)
4027 return nseg;
4029 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4030 int count = sg_dma_len(sg);
4031 u64 addr = sg_dma_address(sg);
4032 psg->sg[i].next = 0;
4033 psg->sg[i].prev = 0;
4034 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4035 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4036 psg->sg[i].count = cpu_to_le32(count);
4037 psg->sg[i].flags = 0;
4038 byte_count += count;
4040 psg->count = cpu_to_le32(nseg);
4041 /* hba wants the size to be exact */
4042 if (byte_count > scsi_bufflen(scsicmd)) {
4043 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4044 (byte_count - scsi_bufflen(scsicmd));
4045 psg->sg[i-1].count = cpu_to_le32(temp);
4046 byte_count = scsi_bufflen(scsicmd);
4048 /* Check for command underflow */
4049 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4050 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4051 byte_count, scsicmd->underflow);
4054 return byte_count;
4057 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4058 struct aac_raw_io2 *rio2, int sg_max)
4060 unsigned long byte_count = 0;
4061 int nseg;
4062 struct scatterlist *sg;
4063 int i, conformable = 0;
4064 u32 min_size = PAGE_SIZE, cur_size;
4066 nseg = scsi_dma_map(scsicmd);
4067 if (nseg <= 0)
4068 return nseg;
4070 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4071 int count = sg_dma_len(sg);
4072 u64 addr = sg_dma_address(sg);
4074 BUG_ON(i >= sg_max);
4075 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4076 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4077 cur_size = cpu_to_le32(count);
4078 rio2->sge[i].length = cur_size;
4079 rio2->sge[i].flags = 0;
4080 if (i == 0) {
4081 conformable = 1;
4082 rio2->sgeFirstSize = cur_size;
4083 } else if (i == 1) {
4084 rio2->sgeNominalSize = cur_size;
4085 min_size = cur_size;
4086 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4087 conformable = 0;
4088 if (cur_size < min_size)
4089 min_size = cur_size;
4091 byte_count += count;
4094 /* hba wants the size to be exact */
4095 if (byte_count > scsi_bufflen(scsicmd)) {
4096 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4097 (byte_count - scsi_bufflen(scsicmd));
4098 rio2->sge[i-1].length = cpu_to_le32(temp);
4099 byte_count = scsi_bufflen(scsicmd);
4102 rio2->sgeCnt = cpu_to_le32(nseg);
4103 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4104 /* not conformable: evaluate required sg elements */
4105 if (!conformable) {
4106 int j, nseg_new = nseg, err_found;
4107 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4108 err_found = 0;
4109 nseg_new = 2;
4110 for (j = 1; j < nseg - 1; ++j) {
4111 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4112 err_found = 1;
4113 break;
4115 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4117 if (!err_found)
4118 break;
4120 if (i > 0 && nseg_new <= sg_max) {
4121 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4123 if (ret < 0)
4124 return ret;
4126 } else
4127 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4129 /* Check for command underflow */
4130 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4131 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4132 byte_count, scsicmd->underflow);
4135 return byte_count;
4138 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4140 struct sge_ieee1212 *sge;
4141 int i, j, pos;
4142 u32 addr_low;
4144 if (aac_convert_sgl == 0)
4145 return 0;
4147 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4148 if (sge == NULL)
4149 return -ENOMEM;
4151 for (i = 1, pos = 1; i < nseg-1; ++i) {
4152 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4153 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4154 sge[pos].addrLow = addr_low;
4155 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4156 if (addr_low < rio2->sge[i].addrLow)
4157 sge[pos].addrHigh++;
4158 sge[pos].length = pages * PAGE_SIZE;
4159 sge[pos].flags = 0;
4160 pos++;
4163 sge[pos] = rio2->sge[nseg-1];
4164 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4166 kfree(sge);
4167 rio2->sgeCnt = cpu_to_le32(nseg_new);
4168 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4169 rio2->sgeNominalSize = pages * PAGE_SIZE;
4170 return 0;
4173 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4174 struct aac_hba_cmd_req *hbacmd,
4175 int sg_max,
4176 u64 sg_address)
4178 unsigned long byte_count = 0;
4179 int nseg;
4180 struct scatterlist *sg;
4181 int i;
4182 u32 cur_size;
4183 struct aac_hba_sgl *sge;
4185 nseg = scsi_dma_map(scsicmd);
4186 if (nseg <= 0) {
4187 byte_count = nseg;
4188 goto out;
4191 if (nseg > HBA_MAX_SG_EMBEDDED)
4192 sge = &hbacmd->sge[2];
4193 else
4194 sge = &hbacmd->sge[0];
4196 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4197 int count = sg_dma_len(sg);
4198 u64 addr = sg_dma_address(sg);
4200 WARN_ON(i >= sg_max);
4201 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4202 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4203 cur_size = cpu_to_le32(count);
4204 sge->len = cur_size;
4205 sge->flags = 0;
4206 byte_count += count;
4207 sge++;
4210 sge--;
4211 /* hba wants the size to be exact */
4212 if (byte_count > scsi_bufflen(scsicmd)) {
4213 u32 temp;
4215 temp = le32_to_cpu(sge->len) - byte_count
4216 - scsi_bufflen(scsicmd);
4217 sge->len = cpu_to_le32(temp);
4218 byte_count = scsi_bufflen(scsicmd);
4221 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4222 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4223 sge->flags = cpu_to_le32(0x40000000);
4224 } else {
4225 /* not embedded */
4226 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4227 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4228 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4229 hbacmd->sge[0].addr_lo =
4230 cpu_to_le32((u32)(sg_address & 0xffffffff));
4233 /* Check for command underflow */
4234 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4235 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4236 byte_count, scsicmd->underflow);
4238 out:
4239 return byte_count;
4242 #ifdef AAC_DETAILED_STATUS_INFO
4244 struct aac_srb_status_info {
4245 u32 status;
4246 char *str;
4250 static struct aac_srb_status_info srb_status_info[] = {
4251 { SRB_STATUS_PENDING, "Pending Status"},
4252 { SRB_STATUS_SUCCESS, "Success"},
4253 { SRB_STATUS_ABORTED, "Aborted Command"},
4254 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4255 { SRB_STATUS_ERROR, "Error Event"},
4256 { SRB_STATUS_BUSY, "Device Busy"},
4257 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4258 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4259 { SRB_STATUS_NO_DEVICE, "No Device"},
4260 { SRB_STATUS_TIMEOUT, "Timeout"},
4261 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4262 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4263 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4264 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4265 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4266 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4267 { SRB_STATUS_NO_HBA, "No HBA"},
4268 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4269 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4270 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4271 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4272 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4273 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4274 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4275 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4276 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4277 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4278 { SRB_STATUS_NOT_STARTED, "Not Started"},
4279 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4280 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4281 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4282 { 0xff, "Unknown Error"}
4285 char *aac_get_status_string(u32 status)
4287 int i;
4289 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4290 if (srb_status_info[i].status == status)
4291 return srb_status_info[i].str;
4293 return "Bad Status Code";
4296 #endif